

1 TAXONOMY OF SPO1-LIKE PHAGES

2

3 **Analysis of Spounaviruses as a Case**

4 **Study for the Overdue Reclassification of**

5 **Tailed Bacteriophages**

6 Jakub Barylski¹, François Enault², Bas E. Dutilh^{3,4}, Margo B.P. Schuller³, Robert A.

7 Edwards⁵, Annika Gillis⁶, Jochen Klumpp⁷, Petar Knezevic⁸, Mart Krupovic⁹, Jens H.

8 Kuhn¹⁰, Rob Lavigne¹¹, Hanna M. Oksanen¹², Matthew B. Sullivan¹³, Johannes Wittmann¹⁴,

9 Igor Tolstoy¹⁵, J. Rodney Brister¹⁵, Andrew M. Kropinski¹⁶, Evelien M. Adriaenssens^{17*}

10

11 This paper is dedicated to Hans-Wolfgang Ackermann, a pioneer of prokaryotic virus
12 electron microscopy and taxonomy, who died on February 12th, 2017, at the age of 80. He
13 was involved in the early stages of this study, and his input is dearly missed.

14

15 ¹*Adam Mickiewicz University, Institute of Experimental Biology, Department of Molecular*
16 *Virology, Poznań, Poland*

17 ²*Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France*

18 ³*Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University,*
19 *Utrecht, The Netherlands*

20 ⁴*Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University,*
21 *Utrecht, The Netherlands*

22 ⁵*Departments of Biology and Computer Science, San Diego State University, San Diego, CA,*
23 *USA*

24 ⁶*Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain,*
25 *Louvain-la-Neuve, Belgium*

26 ⁷*Institute of Food, Nutrition and Health, ETH Zurich, Switzerland*

27 ⁸*Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad,*
28 *Serbia*

29 ⁹*Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology,*
30 *Institut Pasteur, Paris, France*

31 ¹⁰*Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious*
32 *Diseases, National Institutes of Health, Fort Detrick, Frederick, USA*

33 ¹¹*Laboratory of Gene Technology, KU Leuven, Belgium*

34 ¹²*Department of Biosciences, University of Helsinki, Helsinki, Finland; and Institute of*
35 *Biotechnology, University of Helsinki, Helsinki, Finland*

36 ¹³*Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, The*
37 *Ohio State University, Columbus, OH, USA*

38 ¹⁴*Leibniz-Institut DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen*
39 *GmbH, Braunschweig, Germany*

40 ¹⁵*National Center for Biotechnology Information, National Library of Medicine, National*
41 *Institutes of Health, Bethesda, MD, USA*

42 ¹⁶*Departments of Food Science, Molecular and Cellular Biology; and Pathobiology,*
43 *University of Guelph, Guelph, Ontario, Canada*

44 ¹⁷*Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown*
45 *Street, Liverpool L69 7ZB, United Kingdom; evelien.adriaenssens@gmail.com,*
46 *evelien.adriaenssens@liv.ac.uk; * corresponding author*

47 ABSTRACT

48 It is almost a cliché that tailed bacteriophages of the order *Caudovirales* are the most
49 abundant and diverse viruses in the world. Yet, their taxonomy still consists of a single order
50 with just three families: *Myoviridae*, *Siphoviridae*, and *Podoviridae*. Thousands of newly
51 discovered phage genomes have recently challenged this morphology-based classification,
52 revealing that tailed bacteriophages are genetically even more diverse than once thought.
53 Here, we evaluate a range of methods for bacteriophage taxonomy by using a particularly
54 challenging group as an example, the *Bacillus* phage SPO1-related viruses of the myovirid
55 subfamily *Spounavirinae*. Exhaustive phylogenetic and phylogenomic analyses indicate that
56 the spounavirins are consistent with the taxonomic rank of family and should be divided into
57 at least five subfamilies. This work is a case study for virus genomic taxonomy and the first
58 step in an impending massive reorganization of the tailed bacteriophage taxonomy.

59

60 KEYWORDS

61 Virus taxonomy; bacteriophage taxonomy; *Caudovirales*; spounaviruses; phylogenetics;
62 phylogenomics

63

64 By the end of 2017, 3,033 complete genomes of tailed phages were available in the
65 National Center for Biotechnology Information (NCBI) RefSeq database and a further 18,753
66 partial genomes were found in International Nucleotide Sequence Database Collaboration
67 databases (Karsch-Mizrachi et al. 2012; O’Leary et al. 2016). The classification of this massive
68 group is the formal responsibility of the Bacterial and Archaeal Viruses Subcommittee of the
69 International Committee on the Taxonomy of Viruses (ICTV). In recent years, we (the
70 Subcommittee) focused on classifying newly described phages into species and genera, within

71 established viral families (Lavigne et al. 2008, 2009, Adriaenssens et al. 2015, 2017; Krupovic
72 et al. 2016). However, once our attention shifted towards higher order relationships, we found
73 that the ranks available in virus taxonomy (*species*, *genus*, *subfamily*, *family*, and *order*) were
74 no longer sufficient for the description of phage diversity. The limitation is particularly acute
75 in the case of the order *Caudovirales*—the most abundant and diverse group of viruses (Paez-
76 Espino et al. 2016; Roux et al. 2016; Nishimura et al. 2017). Indeed, the diversity of
77 caudovirads surpasses that of any other virus taxon. A recent analysis of the dsDNA virosphere
78 using a bipartite network approach, whereby viral genomes are connected via shared gene
79 families, demonstrated that the global network of dsDNA viruses consists of at least 19
80 modules, 11 of which correspond to caudovirads (Iranzo et al. 2016). Each of eight remaining
81 modules encompasses one or more families of eukaryotic or archaeal viruses. Consequently,
82 each of the 11 caudovirad modules could be considered a separate family. Despite this
83 remarkable diversity, all caudovirads are currently classified into three families - *Myoviridae*,
84 *Podoviridae*, and *Siphoviridae*. These families were historically established on morphological
85 features alone, forming an artificial classification ceiling.

86 In this study, the Subcommittee explored the diversity of the order *Caudovirales* on the
87 example of the *Spounavirinae* subfamily, a large group of myoviruses that forms one of the
88 above-mentioned caudovirad modules (Iranzo et al. 2016; Bolduc et al. 2017). The subfamily
89 was proposed in 2009 by Lavigne et al. to harbor *Bacillus* phage SPO1, *Staphylococcus* phage
90 Twort, *Staphylococcus* phage K, *Staphylococcus* phage G1, *Listeria* phage P100, and *Listeria*
91 phage A511 (Lavigne et al. 2009). The unifying characteristics of members of this subfamily
92 are: the host belongs to the bacterial phylum *Firmicutes*; strictly virulent lifestyle; myovirion
93 morphology; terminally redundant, non-permuted dsDNA genome 127–157 kb in length; and
94 “considerable amino acid homology” (Klumpp et al. 2010). The strictly virulent lifestyle of
95 these viruses has been somewhat disputed (Schuch and Fischetti 2009; Yuan et al. 2015) but

96 still remains a rule of thumb for the taxon inclusion. Since the inception of the subfamily, the
97 number of its members has grown significantly, and its taxonomic structure was contested
98 several times (Klumpp et al. 2010; Barylski et al. 2014; Iranzo et al. 2016; Krupovic et al.
99 2016; Adriaenssens et al. 2017; Bolduc et al. 2017). At present, the *Spounavirinae* subfamily
100 includes six genera (*Kayvirus*, *P100virus*, *Silviavirus*, *Spo1virus*, *Tsarbombavirus* and
101 *Twortvirus*) and three unassigned species (*Enterococcus virus phiEC24C*, *Lactobacillus virus*
102 *Lb338-1* and *Lactobacillus virus LP65*).

103 Here, we reevaluated the current classification of spounavirins and related viruses and
104 outlined a better fitting scheme, in the process also reaffirming the need for major changes in
105 phage taxonomy that will better accommodate the observed genomic diversity.

106

107 MATERIALS & METHODS

108 *Creation of the Dataset*

109 Genome sequences of known spounavirins and spouna-like viruses were retrieved from
110 GenBank or (preferably) RefSeq databases based on literature data, ICTV and taxonomic
111 classifications provided by the NCBI. Records representing genomes of candidate
112 spounavirins were retrieved by searching the same databases with the tBLASTx algorithm
113 using as a queries terminase and major capsid proteins of *Bacillus* phage SPO1,
114 *Staphylococcus* phage Twort, *Bacillus* phage Bastille, *Listeria* phage A511, *Enterococcus*
115 phage φEF24C, and *Lactobacillus* phage LP65 [type isolates of the original subfamily,
116 (Altschul et al. 1990; Brister et al. 2015)]. Sequences were manually curated and pre-
117 clustered using Cluster Analysis of Sequences (CLANS; E-value cut-off 1e-10) to confirm
118 their spounaviral affiliation (Frickey and Lupas 2004). This search yielded a set of 93

119 complete virus genomes, which were used in the following analyses (Supplementary Table
120 1).

121 The genomes were re-annotated using PROKKA with the settings --kingdom Viruses, -
122 -E-value 1e-6 (Seemann 2014). All original genome sequences are available from NCBI
123 (accession number information listed in Supplementary Table 1) and the reannotated
124 genomes from Github (github.com/evelienadri/herelleviridae).

125

126 *Genome-based Analyses*

127 Gegenees (Ågren et al. 2012) was used to analyze genome similarities (fragment length
128 200 bp; step length 100 bp). Pairwise identities between all genomes under study were
129 determined using BLASTn and tBLASTx algorithms with default parameters (Camacho et al.
130 2009). Symmetrical identity scores (% SI) were calculated for each pairwise comparison
131 using the formula:

132
$$\% \text{ SI} = 2.0 \times \frac{HL \times HI}{QL + SL}$$

133 in which the HL is defined as the hit length of the BLAST hit, HI is defined as the
134 percentage hit identity, QL is defined as the query length, and SL is defined as the subject
135 length.

