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33  Abstract

34  Background: Mammalian phenotypes are shaped by numerous genome variants, many of
35  which may regulate gene transcription or RNA splicing. To identify variants with regulatory
36 functionsin cattle, an important economic and model species, we used sequence variants to
37  map atype of expression quantitative trait loci (expression QTLS) that are associated with
38 variationsinthe RNA splicing, i.e., SQTLs. To further the understanding of regulatory

39  variants, SQTLs were compare with other two types of expression QTLS, 1) variants

40  associated with variations in gene expression, i.e., geQTLs and 2) variants associated with

41  variationsin exon expression, i.e., eeQTLs, in different tissues.

42  Results: Using whole genome and RNA sequence data from four tissues of over 200 cattle,
43  sQTLsidentified using exon inclusion ratios were verified by matching their effects on

44  adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are
45  within the intronic region of genes and contained the lowest percentage of variants that are
46  within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are
47  alsodetected as eeQTLs. Many expression QTLS, including sQTLSs, were significant in all
48  four tissues and had asimilar effect in each tissue. To verify such expression QTL sharing
49  between tissues, variants surrounding (x1Mb) the exon or gene were used to build local

50 genomic relationship matrices (LGRM) and estimated genetic correlations between tissues.
51 For many exons, the splicing and expression level was determined by the same cis additive
52  genetic variancein different tissues. Thus, an effective but simple-to-implement meta-

53 analysis combining information from three tissues is introduced to increase power to detect
54  and validate sQTLs. sQTLs and eeQTLSs together were more enriched for variants associated

55  with cattle complex traits, compared to geQTLs. Several putative causal mutations were
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identified, including an SQTL at Chr6:87392580 within the 5" exon of kappa casein (CSN3)

associated with milk production traits.

Conclusions: Using novel analytical approaches, we report the first identification of
numerous bovine sQTLs which are extensively shared between multiple tissue types. The
significant overlaps between bovine sQTLs and complex traits QTL highlight the

contribution of regulatory mutations to phenotypic variations.

Keywords: RNA splicing, gene expression, expression QTL, sQTL, genetic correlations,

local genomic relationship matrices (LGRM), transcriptome meta-analysis, bovine
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64 Background

65  Cattle are an important source of meat and dairy products for humans worldwide. Also, cattle
66  can be used as clinical models to study genetic causes of human diseases [1]. To improve

67  productivity, health performance and efficiency of cattle, traditional selective breeding has
68  beenwidely used. In the last decade, genomic selection, originally developed in cattle

69  breeding, has further increased the rate of genetic improvement of complex traitsin all

70 livestock species[2, 3]. However, genomic selection commonly uses genotyping arrays that
71 are based on single nucleotide polymorphisms (SNPs) of which very few have known

72 biological functions or directly impact genetic variation in production traits. Knowledge of

73 the genesinvolved and polymorphic sites would increase our understanding of the biology

74  and may further increase the rate of genetic improvement [4].

75  Many of the sequence variants that are associated with complex traits (quantitative trait loci
76 or QTL) are not coding variants and are presumed to influence the regulation of gene

77  expression, that isto be expression QTLs[5]. An expression QTL might be associated with
78  thevariation in overall transcript abundance from the gene, which we will refer to as a gene
79  expression QTL or geQTL. In cattle and humans, geQTLs show significant enrichments for

80  mutations associated with diseases and complex traits [5-7].

81  After transcription, RNA is spliced by intron removal and exon ligation to create various

82  mature transcripts. An expression QTL associated with the changes in the expression ratio of
83  anexontothegeneimpliesthat it alters RNA splicing. This type of expression QTL isthen
84  defined asasplicing QTL or sQTL, which have been studied in humans by inferring the

85 individua splicing ratio from RNA sequence data[8]. More recently, SQTLS, identified using
86 intron information extracted from RNA sequence data, were demonstrated to have

87  fundamental links with human diseases [9, 10]. RNA splicing also resultsin different
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88  expression levels of exons within agene. Thus, in theory, the type of expression QTL that
89 changethelevel of expression of one or severa exons, i.e., exon expression QTL or eeQTLS,
90  may represent some sQTLs. However, the extent to which eeQTLs overlap with sQTLs

91  and/or geQTLs remains unclear, at least in cattle.

92  Knowledge of large mammal regulatory mutationsis limited mainly to humans, where there
93  have been multiple studies reporting on expression QTLs[9, 11, 12]. In this study, we aim to
94 identify bovine cis splicing QTLs using the abundances of genes, exons and introns estimated
95 from RNA sequence data from hundreds of animals and multiple tissues along with imputed
96  whole genome sequences. We examined the extent to which sQTLs can be detected in white
97  blood cells, milk cells, liver and muscle transcriptomes and the extent to which sQTLs
98  overlap with conventional QTL associated with complex traits overlapped. To further
99  characterise the features of SQTLS, we used the counts of genes and exons to map another

100  two types of cis expression QTLs: eeQTLs and geQTLs, and then analysed their relationships

101 with sQTLsin different tissues.

102

103 Results

104 Data quality

105 Intotal, we analysed 378 transcriptomes of 19 tissue types from 214 cattle generated from
106  four experiments covering major dairy and beef cattle breeds (Table 1, Figure 1aand

107  Additional file 1: Supplementary Methods). Following recommendations from Mazzoni and
108  Kadarmideen 2016 [13] RNA sequence quality was assessed and was detailed in Additional
109 file 1: Supplementary Methods. Based on the results produced by Qualimap 2 [14], no

110  significant events of RNA degradation were observed in all studied tissues (Additional file 2:
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Supplementary Figure S1). Also, according to Qualimap 2 [14], on average, 60.3% of reads
were mapped to exonic regions of the bovine reference genome (UMD3.1), 15.4% of reads
were mapped to intronic regions and 24.4% were mapped to integenic regions (Additional
file 3: Supplementary Table S1). Splicing junction annotation and saturation were estimated
using RSeQC [15]. Asasmall demonstration, no significant difference was observed in the
annotated splicing junction eventsin the bovine reference genome (UMD3.1), using different
RNA-seq alignment software including HISAT2 [16], STAR [17] and TopHat2 [18]
(Additional file 4: Supplementary Table S2). Although HISAT2 and STAR outperformed
TopHat2 for novel splicing junction events (do not exist in the current bovine UMD3.1
genome). Also, using a splicing junction saturation analysis for all tissues we observed
saturated coverage for the known splicing junctions (Additional file 2: Supplementary Figure

S2), though there appeared to be more potential for splicing junction discovery for the novel

category.

Animals with white blood cell RNA-seq data were evaluated for the consistency between
imputed genotypes from the 1000 bull genomes project [19] and RNA seguence genotypes as
predicted from the RNA sequence data using samtools [20]. On average, the concordance
between imputed sequence genotypes and RNA sequence genotypes was 0.943 (Additional
file 2: Supplementary Figure S3), which was consistent with the average imputation accuracy
(0.926) of the 1000 bull genomes project [21]. The comparison of the genotypes was detailed

in Additional file 1: Supplementary Methods.

Overall, samples from the same or similar tissues clustered together rather than clustering by
experiments, based on exon expression levels (Figure 1a). This was supported by further
analyses of the clusters where ellipses, drawn based on tissue types, were clearly separated
(Additional file 2: Supplementary Figure S$4a,c,e), whereas ellipses drawn based on different

experiments overlapped (Additional file 2: Supplementary Figure $4b,d,f), at the confidence
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136  interval = 0.95[22]. Consistent with previous reports [23], milk cells and mammary gland

137  transcriptomes were closely related.

138

Table 1. Summary of experiments, data and analyses. Tissue splicing: variation in differential splicing
associated with tissue types estimated using RNA sequence data from all experiments. Breed splicing:
variation in differential splicing associated with Holstein and Jersey breeds estimated using RNA sequence
data of milk cellsfrom experiment 111. SQTLSs: cis splicing quantitative trait loci, SQTLs estimated using
RNA sequence data and imputed whole genome and from experiment 111 and IV. Data from experiment 111
and IV were also used to estimate exon expression eeQTLs and gene expression geQTLs.

Tissue Breed SOTLs  Experiment  Tissuetype Sample Breed Individual

splicing splicing No. No.
v | 18 various® 54 Holstein 1
milk cells & .
v
] mammary 12 Holstein 6
v v i whiteblood 455 gigein 105
cells
v v v 1 milk cells 131 HOIS@n& om0 o6
Jersey
v v v liver 35 Angus 35
v v v muscle 41 Angus 41

2 18 tissues from [24]. : The same 105 Holstein cattle, each of which had both white blood and milk cell
transcriptomic data.
139

140 Differential splicing between tissues and breeds

141 We primarily defined a differentially spliced gene as a gene which contained exons whose
142 inclusion ratios (exon expression divided by gene expression) were significantly associated
143 with tissue or breed (FDR<0.1). To verify the significantly spliced exons, we imposed a

144  requirement that at least one adjacent intron had an excision ratio [9, 25] that was also

145  dignificantly (FDR<0.1) associated with tissue or breed (See methods). The FDR threshold of
146  such exon splicing events was considered as approximately 0.01 by combining the FDR

147  thresholds from exon and intron analyses (0.1 x 0.1). The overlaps of genes displaying

148  differentia splicing from exon and intron analyses were shown and examined in 2 x 2 tables
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149 by Chi-sguare tests (Additional file 5: Supplementary Table S3). Overall, the overlap of the
150  results from exon and intron analyses was significantly more than expected by random

151 chance.

