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Abstract 33 

Background: Mammalian phenotypes are shaped by numerous genome variants, many of 34 

which may regulate gene transcription or RNA splicing. To identify variants with regulatory 35 

functions in cattle, an important economic and model species, we used sequence variants to 36 

map a type of expression quantitative trait loci (expression QTLs) that are associated with 37 

variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory 38 

variants, sQTLs were compare with other two types of expression QTLs, 1) variants 39 

associated with variations in gene expression, i.e., geQTLs and 2) variants associated with 40 

variations in exon expression, i.e., eeQTLs, in different tissues. 41 

Results: Using whole genome and RNA sequence data from four tissues of over 200 cattle, 42 

sQTLs identified using exon inclusion ratios were verified by matching their effects on 43 

adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are 44 

within the intronic region of genes and contained the lowest percentage of variants that are 45 

within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are 46 

also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all 47 

four tissues and had a similar effect in each tissue. To verify such expression QTL sharing 48 

between tissues, variants surrounding (±1Mb) the exon or gene were used to build local 49 

genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. 50 

For many exons, the splicing and expression level was determined by the same cis additive 51 

genetic variance in different tissues. Thus, an effective but simple-to-implement meta-52 

analysis combining information from three tissues is introduced to increase power to detect 53 

and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated 54 

with cattle complex traits, compared to geQTLs. Several putative causal mutations were 55 
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identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) 56 

associated with milk production traits. 57 

Conclusions: Using novel analytical approaches, we report the first identification of 58 

numerous bovine sQTLs which are extensively shared between multiple tissue types. The 59 

significant overlaps between bovine sQTLs and complex traits QTL highlight the 60 

contribution of regulatory mutations to phenotypic variations. 61 

Keywords: RNA splicing, gene expression, expression QTL, sQTL, genetic correlations, 62 

local genomic relationship matrices (LGRM), transcriptome meta-analysis, bovine 63 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/220251doi: bioRxiv preprint 

https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

Background 64 

Cattle are an important source of meat and dairy products for humans worldwide. Also, cattle 65 

can be used as clinical models to study genetic causes of human diseases [1]. To improve 66 

productivity, health performance and efficiency of cattle, traditional selective breeding has 67 

been widely used. In the last decade, genomic selection, originally developed in cattle 68 

breeding, has further increased the rate of genetic improvement of complex traits in all 69 

livestock species [2, 3]. However, genomic selection commonly uses genotyping arrays that 70 

are based on single nucleotide polymorphisms (SNPs) of which very few have known 71 

biological functions or directly impact genetic variation in production traits. Knowledge of 72 

the genes involved and polymorphic sites would increase our understanding of the biology 73 

and may further increase the rate of genetic improvement [4].  74 

Many of the sequence variants that are associated with complex traits (quantitative trait loci 75 

or QTL) are not coding variants and are presumed to influence the regulation of gene 76 

expression, that is to be expression QTLs [5]. An expression QTL might be associated with 77 

the variation in overall transcript abundance from the gene, which we will refer to as a gene 78 

expression QTL or geQTL. In cattle and humans, geQTLs show significant enrichments for 79 

mutations associated with diseases and complex traits [5-7].  80 

After transcription, RNA is spliced by intron removal and exon ligation to create various 81 

mature transcripts. An expression QTL associated with the changes in the expression ratio of 82 

an exon to the gene implies that it alters RNA splicing. This type of expression QTL is then 83 

defined as a splicing QTL or sQTL, which have been studied in humans by inferring the 84 

individual splicing ratio from RNA sequence data [8]. More recently, sQTLs, identified using 85 

intron information extracted from RNA sequence data, were demonstrated to have 86 

fundamental links with human diseases [9, 10]. RNA splicing also results in different 87 
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expression levels of exons within a gene. Thus, in theory, the type of expression QTL that 88 

change the level of expression of one or several exons, i.e., exon expression QTL or eeQTLs, 89 

may represent some sQTLs. However, the extent to which eeQTLs overlap with sQTLs 90 

and/or geQTLs remains unclear, at least in cattle. 91 

Knowledge of large mammal regulatory mutations is limited mainly to humans, where there 92 

have been multiple studies reporting on expression QTLs [9, 11, 12]. In this study, we aim to 93 

identify bovine cis splicing QTLs using the abundances of genes, exons and introns estimated 94 

from RNA sequence data from hundreds of animals and multiple tissues along with imputed 95 

whole genome sequences. We examined the extent to which sQTLs can be detected in white 96 

blood cells, milk cells, liver and muscle transcriptomes and the extent to which sQTLs 97 

overlap with conventional QTL associated with complex traits overlapped. To further 98 

characterise the features of sQTLs, we used the counts of genes and exons to map another 99 

two types of cis expression QTLs: eeQTLs and geQTLs, and then analysed their relationships 100 

with sQTLs in different tissues. 101 

 102 

Results 103 

Data quality 104 

In total, we analysed 378 transcriptomes of 19 tissue types from 214 cattle generated from 105 

four experiments covering major dairy and beef cattle breeds (Table 1, Figure 1a and 106 

Additional file 1: Supplementary Methods). Following recommendations from Mazzoni and 107 

Kadarmideen 2016 [13] RNA sequence quality was assessed and was detailed in Additional 108 

file 1: Supplementary Methods. Based on the results produced by Qualimap 2 [14], no 109 

significant events of RNA degradation were observed in all studied tissues (Additional file 2: 110 
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Supplementary Figure S1). Also, according to Qualimap 2 [14], on average, 60.3% of reads 111 

were mapped to exonic regions of the bovine reference genome (UMD3.1), 15.4% of reads 112 

were mapped to intronic regions and 24.4% were mapped to integenic regions (Additional 113 

file 3: Supplementary Table S1). Splicing junction annotation and saturation were estimated 114 

using RSeQC [15]. As a small demonstration, no significant difference was observed in the 115 

annotated splicing junction events in the bovine reference genome (UMD3.1), using different 116 

RNA-seq alignment software including HISAT2 [16], STAR [17] and TopHat2 [18] 117 

(Additional file 4: Supplementary Table S2). Although HISAT2 and STAR outperformed 118 

TopHat2 for novel splicing junction events (do not exist in the current bovine UMD3.1 119 

genome). Also, using a splicing junction saturation analysis for all tissues we observed 120 

saturated coverage for the known splicing junctions (Additional file 2: Supplementary Figure 121 

S2), though there appeared to be more potential for splicing junction discovery for the novel 122 

category.  123 

Animals with white blood cell RNA-seq data were evaluated for the consistency between 124 

imputed genotypes from the 1000 bull genomes project [19] and RNA sequence genotypes as 125 

predicted from the RNA sequence data using samtools [20]. On average, the concordance 126 

between imputed sequence genotypes and RNA sequence genotypes was 0.943 (Additional 127 

file 2: Supplementary Figure S3), which was consistent with the average imputation accuracy 128 

(0.926) of the 1000 bull genomes project [21]. The comparison of the genotypes was detailed 129 

in Additional file 1: Supplementary Methods.  130 

Overall, samples from the same or similar tissues clustered together rather than clustering by 131 

experiments, based on exon expression levels (Figure 1a). This was supported by further 132 

analyses of the clusters where ellipses, drawn based on tissue types, were clearly separated 133 

(Additional file 2: Supplementary Figure S4a,c,e), whereas ellipses drawn based on different 134 

experiments overlapped (Additional file 2: Supplementary Figure S4b,d,f), at the confidence 135 
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interval = 0.95 [22]. Consistent with previous reports [23], milk cells and mammary gland 136 

transcriptomes were closely related.  137 

 138 

Table 1. Summary of experiments, data and analyses. Tissue splicing: variation in differential splicing 
associated with tissue types estimated using RNA sequence data from all experiments. Breed splicing: 
variation in differential splicing associated with Holstein and Jersey breeds estimated using RNA sequence 
data of milk cells from experiment III. sQTLs: cis splicing quantitative trait loci, sQTLs estimated using 
RNA sequence data and imputed whole genome and from experiment III and IV. Data from experiment III 
and IV were also used to estimate exon expression eeQTLs and gene expression geQTLs. 

