

Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi

⁴ Jens Keilwagen ^{1,*}, Frank Hartung ¹, Michael Paulini ²,
Sven O. Twardziok ³, and Jan Grau ⁴

5 November 14, 2017

⁶ ¹Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal
⁷ Research Centre for Cultivated Plants, Quedlinburg, D-06484, Germany
⁸ ²European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome
⁹ Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
¹⁰ ³Plant Genome and Systems Biology, Helmholtz Center Munich - German Research
¹¹ Center for Environmental Health, Neuherberg, D-85764, Germany and
¹² ⁴Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle
¹³ (Saale), D-06120, Germany.

14 **Motivation:** Genome annotation is of key importance in many research
15 questions. The identification of protein-coding genes is often based on
16 transcriptome sequencing data, ab-initio or homology-based prediction.
17 Recently, it was demonstrated that intron position conservation improves
18 homology-based gene prediction, and that experimental data improves
19 ab-initio gene prediction.

20 **Results:** Here, we present an extension of the gene prediction tool GeMoMa
21 that utilizes amino acid sequence conservation, intron position conservation
22 and optionally RNA-seq data for homology-based gene prediction. We show
23 on published benchmark data for plants, animals and fungi that GeMoMa
24 performs better than the gene prediction programs BRAKER1, MAKER2,
25 and CodingQuarry, and purely RNA-seq-based pipelines for transcript
26 identification. In addition, we demonstrate that using multiple reference
27 organisms may help to further improve the performance of GeMoMa.
28 Finally, we apply GeMoMa to four nematode species and to the recently
29 published barley reference genome indicating that current annotations of
30 protein-coding genes may be refined using GeMoMa predictions.

Availability: GeMoMa has been published under GNU GPL3 and is freely

32 available at <http://www.jstacs.de/index.php/GeMoMa>.
33 **Contact:** jens.keilwagen@julius-kuehn.de
34

35 1 Introduction

36 The annotation of protein-coding genes is of critical importance for many
37 fields of biological research including, for instance, comparative genomics,
38 functional proteomics, gene targeting, genome editing, phylogenetics, trans-
39 scriptomics, and phylostratigraphy. The process of annotating protein-coding
40 genes to an existing genome (assembly) can be described as specifying the
41 exact genomic location of genes comprising all (partially) coding exons. A dif-
42 ficulty in gene annotation is distinction between protein-coding genes, trans-
43 posons and pseudogenes.

44 Genome annotation pipelines utilize three main sources of information,
45 namely evidence from wet-lab transcriptome studies (Trapnell *et al.*, 2010;
46 Pertea *et al.*, 2015), ab-initio gene prediction based on general features
47 of (protein-coding) genes (Solovyev *et al.*, 2006; Stanke *et al.*, 2008), and
48 homology-based gene prediction relying on gene models of (closely) re-
49 lated, well-annotated species (Slater and Birney, 2005; She *et al.*, 2011;
50 Keilwagen *et al.*, 2016).

51 Experimental data allow for inferring coverage of gene predictions and
52 splice sites bordering their exons, which may assist computational ab-initio
53 or homology-based approaches. Due to the progress in the field of next gener-
54 ation sequencing, RNA-seq has revolutionized transcriptomics (Wang *et al.*,
55 2009). Today, RNA-seq data is available for a wide range of organisms, tis-
56 sues and environmental conditions, and can be utilized for genome annotation
57 pipelines.

58 In recent years, several programs have been developed that com-
59 bine multiple sources allowing for a more accurate prediction of protein-
60 coding genes (Holt and Yandell, 2011; Testa *et al.*, 2015; Hoff *et al.*, 2016).
61 MAKER2 is a pipeline that integrates support of different resources including
62 ab-initio gene predictors and RNA-seq data (Holt and Yandell, 2011). Cod-
63 ingQuarry is a pipeline for RNA-Seq assembly-supported training and gene
64 prediction, which is only recommended for application to fungi (Testa *et al.*,
65 2015). Recently, Hoff *et al.* (2016) published BRAKER1 a pipeline for unsu-
66 pervised RNA-seq-based genome annotation that combines the advantages
67 of GeneMark-ET (Lomsadze *et al.*, 2014) and AUGUSTUS (Stanke *et al.*,
68 2008).