152 Using datafrom all experiments (Table 1), there were 8,657 genes in which at least one exon
153  had the variation in splicing associated with differences between tissue types. A list of these
154  genes with the significances of differential splicing for the exons and introns was shown in
155  Additional file 6: Supplementary Table S4. The top 10% of these significantly differentially
156  spliced genes had a GO term enrichment (FDR<0.01) of ‘regulation of cellular process’,

157  suggesting very general roles of these genesin cell function. There werel48 genes with

158  significant differential splicing eventsin the milk cell transcriptome between breeds (Table 1,
159  Additional file 7: Supplementary Table S5). While these genes did not show any significant
160 GO term enrichments, they included the milk protein gene CSN3 [26, 27], where the 5" exon
161  (6:87,392,578-87,392,750) was more commonly included in the transcript in Holstein cattle

162  thanin Jersey cattle (Figure 1b).
163  cissplicing quantitative trait loci (SQTLS)

164  Themapping of SQTLSs was based on data from 312 transcriptomes generated from

165 experiments|il and IV, including white blood cells, milk cells, liver and muscle tissues

166  (Table1). Intotal 207 individuals had imputed whole genome sequence data and in

167  experiment |11, 105 genotyped cattle had both white blood and milk cell transcriptome data
168  (Table 1). Similar to differential splicing analyses described above, a cis-acting sQTL was
169  defined as a SNP significantly (FDR<0.1) associated with the variation in the inclusion ratio
170  of the exon (up to 1IMb away) and significantly (FDR<0.1) associated with the variation in at
171  least one adjacent introns' excision ratio [9, 25]. When analysed separately, the overlap

172 between sQTLs found by exon analyses and sQTLs found by intron analyses were
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173 dignificantly more than expected by random chance (Additional file 5: Supplementary Table
174  S3). After requiring that the variation in the inclusion and excision ratios for adjacent exons
175  and introns both be associated with the same SNP, 138,796 sQTLs were called in the white
176  blood cells, 28,907 sQTLs were called in the milk cells, 11,544 sQTLs were called in the
177  liver tissue and 5,783 sQTLs were called the muscle tissue (Figure 2, Additional file 5, 8:

178  Supplementary Table S3 and S5).

179  Thesignificant sQTLsin white blood and milk cells were mapped to 929 and 283 genes,
180  respectively (Table 2). Many SNPs were significant for sQTLs due to linkage disequilibrium

181  between SNPs close to the same gene. The results do not imply many sQTLS per gene.

182  Inthemilk cell transcriptome, the fifth exon of CSN3 (6:87392578-87392750), which as

183  described above was differentialy spliced in Holstein and Jersey cattle (Figure 1b), and was
184  strongly associated with an sQTL (Chr6:87392580, p = 5.0e-07, Additional file 8:

185  Supplementary Table S6). This sQTL is physically located within the 5™ exon of CSN3. Also,
186  the B allele of this SQTL increased the expression and inclusion ratio of the 5" exon and had
187  ahigher allele frequency among Holstein cattle than Jersey cattle (0.79 vs 0.02). This

188  predicted that the expression and inclusion ratio of the 5™ exon would be significantly higher
189  inthe Holstein cattle than Jersey cattle, which wasin line with the observationsin Figure 1b.
190 Inaddition, this sSQTL was also predicted to be asplice site (‘ splice_region_variant’) by

191  Ensemble [28] and NGS-SNP software [29]. Much smaller numbers of significant sQTLs
192  weredetected in liver (11,544 SNPs) and muscle (5,783 SNPs) (Figure 2c,d). Thiswas

193  probably dueto the smaller sample size (Table 1) and lower sequence depth of liver and

194  muscle from experiment IV (Additional file 1: Supplementary Methods) than that of white

195  blood and milk cells from the experiment 111 (Figure 2ab, Table 2).

10
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Table 2. Summary of expression QTLs detected. cis sQTLSs: significant SNPs within + IMb
of the exon, associated with the variation in its inclusion ratio and also associated with the
variations in the excision of an adjacent intron at the same significance level. Where the
FDR threshold was approximated to 0.01 by combining FDR thresholds used in exon (FDR
<0.1) and intron (FDR < 0.1) analyses. cis eeQTLs: significant (FDR<0.01) SNPs within +
1Mb of the exon, associated with the variation in its abundance. cis geQTLSs: significant
(FDR<0.01) SNPs within = IMb of the gene associated with the variation in its abundance.

cis QTL type Tissue Expression QTL number Gene number
white blood cells 138,796 929
milk cells 28,907 283
QTLs liver 11,544 49
muscle 5,783 76
white blood cells 802,685 6,446
milk cells 100,844 2,102
eeQTLs liver 37.322 346
muscle 64,675 1,267
white blood cells 96,530 842
milk cells 4,099 99
geQTLs liver 39,306 419
muscle 57,054 1,150

196

197  Comparing sQTLs with exon expression eeQTLs and gene expression geQTLS

198  Many more significant eeQTLs than sSQTLs were detected in all tissues studied (Table 2). In
199  white blood and milk cells, the number of geQTL was smaller than the number of significant

200 sQTLsin white blood and milk cells (Table 2).

201 Figure 3ashowed that sSQTLs were a median distance of about 200 kb from the transcription
202  dart site (TSS) and were slightly closer to the TSS than eeQTLs and geQTLs. All 3 classes of
203  expression QTLs had alower percentage of intergenic SNPs and a higher percentage of

204  intronic and coding SNPs, including splice sites than the same categories across al SNPs

205  analysed (Figure 3b). Specifically, sQTLs had the highest percentage of intronic SNPs,

206  compared to eeQTLs and geQTLs. However, no consistent ranking of concentrations of

207  “‘Splice’ SNP category for sQTLs, eeQTLs and geQTLs were observed in different tissues

208  (Figure 3b).

11
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209  Shared genetic influences between cis QTL types

210  Within each tissue, the sharing of SNPs between all three expression QTL types was

211 significantly more than expected by chance (Figure 4). However, in the white blood and milk
212 cells, which had relatively large sample size (n>=105, Table 1), the largest absolute amount
213 of SNP sharing appeared to be between sQTLs and eeQTLs (Figure 4). Thiswas followed by
214  the amount of SNP sharing between eeQTLs and geQTLs (Figure 4a,b). In liver and muscle
215  tissuewhich had relatively small sample size (n<=41) and low sequencing depth, the largest
216  absolute amount of SNP sharing was between eeQTLs and geQTLs, followed by the amount
217 of SNP sharing between sQTLs and eeQTLs (Figure 4c,d).

218
219  To further examine the relationship between sQTLs and eeQTLS, atwo by two table of sSQTL

220 and eeQTL counts in white blood and milk cells, which had comparable sample sizes, was
221 created (Additional file 9: Supplementary Table S7). This suggested that when an sQTL was
222 found, it was highly likely to be also identified as an eeQTL. For example, of 138,796 sQTLS
223 found in the white blood cells, 109,155 of them were also blood eeQTLSs, but only 21,766 of
224  them wereidentified as blood geQTLs. Again, for these 138,796 blood sQTLs, athough only
225 18,005 and 25,932 of them were milk SQTLs and eeQTLSs, respectively, an even smaller

226 number, 720, of them were identified as milk cell geQTLs.

227  Shared genetic influences between tissues

228  Within each type of expression QTL between different tissues, the mgjority of the significant
229  expression QTL sharing was observed between white blood and milk cells and between liver
230 and muscle (Figure 5a). Thisis not unexpected since most of the white blood and milk cells
231 came from the same lactating cows and the muscle and liver from different growing Angus

232 bulls. Nevertheless, there was significant sharing of eeQTLs between milk cells and liver and

12
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233 between milk cells and muscle (Figure 5a). The largest amount of across-tissue expression
234  QTL sharing was observed in eeQTLs, followed by sQTLs and geQTLs (Figure 5). Where a
235  SNP was significantly associated with variation in expression in two tissues, the direction of
236  effect was usually the same in both tissues (Additional file 2: Supplementary Figure S5). The
237  correlation between effects of expresson QTLs for white blood cells and milk cells

238  (Additional file 2: Supplementary Figure Sba,c,e) was stronger than that between liver and
239  muscle (Additional file 2: Supplementary Figure S5b,d,f). The sharing at the SNP level

240  between white blood cells and milk cells and between liver and muscle were also evident at

241  the exon and gene level (Figure 5b).

242 The expression QTL sharing between tissues was further examined for all types of expression
243  QTL by using aless stringent p-value (p<0.05) to test their effect (Additional file 2:

244  Supplementary Figure S6). This showed that the expression QTL sharing between tissues was
245  stronger for SQTLs and eeQTLs (Additiona file 10: Supplementary Figure S6a-d), than the
246 sharing for geQTLs (Additional file 10: Supplementary Figure S6e-f). Again, more

247  expression QTL sharing was found between white blood cells and milk cells than between
248  liver and muscle. For instance, 75% of eeQTLs significant in the white blood cells at p<0.002

249  weresignificant in milk cells at p<0.05 (Additional file 2: Supplementary Figure 6c).