Tissue 
splicing 

Breed 
splicing 

sQTLs Experiment Tissue type 
Sample 
No. 

Breed 
Individual 
No. 

�   I 18 variousa 54 Holstein 1 

�   II 
milk cells & 
mammary 

12 Holstein 6 

�  � III 
white blood 

cells 
105 Holstein 105b 

� � � III milk cells 131 
Holstein & 
Jersey 

105b & 26 

�  � IV liver 35 Angus 35 

�  � IV muscle 41 Angus 41 
a: 18 tissues from [24]. b: The same 105 Holstein cattle, each of which had both white blood and milk cell 
transcriptomic data. 

 139 

Differential splicing between tissues and breeds 140 

We primarily defined a differentially spliced gene as a gene which contained exons whose 141 

inclusion ratios (exon expression divided by gene expression) were significantly associated 142 

with tissue or breed (FDR<0.1). To verify the significantly spliced exons, we imposed a 143 

requirement that at least one adjacent intron had an excision ratio [9, 25] that was also 144 

significantly (FDR<0.1) associated with tissue or breed (See methods). The FDR threshold of 145 

such exon splicing events was considered as approximately 0.01 by combining the FDR 146 

thresholds from exon and intron analyses (0.1 × 0.1). The overlaps of genes displaying 147 

differential splicing from exon and intron analyses were shown and examined in 2 × 2 tables 148 
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by Chi-square tests (Additional file 5: Supplementary Table S3). Overall, the overlap of the 149 

results from exon and intron analyses was significantly more than expected by random 150 

chance. 151 

Using data from all experiments (Table 1), there were 8,657 genes in which at least one exon 152 

had the variation in splicing associated with differences between tissue types. A list of these 153 

genes with the significances of differential splicing for the exons and introns was shown in 154 

Additional file 6: Supplementary Table S4. The top 10% of these significantly differentially 155 

spliced genes had a GO term enrichment (FDR<0.01) of ‘regulation of cellular process’, 156 

suggesting very general roles of these genes in cell function. There were148 genes with 157 

significant differential splicing events in the milk cell transcriptome between breeds (Table 1, 158 

Additional file 7: Supplementary Table S5). While these genes did not show any significant 159 

GO term enrichments, they included the milk protein gene CSN3 [26, 27], where the 5th exon 160 

(6:87,392,578-87,392,750) was more commonly included in the transcript in Holstein cattle 161 

than in Jersey cattle (Figure 1b).  162 

cis splicing quantitative trait loci (sQTLs) 163 

The mapping of sQTLs was based on data from 312 transcriptomes generated from 164 

experiments III and IV, including white blood cells, milk cells, liver and muscle tissues 165 

(Table 1). In total 207 individuals had imputed whole genome sequence data and in 166 

experiment III, 105 genotyped cattle had both white blood and milk cell transcriptome data 167 

(Table 1). Similar to differential splicing analyses described above, a cis-acting sQTL was 168 

defined as a SNP significantly (FDR<0.1) associated with the variation in the inclusion ratio 169 

of the exon (up to 1Mb away) and significantly (FDR<0.1) associated with the variation in at 170 

least one adjacent introns’ excision ratio [9, 25]. When analysed separately, the overlap 171 

between sQTLs found by exon analyses and sQTLs found by intron analyses were 172 
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significantly more than expected by random chance (Additional file 5: Supplementary Table 173 

S3). After requiring that the variation in the inclusion and excision ratios for adjacent exons 174 

and introns both be associated with the same SNP, 138,796 sQTLs were called in the white 175 

blood cells, 28,907 sQTLs were called in the milk cells, 11,544 sQTLs were called in the 176 

liver tissue and 5,783 sQTLs were called the muscle tissue (Figure 2, Additional file 5, 8: 177 

Supplementary Table S3 and S6). 178 

The significant sQTLs in white blood and milk cells were mapped to 929 and 283 genes, 179 

respectively (Table 2). Many SNPs were significant for sQTLs due to linkage disequilibrium 180 

between SNPs close to the same gene. The results do not imply many sQTLs per gene. 181 

In the milk cell transcriptome, the fifth exon of CSN3 (6:87392578-87392750), which as 182 

described above was differentially spliced in Holstein and Jersey cattle (Figure 1b), and was 183 

strongly associated with an sQTL (Chr6:87392580, p = 5.0e-07, Additional file 8: 184 

Supplementary Table S6). This sQTL is physically located within the 5th exon of CSN3. Also, 185 

the B allele of this sQTL increased the expression and inclusion ratio of the 5th exon and had 186 

a higher allele frequency among Holstein cattle than Jersey cattle (0.79 vs 0.02). This 187 

predicted that the expression and inclusion ratio of the 5th exon would be significantly higher 188 

in the Holstein cattle than Jersey cattle, which was in line with the observations in Figure 1b. 189 

In addition, this sQTL was also predicted to be a splice site (‘splice_region_variant’) by 190 

Ensemble [28] and NGS-SNP software [29]. Much smaller numbers of significant sQTLs 191 

were detected in liver (11,544 SNPs) and muscle (5,783 SNPs) (Figure 2c,d). This was 192 

probably due to the smaller sample size (Table 1) and lower sequence depth of liver and 193 

muscle from experiment IV (Additional file 1: Supplementary Methods) than that of white 194 

blood and milk cells from the experiment III (Figure 2a,b, Table 2). 195 
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Table 2. Summary of expression QTLs detected. cis sQTLs: significant SNPs within ± 1Mb 
of the exon, associated with the variation in its inclusion ratio and also associated with the 
variations in the excision of an adjacent intron at the same significance level. Where the 
FDR threshold was approximated to 0.01 by combining FDR thresholds used in exon (FDR 
< 0.1) and intron (FDR < 0.1) analyses. cis eeQTLs: significant (FDR<0.01) SNPs within ± 
1Mb of the exon, associated with the variation in its abundance. cis geQTLs: significant 
(FDR<0.01) SNPs within ± 1Mb of the gene associated with the variation in its abundance. 
cis QTL type Tissue Expression QTL number Gene number 

sQTLs 

white blood cells 138,796 929 
milk cells 28,907 283 

liver 11,544 49 
muscle 5,783 76 

eeQTLs 

white blood cells 802,685 6,446 
milk cells 100,844 2,102 

liver 37,322 346 
muscle 64,675 1,267 

geQTLs 

white blood cells 96,530 842 
milk cells 4,099 99 

liver 39,306 419 
muscle 57,054 1,150 

 196 

Comparing sQTLs with exon expression eeQTLs and gene expression geQTLs 197 

Many more significant eeQTLs than sQTLs were detected in all tissues studied (Table 2). In 198 

white blood and milk cells, the number of geQTL was smaller than the number of significant 199 

sQTLs in white blood and milk cells (Table 2).  200 

Figure 3a showed that sQTLs were a median distance of about 200 kb from the transcription 201 

start site (TSS) and were slightly closer to the TSS than eeQTLs and geQTLs. All 3 classes of 202 

expression QTLs had a lower percentage of intergenic SNPs and a higher percentage of 203 

intronic and coding SNPs, including splice sites than the same categories across all SNPs 204 

analysed (Figure 3b). Specifically, sQTLs had the highest percentage of intronic SNPs, 205 

compared to eeQTLs and geQTLs. However, no consistent ranking of concentrations of 206 

‘Splice’ SNP category for sQTLs, eeQTLs and geQTLs were observed in different tissues 207 