69 Here, we present an extension of GeMoMa (Keilwagen *et al.*, 2016) that
70 utilizes RNA-seq data in addition to amino acid sequence and intron position
71 conservation. We investigate the performance of GeMoMa on publicly avail-
72 able benchmark data (Hoff *et al.*, 2016) and compare it with state-of-the-art

73 competitors (Holt and Yandell, 2011; Testa *et al.*, 2015; Hoff *et al.*, 2016).

74 Subsequently, we demonstrate how combining homology-based predictions
75 based on gene models from multiple reference organisms can be used to im-
76 prove the performance of GeMoMa. Finally, we apply GeMoMa to four nema-
77 tode species provided by Wormbase (Howe *et al.*, 2016) and to the recently
78 published barley reference genome (Mascher *et al.*, 2017), where GeMoMa
79 predictions will be included into future versions of the corresponding genome
80 annotations.

81 2 Methods

82 In this section, we describe recent extensions of GeMoMa to make use of
83 evidence from RNA-seq data, the RNA-seq pipelines used and the data con-
84 sidered in the benchmark and application studies.

85 2.1 GeMoMa using RNA-seq

86 GeMoMa predicts protein-coding genes utilizing the general conservation
87 of protein-coding genes on the level of their amino acid sequence and on
88 the level of their intron positions, i.e., the locations of exon-exon bound-
89 aries in CDSs (Keilwagen *et al.*, 2016). To this end, sequences of (partially)
90 protein-coding exons are extracted from well-annotated reference genomes.
91 Individual exons are then matched to loci on the target genome using
92 tblastn (Altschul *et al.*, 1990), matches are adjusted for proper splice sites,
93 start codons and stop codons, respectively, and joined to full, protein-coding
94 genes models. In this process, the conserved dinucleotides GT and GC for donor
95 splice sites, and AG for acceptor splice sites have been used for the identifica-
96 tion of splice sites bordering matches to the (partially) protein-coding exons
97 of the reference transcripts. The improved version of GeMoMa may now also
98 include experimental splice site evidence extracted from mapped RNA-seq
99 data to improve the accuracy of splice site and, hence, exon annotation. We
100 visualize the extended GeMoMa pipeline in Fig. S1.

101 Starting from mapped RNA-seq data, the module *Extract RNA-seq evi-*
102 *dence* (ERE) allows for extracting introns and, if user-specified, read cover-
103 age of genomic regions. GeMoMa filters these introns using a user-specified
104 minimal number of split reads within the mapped RNA-seq data. Introns
105 passing this filter define donor and acceptor splice sites, which are treated
106 independently within GeMoMa. If splice sites with experimental evidence
107 have been detected in a genomic region with a good match to an exon of a
108 reference transcript, these are collected for further use. If no splice sites with
109 experimental evidence have been detected in a genomic region with a good
110 match to an exon of a reference transcript, GeMoMa resorts to conserved din-
111 ucleotides allowing to identify gene models that are not covered by RNA-seq

112 data due to, e.g., very specifically or lowly expressed transcripts. Combin-
113 ing two potential exons, all in-frame combinations using the collected donor
114 and acceptor splice sites are tested and scored according to the reference
115 transcript. The best combination is used for the prediction.

116 Based on this experimental evidence, the improved version of GeMoMa
117 provides several new properties reported for gene predictions. The most
118 prominent features are *transcript intron evidence* (tie) and *transcript per-*
119 *centage coverage* (tpc). The tie of a transcript varies between 0 and 1, and
120 corresponds to the fraction of introns (i.e., splice sites of two neighboring
121 exons) that are supported by split reads in the mapped RNA-seq data. In
122 case of transcripts comprising a single coding exon, NA is reported. The tpc
123 of a transcript also varies between 0 and 1, and corresponds to the fraction
124 of (coding) bases of a predicted transcript that are also covered by mapped
125 reads in the RNA-seq data.