136 Symmetrical identity scores were converted into distances using the formula:

137
$$\text{Distance} = \sqrt[2]{1.0 - \%SI \div 100}$$

138 The resulting distance matrix was hierarchically clustered (complete linkage) using the
139 hclust function of R (Development Core Team 2008). Trees were visualized using Itol (Letunic
140 and Bork 2007).

141 Additionally, pairwise comparisons of the nucleotide sequences using VICTOR, a
142 Genome-BLAST Distance Phylogeny (GBDP) method, were conducted under settings
143 recommended for prokaryotic viruses (Meier-Kolthoff et al. 2014; Meier-Kolthoff and Göker

144 2017). The resulting intergenomic distances (including 100 replicates each) were used to infer
145 a balanced minimum evolution tree with branch support via FASTME including subtree
146 pruning and regrafting post-processing (Lefort et al. 2015) for each of the formulas D0, D4,
147 and D6, respectively. Trees were visualized with FigTree (Rambaud 2007). Taxon
148 demarcations at the species, genus and family rank were estimated with the OPTSIL program
149 (Göker et al. 2009), the recommended clustering thresholds (Meier-Kolthoff and Göker 2017),
150 and an F value (fraction of links required for cluster fusion) of 0.5 (Meier-Kolthoff et al. 2014).

151

152 *Proteome-based Analyses*

153 The Phage Proteomic Tree was constructed as described previously (Rohwer and
154 Edwards 2002) and detailed at
155 <https://github.com/linsalrob/PhageProteomicTree/tree/master/spounavirus>. Briefly, the
156 protein sequences were extracted and clustered using BLASTp. These clusters were refined
157 by Smith-Waterman alignment using CLUSTALW version 2 (Larkin et al. 2007).
158 Alignments were scored using open-source PROTDIST from the phylogeny inference
159 package (PHYLIP) (Felsenstein 1989). Alignment scores were averaged and weighted as
160 described previously (Rohwer and Edwards 2002) resulting in the final tree.

161 Orthologous protein clusters (OPCs) were constructed using GET_HOMOLOGUES
162 software, which utilizes several independent clustering methods (Contreras-Moreira and
163 Vinuesa 2013). To capture as many evolutionary relationships as possible, a greedy
164 COGtriangles algorithm was applied with a 50% sequence identity threshold, 50% coverage
165 threshold, and an E-value cut-off equal to 1e-10 (Kristensen et al. 2010). The results were
166 converted into an orthologue matrix with the “compare_clusters” script (part of the
167 GET_HOMOLOGUES suite) (Felsenstein 1989).

168 The OPCs defined above were used to compute the genomic fluidity for each pair of
169 genomes. For two genomes i and j:

170
$$\text{Fluidity}(i,j) = \frac{Ui+Uj}{Mi+Mj}$$

171 with Ui being the number of genes of i not found in j and Mi being the number of
172 genes in i (Kislyuk et al. 2011). The resulting distance matrix was hierarchically clustered
173 (complete linkage) using the hclust function of R (Development Core Team 2008). Trees
174 were visualized using Itol (Letunic and Bork 2007).

175 Multiple alignments were generated for each OPC using Clustal Omega (Sievers et al.
176 2011). For each cluster, the amino acid identity between all protein pairs inside a cluster was
177 determined using multiple alignment. For all genome pairs, the AAI (Konstantinidis and
178 Tiedje 2005) was then computed and transformed into distance using the formula:

179
$$\text{Distance} = \frac{100 - AAI}{100}$$

180 The resulting distance matrix was clustered and visualized as described above.

181 OPCs and multiple alignments for each cluster were used to determine a distance
182 similar to the distance used to generate the Phage Proteomic Tree. To estimate protein
183 distances, in this case, the distance (dist) function of the seqinR package (Charif et al.
184 2005) was preferred to PROTDIST of the PHYLIP package (Felsenstein 1989) as the
185 resulting distances are between 0 and 1. Proteomic distances were then computed using the
186 same formula as for the Phage Proteomic Tree. The results were clustered and visualized as
187 described above.

188 The Dice score is based on reciprocal BLAST searches between all pairs of genomes A
189 and B (Mizuno et al. 2013). The total summed bit-scores of all tBLASTx hits with $\geq 30\%$
190 identity, alignment length ≥ 30 amino acids, and E-value ≤ 0.01 was converted to a distance
191 DAB as follows:

192
$$DAB = 1 - \frac{SAB + SBA}{SAA + SBB}$$

193 in which SAB and SBA represent the summed bit-scores between tBLASTx searches of
194 A versus B, and B versus A, respectively, while SAA and SBB represent the summed tBLASTx
195 bit-scores of the self-queries of A and B, respectively. The resulting distance matrix was
196 clustered with BionJ (Gascuel 1997).

197 To investigate a genomic synteny-based classification signal, we developed a gene order-
198 based metric built on dynamic programming, the Gene Order Alignment Tool (GOAT, Schuller
199 et al.: Python scripts are available on request, manuscript in preparation). GOAT first identified
200 protein-coding genes in the 93 spounavirin and spouna-like virus genomes using Prodigal
201 V2.6.3 in anonymous mode (Hyatt et al. 2010), and assigned them to the latest pVOGs
202 (Grazziotin et al. 2017)). pVOG alignments (9,518) were downloaded ([http://dmk-
203 brain.ecn.uiowa.edu/pVOGs/](http://dmk-brain.ecn.uiowa.edu/pVOGs/)) and converted to profiles of hidden Markov models (HMM)
204 using HMMbuild (HMMer 3.1b2, (Finn et al. 2011)). Proteins were assigned to pVOGs using
205 HMMsearch (E-value <10-2) and used to generate a synteny profile of every genome. GOAT
206 accounted for gene replacements and distant homology by using an all-vs-all similarity matrix
207 between pVOG pairs based on HMM-HMM similarity (HH-suite 2.0.16) (Söding et al. 2005)).
208 Distant HHsearch similarity scores between protein families were calculated as the average of
209 reciprocal hits and used as substitution scores in the gene order alignment. The GOAT
210 algorithm identified the optimal gene order alignment score between two virus genomes by
211 implementing semi-global dynamic programming alignment based only on the order of pVOGs
212 identified on every virus genome. To account for virus genomes being cut at arbitrary positions
213 during sequence assembly, GOAT transmutes the gene order at all possible positions and in
214 both sense and antisense directions in search of the optimal alignment score. The optimal
215 GOAT alignment score GAB between every pair of virus genomes A and B, was converted to
216 a distance DAB as follows:

217
$$DAB = 1 - \frac{GAB + GBA}{GAA + GBB}$$

218 in which GAB and GBA represent the optimal GOAT score between A and B, and B and
219 A, respectively, while GAA and GBB represent the GOAT scores of the self-alignments of A
220 and B, respectively. This pairwise distance matrix was clustered with BionJ (Gascuel 1997).

221 Prokka re-annotated genomes were used to create pan-, core-, and accessory genomes of
222 all selected spounavirins and spouna-like viruses (Seemann 2014). The annotations were
223 analyzed using Roary (Page et al. 2015) with a 50% length BLASTp identity threshold for
224 homologous genes. Roary functions as follows: CD-HIT (Fu et al. 2012) was used to pre-
225 cluster protein sequences and perform an all-vs-all comparison of protein sequences with
226 BLASTp to identify orthologs and paralogs within the genomes. Markov cluster algorithm
227 (MCL) (Enright et al. 2002) was then used to cluster the genomes based on the presence and
228 absence of the accessory genes. The gene presence-absence output table from Roary was then
229 imported into R and pairwise shared gene contents were calculated for each combination of
230 genomes using a custom R-script (available from
231 github.com/evelienadri/herelleviridae/tree/master). The resulting tree file was visualized using
232 FigTree v1.4.3 (Rambaud 2007).

233

234 *Single Protein Phylogenies*

235 Based on the OPC and pVOG analyses, we chose nine well-annotated protein clusters
236 present in all 93 spounavirins and spouna-like viruses. Selected clusters included: DNA
237 helicases, major capsid proteins, tail sheath proteins, two different groups of baseplate
238 proteins, and four clusters with no known function. The members of these clusters were
239 aligned using Clustal Omega with default parameters (Sievers et al. 2011). Resulting
240 alignments were analyzed with ProtTest 3.4 (Darriba et al. 2011) to determine a suitable
241 protein evolution model (only variations of models compatible with downstream software

242 like JTT (Jones et al. 1992) and WAG (Whelan and Goldman 2001) were considered).
243 Estimated models were used to generate phylogenograms with FastTree 2.1.7 (Price et al. 2010).
244 The program implements the approximately maximum-likelihood method with Shimodaira-
245 Hasegawa tests to generate the tree and calculate support of the splits. This approach is much
246 faster than “traditional” maximum-likelihood methods with negligible accuracy loss (Price et
247 al. 2010; Darriba et al. 2011; Liu et al. 2011).