(Figure 3b).  208 
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Shared genetic influences between cis QTL types  209 

Within each tissue, the sharing of SNPs between all three expression QTL types was 210 

significantly more than expected by chance (Figure 4). However, in the white blood and milk 211 

cells, which had relatively large sample size (n>=105, Table 1), the largest absolute amount 212 

of SNP sharing appeared to be between sQTLs and eeQTLs (Figure 4). This was followed by 213 

the amount of SNP sharing between eeQTLs and geQTLs (Figure 4a,b). In liver and muscle 214 

tissue which had relatively small sample size (n<=41) and low sequencing depth, the largest 215 

absolute amount of SNP sharing was between eeQTLs and geQTLs, followed by the amount 216 

of SNP sharing between sQTLs and eeQTLs (Figure 4c,d).  217 

 218 

To further examine the relationship between sQTLs and eeQTLs, a two by two table of sQTL 219 

and eeQTL counts in white blood and milk cells, which had comparable sample sizes, was 220 

created (Additional file 9: Supplementary Table S7). This suggested that when an sQTL was 221 

found, it was highly likely to be also identified as an eeQTL. For example, of 138,796 sQTLs 222 

found in the white blood cells, 109,155 of them were also blood eeQTLs, but only 21,766 of 223 

them were identified as blood geQTLs. Again, for these 138,796 blood sQTLs, although only 224 

18,005 and 25,932 of them were milk sQTLs and eeQTLs, respectively, an even smaller 225 

number, 720, of them were identified as milk cell geQTLs. 226 

Shared genetic influences between tissues 227 

Within each type of expression QTL between different tissues, the majority of the significant 228 

expression QTL sharing was observed between white blood and milk cells and between liver 229 

and muscle (Figure 5a). This is not unexpected since most of the white blood and milk cells 230 

came from the same lactating cows and the muscle and liver from different growing Angus 231 

bulls. Nevertheless, there was significant sharing of eeQTLs between milk cells and liver and 232 
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between milk cells and muscle (Figure 5a). The largest amount of across-tissue expression 233 

QTL sharing was observed in eeQTLs, followed by sQTLs and geQTLs (Figure 5). Where a 234 

SNP was significantly associated with variation in expression in two tissues, the direction of 235 

effect was usually the same in both tissues (Additional file 2: Supplementary Figure S5). The 236 

correlation between effects of expression QTLs for white blood cells and milk cells 237 

(Additional file 2: Supplementary Figure S5a,c,e) was stronger than that between liver and 238 

muscle (Additional file 2: Supplementary Figure S5b,d,f). The sharing at the SNP level 239 

between white blood cells and milk cells and between liver and muscle were also evident at 240 

the exon and gene level (Figure 5b).  241 

The expression QTL sharing between tissues was further examined for all types of expression 242 

QTL by using a less stringent p-value (p<0.05) to test their effect (Additional file 2: 243 

Supplementary Figure S6). This showed that the expression QTL sharing between tissues was 244 

stronger for sQTLs and eeQTLs (Additional file 10: Supplementary Figure S6a-d), than the 245 

sharing for geQTLs (Additional file 10: Supplementary Figure S6e-f). Again, more 246 

expression QTL sharing was found between white blood cells and milk cells than between 247 

liver and muscle. For instance, 75% of eeQTLs significant in the white blood cells at p<0.002 248 

were significant in milk cells at p<0.05 (Additional file 2: Supplementary Figure 6c). 249 

The correlation between estimated SNP effects on gene splicing and expression in different 250 

tissues are lower in magnitude than the true correlation between SNP effects, because the 251 

effects are estimated with error and these errors are independent between tissues. To estimate 252 

the true correlation, we computed the genetic correlation between SNP effects in two 253 

different tissues by GREML16 using a local genomic relationship matrix or LGRM built from 254 

SNPs from 1 Mb surrounding the exon or gene (Figure 5c). LGRM differs from a 255 

conventional GRM by focusing on the local SNPs (in this case within 1 Mb distance) with 256 

potential cis genetic associations with the variation in the splicing or expression level of the 257 
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exon or gene. This was in agreement with the definition of the cis expression QTLs which 258 

were also within 1Mb distance to the exon or gene in the current study. Out of 1,145 analysed 259 

sQTLs (inclusion ratio of the exon), eeQTLs (expression level of the exon) and geQTLs 260 

(expression level of the gene) between tissues, 598 had genetic correlations significantly 261 

(p<0.05) different from 0, out of which 561 had genetic correlations insignificantly (p >= 262 

0.05) different from 1. That is, in many cases, the variation in exon expression in white blood 263 

cells and milk cells was associated with the same cis polymorphism (s).  264 

Often both splicing events and exon expression within a gene were highly correlated between 265 

white blood and milk cells, for instance DDX19B, CTSD and EFF1A1 (Figure 5c). In liver 266 

and muscle, exons from HLA-DQA1 encoding major histocompatibility complexes [30] also 267 

showed significant genetic correlations between tissues based on both exon expression and 268 

splicing. There were more cases of eeQTLs than sQTLs and geQTLs and so there were more 269 

estimates of genetic correlations between white blood and milk cells in Figure 5c. The 270 

genetic correlations between eeQTLs in white blood and milk cells show a range from +1 to -271 

1 although most are close to +1. Exons with negative genetic correlations of expression 272 

between white blood cells and milk cells were mapped to SART1 [30], a post-transcriptional 273 

regulator in epithelial tissues and TTC4 with potential to mediate protein-protein interactions 274 

[30]. These negative genetic correlations imply that there are mutations that increase the 275 

expression of the exon in milk cells but decrease it in white blood cells. An exon within 276 

S100A10, a cell cycle progress regulator, showed negative genetic correlation of expression 277 

between liver and muscle.  278 

Genetic correlations between exon expression levels in two tissues can be different between 279 

exons within the same gene. For example, only the 2nd exon (5:93,942,055 -93,942,195) of 280 

MGST1 (which is associated with the variation in dairy cattle milk fat yield [27, 31]) had a 281 

significant genetic correlation of expression between white blood cells and milk cells (Figure 282 
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5c). This was largely due to a few eeQTLs with relatively highly significant effects (p<1e-10) 283 

on the expression levels of the 2nd exon in the milk cells and a similar but less significant 284 

effect (p<1e-4) on the 2nd exon expression in white blood cells (Additional file 2: 285 

Supplementary Figure S7). For exons 1 and 3, the significances of the eeQTLs in both milk 286 

and white blood cells were > 1e-3. For exon 4, the significance of the majority of eeQTLs in 287 

both milk and white blood cells were > 1e-5 (Additional file 2: Supplementary Figure S7). 288 

Multi-transcriptome meta-analysis to increase power of expression QTLs detection 289 

Based on shared genetic effects of all types of expression QTLs across tissues, a multi-290 

transcriptome meta-analysis was introduced to increase the power to detect sQTLs, eeQTLs 291 

and geQTLs (Figure 6, Table 3). For sQTLs, eeQTLs and geQTLs that had significant effects 292 

(p < 0.05) in all of white blood cells, milk cells and muscle transcriptomes, their standardised 293 

effects (signed t values) in each transcriptome were simply combined and tested for 294 

significance against a χ2 distribution with 1 degree of freedom. Overall, the multi-295 

transcriptome meta-analysis based on summary statistics substantially increased the power of 296 

expression QTLs detection (Figure 6). The significance of multi-transcriptome expression 297 

QTLs was compared with their significance in the liver transcriptome (Figure 6, Table 3). For 298 

a criteria where the expression QTLs had both multi-transcriptome meta-analysis p < 1×10-5 299 

and liver transcriptome analysis p < 0.05, all types of expression QTLs had significant 300 

overlap of the SNPs between the meta-analysis and the single transcriptome analysis in liver. 301 