126 GeMoMa allows for computing and ranking multiple predictions per refer-
127 ence transcript, but does not filter these predictions. Predictions of different
128 reference transcripts might be highly overlapping or even identical, especially
129 if the reference transcripts are from the same gene family. Since GeMoMa
130 1.4, the default parameters for number of predictions and contig threshold
131 have been changed which might lead to an increased number of highly over-
132 lapping or identical predictions. In addition, it might be beneficial to run
133 GeMoMa starting from multiple reference species to broaden the scope of
134 transcripts covered by the predictions. However, these may also result in re-
135 dundant predictions for, e.g., orthologs or paralogs stemming from the differ-
136 ent reference species considered. To handle such situations, the new module
137 *GeMoMa annotation filter* (GAF) of the improved version of GeMoMa now
138 allows for joining and reducing such predictions using various filters. Filter-
139 ing criteria comprise the relative GeMoMa score of a predicted transcript,
140 filtering for complete predictions (starting with start codon and ending with
141 stop codon), and filtering for evidence from multiple reference organisms. In
142 addition, GAF also joins duplicate predictions that originate from different
143 reference transcripts.

144 Initially, GAF filters predictions based on their relative GeMoMa score, i.e.,
145 the GeMoMa score divided by the length of the predicted protein. This filter
146 removes spurious predictions. Subsequently, the predictions are clustered
147 based on their genomic location. Overlapping predictions on the same strand
148 yield a common cluster. For each cluster, the prediction with the highest
149 GeMoMa score is selected. Non-identical predictions overlapping the high-
150 scoring prediction with at least a user-specified percentage of borders (i.e.,
151 splice sites, start and stop codon, cf. *common border filter*) are treated as
152 alternative transcripts. Predictions that have completely identical borders
153 to any previously selected prediction are removed and only listed in the GFF
154 attribute field *alternative*. All filtered predictions of a cluster are assigned
155 to one gene with a generic gene name. Finally, GAF checks for nested genes

156 in the cluster looking for discarded predictions that do not overlap with any
157 selected prediction, which are recovered.

158 In addition to the modules for annotating a genome (assembly) described
159 above, we also provide two additional modules in GeMoMa for analyzing
160 and comparing to prediction to a reference annotation. The module *CompareTranscripts*
161 determines that CDS of the reference annotation with the
162 largest overlap with the prediction utilizing the F_1 measure as objective function
163 (Keilwagen *et al.*, 2016). The module *AnnotationEvidence* computes tie
164 and tpc of all CDSs of a given annotation. Hence, these two modules can be
165 used to determine, whether a prediction is known, partially known or new
166 and whether the overlapping annotation has good RNA-seq support.

167 2.2 MAKER2 predictions

168 Recently, we have shown that GeMoMa outperforms state-of-the-art
169 homology-based gene predictors (Keilwagen *et al.*, 2016). We are not aware
170 of any homology-based gene prediction program that allows for incorporating
171 of RNA-seq data. Hence, we provide predictions of MAKER2 using
172 the same reference proteins as GeMoMa for a minimal comparison. Internally,
173 MAKER2 uses exonerate (Slater and Birney, 2005) for homology-
174 based gene prediction. We run MAKER2 with default parameters except
175 `protein2genome=1`, and `genome` and `protein` set to the respective input
176 files. In addition, we run MAKER2 using (i) RNA-seq data in form of
177 Trinity 2.4 transcripts (-jaccard_clip) (Haas *et al.*, 2013), (ii) homology in
178 form of proteins of one related reference species, and (iii) ab-initio gene
179 prediction in form of Augustus 3.3 (Stanke *et al.*, 2008). In this case, we
180 run MAKER2 with default parameters except `genome`, `est`, `protein`, and
181 `augustus_species`, which have been set to the corresponding species. For
182 comparison, we run Maker2 with the same parameter settings but using the
183 GeMoMa predictions for `protein_gff` instead of using `protein`.