248

249 RESULTS

250 General Overview

251 To determine the phylogenetic relationship between 93 known and alleged spounavirins,
252 we used genomic, proteomic and marker gene-based comparative strategies. Regardless of the
253 adopted phylogenetic approach applied, five separate, clear-cut clusters were identified. We
254 believe that these clusters have a common origin and ought to come together under one
255 umbrella taxon. We suggest to name this taxon “*Herelleviridae*,” in honor of the 100th
256 anniversary of the discovery of prokaryotic viruses by Félix d’Hérelle (Table 1, Figs. 1-3 and
257 Supplementary Table 1). The first cluster (here suggested to retain the name *Spounavirinae*)
258 groups *Bacillus*-infecting viruses that are similar to *Bacillus* phage SPO1. The second cluster
259 includes *Bacillus*-infecting viruses that resemble phage Bastille instead (named
260 “*Bastillevirinae*” after the type species (Barylski et al. 2014)). The third cluster
261 (“*Brockvirinae*,” named in honor of Thomas D. Brock, a microbiologist known for discovery
262 of hyperthermophiles who worked on *Streptococcus* phages early in his career) comprises
263 currently unclassified viruses of enterococci that are similar to *Enterococcus* phage φEF24C.
264 The fourth cluster (“*Twortvirinae*,” named in honor of Frederick William Twort, the
265 bacteriologist who discovered prokaryotic viruses in 1915) gathers staphylococci-infected

266 viruses that are similar to *Staphylococcus* phage Twort. The remaining cluster
267 (“*Jasinskavirinae*,” named in honor of Stanisława Jasińska-Lewandowska who was one of the
268 first to study *Listeria* and its viruses) consists of viruses infecting *Listeria* that are similar to
269 *Listeria* phage P100. The classification in five clusters left three viruses unassigned at this rank:
270 *Lactobacillus* phage Lb338, *Lactobacillus* phage LP65, and *Brochothrix* phage A9.

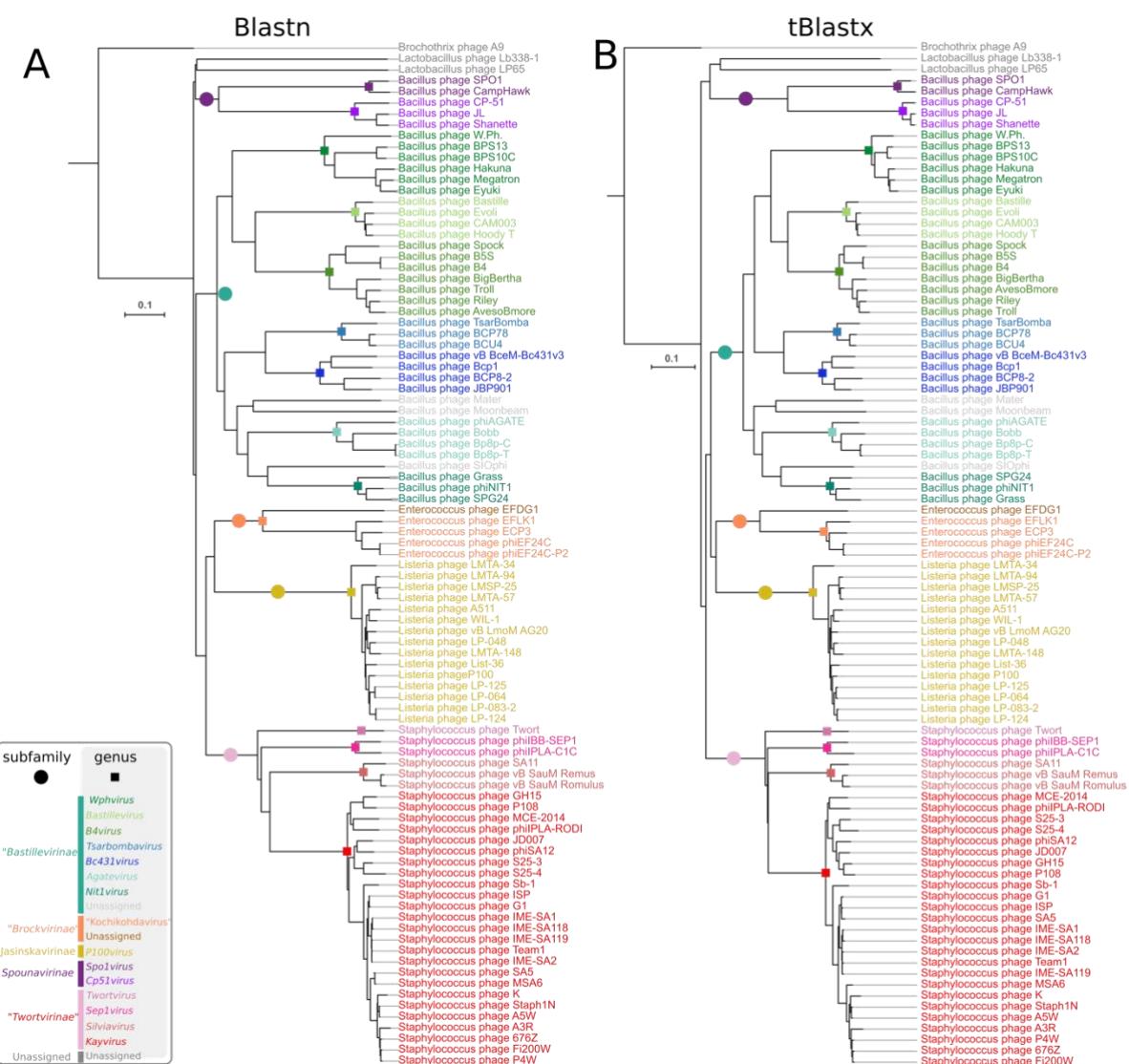
271 These robust clusters can be further subdivided into smaller clades that correspond well
272 with the currently accepted genera. The evidence supporting this suggested taxonomic re-
273 classification is presented in the following sections.

274

275 *Genome-based Analyses*

276 BLASTn analysis revealed that the genomes of several viruses were similar enough to
277 consider them strains of the same species (they shared >95% nucleotide identity,
278 Supplementary Fig. 1). The *Staphylococcus* viruses fell into four distinct, yet closely related
279 groups corresponding to the established genera Twortvirus, Sep1virus, Silviavirus, and
280 Kayvirus (Supplementary Fig. 1). With the exception of *Enterococcus* phage EFDG1, all
281 *Enterococcus* viruses clustered as a clade representing a new genus (here suggested to be
282 named “Kochikohdavirus” after the place of origin of the type virus of the clade,
283 *Enterococcus* phage φEF24C (Uchiyama et al. 2008a, 2008b)). The *Bacillus* viruses clustered
284 into the established genera Spo1virus, Cp51virus, Bastillevirus, Agatevirus, B4virus,
285 Bc431virus, Nit1virus, Tsarbombavirus, and Wphvirus, with three species remaining
286 unassigned at the genus rank (Table 1). These results were also confirmed with the Virus
287 Classification and Tree Building Online Resource (VICTOR), a genome-BLAST distance
288 phylogeny (GBDP) method (Supplementary Fig. 2) (Meier-Kolthoff and Göker 2017) and the
289 Dice score (Supplementary Fig. 3), a tBLASTx-based measure that compares whole genome
290 sequences at the amino acid level (Mizuno et al. 2013).

291 The patterns coalesced at a higher taxonomic level when the genomes were analyzed
292 using tBLASTx (Supplementary Fig. 4). The *Enterococcus* viruses clustered into a single group
293 sharing 41% genome identity, whereas the *Bacillus* viruses fell into two major groups, a group
294 combining the genera *Spo1virus* and *Cp51virus*, and the remainder. All *Staphylococcus* viruses
295 clustered above \approx 36% genome identity, whereas *Listeria* viruses grouped with more than 79%
296 genome identity. Overall, all these genomes were related at the level of at least 15% genome
297 identity. *Lactobacillus* and *Brochothrix* viruses remained genomic orphans, peripherally
298 related to the remainder of the viruses in this assemblage.


299

300 Table 1. Suggested new classification of the 93 spounavirins and spouna-like viruses in the new family "Herelleviridae."^a

Order	Family	Subfamily	Genus	Species
<i>Caudovirales</i>	<i>"Herelleviridae"</i>	<i>"Bastillevirinae"</i>	<i>Agatevirus</i>	<i>Bacillus virus Agate</i> , <i>Bacillus virus Bobb</i> , <i>Bacillus virus Bp8pC</i> (Bp8p-T)
			<i>B4virus</i>	<i>Bacillus virus AvesoBmore</i> , <i>Bacillus virus B4</i> (B5S), <i>Bacillus virus Bigbertha</i> , <i>Bacillus virus Riley</i> , <i>Bacillus virus Spock</i> , <i>Bacillus virus Troll</i>
			<i>Bastillevirus</i>	<i>Bacillus virus Bastille</i> , <i>Bacillus virus CAM003</i> , "Bacillus virus Evoli", "Bacillus virus HoodyT"
			<i>Bc431virus</i>	<i>Bacillus virus Bc431</i> , <i>Bacillus virus Bcp1</i> , <i>Bacillus virus BCP82</i> , <i>Bacillus virus JBP901</i>
			<i>Nit1virus</i>	<i>Bacillus virus Grass</i> , <i>Bacillus virus NIT1</i> , <i>Bacillus virus SPG24</i>
		<i>"Brockvirinae"</i>	<i>Tsarbombavirus</i>	<i>Bacillus virus BCP78</i> (BCU4), <i>Bacillus virus TsarBomba</i>
			<i>Wphvirus</i>	<i>Bacillus virus BPS13</i> , <i>Bacillus virus Hakun</i> , <i>Bacillus virus Megatron</i> (Eyuki), <i>Bacillus virus WPh</i> , "Bacillus virus BPS10C"
		<i>"Jasinskavirinae"</i>	<i>Kochikohdavirus</i>	"Enterococcus virus ECP3", "Enterococcus virus EF24C" (phiEFC24C-P2), "Enterococcus virus EFLK1" "Enterococcus virus EFDG1"
			<i>Unassigned</i>	<i>Listeria virus A511</i> , <i>Listeria virus P100</i> (List-36, LMSP-25, AvB_LmoM_AG20, LP-125, LP-064, LP-083-2, LP-124, LP-125, LP-048, LMTA-34, LMTA-94, LMTA-148, LMTA-57, WIL-1)
		<i>Spounavirinae</i>	<i>Cp51virus</i>	<i>Bacillus virus CP51</i> , <i>Bacillus virus JL</i> , <i>Bacillus virus Shanette</i>
		<i>"Twortvirinae"</i>	<i>Spo1virus</i>	<i>Bacillus virus Camphawk</i> , <i>Bacillus virus SPO1</i>
			<i>Unassigned</i>	"Bacillus virus Mater", "Bacillus virus Moonbeam", "Bacillus virus SIOphi"
			<i>Kayvirus</i>	<i>Staphylococcus virus G1</i> , <i>Staphylococcus virus G15</i> , <i>Staphylococcus virus JD7</i> , <i>Staphylococcus virus K</i> , <i>Staphylococcus virus MCE2014</i> , <i>Staphylococcus virus P108</i> , <i>Staphylococcus virus Rodi</i> , <i>Staphylococcus virus S253</i> , <i>Staphylococcus virus S25-4</i> , <i>Staphylococcus virus SA12</i> , "Staphylococcus virus Sb1" (676Z, A3R, A5W, Fi200W, IME-SA1, IME-SA118, IME-SA119, IME-SA2, ISP, MSA6, P4W, SA5, Staph1N, Team1)
			<i>Silviavirus</i>	<i>Staphylococcus virus Remus</i> (Romulus), <i>Staphylococcus virus SA11</i>
			<i>Sep1virus</i>	<i>Staphylococcus virus IPLAC1C</i> , <i>Staphylococcus virus SEP1</i>
			<i>Twortvirus</i>	<i>Staphylococcus virus Twort</i>
		<i>Unassigned</i>	<i>Unassigned</i>	"Lactobacillus virus Lb338", "Lactobacillus virus LP65", "Brochothrix virus A9"