In fact most of the significant sQTLs, eeQTLs and geQTLs detected by the meta-analysis 302 

were also detected by the liver analysis but at a much higher p-value (Table 3).  303 

 304 
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Table 3. The overlap between the multi-transcriptome meta-analysis 
of three tissues and the single transcriptome results of liver. sQTLs: 
splicing quantitative trait loci; eeQTLs: exon expression QTLs; 
geQTLs: gene expression QTLs. Liver: QTLs with single-
transcriptome effects p < 0.05 in the liver. Meta-analysis: QTLs with 
χ

2 p < 1e-05 for the meta-analysis of white blood cells, milk cells and 
muscle. ‘+’ indicates the number of SNPs met the significance criteria 
while ‘–’ indicates number of SNPs failed to meet the significance 
criteria. 

sQTLs 
Meta-analysis Overlap p 

+ - 
p < 2e-16 

Liver 
+ 768,650 2,842,552 

- 139,551 4,301,536 

 

eeQTLs 
Meta-analysis Overlap p 

+ - 
p < 2e-16 

Liver 
+ 1,052,041 3,186,839 

- 140,033 3,575,617 

 

geQTLs 
Meta-analysis Overlap p 

+ - 
p < 2e-16 

Liver 
+ 178,093 473,232 

- 43,578 6,663,855 

 
 305 

Overlap between expression QTLs and QTL for dairy and beef traits 306 

We examined whether cis sQTLs, eeQTLs and geQTLs were significantly enriched amongst 307 

SNPs associated with economically important cattle traits. Pleiotropic SNPs significantly 308 

(FDR<0.01) associated with more than one of 24 dairy traits [32] and with more than one of 309 

16 beef traits [33] were tested for overlap with detected sQTLs, eeQTLs and geQTLs (Figure 310 

7, Additional file 10,11: Supplementary Table S8,9). Overall, sQTLs, geQTLs and eeQTLs 311 

identified in white blood and milk cells had greater overlap with SNPs associated with dairy 312 

and beef traits than sQTLs, geQTLs and eeQTLs identified in liver and muscle (Figure 7). 313 

sQTLs in white blood and milk cells were significantly enriched for dairy cattle pleiotropic 314 

SNPs, including SNPs from the CSN3 loci on chromosome 6 (Figure 7a,b). eeQTLs in the 315 
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white blood cells had the largest absolute amount of SNPs overlapping with dairy cattle 316 

pleiotropic SNPs (Figure 7b) and was the only expression QTL type with significant 317 

enrichment with beef cattle pleiotropic SNPs (Figure 7b). eeQTLs in milk cells and liver also 318 

had significant enrichment for dairy cattle pleiotropic SNPs (Figure 7a). Of the geQTLs, only 319 

those from white blood cells had a significant enrichment with dairy cattle pleiotropic SNPs 320 

(Figure 7a).  321 

An example of an eeQTLs that overlaps a milk production QTL is for MGST1, where effects 322 

of milk cell eeQTLs were highly significantly associated with their effects on milk fat yield 323 

[32] (Figure 7c). Specifically, some expression QTLs with strong associations with the 324 

variation in milk cell expression levels of exon 2 (Chr5:93,942,195-93,942,055) and exon 3 325 

(Chr5: 93,939,244-93,939,150) of MGST1 (Additional file 2: Supplementary Figure S7) also 326 

had strong associations with the variation in milk fat yield (Figure 7c). Littlejohn et al.[31] 327 

identified SNPs associated with milk yield percentage and MGST1 expression in the 328 

mammary gland, including 17 putative causal variants. Most SNPs identified by Littlejohn et 329 

al. originated from whole genome sequence and so were not present on the high density SNP 330 

chip data we analysed for dairy cattle pleiotropy [32] (Additional file 12: Supplementary 331 

Table S10). However, 53 significant milk cell eeQTLs identified by the current study 332 

overlapped with the top 200 SNPs from Littlejohn et al [31] (Additional file 12: 333 

Supplementary Table S10), which was significantly more than expected by random chance. 334 

The 53 eeQTLs included the SNP suggested as a putative causal candidate (Chr5:93945738) 335 

[31], which was significantly associated with the variation in expression level of the third 336 

exon (5:93939150-93939244) of MGST1 in milk cells (Additional file 12: Supplementary 337 

Table S10). No milk cell geQTLs was called for MGST1, as all of them had weak effects on 338 

the whole MGST1 gene expression in milk cells, resulting in a large FDR (Additional file 12: 339 

Supplementary Table S10).  340 
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 341 

Discussion 342 

We performed a systematic analysis of cis expression QTLs (<=1Mb) in multiple tissues 343 

centred around RNA splicing events, using a large number of RNA and whole genome 344 

sequence data from an important domestic animal species. Overall, differential splicing 345 

between tissues is ubiquitous and between breeds is common. Differential splicing between 346 

individuals due to SNPs (sQTLs) occurs for many genes and is enriched with cattle complex 347 

trait QTL. Within each tissue, all cis expression QTLs types showed significant overlap. Most 348 

geQTLs and sQTLs were detected as eeQTLs indicating that the exon expression can be 349 

altered by changing the expression of the whole gene or by changing the splicing. However, 350 

an sQTL was likely to be an eeQTLs and, to a lesser extent, geQTLs. Between tissues, while 351 

all QTLs types showed significant overlap between white blood cells and milk cells and 352 

between liver and muscle, the strongest cross-tissue sharing appeared to be at the exon level 353 

(sQTLs and eeQTLs). This is supported by many significant tissue pair genetic correlations. 354 

Such cross-tissue expression QTL sharing allowed the multi-transcriptome meta-analysis of 355 

expression QTL effects which substantially increases power to detect significant expression 356 

QTLs.  357 

The majority of significant sQTLs were detected from white blood and milk cells (Figure 358 

2a,b) which also overlapped with SNP chip based complex trait QTL (Figure 7), compared to 359 

sQTLs detected from liver and muscle. This is probably due to the larger sample size for 360 

white blood and milk cells than for liver and muscle (Table 1) and the higher sequencing 361 

depth (Additional file 1: Supplementary Methods). One of the significant white blood cell 362 

sQTLs (29:44585782) for CAPN1 is also a SNP chip based significant pleiotropic SNP for 16 363 
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beef cattle traits (Additional file 11: Supplementary Table S9). This SNP is associated with 364 

shear force in multiple taurine breeds [34]. 365 

In the milk cell transcriptome, a significant sQTL (Chr6:87392580, Figure 2a) with predicted 366 

splicing function [28] within the fifth exon (6:87,392,578-87,392,750) of CSN3 is strongly 367 

associated with differential splicing between Holstein and Jerseys (Figure 1b). Variants 368 

within CSN3 have long been found to be associated with milk traits [35, 36] but only recently 369 

have putative causal variants been prioritised [26]. The milk cell sQTL 6:87392580 had 370 

perfect linkage disequilibrium (r =1) with the variant 6:87390576 which has been suggested 371 

as a putative causal variant for effects on milk protein yield and percentage [26, 27]. Given it 372 

is at a splicing site, 6:87392580 could be a putative causal variant contributing to milk 373 

production in dairy cattle by altering exon splicing. 374 

Compared to identified bovine cis geQTLs, cis sQTLs tended to be closer to the transcription 375 

starting site (TSS) and had highest concentrations of intronic SNPs (Figure 3). In humans, cis 376 

sQTLs [9, 37] were more enriched for intron SNPs than other types of QTLs. However, 377 

reports of the distance between human QTLs and TSS appear to be inconsistent. While no 378 

difference in enrichment of SNPs near TSS between sQTLs and geQTLs were found by the 379 

human GTEx project [8], a more recent study[9] found that human geQTLs were more 380 

enriched near TSS than sQTLs. Our results appear to stand in between the results of GTEx 381 

project and the later findings from Li et. al. [9], where cattle sQTLs were slightly closer to 382 