250  The correlation between estimated SNP effects on gene splicing and expression in different
251  tissuesare lower in magnitude than the true correlation between SNP effects, because the

252  effects are estimated with error and these errors are independent between tissues. To estimate
253  thetrue correlation, we computed the genetic correlation between SNP effectsin two

254 different tissues by GREML'® using alocal genomic relationship matrix or LGRM built from
255  SNPsfrom 1 Mb surrounding the exon or gene (Figure 5¢). LGRM differs from a

256  conventional GRM by focusing on the local SNPs (in this case within 1 Mb distance) with

257  potential cis genetic associations with the variation in the splicing or expression level of the

13


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

258  exon or gene. Thiswas in agreement with the definition of the cis expression QTLs which
259  were also within 1IMb distance to the exon or gene in the current study. Out of 1,145 analysed
260  SQTLs (inclusion ratio of the exon), eeQTLSs (expression level of the exon) and geQTLs

261  (expression level of the gene) between tissues, 598 had genetic correlations significantly

262 (p<0.05) different from O, out of which 561 had genetic correlations insignificantly (p >=

263  0.05) different from 1. That is, in many cases, the variation in exon expression in white blood

264  cellsand milk cells was associated with the same cis polymorphism ().

265  Often both splicing events and exon expression within a gene were highly correlated between
266 white blood and milk cells, for instance DDX19B, CTSD and EFF1A1 (Figure 5c¢). In liver
267  and muscle, exons from HLA-DQAL encoding major histocompatibility complexes [30] also
268  showed significant genetic correlations between tissues based on both exon expression and
269  gplicing. There were more cases of eeQTLs than sQTLs and geQTLs and so there were more
270  estimates of genetic correlations between white blood and milk cells in Figure 5¢. The

271  genetic correlations between eeQTLs in white blood and milk cells show a range from +1 to -
272 1 athough most are close to +1. Exons with negative genetic correlations of expression

273 between white blood cells and milk cells were mapped to SART1 [30], a post-transcriptional
274  regulator in epithelial tissues and TTC4 with potential to mediate protein-protein interactions
275  [30]. These negative genetic correlations imply that there are mutations that increase the

276  expression of the exon in milk cells but decrease it in white blood cells. An exon within

277  SI100A10, acell cycle progress regulator, showed negative genetic correlation of expression

278  between liver and muscle.

279  Genetic correlations between exon expression levels in two tissues can be different between
280  exons within the same gene. For example, only the 2™ exon (5:93,942,055 -93,942,195) of
281  MGST1 (whichis associated with the variation in dairy cattle milk fat yield [27, 31]) had a

282  dignificant genetic correlation of expression between white blood cells and milk cells (Figure
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283  5c). Thiswas largely due to afew eeQTLs with relatively highly significant effects (p<le-10)
284  on the expression levels of the 2™ exon in the milk cells and asimilar but less significant

285  effect (p<le-4) on the 2™ exon expression in white blood cells (Additional file 2:

286  Supplementary Figure S7). For exons 1 and 3, the significances of the eeQTLs in both milk
287  and white blood cells were > 1e-3. For exon 4, the significance of the majority of eeQTLsIin

288  both milk and white blood cells were > 1e-5 (Additional file 2: Supplementary Figure S7).
289  Multi-transcriptome meta-analysis to increase power of expression QTLs detection

290 Based on shared genetic effects of all types of expression QTLs across tissues, a multi-

291 transcriptome meta-analysis was introduced to increase the power to detect sQTLs, eeQTLs
292 and geQTLs (Figure 6, Table 3). For sQTLs, eeQTLs and geQTLs that had significant effects
293  (p<0.05)inall of white blood cells, milk cells and muscle transcriptomes, their standardised
294  effects (signed t values) in each transcriptome were simply combined and tested for

295  significance against ay” distribution with 1 degree of freedom. Overall, the multi-

296  transcriptome meta-analysis based on summary statistics substantially increased the power of
297  expression QTLs detection (Figure 6). The significance of multi-transcriptome expression
298  QTLswas compared with their significance in the liver transcriptome (Figure 6, Table 3). For
299  acriteriawhere the expression QTLs had both multi-transcriptome meta-analysis p < 1x10
300 and liver transcriptome analysis p < 0.05, all types of expression QTLs had significant

301  overlap of the SNPs between the meta-analysis and the single transcriptome analysis in liver.
302 Infact most of the significant sSQTLs, eeQTLs and geQTLs detected by the meta-analysis

303  were also detected by the liver analysis but at a much higher p-value (Table 3).

304
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Table 3. The overlap between the multi-transcriptome meta-analysis
of three tissues and the single transcriptome results of liver. sQTLs:
splicing quantitative trait loci; eeQTLs: exon expression QTLS,

geQTLs: gene expression QTLs. Liver: QTLswith single-

transcriptome effects p < 0.05 in the liver. Meta-analysis: QTLs with
¥? p < 1e-05 for the meta-analysis of white blood cells, milk cells and
muscle. ‘+ indicates the number of SNPs met the significance criteria
while *—" indicates number of SNPs failed to meet the significance

criteria
Meta-analysis Overlap p
SQTLs " g
Liver 768,650 2,842,552 p<2e16
139,551 4,301,536
Meta-analysis Overlap p
eeQTLs " :
Liver 1,052,041 3,186,839 p<2el16
140,033 3,575,617
Meta-analysis Overlap p
geQTLs " -
Liver + 178,093 473,232 p<2e16
- 43,578 6,663,855

Overlap between expression QTLs and QTL for dairy and beef traits

We examined whether cis sQTLS, eeQTLs and geQTLs were significantly enriched amongst
SNPs associated with economically important cattle traits. Pleiotropic SNPs significantly
(FDR<0.01) associated with more than one of 24 dairy traits [32] and with more than one of
16 beef traits [33] were tested for overlap with detected sQTLs, eeQTLs and geQTLs (Figure
7, Additional file 10,11: Supplementary Table S8,9). Overall, sQTLS, geQTLs and eeQTLS
identified in white blood and milk cells had greater overlap with SNPs associated with dairy
and beef traits than sQTLs, geQTLs and eeQTLs identified in liver and muscle (Figure 7).
sQTLsin white blood and milk cells were significantly enriched for dairy cattle pleiotropic

SNPs, including SNPs from the CSN3 loci on chromosome 6 (Figure 7a,b). eeQTLs in the
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316  white blood cells had the largest absolute amount of SNPs overlapping with dairy cattle

317  pleotropic SNPs (Figure 7b) and was the only expression QTL type with significant

318  enrichment with beef cattle pleiotropic SNPs (Figure 7b). eeQTLsin milk cells and liver aso
319  had significant enrichment for dairy cattle pleiotropic SNPs (Figure 7a). Of the geQTLs, only
320 those from white blood cells had a significant enrichment with dairy cattle pleiotropic SNPs

321 (Figure7a).

322 Anexample of an eeQTLs that overlaps amilk production QTL isfor MGST1, where effects
323 of milk cell eeQTLs were highly significantly associated with their effects on milk fat yield
324  [32] (Figure 7c). Specifically, some expression QTLs with strong associations with the

325  variation in milk cell expression levels of exon 2 (Chr5:93,942,195-93,942,055) and exon 3
326  (Chr5:93,939,244-93,939,150) of MGST1 (Additional file 2: Supplementary Figure S7) also
327  had strong associations with the variation in milk fat yield (Figure 7c). Littlejohn et al.[31]
328 identified SNPs associated with milk yield percentage and MGST1 expression in the

329 mammary gland, including 17 putative causal variants. Most SNPs identified by Littlejohn et
330 al. originated from whole genome sequence and so were not present on the high density SNP
331 chip datawe analysed for dairy cattle pleiotropy [32] (Additional file 12: Supplementary

332  Table S10). However, 53 significant milk cell eeQTLs identified by the current study

333  overlapped with the top 200 SNPs from Littlejohn et al [31] (Additional file 12:

334  Supplementary Table S10), which was significantly more than expected by random chance.
335 The 53 eeQTLs included the SNP suggested as a putative causal candidate (Chr5:93945738)
336  [31], which was significantly associated with the variation in expression level of the third
337  exon (5:93939150-93939244) of MGST1 in milk cells (Additional file 12: Supplementary
338  Table S10). No milk cell geQTLs was called for MGST1, as al of them had weak effects on
339 thewhole MGST1 gene expression in milk cells, resulting in alarge FDR (Additional file 12:

340  Supplementary Table S10).
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341

342 Discussion

343  We performed a systematic analysis of cis expression QTLs (<=1Mb) in multiple tissues

344  centred around RNA splicing events, using alarge number of RNA and whole genome

345  sequence data from an important domestic animal species. Overall, differential splicing

346  between tissuesis ubiquitous and between breeds is common. Differential splicing between
347 individuals dueto SNPs (sQTLs) occurs for many genes and is enriched with cattle complex
348  trait QTL. Within each tissue, all cis expression QTLSs types showed significant overlap. Most
349 geQTLsand sQTLs were detected as eeQTLs indicating that the exon expression can be

350 altered by changing the expression of the whole gene or by changing the splicing. However,
351  ansQTL was likely to be an eeQTLs and, to alesser extent, geQTLS. Between tissues, while
352 all QTLs types showed significant overlap between white blood cells and milk cells and

353  between liver and muscle, the strongest cross-tissue sharing appeared to be at the exon level
354  (sQTLsand eeQTLS). Thisis supported by many significant tissue pair genetic correlations.
355  Such cross-tissue expression QTL sharing allowed the multi-transcriptome meta-analysis of
356  expression QTL effects which substantially increases power to detect significant expression

357  QTLs.

358  Themgjority of significant SQTLs were detected from white blood and milk cells (Figure

359  2a,b) which also overlapped with SNP chip based complex trait QTL (Figure 7), compared to
360  sQTLsdetected from liver and muscle. This is probably due to the larger sample size for

361  white blood and milk cells than for liver and muscle (Table 1) and the higher sequencing

362  depth (Additional file 1: Supplementary Methods). One of the significant white blood cell

363  sSQTLs(29:44585782) for CAPN1 is also a SNP chip based significant pleiotropic SNP for 16
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364  beef cattletraits (Additional file 11: Supplementary Table S9). This SNPis associated with

365  shear force in multiple taurine breeds [34].