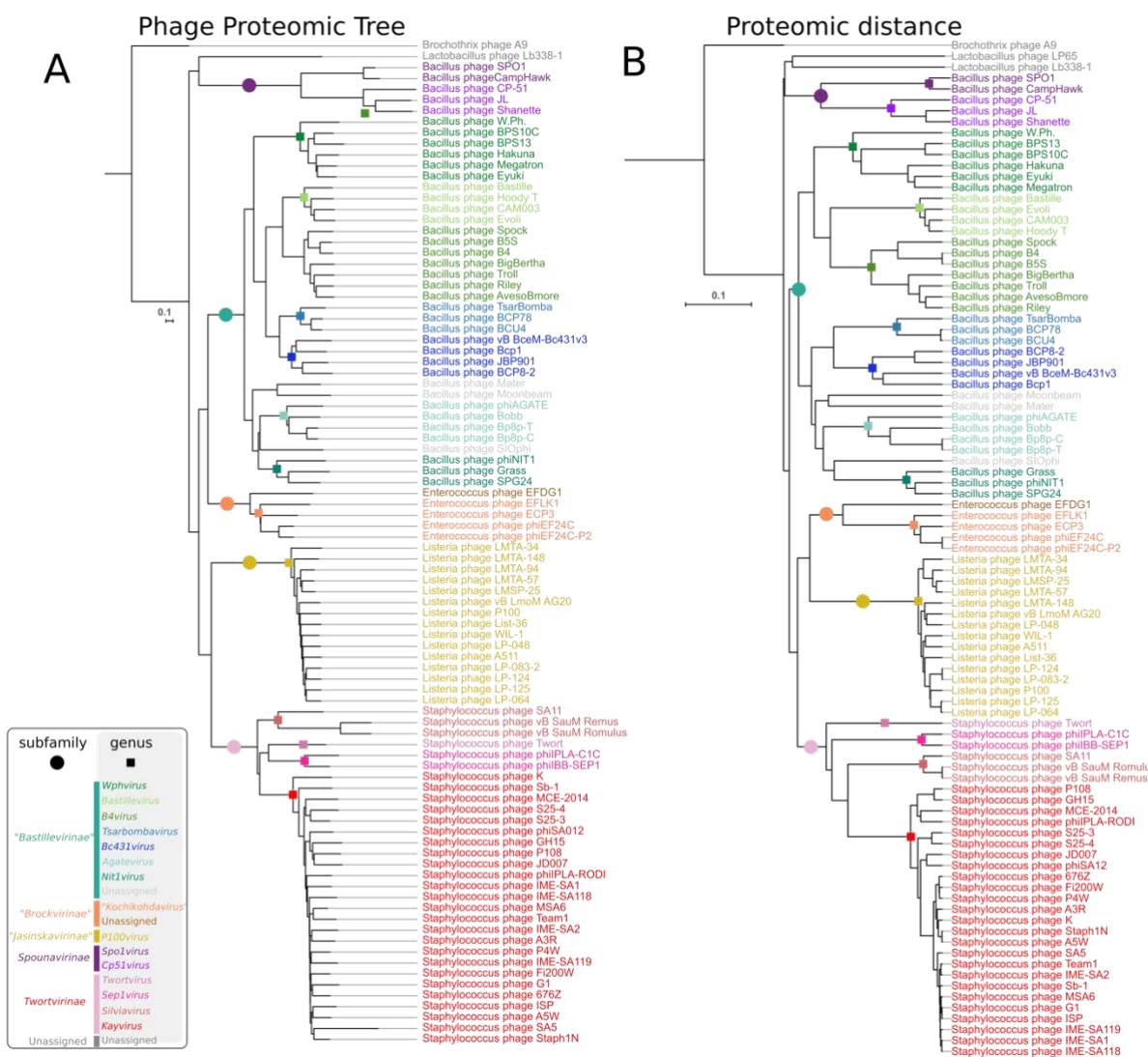
301 ^a The species listed here are representing the 93 genome dataset on which all analyses have been performed. Species names ratified in 2017 and
 302 later are not included. Phage isolates at the subspecies or strain level are indicated between brackets. Non-ICTV-ratified taxa are indicated
 303 between quotation marks.

304

305

306 Figure 1. Genome-based clustering trees of 93 spounavirin and spouna-like viruses. A)

307 Clustering was performed using nucleotide similarities (BLASTn) or B) translated nucleotide
 308 similarities (tBLASTx). Genomes were compared in a pairwise fashion using Gegenees,
 309 transformed into a distance matrix, clustered using R, and visualized as trees using Interactive
 310 tree of life (Itol). The trees were rooted at Brochotrix phage A9. Genera and suggested
 311 subfamilies are delineated with colored squares and colored circles, respectively.


312

313 *Proteome-based Analyses*

314 The virus proteomic tree showed five robust groupings corresponding with the
315 suggested subfamilies (Fig. 2). Viruses that infect *Bacillus* fell into two groups as described
316 before, represented by the revised *Spounavirinae* subfamily and the suggested new subfamily
317 “*Bastillevirinae*.” Similarly, the *Listeria* and *Staphylococcus* viruses formed their own
318 clusters, “*Jasinskavirinae*” and “*Twortvirinae*”, respectively. This clustering suggests that the
319 major *Bacillus*, *Listeria*, and *Staphylococcus* virus groups are represented, but that further
320 representatives are required from the under-sampled groups. The suggested “*Brockvirinae*”
321 subfamily is under-sampled, and the grouping observed in the tree was not as well-supported
322 as the other clusters.

323 Among 1,296 singleton proteins and 2,070 protein clusters defined using the
324 orthologous protein clusters (OPC) approach, we identified 12 clusters common for all viruses
325 (Table 2, Supplementary Table 2). Classification of the viral proteins using prokaryotic virus
326 orthologous groups (pVOGs) showed that 38 pVOGs were shared between all 93 virus
327 genomes (Table 2, Supplementary Table 3). This finding was in stark contrast with the results
328 from core genome analysis using Roary, which revealed only one core gene (the tail tube
329 protein gene). Upon closer inspection of the gene annotations, we found that these analyses
330 might have been confounded by the presence of introns and inteins in many of the core genes
331 (Supplementary Figs. 5–6). Indeed, many genes of spounavirins and related viruses are invaded
332 by mobile introns or inteins (Goodrich-Blair et al. 1990; Lavigne and Vandersteegen 2013).
333 These gaps in coding sequences challenge gene prediction tools and introduce additional bias
334 in similarity-based cluster algorithms.

335

336

337 Figure 2. Predicted proteome-based clustering trees of 93 spounavirin and spouna-like
338 viruses. A) Clustering was performed using the Phage Proteomics Tree approach and B)
339 proteomic distance. Distances were calculated pairwise between all sets of predicted
340 proteomes, clustered with R, and visualized using Itol. The trees were rooted at Brochotrix
341 phage A9. Genera and suggested subfamilies are delineated with colored squares and colored
342 circles, respectively.

343

344 The pairwise comparison of the predicted proteome content of the viruses revealed a
345 very low overall similarity at the protein level (Supplementary Fig. 7). Most viruses shared less
346 than 10% of their proteins. However, at the suggested new subfamily rank, we observed

347 obvious virus groups sharing their proteomes. The *Enterococcus* viruses (“*Brockvirinae*”)
348 shared over 35% of their protein content. The members of the *Bacillus* virus genera *Spo1virus*
349 and *Cp51virus* of the subfamily *Spounavirinae* (*sensu stricto*) had approximately 20% of their
350 proteins in common, whereas the *Bacillus* virus genera *Bastillevirus*, *B4virus*, *Bc431virus*,
351 *Agatevirus*, *Nit1virus*, *Tsarbombavirus*, and *Wphvirus* (“*Bastillevirinae*”) and the
352 *Staphylococcus* virus genera *Kayvirus*, *Silviavirus*, and *Twortvirus* (“*Twortvirinae*”) shared
353 over 25% and over 30% of their predicted proteomes, respectively.

354 Genomic fluidity is a measure of the dissimilarity of genomes evaluated at the gene
355 level (Kislyuk et al. 2011). Accordingly, the genomic fluidity results followed those obtained
356 using proteome content analysis (Supplementary Fig. 8). Despite a high genomic fluidity for
357 most of these viruses, the newly suggested subfamilies and genera were all supported.