TSS than geQTLs. However, this difference is not significant in all tissues (Figure 3a). On 383 

the other hand, significant overlap between sQTLs and geQTLs was found in this study 384 

(Figure 4) and by the human GTEx project [8]. However, Li et. al. [9] found that human cis 385 

sQTLs were independent of geQTLs. These inconsistent observations are likely to be due to a 386 

number of differences between these studies, including definition of sQTLs, choice of tissues 387 
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and populations and computational procedures. Also, these inconsistent observations also 388 

suggest that we are still at the very early stage of understanding of sQTLs features. 389 

Within each studied bovine tissue, the largest amount of overlap between expression QTL 390 

types was found either between exon expression eeQTLs and sQTLs or between eeQTLs and 391 

geQTLs (Figure 4). Further, the largest amount of enrichments of cattle pleiotropic SNPs was 392 

found for eeQTLs, followed by sQTLs and geQTLs. The white blood cell eeQTLs showed 393 

particularly strong enrichments of pleiotropic SNPs for dairy and beef cattle. In a large scale 394 

human blood cell expression QTLs study [12], eeQTLs also showed the strongest 395 

enrichments of GWAS variants, followed by sQTLs and geQTLs. Thus, focusing on exon-396 

level QTLs, including eeQTLs and sQTLs, could increase the chance of finding regulatory 397 

variants for complex traits, as proposed by Guan et. al.[38]. 398 

A hypothesis to explain these results is that mutations in regulatory DNA may increase the 399 

expression of one or more transcripts from a gene. If they increase expression of one 400 

transcript then they may be detected as an eeQTL for the exons in that transcript, as a sQTL 401 

for exons spliced out of that transcript or as a geQTL if this transcript forms a large part of 402 

the total transcription from the gene. Thus, there is expected to be overlap between eeQTLs, 403 

geQTLs and sQTLs, but at least sQTLs and eeQTLs should overlap and this is what we found 404 

(Figure 4, Additional file 9: Supplementary Table S7). It appears that eeQTLs detect the 405 

largest proportion of these regulatory polymorphisms provided sequencing depth is high. 406 

In humans, significant cross-tissue sharing of sQTLs and geQTLs was reported [8, 39]. In our 407 

study of cattle, the strongest evidence of expression QTL sharing appeared to be at the exon 408 

level. This included sQTLs and eeQTLs sharing between white blood and milk cells and 409 

between liver and muscle (Figure 5). When extending the examination of expression QTLs to 410 
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include those with p < 0.05 (Additional file 2: Supplementary Figure S6), the exon-level 411 

expression QTLs cross-tissue sharing is also the greatest.  412 

We highlighted a few examples of cross-tissue shared eeQTLs along with the related exons, 413 

of which the genetic correlations of the expression and splicing in different tissues were 414 

significant (Figure 5c). One of these eeQTLs is located within the milk fat yield [27, 31] QTL 415 

MGST1 (Figure 5c, Additional file 2: Supplementary Figure S7). For eeQTLs associated with 416 

MGST1, a strong positive relationship of SNP effects was observed between milk cell 417 

eeQTLs and dairy milk fat yield SNPs (Figure 7c). Furthermore, the identified milk cell 418 

eeQTL overlaps with previously identified putative causal variants [31] within MGST1 for 419 

milk fat percentage, thus supporting their candidacy. This overlap further supports the top 420 

candidate SNP 5:93945738 with significant effects on the abundance of the third exon of 421 

MGST1 (Additional file 12: Supplementary Table S10) for milk fat traits. Overall, our 422 

analysis demonstrates the significant potential of using detailed exon analysis to aid in 423 

identification of putative causative mutations. 424 

Based on the sharing of expression QTLs between tissues, a multi-transcriptome meta-425 

analysis which simply combined expression QTL effects to substantially increase the power 426 

(Figure 6) was introduced. Using this approach, combined expression QTL effects of white 427 

blood cells, milk cells and muscle were validated in the liver (Table 3). This also 428 

demonstrated the significant extent of QTL sharing across tissues. Previously, Flutre et. al. 429 

[39] combined data from human fibroblasts, lymphoblastoid cell lines and T-cells and found 430 

that up to 88% of geQTLs were shared across tissues at FDR<0.05 level. We checked the 431 

existing results of the meta-analysis combining SNP effects from tissues of white blood cells, 432 

milk cells and muscle at the FDR threshold < 0.05. We found that the meta-analysis 433 

identified 585,406 geQTLs with FDR < 0.05 in more than one tissue. This accounted for 69.2% 434 

of total geQTLs (845,431) that were called and common in the individual geQTL analysis of 435 
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white blood cells, milk cells and muscle. While there were differences in the selection of 436 

tissue/cell type between our experiment and Flutre et. al, it is possible that the analysis 437 

proposed by Flutre et. al with more complex procedures would be more powerful than the 438 

meta-analysis introduced by us. Flutre et. al applied principal components analysis to 439 

normalise their gene expression data while we used quantile normalisation which appeared to 440 

show good performances in combining different transcriptome datasets [40]. However, our 441 

meta-analysis is powerful for detecting and validating many expression QTLs that have an 442 

effect in the same direction in multiple tissues, and is simpler to implement than that of Flutre 443 

et al. A future systematic comparison of different approaches of analysing expression QTL in 444 

multiple tissues would be very useful. 445 

As one of earliest investigations of large animal expression QTLs, our study has its potential 446 

limitations. While the overlaps between sQTLs detected with exon and intron analyses were 447 

significantly more than expected by random chance, the absolute amount of overlap was still 448 

small. Through all analyses, there were always many more splicing events detected by intron 449 

analyses implemented by leafcutter [10] than the exon analysis (Additional file 5: 450 

Supplementary Table S3). This appears to be consistent with Li et al [10], the authors of 451 

leafcutter. They suggested that intron-centred analyses can be both more sensitive (lower 452 

proportion of false negatives) and more accurate (lower proportion of false positives) than the 453 

exon based splicing mapping methods, such as Altrans [41].  454 

We found that the strongest sharing of expression QTLs was either between white blood and 455 

milk cells or between liver and muscle tissues, at the threshold of FDR <0.01 (Figure 5). The 456 

white blood and milk cells sampled from the same Holstein and/or Jersey cattle of experiment 457 

III had a larger sample size and higher read coverage, compared to the liver and muscle 458 

tissues sampled from different Angus bulls of experiment IV. The reduced expression QTL 459 

sharing detected between, e.g., muscle and milk cells, could be due to differences in the tissue, 460 
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the physiological state of the cattle or the breed. However, it can be also due to different 461 

power in the milk cells, liver and muscle datasets compared to the white blood cell data. 462 

Nevertheless, in the multi-transcriptome meta-analysis where expression QTLs with low 463 

threshold were examined (p<0.05), the combined effects of all types of expression QTLs of 464 

the three tissues from different experiments were highly significant (Figure 6). Many of these 465 

expression QTLs were also found in liver with p<0.05 (Table 3). This evidence supports the 466 

proposal that the sharing of cis expression QTL is extensive across tissues, but these shared 467 

expression QTLs may not necessarily have strong effects in each studied tissue. In the latest 468 

human expression QTLs mapping study (GTEx consortium) where RNA seq data of 44 469 

tissues from up to 450 individuals were analysed, cis expression QTL tended to be either 470 

shared across most tissues or specific to a small subset of tissues [11]. As sample numbers for 471 

each tissue increased, GTEx consortium identified more tissue specific expression QTLs [11]. 472 

Future studies with significantly increased power and selection of cattle tissues and breeds 473 

may update our current results. 474 

Another potential limitation of our study is the use of imputed sequence data, which may 475 

introduce imputation errors that lead to inaccurate identification or exclusion of expression 476 