366  Inthemilk cell transcriptome, asignificant SQTL (Chr6:87392580, Figure 2a) with predicted
367  splicing function [28] within the fifth exon (6:87,392,578-87,392,750) of CSN3 is strongly
368  associated with differential splicing between Holstein and Jerseys (Figure 1b). Variants

369  within CSN3 have long been found to be associated with milk traits [35, 36] but only recently
370  have putative causal variants been prioritised [26]. The milk cell sQTL 6:87392580 had

371  perfect linkage disequilibrium (r =1) with the variant 6:87390576 which has been suggested
372 asaputative causal variant for effects on milk protein yield and percentage [26, 27]. Given it
373 isatasplicing site, 6:87392580 could be a putative causal variant contributing to milk

374  production in dairy cattle by altering exon splicing.

375  Compared to identified bovine cis geQTLS, cis sQTLs tended to be closer to the transcription
376  starting site (TSS) and had highest concentrations of intronic SNPs (Figure 3). In humans, cis
377  SQTLs[9, 37] were more enriched for intron SNPs than other types of QTLs. However,

378  reports of the distance between human QTLs and TSS appear to be inconsistent. While no
379  differencein enrichment of SNPs near TSS between sQTLs and geQTLs were found by the
380  human GTEX project [8], a more recent study[9] found that human geQTLs were more

381  enriched near TSS than sQTLs. Our results appear to stand in between the results of GTEX
382  project and the later findings from Li et. al. [9], where cattle SQTLs were slightly closer to
383  TSSthan geQTLs. However, this difference is not significant in al tissues (Figure 3a). On
384 the other hand, significant overlap between sQTLs and geQTLs was found in this study

385  (Figure 4) and by the human GTEX project [8]. However, Li et. a. [9] found that human cis
386  sQTLswereindependent of geQTLs. These inconsistent observations are likely to be dueto a

387  number of differences between these studies, including definition of sQTLS, choice of tissues
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388  and populations and computational procedures. Also, these inconsistent observations also

389  suggest that we are still at the very early stage of understanding of sQTLSs features.

390  Within each studied bovine tissue, the largest amount of overlap between expression QTL
391  typeswas found either between exon expression eeQTLs and sQTLSs or between eeQTLs and
392  geQTLs (Figure 4). Further, the largest amount of enrichments of cattle pleiotropic SNPs was
393 found for eeQTLs, followed by sQTLs and geQTLs. The white blood cell eeQTLs showed
394  particularly strong enrichments of pleiotropic SNPs for dairy and beef cattle. In alarge scale
395  human blood cell expression QTLs study [12], eeQTLs also showed the strongest

396  enrichments of GWAS variants, followed by sQTLs and geQTLs. Thus, focusing on exon-
397 level QTLs, including eeQTLs and sQTLSs, could increase the chance of finding regulatory

398  variantsfor complex traits, as proposed by Guan et. al.[38].

399 A hypothesisto explain these resultsis that mutations in regulatory DNA may increase the
400  expression of one or more transcripts from a gene. If they increase expression of one

401  transcript then they may be detected as an eeQTL for the exons in that transcript, asa sQTL
402  for exons spliced out of that transcript or as a geQTL if this transcript forms a large part of
403  thetotal transcription from the gene. Thus, there is expected to be overlap between eeQTLS,
404 geQTLsand sQTLs, but at least SQTLs and eeQTLs should overlap and thisis what we found
405  (Figure 4, Additional file 9: Supplementary Table S7). It appears that eeQTLs detect the

406 largest proportion of these regulatory polymorphisms provided sequencing depth is high.

407  In humans, significant cross-tissue sharing of sSQTLs and geQTLs was reported [8, 39]. In our
408  study of cattle, the strongest evidence of expression QTL sharing appeared to be at the exon
409 level. Thisincluded sQTLs and eeQTLs sharing between white blood and milk cells and

410  between liver and muscle (Figure 5). When extending the examination of expression QTLsto

20


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

411 includethose with p < 0.05 (Additional file 2: Supplementary Figure S6), the exon-level

412  expression QTLs cross-tissue sharing is also the greatest.

413 Wehighlighted afew examples of cross-tissue shared eeQTLs along with the related exons,
414  of which the genetic correlations of the expression and splicing in different tissues were

415  sgnificant (Figure 5¢). One of these eeQTLs is located within the milk fat yield [27, 31] QTL
416  MGST1 (Figure 5¢, Additional file 2: Supplementary Figure S7). For eeQTLs associated with
417  MGST1, astrong positive relationship of SNP effects was observed between milk cell

418 eeQTLsand dairy milk fat yield SNPs (Figure 7c). Furthermore, the identified milk cell

419  eeQTL overlaps with previously identified putative causal variants [31] within MGST1 for
420  milk fat percentage, thus supporting their candidacy. This overlap further supports the top
421  candidate SNP 5:93945738 with significant effects on the abundance of the third exon of

422  MGST1 (Additiona file 12: Supplementary Table S10) for milk fat traits. Overall, our

423  analysis demonstrates the significant potential of using detailed exon analysisto aid in

424  identification of putative causative mutations.

425  Based on the sharing of expression QTLs between tissues, a multi-transcriptome meta-

426  analysiswhich simply combined expression QTL effects to substantially increase the power

427  (Figure 6) was introduced. Using this approach, combined expression QTL effects of white

428  blood cells, milk cells and muscle were validated in the liver (Table 3). Thisalso

429  demonstrated the significant extent of QTL sharing across tissues. Previously, Flutre et. al.

430  [39] combined data from human fibroblasts, lymphaoblastoid cell lines and T-cells and found
431  that up to 88% of geQTLs were shared across tissues at FDR<0.05 level. We checked the

432 existing results of the meta-analysis combining SNP effects from tissues of white blood cells,
433 milk cellsand muscle at the FDR threshold < 0.05. We found that the meta-analysis

434  identified 585,406 geQTLs with FDR < 0.05 in more than one tissue. This accounted for 69.2%

435  of total geQTLs (845,431) that were called and common in theindividual geQTL analysis of
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436 white blood cells, milk cells and muscle. While there were differences in the selection of

437  tissue/cell type between our experiment and Flutre et. al, it is possible that the analysis

438  proposed by Flutre et. al with more complex procedures would be more powerful than the
439  meta-analysis introduced by us. Flutre et. a applied principal components analysis to

440  normalisetheir gene expression data while we used quantile normalisation which appeared to
441 show good performances in combining different transcriptome datasets [40]. However, our
442  meta-analysisis powerful for detecting and validating many expression QTLs that have an
443  effect in the same direction in multiple tissues, and is simpler to implement than that of Flutre
444 et al. A future systematic comparison of different approaches of analysing expression QTL in

445  multiple tissues would be very useful.

446  Asone of earliest investigations of large animal expression QTLS, our study has its potential
447  limitations. While the overlaps between sQTLs detected with exon and intron analyses were
448  dignificantly more than expected by random chance, the absolute amount of overlap was till
449  small. Through all analyses, there were always many more splicing events detected by intron
450  analysesimplemented by leafcutter [10] than the exon analysis (Additional file 5:

451  Supplementary Table S3). This appears to be consistent with Li et al [10], the authors of

452  |eafcutter. They suggested that intron-centred analyses can be both more sensitive (lower

453  proportion of false negatives) and more accurate (lower proportion of false positives) than the

454  exon based splicing mapping methods, such as Altrans [41].

455  Wefound that the strongest sharing of expression QTLs was either between white blood and
456 milk cells or between liver and muscle tissues, at the threshold of FDR <0.01 (Figure 5). The
457  white blood and milk cells sampled from the same Holstein and/or Jersey cattle of experiment
458 |11 had alarger sample size and higher read coverage, compared to the liver and muscle

459  tissues sampled from different Angus bulls of experiment 1V. The reduced expression QTL

460  sharing detected between, e.g., muscle and milk cells, could be due to differences in the tissue,
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461  thephysiological state of the cattle or the breed. However, it can be also due to different

462 power inthe milk cells, liver and muscle datasets compared to the white blood cell data.

463  Nevertheless, in the multi-transcriptome meta-analysis where expression QTLs with low

464  threshold were examined (p<0.05), the combined effects of all types of expression QTLSs of
465  thethreetissues from different experiments were highly significant (Figure 6). Many of these
466  expression QTLs were also found in liver with p<0.05 (Table 3). This evidence supports the
467  proposal that the sharing of cis expression QTL is extensive across tissues, but these shared
468  expression QTLs may not necessarily have strong effects in each studied tissue. In the latest
469  human expression QTLs mapping study (GTEx consortium) where RNA seq data of 44

470  tissuesfrom up to 450 individuals were analysed, cis expression QTL tended to be either

471  shared across most tissues or specific to asmall subset of tissues [11]. As sample numbers for
472  each tissue increased, GTEX consortium identified more tissue specific expression QTLs[11].
473  Future studies with significantly increased power and selection of cattle tissues and breeds

474  may update our current results.