184 2.3 RNA-seq pipelines

185 Computational pipelines have been used to infer gene annotation from RNA-
186 seq data produced by next generation sequencing methods. Dozens of tools
187 and tool combinations have been proposed. Here, we focus on the short
188 read mapper TopHat2 (Kim *et al.*, 2013), the transcript assemblers Cuf-
189 flinks (Trapnell *et al.*, 2010) and StringTie (Pertea *et al.*, 2015), and the cod-
190 ing sequence predictor TransDecoder (Haas *et al.*, 2013). Based on the trans-
191 script assemblers, we build two RNA-seq pipelines following the instructions
192 in Hoff *et al.* (2016).

193

2.4 Data

194

For the benchmark studies, we consider target species and their genome versions as specified in the BRAKER1 supplement. For the homology-based prediction by GeMoMa, we choose one closely related reference species per target species that are sequenced and annotated (Rawat *et al.*, 2015; Howe *et al.*, 2016; Matthews *et al.*, 2015; Rhind *et al.*, 2011). For these species, we consider the latest genome versions available (Tab. S1). For the analysis of *C. elegans*, we use the manually curated gene set of *C. briggsae* provided by Wormbase. In addition, we use the experimental evidence from RNA-seq data referenced in the BRAKER1 publication.

195

For the analysis of the four nematode species, *C. brenneri*, *C. briggsae*, *C. japonica*, and *C. remanei*, we use the genome assembly and gene annotation of Wormbase WS257 (Howe *et al.*, 2016). We choose the model organism *C. elegans* as reference species (Tab. S2). In addition to genome assembly and gene annotation, we also use publicly available RNA-seq data of these four nematode species, which have been mapped by Wormbase using STAR (Dobin *et al.*, 2013). We used a minimum intron size of 25 bp, a maximum intron size of 15Kb, specify that only reads mapping once or twice on the genome are reported, and alignments are reported only if their ratio of mismatches to mapped length is less than 0.02. In accordance with the previous benchmark study, we use the manually curated gene set of Wormbase.

196

For the analysis of barley, we use the latest genome assembly and gene annotation (Mascher *et al.*, 2017). As reference species, we choose *A. thaliana* (Lamesch *et al.*, 2012), *B. distachyon* (International Brachypodium Initiative, 2010), *O. sativa* (Ouyang *et al.*, 2007), and *S. italica* (Bennetzen *et al.*, 2012) (Tab. S3). In addition to genome assembly and gene annotation, we also used RNA-seq data from four different public available data sets (ERP015182, ERP015986, SRP063318, SRP071745). Reads were mapped and assembled using Hisat2 and StringTie (Pertea *et al.*, 2016). As reference annotation, we used the union of high and low confidence annotation.

197

As independent evidence for validating GeMoMa predictions in the nematode species and barley, we use ESTs and cDNAs. While Wormbase provides coordinates for *best BLAT matches*, we adapt the pipeline and download all available EST from NCBI and map them to the genome using BLAT (Kent, 2002).