QTLs. However, the average imputation accuracy of the 1000 bull genome project data used 477 

in this study was high (0.926) [21] and there was a good consistency between the imputed 478 

sequence genotypes and RNA sequence genotypes (average concordance = 0.943, Additional 479 

File 2: Supplementary Figure S3). Stringent thresholds were also imposed to control the false 480 

discovery rate of expression QTLs mapping (either FDR<0.01 or FDR approximately < 0.01 481 

for sQTLs). In the current study, we did not consider the case where a haplotype can be 482 

potentially associated with expression phenotypes. While a haplotype analysis can be 483 

informative, it would require a very large sample size to achieve reliable results due to testing 484 

a large number of combinations of haplotype blocks. In a human study where over 2,000 485 
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individuals were analysed, expression QTLs conditioning on expression levels of 486 

transcription factor genes were reported [12]. Finally, our results obtained from genome-wide 487 

associations do not necessarily contain causal relationships. However, our findings are 488 

important for prioritising informative SNP candidates for future validation of causal 489 

relationships. 490 

 491 

Conclusions 492 

We found that eeQTLs overlapped with both geQTLs, due to polymorphisms affecting the 493 

level of expression of the whole gene, and with sQTLs, due to polymorphisms affecting the 494 

exon usage within the gene. sQTLs tended to be closer to the transcription start sites more 495 

often located in introns than geQTLs. We found the largest number of sQTLs in white blood 496 

cells probably because the power to find them was greatest in this dataset. However, many of 497 

the sQTLs found in other tissues were also detected in blood cells and many sQTLs found in 498 

blood could be detected in other tissues at higher p-values. The genetic correlation between 499 

expression QTLs in different tissues was often indistinguishable from 1.0 indicating that 500 

many expression QTLs operate in a similar way across tissues. Consequently, combining 501 

results from several tissues using the multi-transcriptome meta-analysis increased power to 502 

detect all 3 types of expression QTLs. The potential of exon-level QTLs information was 503 

demonstrated by the identification of several strong candidates of putative causal mutations 504 

for complex traits: sQTL 6:87392580 within CSN3 for milk production and eeQTL 505 

5:93945738 within MGST1 for milk fat yield.  506 

 507 

Methods 508 
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Sample collection. For Experiment I, the sampling of 18 tissues from one lactating Holstein 509 

cow followed procedures described by Chamberlain et al [24]. For Experiment II and III, the 510 

sampling and processing of all tissues including white blood and milk cells is detailed in 511 

Additional file 1: Supplementary Methods. Briefly, animals of Experiment II and III were 512 

selected from Agriculture Victoria Research dairy herd at Ellinbank, Victoria, Australia. In 513 

Experiment II, milk and mammary tissue samples were taken from six Holstein cows. In the 514 

Experiment III, milk and blood samples were originally taken from 112 Holstein and 29 515 

Jersey cows, but only RNA sequence data of 105 Holstein and 26 Jersey with > 50 million 516 

reads for milk cells or >25 million reads for white blood cells and had aconcordant alignment 517 

rate [18] >80% were used. For Experiment IV, the sampling of 41 semitendinosus muscle and 518 

35 liver from Angus bulls was previously described by [42, 43]. As recommended by 519 

ENCODE guidelines (https://www.encodeproject.org/about/experiment-guidelines/) 520 

biological replicates were favoured over technical replicates for experiments II-IV. However 521 

Chamberlain et al [24] assessed technical replicates for experiment I. 522 

RNA seq data. For Experiment I, RNA extraction and sequencing followed the procedures 523 

described by Chamberlain et al [24]. For Experiment II and III, the RNA extraction and 524 

sequencing procedure is detailed in Additional file 1: Supplementary Methods. For 525 

Experiment IV, RNA extraction and sequencing is previously described by Khansefid et al. 526 

[43]. For all experiments sequence quality was checked and were aligned to the Ensembl 527 

UMD3.1 bovine genome assembly using TopHat2 [18]. The RNA sequence data processing 528 

and quality checking are detailed in Additional file 1: Supplementary Methods. 529 

Whole genome seq data. Experiments III and IV had whole genome sequence genotypes 530 

imputed from the SNP chip genotypes using FImpute [44] based on the 1000 bull genomes 531 

project [19]. The overall imputation accuracy of the most recent genome sequence data 532 

ranged from 0.898 to 0.952 depending on chromosomes [21]. 50K Illumina genotypes were 533 
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used for imputation for experiment III with previous protocols [27, 45]. For experiment IV, 534 

800K and 50K Illumina genotypes were used with procedures following [33]. SNPs were 535 

filtered for minor allele frequency > 0.01 and resulted in 14,302,604 and 13,632,145 SNPs 536 

used in the analysis in experiment III and IV, respectively. There were 10,242,837 SNPs 537 

shared between experiment III and IV. 538 

Gene/exon analysis. Gene count data were generated by Python package HTSeq [46] using 539 

default settings. The exon count data were generated by Bioconductor package featureCounts 540 

[47] in R v3.3.2 [48]. The Ensembl based bovine genome reference (UMD3.1) was used to 541 

define genes and exons. Genes and exons with count per million >0 in more than 40% of 542 

RNA samples were used for all the following analyses. This filtering allowed the analysis to 543 

focus on exons or genes with relatively robust expression in many RNA sequencing samples. 544 

The exon-based tissue principal components analysis used DEseq2 based on the 250 exons, 545 

the expression of which were most variable across studied tissues [49]. The usage of 500 and 546 

1,000 exons with the most variable expression across tissue samples were also tested. 547 

Consistent with [49], the selection of different numbers of exons had little impact on the 548 

clustering patterns (Supplementary Figure S4). The significance of the clustering was 549 

determined using ellipse method proposed by [22] and implemented in ggplot2 [50]. The 550 

confidence interval was set to 0.95 to which ellipses were drawn based on data categorised by 551 

tissue types or by experiments. The separation of ellipses indicated independence of 552 

categories of data. The phenotype of exon inclusion was calculated as the exon to gene 553 

expression ratio. The phenotype of intron excision was estimated using the publically 554 

available software leafcutter [9, 10]. Briefly, leafcutter used RNA seq BAM files as input and 555 

generated ratios of reads supporting each alternatively excised intron as the intron excision 556 

phenotype [10](http://davidaknowles.github.io/leafcutter/). Those exons and introns with 557 

ratio values <0.001 were removed and the remaining ratio values were transformed to log2 558 
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scale, then underwent exon/intron –wise quantile normalisation and individual –wise zscore 559 

standardisation [51]. 560 

Gene differential splicing. Both exon inclusions and intron excisions were analysed and 561 

used in combination for gene differential splicing for (1) the overall tissue effects and (2) the 562 

breed effects. Primarily, differential splicing was defined for the gene containing exons 563 

whose variation in inclusion ratios were significantly (FDR<0.1) associated with the tissue or 564 

breed variable. To be called as significantly spliced exons, they were required to have at least 565 

one adjacent intron whose variation in excision ratios were also significantly (FDR<0.1) 566 

associated with the tissue or breed variable. The tissue effects were analysed in a linear mixed 567 

model in lme4 [52] in R as: 568 

etxby kjiijk +++=    (1) 569 

Where y = exon inclusion or intron excision ratios, bi = the animal random effects (i=214), 570 

xj= the experiments (j=4), tk = tissue type (k=19), e= random residual term. The fitting of the 571 

animal random effects accounted for the fact that only 1 animal was used in experiment I. 572 

The P values of F tests were calculated using Satterthwaite approximation implemented in 573 

lmerTest [53]. The breed effects for the milk transcriptome data were analysed in a linear 574 

model in R as: 575 

ebreedy ll +=    (2)  576 

Where y = exon inclusion or intron excision ratios in the milk cell transcriptome, breedl = 577 

breeds (l=2, Holstein and Jersey). p values of exons/introns for the tissue effects in equation 578 