358 The topology of the dendrogram obtained using the average amino acid identity (AAI)
359 approach also supported the suggested new taxonomic scheme (Supplementary Fig. 8). The
360 AAI was greater than 35% within each subfamily and greater than 67% within each genus. The
361 AAI of all viruses analyzed in this study was not lower than 22%. The members of the genus
362 *Wphvirus* had the lowest AAI (76%) and the lowest AAI for a pair of proteomes (67% between
363 *Bacillus* phage W.Ph. and *Bacillus* phage Eyuki) but surprisingly they had a mid-range
364 genomic fluidity (0.15), suggesting that the protein sequences of wphviruses might have
365 evolved rapidly.

366
367

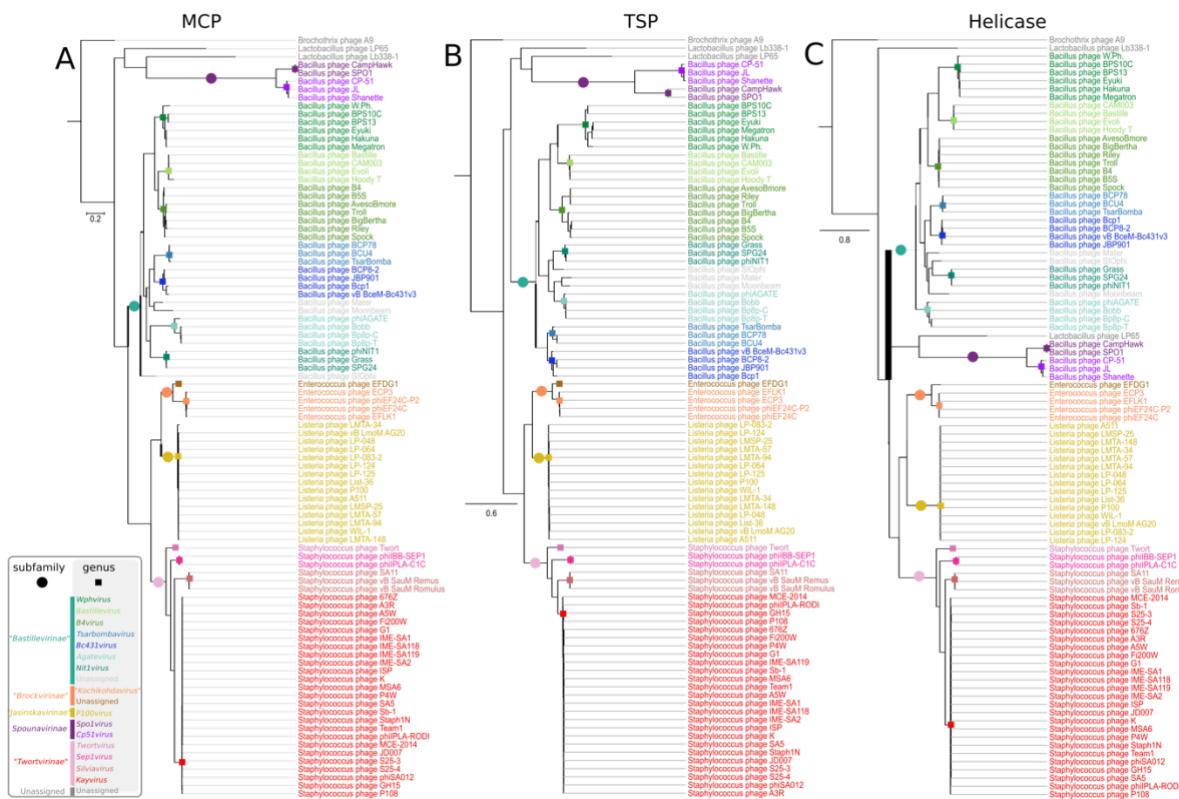
368 Table 2. Core genes with putative annotated functions identified in all 93 spounavirin
369 and spouna-like virus genomes.

Putative function of the core gene identified ^a	pVOG ^b / OPC ^b ID	Identification method
DnaB-like helicase	VOG0025, OPC6121	OPC, pVOG
Baseplate J-like protein	VOG4691, VOG4644, OPC6132	OPC, pVOG
Tail sheath protein	VOG0067, OPC6142	OPC, pVOG
Terminase large subunit	VOG0051, OPC6160	pVOG
Major capsid protein	VOG0061, OPC6148	OPC, pVOG
Prohead protease	VOG4568, OPC6150	pVOG
Portal protein	VOG4556, OPC6151	OPC, pVOG
DNA primase	VOG4551	pVOG
DNA polymerase I	VOG0668, OPC6097	OPC, pVOG
RNA polymerase	VOG0118	pVOG
Recombination exonuclease	VOG4575	pVOG
Recombination endonuclease	VOG0083	pVOG
Tail tape measure protein	VOG0069	pVOG
Tail tube protein	VOG0068, OPC6141	OPC, pVOG, Roary

370 ^a The full lists of orthologous proteins and pVOGs are available in Supplementary
371 Tables 2 and 3, respectively.

372 ^b pVOG, prokaryotic virus orthologous group; OPC, orthologous protein clusters.

373
374 The pangenome of the spounavirins and spouna-like viruses (4,182 genes) as calculated
375 using Roary (Page et al. 2015) was further analyzed by clustering the genomes based on the
376 presence or absence of the accessory genes (Supplementary Fig. 9). The obtained tree
377 supported the current division of the viruses into approved genera and the suggested new
378 subfamilies.


379 Many virus genomes are thought to be highly modular, with recombination and
380 horizontal gene transfer potentially resulting in “mosaic genomes” (Juhala et al. 2000;
381 Krupovic et al. 2011). By clustering the spounavirin and spouna-like virus genomes based
382 solely on the gene order of their genomes, we investigated whether gene synteny was preserved
383 (Supplementary Fig. 10). The results revealed that genomic rearrangements leave a measurable
384 evolutionary signal in all lineages, since the genomic architecture analysis clustered all viruses

385 according the suggested taxa. The potential exception was *Bacillus* phage Moonbeam
386 (Cadungog et al. 2015). However, we did not observe the high modularity that may be expected
387 with rampant mosaicism. The lack of considerable mosaicism supports the recent findings by
388 Bolduc et al. that, at most, about 10% of reference virus genomes have a high degree of
389 mosaicism (Bolduc et al. 2017). Thus, while the gene order in viruses belonging to the newly
390 suggested family “*Herelleviridae*” is not necessarily strictly conserved, we observed a clear
391 evolutionary pattern that is consistent with the sequence-based approaches tested in this study.

392

393 *Single Protein Phylogenies*

394 The phylogenetic trees based on comparisons of the major capsid, tail sheath, and DnaB-
395 like helicase proteins are presented in Figure 3. All nine phylogenograms based on OPC are included
396 in the trees in Supplementary Figure 11. For nearly all single marker trees, the topologies
397 supported the suggested taxonomic scheme. Generally, each taxon is represented as a separate
398 branch on the dendrogram. Notable exceptions could be found in two trees based on
399 hypothetical proteins (OPCs 10357 and 10386). The first protein places the revised subfamily
400 *Spounavirinae* as a subclade of “*Bastillevirinae*” and the second protein shuffled viruses from
401 the genera *Silviavirus* and *Kayvirus*. This result may indicate that some degree of horizontal
402 gene transfer occurs between groups, which share common hosts.

403

404 Figure 3. Phylogenetic trees based on comparisons of major protein clusters of amino
 405 acid sequences of spounavirin and spouna-like viruses. Amino acid sequences from A) the
 406 major capsid protein, B) tail sheath protein, and C) helicase were aligned with Clustal Omega,
 407 and trees were generated using FastTree maximum likelihood with Shimidaira-Hasegawa tests.
 408 The scale bar represents the number of substitutions per site. The trees were rooted at
 409 Brochotrix phage A9. Genera and suggested subfamilies are delineated with colored squares
 410 and colored circles, respectively.

411

412 DISCUSSION

413 Taxonomic methods must constantly develop to keep up with the ever-increasing pace
 414 of virus discovery. In the rapidly expanding field of phage studies, this requirement proved to
 415 be problematic, and although there are more than 3000 publicly available caudovirid genomes,
 416 only 873 have been officially classified by the ICTV (Davison 2017). The remaining genomes

417 are provisionally stashed within “unclassified” bins attached to the order or associated families
418 (Adams et al. 2017; Simmonds et al. 2017). We believe that this work is an important step
419 toward solving the problem of these “phage orphans”. This study represents the first example
420 of a true taxonomic assessment from an “ensemble of methods”. We are encouraged that the
421 combination of genome sequence analyses, virus proteomic trees, core protein clusters, gene
422 order genomic synteny (GOAT), and single gene phylogenies yields consistent and
423 complementary results. Convergence of the results reasserts the usefulness of genome-based
424 classification at a higher taxonomic rank and the ability of these methods to accommodate viral
425 diversity.

426 All evidence considered, we suggest that the spounavirins should be removed from the
427 family *Myoviridae* and given a family rank. Hence, we propose establishing a new family
428 “*Herelleviridae*”, in the order *Caudovirales* next to a smaller *Myoviridae* family. The new
429 family would contain five subfamilies: *Spounavirinae* (sensu stricto), “*Bastillevirinae*”,
430 “*Twortvirinae*”, “*Jasinkavirinae*”, and “*Brockvirinae*”, each comprising the genera listed in
431 Table 1 (with additional information in S1 Table). The suggested classification corresponds
432 well with the taxonomy of the hosts and leaves only 3% of viruses within the new family
433 unassigned at the genus and subfamily rank. These unassigned viruses may represent clades at
434 the genus and subfamily rank that are still under-sampled.