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

	MAKER2 ⁺ (exonerate)	GeMoMa ⁺ without RNA-seq data	GeMoMa ⁺ with RNA-seq data	RNaseq-Cufflinks	RNaseq-StringTie	BRAKER1*	MAKER2*	CodingQuarry*	MAKER2 ⁺ (exonerate, Trinity, Augustus)	MAKER2 ⁺ (GeMoMa, Trinity, Augustus)
<i>Arabidopsis thaliana</i> (ref. <i>A. lyrata</i>)										
Gene Sn	44.0	61.3	66.5	28.9	35.9	64.4	51.3	NA	56.9	57.9
Gene Sp	47.8	65.7	71.3	47.9	59.1	52.0	52.5	NA	65.7	67.8
Transcript Sn	37.5	52.2	57.2	26.6	33.7	55.0	43.5	NA	48.3	49.1
Transcript Sp	47.8	65.7	65.3	35.6	48.3	50.9	52.5	NA	65.7	67.8
Exon Sn	70.0	79.3	80.6	58.1	60.8	82.9	76.1	NA	81.8	82.1
Exon Sp	81.9	86.6	87.5	81.9	87.1	79.0	76.1	NA	87.5	88.6
<i>Caenorhabditis elegans</i> (ref. <i>C. briggsae</i>)										
Gene Sn	26.2	39.6	49.1	18.7	22.6	55.0	41.0	NA	40.5	47.3
Gene Sp	38.0	49.9	63.8	29.1	36.1	55.2	30.8	NA	51.5	56.4
Transcript Sn	21.0	30.7	39.8	16.2	20.0	43.0	31.3	NA	31.4	36.2
Transcript Sp	38.0	49.9	58.7	24.1	30.1	53.2	30.8	NA	51.5	56.4
Exon Sn	50.3	64.2	67.1	54.4	59.1	80.2	69.4	NA	70.5	75.2
Exon Sp	82.6	81.5	87.5	81.3	84.1	85.3	62.3	NA	85.6	86.7
<i>Drosophila melanogaster</i> (ref. <i>D. simulans</i>)										
Gene Sn	64.3	78.2	83.1	55.7	55.2	64.9	55.2	NA	61.5	64.0
Gene Sp	69.2	81.6	87.1	71.3	73.5	59.4	46.3	NA	69.6	71.9
Transcript Sn	44.1	52.9	65.0	48.7	49.0	46.1	38.5	NA	42.7	44.3
Transcript Sp	69.2	81.6	81.2	60.1	65.7	57.9	46.3	NA	69.6	71.9
Exon Sn	69.0	76.3	80.0	67.8	66.2	75.0	66.5	NA	74.3	76.3
Exon Sp	89.1	92.0	93.3	85.4	88.3	81.7	66.9	NA	88.0	89.1
<i>Schizosaccharomyces pombe</i> (ref. <i>S. octosporus</i>)										
Gene Sn	49.2	76.4	79.2	69.0	65.8	77.4	42.8	79.7	71.6	74.6
Gene Sp	59.9	84.6	88.0	93.8	92.5	80.5	68.7	72.6	88.1	89.1
Transcript Sn	49.2	76.4	79.2	69.0	65.8	77.4	42.8	79.7	71.6	74.6
Transcript Sp	59.9	84.6	87.6	80.5	71.3	76.5	68.7	72.6	88.1	89.1
Exon Sn	56.1	81.6	83.1	77.2	77.7	83.2	50.1	79.6	79.2	81.2
Exon Sp	73.3	88.6	91.9	87.6	81.7	83.2	71.4	81.7	92.0	92.6

Table 1: Benchmark results on the BRAKER1 test sets. The target species are given in multi-column rows. The same reference species, which is given in brackets, is used for all tools using homology-based gene prediction indicated by plus. The asterisks indicates that the performance of BRAKER1, MAKER2 and CodingQuarry is given as reported in Hoff *et al.* (2016). The highest value per line is depicted in bold-face.

230 3 Results and Discussion

231 3.1 Benchmark

232 The comparison of different software pipelines is often critical as a) specific
233 parameters settings might be crucial for good results and b) different input
234 might be used. For these reasons, we designed the benchmark as follows.
235 First, we use publicly available gene predictions results. Second, we limit the
236 number of reference species to one in the initial study.

237 We used GeMoMa for predicting the gene annotations of *A. thaliana*, *C. el-
238 elegans*, *D. melanogaster*, and *S. pombe*. In Table 1, we summarize the perfor-
239 mance of BRAKER1, MAKER2, and CodingQuarry as reported in Hoff *et al.*
240 (2016), as well as the performance of GeMoMa with and without RNA-seq
241 evidence, purely RNA-seq-based pipelines and various MAKER2 predictions.
242 For all comparisons, we provide sensitivity (Sn) and specificity (Sp) for the
243 categories gene, transcript, and exon, respectively (Keibler and Brent, 2003).