(1) or the breed effects in equation (2) were used to calculate the false discovery rates (FDR) 579 

using qvalue [54] in R. The FDR threshold of such detected exon/intron group was 580 

considered as approximately 0.1× 0.1 = 0.01, as a combination of FDR thresholds of exon 581 
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and intron analyses to reflect our selection criteria for significant splicing events. For genes 582 

showing significant differential splicing for (1) the overall tissue effects and (2) the breed 583 

effects as described above, enrichments of biological pathway were tested using GOrilla [55]. 584 

As many genes had differential splicing events associated with tissue differences, top 10% of 585 

the genes with significant differential splicing were selected based on the approximate FDR 586 

with combined FDR values of both exon and intron analyses. 587 

cis expression splicing QTLs. Only transcriptomic data of experiment III and IV were used 588 

in sQTLs mapping. Similar to differential splicing analysis described above, a significant 589 

(FDR<0.01) cis splicing QTLs was expected to satisfy two conditions simultaneously: (1) a 590 

SNP, within or up to ± 1Mb away from the exon, was significantly (FDR<0.1) associated 591 

with the variation in the exon inclusion ratio and (2) the same SNP was significantly 592 

(FDR<0.1) associated with at least one event of the excision of the intron next to the same 593 

exon at the same significance level. Both individual exon inclusion and intron excision values 594 

were used as phenotype to map associated QTLs with widely used [8] Matrix eQTL[56] 595 

package in R. For each cell type of the experiment III (white blood and milk cells) and 596 

experiment IV (liver and muscle), SNPs ± 1Mb from the exon or intron were tested for 597 

regressions with the exon inclusion or intron excision phenotype. For milk cell transcriptome, 598 

breed was fitted as a covariate. 599 

To compare cis sQTLs with exon expression cis eeQTLs and cis gene expression geQTLs, 600 

the expression count data were normalised by voom [57] estimating mean-variance 601 

relationship to calculate observation-level weighted expression values. Normalised 602 

expression values of exons and genes were used as phenotype to map cis expression QTLs 603 

(within ± 1Mb) at FDR <0.01 level as described above.  604 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/220251doi: bioRxiv preprint 

https://doi.org/10.1101/220251
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

SNP annotation. The gene transcription start site coordinates were downloaded from 605 

Ensembl (http://www.ensembl.org) and the absolute difference between the position of a SNP 606 

and the transcription start site of the gene were calculated for the SNP with significant cis 607 

effects. The SNP functional categories were generated using predictions from Ensembl 608 

Variant Effect Predictor [28] in conjunction with NGS-SNP [29]. All analysed SNPs were 609 

assigned a functional category. 610 

Dairy and beef cattle pleiotropic QTL. To test the significance of overlap between cis 611 

expression QTLs and SNPs associated with cattle phenotype, meta-analyses of dairy and beef 612 

cattle pleiotropy were performed using single-trait GWAS results from Xiang et al [32] and 613 

Bolormaa et al [33]. HD 800K SNP chip genotypes were used for trait GWAS. 24 dairy cattle 614 

traits with matching phenotype in 9,662 bulls and cows and 16 beef cattle traits with animal 615 

numbers >2,000 were selected. Briefly, the multi-trait χ2 statistic for the ith SNP was 616 

calculated based on its signed t values generated from each single trait GWAS [33]: 617 

ii tVt 12 ' −=χ    (3) 618 

For dairy cattle, the meta-analysis was based on the weighted SNP effects tw combining SNP 619 

effects calculated separately in bulls and cows. The tw accounting for the phenotypic error 620 

differences between bulls and cows [27] was calculated as: 621 

22
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==    (4) 622 

Where the weighted SNP t value tw was the quotient of the weighted SNP effects Bw and the 623 

weighted effect error sew. Bbull and sebull were the SNP effects and error obtained from single-624 
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trait GWAS in bulls and Bcow and secow were the SNP effects and error of cows. Those SNPs 625 

which had meta-analysis FDR<0.01 were chosen to be compared with cis expression QTLs. 626 

The lead SNP loci were defined as ±1 Mb from the lead SNPs identified in the previous 627 

analysis [32] and [33].  628 

The significance of overlaps. The significance of overlaps were compared with the expected 629 

number using the Fisher’s exact test (p) implemented in GeneOverlap [58] in R. This analysis 630 

required four types of counts: the size of overlap between set A (e.g., SNPs that were blood 631 

sQTLs) and set B (e.g., SNPs that were milk sQTLs), the size of set A, the size of set B and 632 

the size of background. The union number of whole genome sequence SNPs with MAF>0.01 633 

in each breed and the bovine high density chip SNPs were used as the background. Where 634 

expression QTL categories from different breeds of dairy and beef cattle were tested for 635 

overlap, the number of common SNPs between breeds was used. 636 

Genetic correlations using local genomic relationship matrices. The cross-tissue sharing 637 

of SNPs were confirmed by bivariate GREML analysis using GCTA [59]. For an exon or a 638 

gene of interest, its inclusion ratios or expression levels in two different tissues were treated 639 

as two different phenotype, tr1 and tr2. The SNPs within 1Mb of this exon or gene were used 640 

to make a local genomic relationship matrix, i.e., LGRM, representing the local polygenic 641 

component a with potential associations with the variation in the splicing or expression level 642 

of the exon or gene. This allowed linear mixed modelling of the local additive genetic 643 

variances of tr1, varlg(tr1) and of tr2 , varlg(tr2) and the local additive genetic covariance 644 

between t1 and t2, covlg(tr1,tr2) using GREML [59]. This approach agreed with the definition 645 

of cis expression QTLs defined in this study (also within 1Mb distance to the exon or gene) 646 

and allowed the estimation of genetic correlation ��� �

���������,���


����������
���������

  (5). Genetic 647 
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correlations were also tested for their significance of being different from 0 or 1, by fixing the 648 

correlation value to 0 and 1 using GCTA [59].  649 

Validation by multi-transcriptome meta-analysis. The validation based on expression QTL 650 

effect commonality across tissues was conducted by comparing the combined expression 651 

QTL effects from white blood cells (experiment III), milk cells (experiment III) and muscle 652 

(experiment IV) transcriptomes with their effects in the liver transcriptome (experiment IV). 653 

The standardised expression QTL effects, b/se, signed t values were calculated from single-654 

transcriptome results of white blood cells (t1), milk cells (t2) and muscle (t3). The significance 655 

of multi-transcriptome effects of an expression QTL was tested by χ2 distribution with 1 656 

degree of freedom: 657 

2

1

2
)1( ⎥

⎦

⎤
⎢
⎣

⎡= ∑
=

N

n

n

N

tχ    (6) 658 

N = the number of studied tissues (N=3 in this case) where the original SNP t values were 659 

estimated. Provided the individual t-values followed a t-distribution under the null hypothesis, 660 

the properties of the average t value in the current study was a simple mathematical result 661 

which approximated the chi square distribution with 1 degree of freedom, the null hypothesis 662 

of which was that the SNP does not have any significant associations in any of the 3 tissue 663 

types. Previously, the concept of meta-analysis combining SNP t values estimated from 664 

different datasets has been also applied to analyse multiple quantitative phenotypic traits in 665 

large animals to increase power (see [33, 60] and equation (3)). The expression QTLs that 666 

participated in the validation analysis had single-transcriptome effect p < 0.05 in each tissue 667 

and the significance of the multi-transcriptome effects was defined as p < 1e-05. Significant 668 

multi-transcriptome expression QTLs were compared with the liver single-transcriptome 669 

effects at p < 0.05 level. We chose to combine two tissues which appeared to display strong 670 
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power (white blood and milk cells, experiment III) with the third tissue from a different 671 

experiment with relatively weak power (muscle, experiment IV). The single tissue left to be 672 

compared with was liver, a tissue which also appeared to show weak power and was from 673 

experiment IV. These choices intended to create enough differences for the meta-analysis to 674 

combine the SNP effects and for the combined SNP effects to be compared with the SNP 675 

effects in the single tissue. 676 
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Additional file 1 (DOCX): Supplementary Methods. 