435 We believe that detachment of spounavirins from their original taxon will soon be
436 followed by abolishment of the *Podoviridae*, *Myoviridae* and *Siphoviridae* families, in
437 combination with the addition of new taxon ranks (e.g., class) required to accommodate the
438 observed diversity of tailed phages. Substitution of the current families with a set of new
439 “phylogenomic” ones will more faithfully reflect the genetic relationships of these viruses. This
440 change does not remove the historically established virus morphotypes observed among
441 caudovirads: myovirids forming particles with contractile tails, siphovirids forming particles

442 with long non-contractile tails, and podovirids forming particles with short non-contractile
443 ones. By disconnecting morphotype and family classification, taxonomically related clades can
444 be grouped across different morphotypes. Such an approach would solve the problems of the
445 muviruses that are suggested to be classified in the family “*Saltoviridae*” (Hulo et al. 2015)
446 and potentially the broad set of *Escherichia* phage lambda-related viruses that are currently
447 distributed among the families *Siphoviridae* and *Podoviridae* (Grose and Casjens 2014).

448

449 REFERENCES

450 Adams M.J., Lefkowitz E.J., King A.M.Q., Harrach B., Harrison R.L., Knowles N.J.,
451 Kropinski A.M., Krupovic M., Kuhn J.H., Mushegian A.R., Nibert M.L., Sabanadzovic
452 S., Sanfaçon H., Siddell S.G., Simmonds P., Varsani A., Zerbini F.M., Orton R.J., Smith
453 D.B., Gorbatenya A.E., Davison A.J. 2017. 50 years of the International Committee on
454 Taxonomy of Viruses: progress and prospects. *Arch. Virol.* 162:1441–1446.

455 Adriaenssens E.M., Edwards R., Nash J.H.E., Mahadevan P., Seto D., Ackermann H.-W.,
456 Lavigne R., Kropinski A.M. 2015. Integration of genomic and proteomic analyses in the
457 classification of the *Siphoviridae* family. *Virology*. 477:144–154.

458 Adriaenssens E.M., Krupovic M., Knezevic P., Ackermann H.-W., Barylski J., Brister J.R.,
459 Clokie M.R.C., Duffy S., Dutilh B.E., Edwards R.A., Enault F., Jang H. Bin, Klumpp J.,
460 Kropinski A.M., Lavigne R., Poranen M.M., Prangishvili D., Rumnieks J., Sullivan
461 M.B., Wittmann J., Oksanen H.M., Gillis A., Kuhn J.H. 2017. Taxonomy of prokaryotic
462 viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. *Arch.*
463 *Virol.* 162:1153–1157.

464 Ågren J., Sundström A., Håfström T., Segerman B. 2012. Gegenees: Fragmented alignment
465 of multiple genomes for determining phylogenomic distances and genetic signatures
466 unique for specified target groups. *PLoS One*. 7:e39107.

467 Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment
468 search tool. *J. Mol. Biol.* 215:403–410.

469 Barylski J., Nowicki G., Goździcka-Józefiak A. 2014. The discovery of phiAGATE, a novel
470 phage infecting *Bacillus pumilus*, leads to new insights into the phylogeny of the
471 subfamily *Spounavirinae*. *PLoS One.* 9:e86632.

472 Bolduc B., Jang H. Bin, Doulcier G., You Z.-Q., Roux S., Sullivan M.B. 2017. vConTACT:
473 an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria.
474 *PeerJ.* 5:e3243.

475 Brister J.R., Ako-adjei D., Bao Y., Blinkova O. 2015. NCBI Viral Genomes Resource.
476 *Nucleic Acids Res.* 43:D571–D577.

477 Cadungog J.N., Khatemi B.E., Hernandez A.C., Kuty Everett G.F. 2015. Complete genome
478 sequence of *Bacillus megaterium* myophage Moonbeam. *Genome Announc.* 3:e01428-
479 14.

480 Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L.
481 2009. BLAST+: architecture and applications. *BMC Bioinformatics.* 10:421.

482 Charif D., Thioulouse J., Lobry J.R., Perrière G. 2005. Online synonymous codon usage
483 analyses with the ade4 and seqinR packages. *Bioinformatics.* 21:545–547.

484 Contreras-Moreira B., Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package
485 for scalable and robust microbial pangenome analysis. *Appl. Environ. Microbiol.*
486 79:7696–7701.

487 Darriba D., Taboada G.L., Doallo R., Posada D. 2011. ProtTest 3: Fast selection of best-fit
488 models of protein evolution. *Bioinformatics.* 27:1164–1165.

489 Davison A.J. 2017. Journal of General Virology – Introduction to “ICTV Virus Taxonomy
490 Profiles.” *J. Gen. Virol.* 98:1–1.

491 Development Core Team R. 2008. R: A language and environment for statistical computing.

492 Available from <http://www.r-project.org>.

493 Enright A.J., Van Dongen S., Ouzounis C.A. 2002. An efficient algorithm for large-scale
494 detection of protein families. *Nucleic Acids Res.* 30:1575–1584.

495 Felsenstein J. 1989. PHYLIP - Phylogeny inference package - v3.2. *Cladistics*. 5:164–166.

496 Finn R.D., Clements J., Eddy S.R. 2011. HMMER web server: Interactive sequence
497 similarity searching. *Nucleic Acids Res.* 39:29–37.

498 Frickey T., Lupas A. 2004. CLANS: A Java application for visualizing protein families based
499 on pairwise similarity. *Bioinformatics*. 20:3702–3704.

500 Fu L., Niu B., Zhu Z., Wu S., Li W. 2012. CD-HIT: Accelerated for clustering the next-
501 generation sequencing data. *Bioinformatics*. 28:3150–3152.

502 Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model
503 of sequence data. *Mol. Biol. Evol.* 14:685–695.

504 Göker M., García-Blázquez G., Voglmayr H., Tellería M.T., Martín M.P. 2009. Molecular
505 taxonomy of phytopathogenic fungi: A case study in *Peronospora*. *PLoS One*. 4:8–10.

506 Goodrich-Blair H., Scarlato V., Gott J.M., Xu M.-Q., Shub D.A. 1990. A self-splicing group
507 I intron in the DNA polymerase gene of *Bacillus subtilis* bacteriophage SPO1. *Cell*.
508 63:417–424.

509 Grazziotin A.L., Koonin E. V., Kristensen D.M. 2017. Prokaryotic Virus Orthologous Groups
510 (pVOGs): a resource for comparative genomics and protein family annotation. *Nucleic
511 Acids Res.* 45:D491–D498.

512 Gross J.H., Casjens S.R. 2014. Understanding the enormous diversity of bacteriophages: The
513 tailed phages that infect the bacterial family *Enterobacteriaceae*. *Virology*. 468–
514 470:421–443.

515 Hulo C., Masson P., Le Mercier P., Toussaint A. 2015. A structured annotation frame for the
516 transposable phages: A new proposed family “Saltoviridae” within the *Caudovirales*.

517 Virology. 477:155–163.

518 Hyatt D., Chen G.L., LoCascio P.F., Land M.L., Larimer F.W., Hauser L.J. 2010. Prodigal:
519 prokaryotic gene recognition and translation initiation site identification. BMC
520 Bioinformatics. 11.

521 Iranzo J., Krupovic M., Koonin E. V. 2016. The double-stranded DNA virosphere as a
522 modular hierarchical network of gene sharing. MBio. 7:e00978-16.

523 Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of mutation data
524 matrices from protein sequences. Bioinformatics. 8:275–282.

525 Juhala R.J., Ford M.E., Duda R.L., Youlton A., Hatfull G.F., Hendrix R.W. 2000. Genomic
526 sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the
527 lambdoid bacteriophages. J. Mol. Biol. 299:27–51.

528 Karsch-Mizrachi I., Nakamura Y., Cochrane G. 2012. The International Nucleotide Sequence
529 Database Collaboration. Nucleic Acids Res. 40:D33–D37.

530 Kislyuk A.O., Haegeman B., Bergman N.H., Weitz J.S. 2011. Genomic fluidity: An
531 integrative view of gene diversity within microbial populations. BMC Genomics. 12:32.

532 Klumpp J., Lavigne R., Loessner M.J., Ackermann H.-W. 2010. The SPO1-related
533 bacteriophages. Arch. Virol. 155:1547–61.

534 Konstantinidis K.T., Tiedje J.M. 2005. Towards a genome-based taxonomy for prokaryotes.
535 J. Bacteriol. 187:6258–6264.

536 Kristensen D.M., Kannan L., Coleman M.K., Wolf Y.I., Sorokin A., Koonin E. V.,
537 Mushegian A. 2010. A low-polynomial algorithm for assembling clusters of orthologous
538 groups from intergenomic symmetric best matches. Bioinformatics. 26:1481–7.

539 Krupovic M., Dutilh B.E., Adriaenssens E.M., Wittmann J., Vogensen F.K., Sullivan M.B.,
540 Rummieks J., Prangishvili D., Lavigne R., Kropinski A.M., Klumpp J., Gillis A., Enault
541 F., Edwards R.A., Duffy S., Clokie M.R.C., Barylski J., Ackermann H.-W., Kuhn J.H.

542 2016. Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal
543 viruses subcommittee. *Arch. Virol.* 161:1095–1099.

544 Krupovic M., Prangishvili D., Hendrix R.W., Bamford D.H. 2011. Genomics of bacterial and
545 archaeal viruses: Dynamics within the prokaryotic virosphere. *Microbiol. Mol. Biol.*
546 *Rev.* 75:610–635.

547 Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H.,
548 Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins
549 D.G. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics*. 23:2947–2948.

550 Lavigne R., Darius P., Summer E.J., Seto D., Mahadevan P., Nilsson A.S., Ackermann H.W.,
551 Kropinski A.M. 2009. Classification of *Myoviridae* bacteriophages using protein
552 sequence similarity. *BMC Microbiol.* 9:224.