244 First, we compare the two purely homology-based predictions, namely on
245 the one hand side MAKER2 using exonerate and on the other hand side
246 GeMoMa without RNA-seq data. In all cases, we use the same reference
247 species and reference proteins. We find that MAKER2 using only homologous
248 proteins has a higher exon specificity than GeMoMa without RNA-seq data
249 for *C. elegans*, while the opposite is true for all other categories and target
250 species.

251 Second, we additionally consider RNA-seq data. MAKER2 does not allow
252 for combining RNA-seq evidence and homology-based predictions without
253 using any ab-initio gene predictor. In contrast, GeMoMa allows for addition-
254 ally using intron position conservation and RNA-seq data. For this reason,
255 we compare the performance of GeMoMa with and without RNA-seq evi-
256 dence (Table 1). We find that sensitivity and specificity in almost all cases
257 increases by up to 13.9 with only two exceptions for transcript specificity of
258 *A. thaliana* and *D. melanogaster* which decreases by at most 0.4. Hence, we
259 summarize that RNA-seq evidence improves the sensitivity and specificity of
260 GeMoMa and should be used if available.

261 Third, we compare the performance of GeMoMa using RNA-seq evidence
262 to that of purely RNA-seq-based pipelines, namely Cufflinks and StringTie
263 (Table 1). We find for all four species that GeMoMa using RNA-seq evi-
264 dence outperforms purely RNA-seq-based pipelines. Interestingly, purely
265 RNA-seq-based pipelines also yield the worst gene/transcript sensitivity and
266 specificity for *C. elegans*. Comparing the results based on different transcript
267 assemblers, we find that the results based on StringTie are better than those
268 based on Cufflinks for *A. thaliana* and *C. elegans*, while the opposite is
269 true for *S. pombe*. For *D. melanogaster*, both pipelines perform compara-
270 bly. Additional RNA-seq reads increasing the coverage might improve the
271 performance of purely RNA-seq-based pipelines but could also improve the

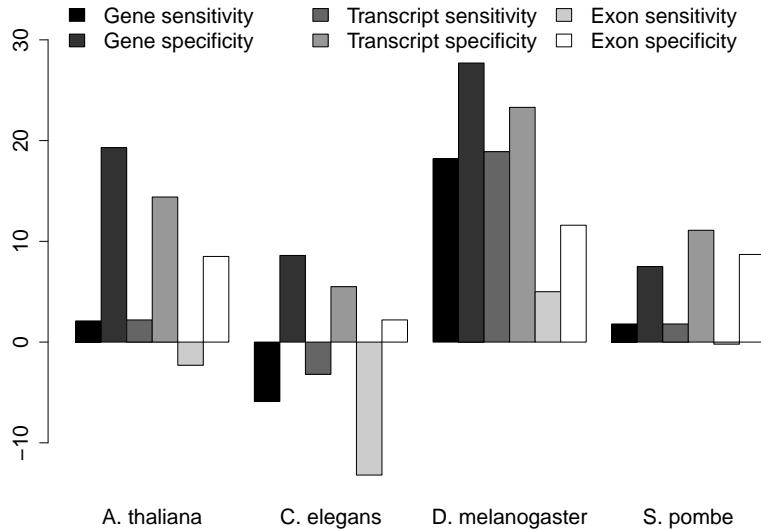


Figure 1: Benchmark results. The y-axis depicts the difference between the GeMoMa with RNA-seq data and the BRAKER1 performance.

272 performance of GeMoMa.

273 Summarizing these three observations, we find that GeMoMa performs
274 better than purely homology-based or purely RNA-seq-based pipelines and
275 that including RNA-seq data improves the performance of GeMoMa.