475  Another potential limitation of our study is the use of imputed sequence data, which may

476  introduce imputation errors that lead to inaccurate identification or exclusion of expression
477  QTLs. However, the average imputation accuracy of the 1000 bull genome project data used
478  inthisstudy was high (0.926) [21] and there was a good consistency between the imputed
479  sequence genotypes and RNA seguence genotypes (average concordance = 0.943, Additional
480  File 2: Supplementary Figure S3). Stringent thresholds were also imposed to control the false
481  discovery rate of expression QTLs mapping (either FDR<0.01 or FDR approximately < 0.01
482  for sQTLS). In the current study, we did not consider the case where a haplotype can be

483  potentially associated with expression phenotypes. While a haplotype analysis can be

484  informative, it would require avery large sample size to achieve reliable results due to testing

485 alarge number of combinations of haplotype blocks. In a human study where over 2,000
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individuals were analysed, expression QTLs conditioning on expression levels of
transcription factor genes were reported [12]. Finally, our results obtained from genome-wide
associations do not necessarily contain causal relationships. However, our findings are
important for prioritising informative SNP candidates for future validation of causal

relationships.

Conclusions

We found that eeQTLs overlapped with both geQTLSs, due to polymorphisms affecting the
level of expression of the whole gene, and with sQTLSs, due to polymorphisms affecting the
exon usage within the gene. sQTLs tended to be closer to the transcription start sites more
often located in introns than geQTLs. We found the largest number of sQTLs in white blood
cells probably because the power to find them was greatest in this dataset. However, many of
the sQTLs found in other tissues were also detected in blood cells and many sQTLs found in
blood could be detected in other tissues at higher p-values. The genetic correlation between
expression QTLs in different tissues was often indistinguishable from 1.0 indicating that
many expression QTLs operate in asimilar way across tissues. Consequently, combining
results from several tissues using the multi-transcriptome meta-analysis increased power to
detect all 3 types of expression QTLs. The potential of exon-level QTLs information was
demonstrated by the identification of several strong candidates of putative causal mutations
for complex traits: sQTL 6:87392580 within CSN3 for milk production and eeQTL

5:93945738 within MGST1 for milk fat yield.

M ethods
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509  Sample collection. For Experiment I, the sampling of 18 tissues from one lactating Holstein
510  cow followed procedures described by Chamberlain et al [24]. For Experiment Il and 11, the
511  sampling and processing of all tissuesincluding white blood and milk cellsis detailed in

512  Additiona file 1: Supplementary Methods. Briefly, animals of Experiment 11 and 111 were
513  selected from Agriculture Victoria Research dairy herd at Ellinbank, Victoria, Australia. In
514  Experiment I, milk and mammary tissue samples were taken from six Holstein cows. In the
515  Experiment 111, milk and blood samples were originally taken from 112 Holstein and 29

516  Jersey cows, but only RNA sequence data of 105 Holstein and 26 Jersey with > 50 million
517  reads for milk cells or >25 million reads for white blood cells and had aconcordant alignment
518  rate[18] >80% were used. For Experiment IV, the sampling of 41 semitendinosus muscle and
519  35liver from Angus bulls was previously described by [42, 43]. As recommended by

520 ENCODE guidelines (https://www.encodeproject.org/about/experiment-quidelines/)

521  biological replicates were favoured over technical replicates for experiments 11-1V. However

522 Chamberlain et al [24] assessed technical replicates for experiment I.

523  RNA seqg data. For Experiment I, RNA extraction and sequencing followed the procedures
524  described by Chamberlain et al [24]. For Experiment Il and 111, the RNA extraction and

525  sequencing procedureis detailed in Additional file 1. Supplementary Methods. For

526  Experiment IV, RNA extraction and sequencing is previously described by Khansefid et al.
527  [43]. For al experiments sequence quality was checked and were aligned to the Ensembl
528 UMDS3.1 bovine genome assembly using TopHat2 [18]. The RNA sequence data processing

529  and quality checking are detailed in Additional file 1: Supplementary M ethods.

530 Whole genome seq data. Experiments |11 and IV had whole genome sequence genotypes
531  imputed from the SNP chip genotypes using Fimpute [44] based on the 1000 bull genomes
532  project [19]. The overall imputation accuracy of the most recent genome sequence data

533  ranged from 0.898 to 0.952 depending on chromosomes [21]. 50K 1llumina genotypes were
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534  used for imputation for experiment 111 with previous protocols [27, 45]. For experiment 1V,
535 800K and 50K Illumina genotypes were used with procedures following [33]. SNPs were
536 filtered for minor alele frequency > 0.01 and resulted in 14,302,604 and 13,632,145 SNPs
537 usedintheanalysisin experiment Il and IV, respectively. There were 10,242,837 SNPs

538  shared between experiment 111 and 1V.

539  Genelexon analysis. Gene count data were generated by Python package HTSeq [46] using
540  default settings. The exon count data were generated by Bioconductor package featureCounts
541  [47] in Rv3.3.2[48]. The Ensembl based bovine genome reference (UMD3.1) was used to
542  define genes and exons. Genes and exons with count per million >0 in more than 40% of

543  RNA samples were used for all the following analyses. This filtering allowed the analysis to
544  focus on exons or genes with relatively robust expression in many RNA sequencing samples.
545  The exon-based tissue principal components analysis used DEseg2 based on the 250 exons,
546  the expression of which were most variable across studied tissues [49]. The usage of 500 and
547 1,000 exons with the most variable expression across tissue samples were also tested.

548  Consistent with [49], the selection of different numbers of exons had little impact on the

549  clustering patterns (Supplementary Figure S4). The significance of the clustering was

550  determined using ellipse method proposed by [22] and implemented in ggplot2 [50]. The

551  confidence interval was set to 0.95 to which ellipses were drawn based on data categorised by
552  tissuetypes or by experiments. The separation of ellipses indicated independence of

553  categories of data. The phenotype of exon inclusion was calculated as the exon to gene

554  expression ratio. The phenotype of intron excision was estimated using the publically

555  available software leafcutter [9, 10]. Briefly, leafcutter used RNA seq BAM files as input and
556  generated ratios of reads supporting each alternatively excised intron as the intron excision

557  phenotype [10](http://davidaknowles.qgithub.io/leafcutter/). Those exons and introns with

558  ratio values <0.001 were removed and the remaining ratio values were transformed to log,

26


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

559  scale, then underwent exon/intron —wise quantile normalisation and individual —wise zscore

560  standardisation [51].

561  Genedifferential splicing. Both exon inclusions and intron excisions were analysed and

562  used in combination for gene differential splicing for (1) the overall tissue effects and (2) the
563  breed effects. Primarily, differential splicing was defined for the gene containing exons

564  whose variation in inclusion ratios were significantly (FDR<O0.1) associated with the tissue or
565  breed variable. To be called as significantly spliced exons, they were required to have at |east
566  one adjacent intron whose variation in excision ratios were also significantly (FDR<0.1)

567  associated with the tissue or breed variable. The tissue effects were analysed in alinear mixed

568 model inIme4 [52] inR as:
569 Yy =hb+x+t.+e (1)

570  Wherey = exon inclusion or intron excision ratios, b; = the animal random effects (i=214),
571  X= the experiments (j=4), tx = tissue type (k=19), e= random residual term. The fitting of the
572 animal random effects accounted for the fact that only 1 animal was used in experiment I.
573  The P values of F tests were calculated using Satterthwaite approximation implemented in
574  ImerTest [53]. The breed effects for the milk transcriptome data were analysed in alinear

575 model inR as:
576 Yy, =breed +e (2

577  Wherey = exon inclusion or intron excision ratios in the milk cell transcriptome, breed, =
578  breeds (I=2, Holstein and Jersey). p values of exong/introns for the tissue effects in equation
579 (1) or the breed effects in equation (2) were used to calculate the false discovery rates (FDR)
580 using qvalue [54] in R. The FDR threshold of such detected exon/intron group was

581  considered as approximately 0.1x 0.1 = 0.01, as a combination of FDR thresholds of exon
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582  andintron analysesto reflect our selection criteriafor significant splicing events. For genes
583  showing significant differential splicing for (1) the overall tissue effects and (2) the breed

584  effects as described above, enrichments of biological pathway were tested using GOrilla[55].
585  Asmany genes had differential splicing events associated with tissue differences, top 10% of
586  the geneswith significant differential splicing were selected based on the approximate FDR

587  with combined FDR values of both exon and intron analyses.

588  cisexpression splicing QTLs. Only transcriptomic data of experiment 111 and 1V were used
589  insQTLs mapping. Similar to differential splicing analysis described above, a significant

590 (FDR<O0.01) cis splicing QTLs was expected to satisfy two conditions simultaneously: (1) a
591  SNP, within or up to £ 1IMb away from the exon, was significantly (FDR<0.1) associated

592  with thevariation in the exon inclusion ratio and (2) the same SNP was significantly

593 (FDR<O0.1) associated with at least one event of the excision of the intron next to the same
594  exon at the same significance level. Both individual exon inclusion and intron excision values
595  were used as phenotype to map associated QTLs with widely used [8] Matrix eQTL[56]

596 packagein R. For each cell type of the experiment 111 (white blood and milk cells) and

597  experiment IV (liver and muscle), SNPs + 1IMb from the exon or intron were tested for

598  regressions with the exon inclusion or intron excision phenotype. For milk cell transcriptome,

599  breed was fitted as a covariate.