Additional file 2 (PDF): Supplementary Figure S1-7. 

Additional file 3 (XLSX): Supplementary Table S1. RNA-seq reads mapped to different 

bovine genome origins. 

Additional file 4 (XLSX): Supplementary Table S2. Splicing junction annotation analysis 

using BAM files generated by different alignment software. 

Additional file 5 (XLSX): Supplementary Table S3. 2x2 tables for the overlap between exon 

and intron analyses. 

Additional file 6 (XLSX): Supplementary Table S4. Genes that display significant differential 

splicing cross tissues. 

Additional file 7 (XLSX): Supplementary Table S5. Genes that display significant differential 

splicing between breeds. 

Additional file 8 (XLSX): Supplementary Table S6. Summary of significant cis splicing 

sQTLs (within 1Mb distance to the exon). 

Additional file 9 (XLSX): Supplementary Table S7. Summary table for count values of 

sQTLs and eeQTLs in white blood and milk cells. 

Additional file 10 (XLSX): Supplementary Table S8. SNP overlap between expression QTLs 

and SNPs with pleiotropic effects on conventional traits of dairy cattle. 

Additional file 11 (XLSX): Supplementary Table S9. SNP overlap between expression QTLs 

and SNPs with pleiotropic effects on conventional traits of beef cattle. 
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Additional file 12 (XLSX): Supplementary Table S10. SNP overlap between blood eeQTLs 
and putative causal variants identified by Littlejohn et al (2016).  
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Figure Legends:  

Figure 1. a: Sample principal components clustering based on exon expression. Circles on 

the plot were ellipses drawn based on tissue types at the confidence interval = 0.95. Tissue 

types with which the non-overlapping ellipses were drawn were emphasised with 

underscored text labelling. Ellipses that were drawn based on experiments can be found in 

Supplementary Figure S4. b: The significant splicing events between breeds and between 

genotypes (cis splicing quantitative trait loci, sQTLs) for CSN3 in the milk cell transcriptome. 

In the upper panel, from left to right: the 1st pair of bars are the least square means of 

normalised expression level of the gene (ENSBTAG00000039787) in Holstein and Jersey 

breeds; the 2nd pair of bars are the normalised expression level of the 5th exon (6:87392578-

87392750) in Holstein and Jersey breeds; the 3rd pair of bars are the normalised inclusion 

ratio of the 5th exon in Holstein and Jersey breeds; and 4th pair of bars is the frequency of the 

B allele of the sQTL (Chr6:87392580) for CSN3 in Holstein and Jersey breeds. The standard 

errors bars are indicated. In the lower panel, from left to right: the 1st bar is the effects (signed 

t values, b/se) of the sQTL (Chr6:87392580) B allele on the normalised expression of the 

gene; the 2nd bar is the sQTL B allele effect on the normalised expression of the 5th exon; and 

the 3rd bar was the sQTL B allele effects on the normalised inclusion ratio of the 5th exon.  

 

Figure 2. Manhattan plots of significant cis splicing quantitative trait loci (sQTLs, 

approximate FDR<0.01 and within 1Mb of the exon) in white blood cells (a), milk cells (b), 

liver tissue (c) and muscle tissue (d). A significant sQTLs was defined as a SNP associated 

with the variation in the exon inclusion ratio and also variation in at least one excision of an 

adjacent intron at the same significance level. The input SNPs had significance p<0.0001. 
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sQTLs in all tissues with their associated genes and significance are given in Supplementary 

Table S6. 

 

Figure 3. Features of cis splicing quantitative trait loci (sQTLs) compared to exon expression 

QTL (eeQTLs) and gene expression QTL (geQTLs). a: The distance between the 

transcription start site (TSS) and the expression QTLs. TSS information was downloaded 

from Ensembl (bovine reference UMD3.1). b: The proportion of expression QTLs annotated 

as splice, UTR, gene_end, synonymous, missense, intron, intergenic or other. SNP 

annotations were based on Variant Effect Predictor. ‘Splice’ included all SNP annotations 

containing the word ‘splice’. ‘UTR’ included 3’ and 5’ untranslated region. ‘Gene_end’ 

included upstream and downstream. 

 

Figure 4. Overlaps of different expression QTL types for white blood cells (a), milk cells (b), 

liver(c) and muscle (d). Within each panel, y-axis was the number of significant expression 

QTLs; from left to right as guided by the green dots, the 1st bar indicated the number of 

significant cis splicing QTL (sQTLs); the 2nd bar indicated the number of significant exon 

expression QTL (eeQTLs); the 3rd bar indicated the number of significant gene expression 

QTL (geQTLs); the 4th bar indicated the number of SNPs identified as both geQTL and 

eeQTL; the 5th bar indicated the number of SNPs identified as both geQTL and sQTL; the 6th 

bar indicated the number of SNPs identified as both eeQTL and sQTL; and the 7th bar 

indicated the number of SNPs identified as geQTL and eeQTL and sQTL. The red colour 

indicates that the overlap between categories of expression QTLs was significantly more than 

expected by random chance based on Fisher’s exact test. 
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Figure 5. Shared genetic influence on the splicing, exon and gene expression between tissues. 

Blood refers to white blood cells and milk refers to milk cells. a: Each matrix shows the pair 

wise comparison of the numbers of significant SNP and the total number of significant SNPs 

detected for each analysis shown in parentheses. The significance of each overlap was tested 

by Fisher’ exact test, given the total number of SNP analysed and the total number of 

significant SNP, the result of which is represented by the colour of that position in the matrix. 

b: Each matrix shows the pair wise comparison of the numbers of exon/gene with significant 

associations and the total number of exon/gene detected with significant associations for each 

analysis shown in parentheses. In panel b, the numbers were either exon numbers for sQTLs 

(splicing quantitative trait loci) and eeQTLs (exon expression quantitative trait loci) or gene 

numbers for geQTLs (gene expression quantitative trait loci. c: Between tissue genetic 

correlations of either the inclusion ratio of the exons, the expression of the exons or the 

expression of the genes that had significant sharing of expression QTLs in panel a. Dot size 

and transparency were negatively correlated with p value of the significance of the genetic 

correlation being different from 0. The error bars of the genetic correlation were shown in 

vertical lines of each dot. Some genes of interests were highlighted. 

 

Figure 6. Multi-transcriptome meta-analysis (blood, milk and muscle) for cis splicing sQTLs 

(a), exon expression eeQTLs (b) and gene expression geQTLs (c). In each panel, the 

significance of multi-transcriptome effects were tested against a χ2 with 1 degree of freedom 

for combined expression QTLs effects (dots in blue and orange). These multi-transcriptome 

effects were shown together with the single-transcriptome effects in liver of the same 

expression QTLs (dots in green). 
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Figure 7. Significance of the overlap, based on the Fisher’s exact test, between pleiotropic 

QTL for a range of traits in cattle for dairy(a) and beef (b) and cis splicing quantitative trait 

loci (sQTLs), exon expression QTL (eeQTLs) and gene expression QTL (geQTLs) in all 

tissues, where the colour represents the significance of the overlap. Where blood refers to 

white blood cells and milk refers to milk cells. Significance of the overlap was based on the 

Fisher’s exact test. Only chromosomes containing overlapping SNPs are shown. c) An 

example of MGST1 showing the relationship between QTL effects on exon expression in 

milk cells and their effects on dairy cattle milk fat yield. 
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