553 Lavigne R., Seto D., Mahadevan P., Ackermann H.-W., Kropinski A.M. 2008. Unifying
554 classical and molecular taxonomic classification: analysis of the *Podoviridae* using
555 BLASTP-based tools. *Res. Microbiol.* 159:406–414.

556 Lavigne R., Vandersteegen K. 2013. Group I introns in *Staphylococcus* bacteriophages.
557 *Future Virol.* 8:997–1005.

558 Lefort V., Desper R., Gascuel O. 2015. FastME 2.0: A comprehensive, accurate, and fast
559 distance-based phylogeny inference program. *Mol. Biol. Evol.* 32:2798–2800.

560 Letunic I., Bork P. 2007. Interactive Tree Of Life (iTOL): An online tool for phylogenetic
561 tree display and annotation. *Bioinformatics*. 23:127–128.

562 Liu K., Linder C.R., Warnow T. 2011. RAxML and FastTree: Comparing two methods for
563 large-scale maximum likelihood phylogeny estimation. *PLoS One*. 6:e27731.

564 Meier-Kolthoff J.J.P., Hahnke R.L., Petersen J., Scheuner C., Michael V., Fiebig A., Rohde
565 C., Rohde M., Fartmann B., Goodwin L.A., Chertkov O., Reddy T.B.K., Pati A.,
566 Ivanova N.N., Markowitz V.V., Kyrpides N.C.N., Woyke T., Göker M., Klenk H.-P.H.-

567 P.H., Pagani I., Liolios K., Jansson J., Chen I., Smirnova T., Nosrat B., Markowitz V.V.,
568 Kyrpides N.C.N., Lapage S., Sneath P., Lessel E., Skerman V., Seeliger H., Clark W.,
569 Blattner F., Plunkett G., Bloch C., Perna N., Burland V., Riley M., Vides J.C., Glasner
570 J., Rode C., Mayhew G., Gregor J., Davis N., Kirkpatrick H., Goeden M., Rose D., Mau
571 B., Shao Y., Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N.N.,
572 Kunin V., Goodwin L.A., Wu M., Tindall B., Hooper S., Pati A., Lykidis A., Spring S.,
573 Anderson I., D P., Escherich T., Skerman V., McGowan V., Sneath P., Kauffmann F.,
574 Årskov F., Årskov I., Filannino P., Azzi L., Cavoski I., Vincentini O., Rizzello C.,
575 Gobetti M., Cagno R. Di, Schumann P., Pukall R., Farnleitner A., Kreuzinger N.,
576 Kavka G., Grillenberger S., Rath J., Mach R., Tee T., Chowdhury A., Maranas C.,
577 Shanks J., Wen M., Bond-Watts B., Chang M., Rosano G., Ceccarelli E., Donovan C.,
578 Bramkamp M., Kuzminov A., Kang Z., Zhang C., Zhang J., Jin P., Zhang J., Du G.,
579 Chen J., Whitfield C., Roberts I., Cooper K., Mandrell R., Louie J., Korlach J., Clark T.,
580 Parker C., Huynh S., Chain P., Ahmed S., Carter M., Allocati N., Masulli M., Alexeyev
581 M., Ilio C. Di, Kaper J., Nataro J., Mobley H., Auch A., Jan M. Von, Klenk H.-P.H.-
582 P.H., Göker M., Meier-Kolthoff J.J.P., Auch A., Klenk H.-P.H.-P.H., Göker M., Meier-
583 Kolthoff J.J.P., Klenk H.-P.H.-P.H., Göker M., Göker M., Cleland D., Saunders E.,
584 Lapidus A., Nolan M., Lucas S., Hammon N., Deshpande S., Cheng J.-F., Tapia R., Han
585 C., Goodwin L.A., Pitluck S., Liolios K., Pagani I., Ivanova N.N., Mavromatis K., Pati
586 A., Chen A., Palaniappan K., Land M., Hauser L., Chang Y.Y.-J., Jeffries C., Detter J.,
587 Beck B., Woyke T., Bristow J., Eisen J., Markowitz V.V., Welch R., Scheutz F.,
588 Strockbine N., Koser S., Topley W., Wilson G., Huys G., Cnockaert M., Janda J.,
589 Swings J., Field D., Garrity G., Gray T., Morrison N., Selengut J., Sterk P., Tatusova T.,
590 Thomson N., Allen M., Angiuoli S., Ashburner M., Axelrod N., Baldauf S., Ballard S.,
591 Boore J., Cochrane G., Cole J., Dawyndt P., Vos P. De, Pamphilis C. de, Edwards R.,

592 Faruque N., Feldman R., Gilbert J., Gilna P., Glockner F., Goldstein P., Guralnick R.,
593 Haft D., Hancock D., Field D., Amaral-Zettler L., Cochrane G., Cole J., Dawyndt P.,
594 Garrity G., Gilbert J., Glöckner F., Hirschman L., Karsch-Mizrachi I., Klenk H.-P.H.-
595 P.H., Knight R., Kottmann R., Kyrpides N.C.N., Meyer F., Gil I.S., Sansone S.-A.,
596 Schriml L., Sterk P., Tatusova T., Ussery D., White O., Wooley J., Woese C., Kandler
597 O., Weelis M., Garrity G., Bell J., Lilburn T., Garrity G., Bell J., Lilburn T., Williams
598 K., Kelly D., Brenner D., Castellani A., Chalmers A., Ashburner M., Ball C., Blake J.,
599 Botstein D., Butler H., Cherry J., Davis A., Dolinski K., Dwight S., Eppig J., Harris M.,
600 Hill D., Issel-Tarver L., Kasarskis A., Lewis S., Matese J., Richardson J., Ringwald M.,
601 Rubin G., Sherlock G., Consortium G., Vaas L., Sikorski J., Michael V., Göker M.,
602 Klenk H.-P.H.-P.H., Vaas L., Sikorski J., Hofner B., Fiebig A., Buddruhs N., Klenk H.-
603 P.H.-P.H., Göker M., Chang Y.Y.-J., Feingold D., Boer H., Maaheimo H., Koivula A.,
604 Penttila M., Richard P., Xiao Z., Xu P., Göker M., Klenk H.-P.H.-P.H., Mavromatis K.,
605 Land M., Brettin T., Quest D., Copeland A., Clum A., Goodwin L.A., Woyke T.,
606 Lapidus A., Klenk H.-P.H.-P.H., Cottingham R., Kyrpides N.C.N., Markowitz V.V., I-
607 M A.C., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J.,
608 Williams P., Huntemann M., Anderson I., Mavromatis K., Ivanova N.N., Kyrpides
609 N.C.N., Gemeinholzer B., Dröge G., Zetzsche H., Haszprunar G., Klenk H.-P.H.-P.H.,
610 Güntsche A., Berendsohn W., Wägele J., Zerbino D., Birney E., Gordon D., Abajian C.,
611 Green P., Hyatt D., Chen G., LoCascio P., Land M., Larimer F., Hauser L., Mavromatis
612 K., Ivanova N.N., Chen I., Szeto E., Markowitz V.V., Kyrpides N.C.N., Finn D.,
613 Clements J., Eddy S., Lowe T., Eddy S., Nawrocki E., Kolbe D., Eddy S., Markowitz
614 V.V., Ivanova N.N., Chen I., Chu K., Kyrpides N.C.N., Bland C., Ramsey T., Sabree F.,
615 Lowe M., Brown K., Kyrpides N.C.N., Hugenholtz P., Edgar R., Wayne L., Brenner D.,
616 Colwell R., Grimont P., Kandler O., Krichevsky M., Moore L., Moore W., Murray R.,

617 Stackebrandt E., Starr M., Truper H., Tindall B., Rosselló-Móra R., Busse H., Ludwig
618 W., Kämpfer P., Kaas R., Friis C., Ussery D., Aarestrup F., Clermont O., Bonacorsi S.,
619 Bingen E., Clermont O., Gordon D., Brisse S., Walk S., Denamur E., Clermont O.,
620 Christenson J., Denamur E., Gordon D., Sahl J., Morris C., Rasko D., Patil K., McHardy
621 A., Thorne J., Kishino H., Meier-Kolthoff J.J.P., Auch A., Klenk H.-P.H.-P.H., Göker
622 M., Letunic I., Bork P., Desper R., Gascuel O., Lukjancenko O., Wassenaar T., Ussery
623 D., Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E.,
624 Bonacorsi S., Bouchier C., Bouvet O., Calteau A., Chiapello H., Clermont O., Cruveiller
625 S., Danchin A., Diard M., Dossat C., Karoui M. El, Frapy E., Garry L., Ghigo J., Gilles
626 A., Johnson J., Bouguenec C. Le, Lescat M., Mangenot S., Martinez-Jehanne V., Matic
627 I., Nassif X., Oztas S., Zuo G., Xu Z., Hao B., Abt B., Han C., Scheuner C., Lu M.,
628 Lapidus A., Nolan M., Lucas S., Hammon N., Deshpande S., Cheng J.-F., Tapia R.,
629 Goodwin L.A., Pitluck S., Mavromatis K., Mikhailova N., Huntemann M., Pati A., Chen
630 A., Palaniappan K., Land M., Hauser L., Brambilla E.-M., Rohde M., Spring S., Gronow
631 S., Göker M., Woyke T., Bristow J., Eisen J., Markowitz V.V., Abt B., Göker M.,
632 Scheuner C., Han C., Lu M., Misra M., Lapidus A., Nolan M., Lucas S., Hammon N.,
633 Deshpande S., Chang J.-F., Tapia R., Goodwin L.A., Pitluck S., Liolios K., Pagani I.,
634 Ivanova N.N., Mavromatis K., Mikhailova N., Huntemann M., Pati A., Chen A.,
635 Palaniappan K., Land M., Hauser L., Brambilla E.-M., Rohde M., Spring S., Gronow S.,
636 Anderson I., Scheuner C., Göker M., Mavromatis K., Hooper S., Porat I., Klenk H.-
637 P.H.-P.H., Ivanova N.N., Kyrpides N.C.N., Frank O., Pradella S., Rohde M., Scheuner
638 C., Klenk H.-P.H.-P.H., Göker M., Petersen J., Göker M., Scheuner C., Klenk H.-P.H.-
639 P.H., Stielow J., Menzel W., Spring S., Scheuner C., Lapidus A., Lucas S., Rio T. Del,
640 Tice H., Copeland A., Cheng J.-F., Chen F., Nolan M., Saunders E., Pitluck S., Liolios
641 K., Ivanova N.N., Mavromatis K., Lykidis A., Pati A., Chen A., Palaniappan K., Land