600 To compare cis sSQTLs with exon expression cis eeQTLs and cis gene expression geQTLSs,
601  the expression count data were normalised by voom [57] estimating mean-variance
602  relationship to calculate observation-level weighted expression values. Normalised
603  expression values of exons and genes were used as phenotype to map cis expression QTLS

604  (within+ 1Mb) at FDR <0.01 level as described above.
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605  SNP annotation. The gene transcription start site coordinates were downloaded from

606  Ensembl (http://www.ensembl.org) and the absolute difference between the position of a SNP

607  and the transcription start site of the gene were calculated for the SNP with significant cis
608  effects. The SNP functional categories were generated using predictions from Ensembl
609  Variant Effect Predictor [28] in conjunction with NGS-SNP [29]. All analysed SNPs were

610  assigned afunctional category.

611  Dairy and beef cattle pleiotropic QTL. To test the significance of overlap between cis

612  expression QTLs and SNPs associated with cattle phenotype, meta-analyses of dairy and beef
613  cattle pleiotropy were performed using single-trait GWAS results from Xiang et a [32] and
614 Bolormaaet al [33]. HD 800K SNP chip genotypes were used for trait GWAS. 24 dairy cattle
615 traits with matching phenotypein 9,662 bulls and cows and 16 beef cattle traits with animal
616  numbers >2,000 were selected. Briefly, the multi-trait y° statistic for the ith SNP was

617  calculated based on its signed t values generated from each single trait GWAS [33]:
618 y =t'Vt (3

619  For dairy cattle, the meta-analysis was based on the weighted SNP effects t,, combining SNP
620  effects calculated separately in bulls and cows. Thet,, accounting for the phenotypic error

621  differences between bulls and cows [27] was calculated as:

622

623  Wherethe weighted SNP t value t,, was the quotient of the weighted SNP effects B,, and the

624  weighted effect error sey. Byui and seyy Were the SNP effects and error obtained from single-
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625  trait GWASn bulls and Bewand se. Were the SNP effects and error of cows. Those SNPs
626  which had meta-analysis FDR<0.01 were chosen to be compared with cis expression QTLS.
627 Thelead SNP loci were defined as +1 Mb from the lead SNPs identified in the previous

628 analysis[32] and [33].

629 Thesignificance of overlaps. The significance of overlaps were compared with the expected
630 number using the Fisher's exact test (p) implemented in GeneOverlap [58] in R. This analysis
631  required four types of counts: the size of overlap between set A (e.g., SNPs that were blood
632  SQTLS) and set B (e.g., SNPsthat were milk sQTLS), the size of set A, the size of set B and
633  the size of background. The union number of whole genome sequence SNPs with MAF>0.01
634  ineach breed and the bovine high density chip SNPs were used as the background. Where
635  expression QTL categories from different breeds of dairy and beef cattle were tested for

636  overlap, the number of common SNPs between breeds was used.

637  Genetic correations using local genomic relationship matrices. The cross-tissue sharing
638  of SNPswere confirmed by bivariate GREML analysis using GCTA [59]. For an exon or a
639  geneof interest, itsinclusion ratios or expression levelsin two different tissues were treated
640 astwo different phenotype, tr; and tro. The SNPs within IMb of this exon or gene were used
641  tomakealoca genomic relationship matrix, i.e., LGRM, representing the local polygenic
642  component a with potential associations with the variation in the splicing or expression level
643  of the exon or gene. This allowed linear mixed modelling of the local additive genetic

644  variances of trq, varg(try) and of tr,, varig(tr2) and the local additive genetic covariance

645  between t; and t, covig(tra,tro) using GREML [59]. This approach agreed with the definition

646  of cisexpression QTLs defined in this study (also within 1Mb distance to the exon or gene)

covyg(try,try)

Jvaryg(tryvarg(try)

647  and allowed the estimation of genetic correlation r;; = (5). Genetic
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648  correlations were also tested for their significance of being different from O or 1, by fixing the

649  correlation valueto O and 1 using GCTA [59].

650  Validation by multi-transcriptome meta-analysis. The validation based on expression QTL
651  effect commonality across tissues was conducted by comparing the combined expression

652  QTL effects from white blood cells (experiment 111), milk cells (experiment 111) and muscle
653  (experiment V) transcriptomes with their effects in the liver transcriptome (experiment V).
654  The standardised expression QTL effects, b/se, signed t values were calculated from single-
655  transcriptome results of white blood cells (t1), milk cells (t) and muscle (t3). The significance
656  of multi-transcriptome effects of an expression QTL was tested by y° distribution with 1

657  degreeof freedom:

, [&t, T
658 X {EW} (6)

659 N =the number of studied tissues (N=3 in this case) where the original SNP t values were
660  estimated. Provided the individual t-values followed at-distribution under the null hypothesis,
661  the properties of the averaget value in the current study was a simple mathematical result
662  which approximated the chi square distribution with 1 degree of freedom, the null hypothesis
663  of which was that the SNP does not have any significant associations in any of the 3 tissue
664  types. Previously, the concept of meta-analysis combining SNP t values estimated from

665 different datasets has been also applied to analyse multiple quantitative phenotypic traitsin
666 large animals to increase power (see [33, 60] and equation (3)). The expression QTLs that
667  participated in the validation analysis had single-transcriptome effect p < 0.05 in each tissue
668  and the significance of the multi-transcriptome effects was defined as p < 1e-05. Significant
669  multi-transcriptome expression QTLs were compared with the liver single-transcriptome

670 effectsat p < 0.05 level. We chose to combine two tissues which appeared to display strong
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671  power (white blood and milk cells, experiment 111) with the third tissue from a different

672  experiment with relatively weak power (muscle, experiment 1V). The single tissue | eft to be
673  compared with was liver, atissue which also appeared to show weak power and was from
674  experiment IV. These choices intended to create enough differences for the meta-analysis to
675  combine the SNP effects and for the combined SNP effects to be compared with the SNP

676  effectsinthe singletissue.

677

678 List of abbreviations
679  SQTLs: splicing quantitative trait loci;
680 geQTLs: gene expression quantitative trait loci;

681 eeQTLs: exon expression quantitativetrait loci.

682

683 Declarations

684  Ethicsapproval and consent to participate

685  For experiment I-111, the animal ethics was approved by the Victoria Animal Ethics

686  Committee (application number 2013-14), Australia. For experiments 1V, the animal ethics
687  was approved by the University of New England Animal Ethics Committee (AEC 06/123,
688  NSW, Australia) and Orange Agriculture Institute Ethics Committee (ORA09/015, NSW,

689  Australia).

690

691  Consent for publication

692  Not applicable.

32


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

aCC-BY-NC-ND 4.0 International license.

Availability of data and materials

The RNA sequence data for experiment | was published [24] (NCBI Sequence Read Archive,
SRA, accession SRP042639); For experiment I1: SRA accession SRP111067; For experiment
[11: SRA accession PRINA305942; For experiment IV: SRA accession PRINA392196; The

imputed whole genome segquence data was part of the 1000 bull genome project [19].

Competing interests

The authors declare that they have no competing interests.

Funding

Australian Research Council’s Discovery Projects (DP160101056) supported R.X. and
M.E.G. Dairy Futures CRC and DairyBio (ajoint venture project between Agriculture
Victoriaand Dairy Australia) supported the generation of the transcriptome data of
experiment I-111. No funding bodies participated in the design of the study and collection,

analysis, and interpretation of data and in writing the manuscript.

Author contributions

AJC.,RX.,M.EG., B.JH and H.D.D. conceived the experiments. C.P.P., CM.R., B AM.,
JB.G., L.C.M., Y.C. and A.J.C. performed sample collections and RNA sequencing

experiments. S.B., I.M.M., M.K. and H.D.D. provided data and assisted with study design.

33


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

714 RX.,,BJH.,CJV., AJC,M.EG,PJBandZ.Y. anaysed data. R.X. and M.E.G. wrote the
715  paper. RX.,M.E.G,,B.JH, AJC., |.M.M and H.D.D.. revised the paper. All authors read

716  and approved the final manuscript.

717

718  Acknowledgements

719  Wethank DataGene for access to data used in this study and Gert Nieuwhof, Kon

720  Konstantinov and Timothy P. Hancock for preparation and provision of data.

721

722 Reference

723 1 Bourneuf E, Otz P, Pausch H, Jagannathan V, Michot P, Grohs C, Piton G, Ammermiiller S,

724 Deloche M-C, Fritz S: Rapid Discovery of De Novo Deleterious M utationsin Cattle

725 Enhancesthe Value of Livestock as M odel Species. Sci Rep 2017, 7.

726 2. Hayes BJ, Lewin HA, Goddard ME: The future of livestock breeding: genomic selection for
727 efficiency, reduced emissionsintensity, and adaptation. Trends Genet 2013, 29:206-214.
728 3. Meuwissen T, Hayes B, Goddard M: Genomic selection: A paradigm shift in animal

729 breeding. Animal frontiers 2016, 6:6-14.

730 4. Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW: Coordinated
731 inter national action to acceler ate genome-to-phenome with FAANG, the Functional

732 Annotation of Animal Genomes pr oject. Genome Biol 2015, 16.

733 & Albert FW, Kruglyak L: Therole of regulatory variation in complex traitsand disease.
734 Nature reviews Genetics 2015, 16:197.

735 6. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M: Linking disease associations
736 with regulatory infor mation in the human genome. Genome Res 2012, 22:1748-1759.

737 7. Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkd FS,

738 Sahana G, Govignon-Gion A, Boitard S, Dolezal M, et al: M eta-analysis of genome-wide
739 association studiesfor cattle statur e identifies common genesthat regulate body sizein
740 mammals. Nat Genet 2018, 50:362-367.

741 8. Consortium G: The Genotype-Tissue Expresson (GTEX) pilot analysis: M ultitissue gene
742 regulation in humans. Science 2015, 348:648-660.

743 9. Li YI, vande Geijn B, Raj A, Knowles DA, Petti AA, Golan D, Gilad Y, Pritchard JK: RNA
744 splicing isa primary link between genetic variation and disease. Science 2016, 352: 600-604.
745 10. LiYI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, Pritchard JK:

746 Annotation-free quantification of RNA splicing using L eafCutter. Nat Genet 2018, 50:151.

747 11. Consortium G: Genetic effects on gene expression acr oss human tissues. Nature 2017,

748 550:204.

749 12. ZhernakovaDV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, van't Hof P,
750 Mei H, van Dijk F, Westra H-J: Identification of context-dependent expression quantitative
751 trait loci in whole blood. Nat Genet 2017, 49:139-145.

34


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

752  13. Mazzoni G, Kadarmideen HN: Computational M ethodsfor Quality Check, Preprocessng

753 and Normalization of RNA-Seq Data for Systems Biology and Analysis. In Systems Biology
754 in Animal Production and Health, Vol 2. Springer; 2016: 61-77

755 14, Okonechnikov K, Conesa A, Garcia-Alcalde F: Qualimap 2: advanced multi-sample quality
756 control for high-throughput sequencing data. Bioinformatics 2015, 32:292-294.

757 15, WangL, Wang S, Li W: RSeQC: quality control of RNA-seq experiments. Bioinformatics
758 2012, 28:2184-2185.
759 16. KimD, Langmead B, Salzberg SL: HISAT: afast spliced aligner with low memory

760 requirements. Nat Methods 2015, 12:357.

761 17. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,

762 Gingeras TR: STAR: ultrafast universal RNA-seq aligner . Bioinformatics 2013, 29:15-21.
763 18. KimD, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate

764 alignment of transcriptomesin the presence of insertions, deletionsand gene fusions.

765 Genome Biol 2013, 14:R36.

766 19. Daetwyler HD, Capitan A, Pausch H, Stothard P, Van Binsbergen R, Brandum RF, Liao X,
767 Djari A, Rodriguez SC, Grohs C: Whole-genome sequencing of 234 bullsfacilitates mapping
768 of monogenic and complex traitsin cattle. Nat Genet 2014, 46:858-865.

769  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R:
770 The Sequence Alignment/M ap for mat and SAM tools. Bioinformatics 2009, 25:2078-2079.
771  21. PauschH, MacLeod IM, Fries R, Emmerling R, Bowman PJ, Daetwyler HD, Goddard ME:
772 Evaluation of the accuracy of imputed sequence variant genotypesand their utility for
773 causal variant detection in cattle. Genet Sel Evol 2017, 49:24.

774  22. Fox J, Weisherg S: An R companion to applied regression. Sage Publications; 2011.
775 23. Cénovas A, Rincon G, Bevilacqua C, Idas-Tregjo A, Brenaut P, Hovey RC, Boutinaud M,

776 Morgenthaler C, VanKlompenberg MK, Martin P: Comparison of five different RNA sour ces
777 to examine the lactating bovine mammary gland transcriptome using RNA-Sequencing.
778 i Rep 2014, 4.

779  24. Chamberlain AJ, Vander Jagt CJ, Hayes BJ, Khansefid M, Marett LC, Millen CA, Nguyen TTT,
780 Goddard ME: Extensive variation between tissuesin allele specific expression in an

781 outbred mammal. BMC Genomics 2015, 16:993.

782  25. LiYI, KnowlesDA, Pritchard JK: LeafCutter: Annotation-free quantification of RNA
783 splicing. bioRxiv 2016:044107.
784  26. MacLeod |, Bowman P, Vander Jagt C, Haile-Mariam M, Kemper K, Chamberlain A,

785 Schrooten C, Hayes B, Goddard M: Exploiting biological priorsand sequence variants

786 enhances QTL discovery and genomic prediction of complex traits. BMC Genomics 2016,
787 17:1.

788  27. Kemper KE, Reich CM, Bowman PJ, vander Jagt CJ, Chamberlain AJ, Mason BA, Hayes BJ,
789 Goddard ME: Improved precision of QTL mapping using a nonlinear Bayesan method in
790 a multi-breed population leadsto greater accuracy of across-breed genomic predictions.
791 Genet Sel Evol 2015, 47:1.

792  28. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F: The
793 Ensembl Variant Effect Predictor. Genome Biol 2016, 17:1.

794  29. Grant JR, Arantes AS, Liao X, Stothard P: I n-depth annotation of SNPsarising from

795 resegquencing projects usng NGS-SNP. Bioinformatics 2011, 27:2300-2301.

796  30. National Center for Biotechnology Information (NCBI) [https://www.ncbi.nlm.nih.gov/]
797 31. Littlgjohn MD, Tiplady K, Fink TA, Lehnert K, Lopdell T, Johnson T, Couldrey C, Keehan M,

798 Sherlock RG, Harland C: Sequence-based Association Analysis Revealsan MGST1 eQTL
799 with Pleiotr opic Effects on Bovine Milk Composition. Sci Rep 2016, 6.

800 32. XiangR, MacLeod I, Bolormaa S, Goddard M: Genome-wide compar ative analyses of

801 correlated and uncorrelated phenotypesidentify major pleiotropic variantsin dairy cattle.
802 i Rep 2017, 7:9248.

803 33. Bolormaas, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, Tier B, Savin K, Hayes
804 BJ, Goddard ME: A multi-trait, meta-analysisfor detecting pleiotropic polymor phismsfor
805 stature, fatness and reproduction in beef cattle. PLoS Genet 2014, 10:€1004198.

35


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

806 34. McClure M, Ramey H, Rolf M, McKay S, Decker J, Chapple R, Kim J, Taxis T, Weaber R,

807 Schnabel R: Genome-wide association analyssfor quantitativetrait loci influencing

808 Warner—Bratzler shear forcein fivetaurine cattle breeds. Anim Genet 2012, 43:662-673.
809 35. KiuhnC, Freyer G, Weikard R, Goldammer T, Schwerin M: Detection of QTL for milk

810 production traitsin cattle by application of a specifically developed marker map of BTAG.
811 Anim Genet 1999, 30:333-339.

812 36. GlantzM, Gustavsson F, Bertelsen HP, Stalhammar H, Lindmark-Mansson H, Paulsson M,
813 Bendixen C, Gregersen VR: Bovine chromosomal regions affecting rheological traitsin
814 acid-induced skim milk gels. J Dairy Sci 2015, 98:1273-1285.

815 37. TakataA, Matsumoto N, Kato T: Genome-wide identification of splicing QTLsin the

816 human brain and their enrichment among schizophrenia-associated loci. Nature

817 Communications 2017, 8:14519.

818 38. Guanl,YangQ,GuM, ChenlL, Zhang X: Exon expression QTL (eeQTL) analysis

819 highlightsdistant genomic variations associated with splicing regulation. Quantitative
820 Biology 2014, 2:71-79.

821 39. FlutreT, Wen X, Pritchard J, Stephens M: A statistical framework for joint eQTL analysis
822 in multiple tissues. PLoS Genet 2013, 9:€1003486.

823  40. Thompson JA, Tan J, Greene CS: Cross-platform normalization of microarray and RNA-
824 seq data for machinelear ning applications. PeerJ 2016, 4:€1621.

825 41. OngenH, Dermitzakis ET: Alternative Splicing QTLsin European and African

826 Populations. Am J Hum Genet 2015, 97:567-575.

827 42. ChenY, Gondro C, Quinn K, Herd R, Parnell P, Vanselow B: Global gene expression

828 profiling reveals genes expressed differentially in cattle with high and low residual feed
829 intake. Anim Genet 2011, 42:475-490.

830 43. Khansefid M, Millen CA, ChenY, Pryce JE, Chamberlain AJ, Vander Jagt CJ, Gondro C,
831 Goddard ME: Gene expression analysis of blood, liver, and musclein cattle diver gently
832 selected for high and low residual feed intake. J Anim Sci 2017, 95:4764-4775.

833 44. Sargolzaei M, Chesnais JP, Schenkel FS: A new approach for efficient genotype imputation
834 using information from relatives. BMC Genomics 2014, 15.

835 45. Erbe M, Hayes B, Matukumalli L, Goswami S, Bowman P, Reich C, Mason B, Goddard M:
836 Improving accuracy of genomic predictionswithin and between dairy cattle breedswith
837 imputed high-density single nucleotide polymorphism panels. J Dairy Sci 2012, 95:4114-
838 4129.

839 46. AndersS, Pyl PT, Huber W: HT Seq—a Python framework to work with high-throughput
840 sequencing data. Bioinformatics 2015, 31: 166-169.

841 47. LiaoY, Smyth GK, Shi W: featureCounts: an efficient general purpose program for

842 assigning sequence reads to genomic featur es. Bioinformatics 2013, 30:923-930.

843 48. TeamRC: R: A language and environment for statistical computing. 2013.

844  49. LoveMI, Huber W, Anders S: M oder ated estimation of fold change and dispersion for
845 RNA-seq data with DESeq2. Genome Biol 2014, 15:550.