642 M., Hauser L., Chang Y.Y.-J., Jeffries C., Goodwin L.A., Detter J., Brettin T., Rohde
643 M., Göker M., Woyke T., Bristow J., Stackebrandt E., Scheuner C., Göker M.,
644 Schumann P., Verbarg S., Göker M., Scheuner S., Schumann P., Stackebrandt E.,
645 Altschul S., Madden T., Schaffer A., Zhang J., Zhang Z., Miller W., Lipman D., Li L.,
646 Stoeckert C., Roos D., Edgar R., Thompson J., Thierry J.-C., Poch O., Castresana J.,
647 Meusemann K., Reumont B. von, Simon S., Roeding F., Strauss S., Kuck P.,
648 Ebersberger I., Walzl M., Pass G., Breuers S., Achter V., Haeseler A. von, Burmester T.,
649 Hadrys H., Wagele J., Misof B., Felsenstein J., Fitch W., Goloboff P., Stamatakis A.,
650 Pattengale N., Alipour M., Bininda-Emonds O., Moret B., Stamatakis A., Swofford D.,
651 Klenk H.-P.H.-P.H., Göker M., Enright A., Dongen S. van, Ouzounis C., Albuquerque
652 L., Rainey F., Nobre M.F., Costa M. da, Fricke W., McDermott P., Mammel M., Zhao
653 S., Johnson T., Rasko D., Fedorka-Cray P., Pedroso A., Whichard J., Leclerc J., White
654 D., Cebula T., Ravel J., Brinkkötter A., Klöss H., Alpert C., Lengeler J., Göker M.,
655 García-Blázquez G., Voglmayr H., Tellerá M., Martán M., Staley J., Krieg N.,
656 Tindall B., Kampfer P., Euzeby J., Oren A., Lan R., Reeves P. 2014. Complete genome
657 sequence of DSM 30083T, the type strain (U5/41T) of *Escherichia coli*, and a proposal
658 for delineating subspecies in microbial taxonomy. Stand. Genomic Sci. 9:2.
659 Meier-Kolthoff J.P., Göker M. 2017. VICTOR: genome-based phylogeny and classification
660 of prokaryotic viruses. Bioinformatics. 33:3396–3404.
661 Mizuno C.M., Rodriguez-Valera F., Kimes N.E., Ghai R. 2013. Expanding the marine
662 virosphere using metagenomics. PLoS Genet. 9:e1003987.
663 Nishimura Y., Watai H., Honda T., Mihara T., Omae K., Roux S., Blanc-Mathieu R.,
664 Yamamoto K., Hingamp P., Sako Y., Sullivan M.B., Goto S., Ogata H., Yoshida T.
665 2017. Environmental viral genomes shed new light on virus-host interactions in the
666 ocean. mSphere. 2:e00359-16.

667 O'Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B.,
668 Robbertse B., Smith-White B., Ako-Adjei D., Astashyn A., Badretdin A., Bao Y.,
669 Blinkova O., Brover V., Chetvernin V., Choi J., Cox E., Ermolaeva O., Farrell C.M.,
670 Goldfarb T., Gupta T., Haft D., Hatcher E., Hlavina W., Joardar V.S., Kodali V.K., Li
671 W., Maglott D., Masterson P., McGarvey K.M., Murphy M.R., O'Neill K., Pujar S.,
672 Rangwala S.H., Rausch D., Riddick L.D., Schoch C., Shkeda A., Storz S.S., Sun H.,
673 Thibaud-Nissen F., Tolstoy I., Tully R.E., Vatsan A.R., Wallin C., Webb D., Wu W.,
674 Landrum M.J., Kimchi A., Tatusova T., DiCuccio M., Kitts P., Murphy T.D., Pruitt
675 K.D. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic
676 expansion, and functional annotation. *Nucleic Acids Res.* 44:D733–D745.

677 Paez-Espino D., Eloe-Fadrosh E.A., Pavlopoulos G.A., Thomas A.D., Huntemann M.,
678 Mikhailova N., Rubin E., Ivanova N.N., Kyrpides N.C. 2016. Uncovering Earth's
679 virome. *Nature*. 536:425–430.

680 Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T.G., Fookes M.,
681 Falush D., Keane J.A., Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome
682 analysis. *Bioinformatics*. 31:3691–3693.

683 Price M.N., Dehal P.S., Arkin A.P. 2010. FastTree 2 - Approximately maximum-likelihood
684 trees for large alignments. *PLoS One*. 5:e9490.

685 Rambaud. 2007. FigTree. Available from <http://tree.bio.ed.ac.uk/software/figtree/>.

686 Rohwer F., Edwards R. 2002. The Phage Proteomic Tree: a genome-based taxonomy for
687 phage. *J. Bacteriol.* 184:4529–4535.

688 Roux S., Brum J.R., Dutilh B.E., Sunagawa S., Duhaime M.B., Loy A., Poulos B.T.,
689 Solonenko N., Lara E., Poulain J., Pesant S., Kandels-Lewis S., Dimier C., Picheral M.,
690 Searson S., Cruaud C., Alberti A., Duarte C.M., Gasol J.M., Vaqué D., Bork P., Acinas
691 S.G., Wincker P., Sullivan M.B. 2016. Ecogenomics and potential biogeochemical

692 impacts of globally abundant ocean viruses. *Nature*. 537:689–693.

693 Schuch R., Fischetti V.A. 2009. The secret life of the anthrax agent *Bacillus anthracis*:

694 Bacteriophage-mediated ecological adaptations. *PLoS One*. 4:e6532.

695 Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*. 30:2068–

696 2069.

697 Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H.,

698 Remmert M., Söding J., Thompson J.D., Higgins D.G. 2011. Fast, scalable generation of

699 high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst.*

700 *Biol.* 7:539.

701 Simmonds P., Adams M.J., Benkő M., Breitbart M., Brister J.R., Carstens E.B., Davison

702 A.J., Delwart E., Gorbelenya A.E., Harrach B., Hull R., King A.M., Koonin E. V.,

703 Krupovic M., Kuhn J.H., Lefkowitz E.J., Nibert M.L., Orton R., Roossinck M.J.,

704 Sabanadzovic S., Sullivan M.B., Suttle C.A., Tesh R.B., van der Vlugt R.A., Varsani A.,

705 Zerbini F.M. 2017. Consensus statement: Virus taxonomy in the age of metagenomics.

706 *Nat. Rev. Microbiol.* 15:161–168.

707 Söding J., Biegert A., Lupas A.N. 2005. The HHpred interactive server for protein homology

708 detection and structure prediction. *Nucleic Acids Res.* 33:W244-2488.

709 Uchiyama J., Rashel M., Maeda Y., Takemura I., Sugihara S., Akechi K., Muraoka A.,

710 Wakiguchi H., Matsuzaki S. 2008a. Isolation and characterization of a novel

711 *Enterococcus faecalis* bacteriophage phiEF24C as a therapeutic candidate. *FEMS*

712 *Microbiol. Lett.* 278:200–206.

713 Uchiyama J., Rashel M., Takemura I., Wakiguchi H., Matsuzaki S. 2008b. In silico and in

714 vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of *Enterococcus*

715 *faecalis* infections. *Appl. Environ. Microbiol.* 74:4149–4163.

716 Whelan S., Goldman N. 2001. A general empirical model of protein evolution derived from

717 multiple protein families using a maximum-likelihood approach. *Mol. Biol. Evol.*
718 18:691–699.

719 Yuan Y., Peng Q., Wu D., Kou Z., Wu Y., Liu P., Gao M. 2015. Effects of actin-like proteins
720 encoded by two *Bacillus pumilus* phages on unstable lysogeny, revealed by genomic
721 analysis. *Appl. Environ. Microbiol.* 81:339–350.

722

723 FUNDING

724 This work was supported by the National Science Centre, Poland (grant number
725 2016/23/D/NZ2/00435) to JB; the Netherlands Organization for Scientific Research (NWO)
726 (Vidi grant number 864.14.004) to MBPS and BED; the US National Science Foundation
727 (grant numbers DUE-132809 and MCB-1330800) to RAE; the University of Helsinki
728 funding for Instruct research infrastructure (Virus and Macromolecular Complex Production,
729 ICVIR) to HMO; the Chargé de Recherches fellowship from the National Fund for Scientific
730 Research, FNRS, Belgium to AG; the EUed Horizon 2020 Framework Programme for
731 Research and Innovation, ‘Virus-X’ (grant number 685778) to FE; the Gordon and Betty
732 Moore Foundation Investigator Award (grant number GBMF#3790) to MBS; the Battelle
733 Memorial Institute’s prime contract with the US National Institute of Allergy and Infectious
734 Diseases (NIAID) (Contract number HHSN272200700016I) to JHK. The content of this
735 publication does not necessarily reflect the views or policies of the US Department of Health
736 and Human Services or of the institutions and companies affiliated with the authors.

737

738 ACKNOWLEDGMENTS

739 We thank Laura Bollinger, Integrated Research Facility at Fort Detrick, for technical
740 writing services. E.M.A. would like to thank P.H. Nel for assistance with R scripting.