846  50. Wickham H: ggplot2: elegant graphics for data analysis. Springer; 2016.

847 51. Degner JF, Pai AA, Pique-Regi R, Veyrieras J-B, Gaffney DJ, Pickrell JK, de Leon S,

848 Michelini K, Lewellen N, Crawford GE: DNase | sengtivity QTLsarea major deter minant
849 of human expression variation. Nature 2012, 482:390-394.

850 52. BatesD, Mé&chler M, Bolker B, Walker S: Fitting Linear Mixed-Effects M odels Using Ime4.
851 Journal of Satistical Software 2015, 67:48.

852 53. Kuznetsova A, Brockhoff PB, Christensen RHB: Imer Test Package: Testsin Linear Mixed
853 Effects M odels. Journal of Statistical Software 2017, 82:26.

854 54. BassAJ, Dabney A, Robinson D: gvalue: Q-value estimation for false discovery rate control.
855 R packageversion 2.9.0, http://github.com/jdstorey/gvalue., vol. 2017; 2015.

856 55. EdenE, NavonR, Steinfeld I, Lipson D, Yakhini Z: GOrilla: atool for discovery and

857 visualization of enriched GO termsin ranked genelists. BMC Bioinformatics 2009, 10:48.
858 56. Shabalin AA: Matrix eQTL: ultrafast eQTL analysisvia large matrix operations.

859 Bioinformatics 2012, 28:1353-1358.

36


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

860
861
862
863
864
865
866
867

868

57.

58.
59.

60.

37

aCC-BY-NC-ND 4.0 International license.

Law CW, ChenY, Shi W, Smyth GK: Voom: precision weights unlock linear model analysis
toolsfor RNA-seq read counts. Genome Biol 2014, 15:R29.

Shen L: GeneOverlap: An R packagetotest and visualize gene overlaps. 2014.

Yang J, Lee SH, Goddard ME, Visscher PM: GCTA: atool for genome-wide complex trait
analysis. Am J Hum Genet 2011, 88:76-82.

Bolormaa S, Hayes BJ, van der Werf JH, Pethick D, Goddard ME, Daetwyler HD: Detailed
phenotyping identifies geneswith pleiotropic effects on body composition. BMC Genomics
2016, 17:1.


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Additional files:

Additional file 1 (DOCX): Supplementary M ethods.

Additional file 2 (PDF): Supplementary Figure S1-7.

Additional file 3 (XLSX): Supplementary Table S1. RNA-seq reads mapped to different

bovine genome origins.

Additiona file 4 (XLSX): Supplementary Table S2. Splicing junction annotation analysis

using BAM files generated by different alignment software.

Additional file 5 (XLSX): Supplementary Table S3. 2x2 tables for the overlap between exon

and intron analyses.

Additional file 6 (XLSX): Supplementary Table $4. Genes that display significant differential

splicing cross tissues.

Additional file 7 (XLSX): Supplementary Table S5. Genes that display significant differential

splicing between breeds.

Additional file 8 (XLSX): Supplementary Table S6. Summary of significant cis splicing

sSQTLs (within IMb distance to the exon).

Additiona file 9 (XLSX): Supplementary Table S7. Summary table for count values of

sQTLs and eeQTLs in white blood and milk cells.

Additional file 10 (XLSX): Supplementary Table S8. SNP overlap between expression QTLS

and SNPs with pleiotropic effects on conventional traits of dairy cattle.

Additional file 11 (XLSX): Supplementary Table S9. SNP overlap between expression QTLS

and SNPs with pleiotropic effects on conventional traits of beef cattle.

38


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Additional file 12 (XLSX): Supplementary Table S10. SNP overlap between blood eeQTLs
and putative causal variants identified by Littlejohn et al (2016).

39


https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure Legends:

Figure 1. a: Sample principal components clustering based on exon expression. Circles on
the plot were ellipses drawn based on tissue types at the confidence interval = 0.95. Tissue
types with which the non-overlapping ellipses were drawn were emphasised with
underscored text labelling. Ellipses that were drawn based on experiments can be found in
Supplementary Figure $4. b: The significant splicing events between breeds and between
genotypes (cis splicing quantitative trait loci, SQTLS) for CSN3 in the milk cell transcriptome.
In the upper panel, from left to right: the 1% pair of bars are the least square means of
normalised expression level of the gene (ENSBTAG00000039787) in Holstein and Jersey
breeds; the 2™ pair of bars are the normalised expression level of the 5™ exon (6:87392578-
87392750) in Holstein and Jersey breeds; the 3 pair of bars are the normalised inclusion
ratio of the 5™ exon in Holstein and Jersey breeds; and 4™ pair of bars is the frequency of the
B allele of the sSQTL (Chr6:87392580) for CSN3 in Holstein and Jersey breeds. The standard
errors bars are indicated. In the lower panel, from left to right: the 1% bar is the effects (signed
t values, b/se) of the sQTL (Chr6:87392580) B allele on the normalised expression of the
gene; the 2" bar is the sQTL B allele effect on the normalised expression of the 5" exon; and

the 3 bar was the sSQTL B allele effects on the normalised inclusion ratio of the 5™ exon.

Figure 2. Manhattan plots of significant cis splicing quantitative trait loci (SQTLS,
approximate FDR<0.01 and within 1IMb of the exon) in white blood cells (a), milk cells (b),
liver tissue () and muscletissue (d). A significant sQTLs was defined as a SNP associated
with the variation in the exon inclusion ratio and also variation in at least one excision of an

adjacent intron at the same significance level. The input SNPs had significance p<0.0001.
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sQTLsin al tissues with their associated genes and significance are given in Supplementary

Table S6.

Figure 3. Features of cis splicing quantitative trait loci (SQTLS) compared to exon expression
QTL (eeQTLs) and gene expression QTL (geQTLS). a: The distance between the
transcription start site (TSS) and the expression QTLs. TSS information was downloaded
from Ensembl (bovine reference UMD3.1). b: The proportion of expression QTLSs annotated
as splice, UTR, gene_end, synonymous, missense, intron, intergenic or other. SNP
annotations were based on Variant Effect Predictor. ‘ Splice’ included all SNP annotations
containing the word ‘splice’. ‘UTR’ included 3 and 5’ untranslated region. ‘ Gene_end’

included upstream and downstream.

Figure 4. Overlaps of different expression QTL types for white blood cells (a), milk cells (b),
liver(c) and muscle (d). Within each panel, y-axis was the number of significant expression
QTLs; from left to right as guided by the green dots, the 1% bar indicated the number of
significant cis splicing QTL (sQTLS); the 2™ bar indicated the number of significant exon
expression QTL (eeQTLs); the 3% bar indicated the number of significant gene expression
QTL (geQTLs); the 4™ bar indicated the number of SNPsidentified as both geQTL and
eeQTL; the 5" bar indicated the number of SNPs identified as both geQTL and sQTL; the 6"
bar indicated the number of SNPs identified as both eeQTL and sQTL; and the 7" bar
indicated the number of SNPs identified as geQTL and eeQTL and sQTL. The red colour
indicates that the overlap between categories of expression QTLs was significantly more than

expected by random chance based on Fisher’s exact test.
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Figure 5. Shared genetic influence on the splicing, exon and gene expression between tissues.
Blood refers to white blood cells and milk refers to milk cells. a: Each matrix shows the pair
wise comparison of the numbers of significant SNP and the total number of significant SNPs
detected for each analysis shown in parentheses. The significance of each overlap was tested
by Fisher’ exact test, given the total number of SNP analysed and the total number of
significant SNP, the result of which is represented by the colour of that position in the matrix.
b: Each matrix shows the pair wise comparison of the numbers of exon/gene with significant
associations and the total number of exon/gene detected with significant associations for each
analysis shown in parentheses. In panel b, the numbers were either exon numbers for sQTLS
(splicing quantitative trait loci) and eeQTLS (exon expression quantitative trait loci) or gene
numbers for geQTLs (gene expression quantitative trait loci. c: Between tissue genetic
correlations of either the inclusion ratio of the exons, the expression of the exons or the
expression of the genes that had significant sharing of expression QTLsin panel a. Dot size
and transparency were negatively correlated with p value of the significance of the genetic
correlation being different from 0. The error bars of the genetic correlation were shown in

vertical lines of each dot. Some genes of interests were highlighted.

Figure 6. Multi-transcriptome meta-analysis (blood, milk and muscle) for cis splicing sQTLsS
(a), exon expression eeQTLs (b) and gene expression geQTLs (c). In each panel, the
significance of multi-transcriptome effects were tested against a > with 1 degree of freedom
for combined expression QTLs effects (dots in blue and orange). These multi-transcriptome
effects were shown together with the single-transcriptome effects in liver of the same

expression QTLs (dotsin green).
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Figure 7. Significance of the overlap, based on the Fisher's exact test, between pleiotropic
QTL for arange of traits in cattle for dairy(a) and beef (b) and cis splicing quantitative trait
loci (sQTLS), exon expression QTL (eeQTLs) and gene expression QTL (geQTLs) in all
tissues, where the colour represents the significance of the overlap. Where blood refers to
white blood cells and milk refers to milk cells. Significance of the overlap was based on the
Fisher’s exact test. Only chromosomes contai ning overlapping SNPs are shown. c) An
example of MGST1 showing the relationship between QTL effects on exon expression in

milk cells and their effects on dairy cattle milk fat yield.
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