276 Hence, we compare GeMoMa to combined gene prediction approaches.
277 Specifically, we compare the performance of GeMoMa using RNA-seq evi-
278 dence to BRAKER1 in Fig. 1, which provides the best overall performance
279 in Hoff *et al.* (2016). We find that GeMoMa performs better than BRAKER1
280 for the categories gene and transcript with the exception of gene and trans-
281 script sensitivity for *C. elegans*. Interestingly, we find the biggest improve-
282 ments for *D. melanogaster* where gene/transcript sensitivity and specificity
283 increases between 18.2 and 27.7. For the exon category, we find a less clear
284 picture. In total, we observe the worst results for *C. elegans* where the sen-
285 sitivity for all three categories decreases between 3.2 and 13.2, while the
286 specificity increases only between 2.2 and 8.6. Notably, we generally find
287 the worst gene/transcript sensitivity and specificity for *C. elegans* compared
288 with the other target species considering the best performance of all tools.

289 In summary, we find that the gene predictors MAKER2, BRAKER1,
290 CodingQuarry and GeMoMa, and the transcript assemblers Cufflinks and
291 StringTie often perform quite well on exon level. The main difference be-
292 comes evident on transcript and gene level, where exons need to be combined

293 correctly (Table 1) as reported earlier (Steijger *et al.*, 2013; Conesa *et al.*,
294 2016). Homology-based gene predictors might benefit from experimentally
295 validated and manually curated reference transcripts guiding the prediction
296 of transcripts in the target organism.

297 Although GeMoMa performed well, it is not able to predict genes that do
298 not show any homology to a protein in the reference species, while ab-initio
299 gene predictors might fail in other cases. As both types of approaches have
300 their specific advantages, users will probably use combinations of different
301 gene predictors in practice to obtain a comprehensive gene annotation.

302 **3.2 Combined gene prediction pipelines**

303 Combined gene prediction pipelines, as for instance MAKER2, use RNA-
304 seq evidence, homology-based and ab-initio methods for predicting final gene
305 models. MAKER2 uses exonerate by default for homology-based gene predic-
306 tion. However, MAKER2 also provides the possibility to use other homology-
307 based gene predictors instead of exonerate (cf. parameter protein_gff). For
308 this reason, we compare the performance of MAKER2 using either exonerate
309 or GeMoMa for homology based gene prediction (Table 1). In addition, we
310 use Augustus as ab-initio gene prediction program and Trinity transcripts
311 in MAKER2. We find that MAKER2 using GeMoMa performs better than
312 MAKER2 using exonerate for all species and all measure. The improvement
313 varies between 0.3% and 6.8% with clearly the biggest improvement for *C.*
314 *elegans*.

315 In addition, we find that the MAKER2 performance is substantially improved
316 compared to the performance of the the previously reported MAKER2 pre-
317 dictions, either purely based on proteins (cf. Table 1, column MAKER2⁺
318 (exonerate)) or as reported in Hoff *et al.* (2016) (cf. Maker2*). These other
319 predictions do not utilize all available sources of information as they ei-
320 ther ignore RNA-seq data and ab-initio gene prediction or homology to
321 proteins of related species. Based on this observation, we agree that com-
322 bined gene prediction pipelines benefit from the inclusion of all available
323 evidence and that performance is decreased if some important evidence is
324 missed (Holt and Yandell, 2011).

325 Furthermore, we compare GeMoMa using RNA-seq evidence with MAKER2
326 using RNA-seq evidence, homology-based and ab-initio gene prediction. In
327 some cases, it is hard to compare these results as sensitivity of one tool is
328 higher than the sensitivity of the other tool and the opposite is true for
329 specificity. In machine learning, recall, also known as sensitivity, and pre-
330 cision, which is called specificity in the context of gene prediction evalua-
331 tion (Burset and Guigó, 1996), are combined into a single scalar value called
332 F1 measure (Powers, 2011) that can be compared more easily. We combined
333 sensitivity and specificity resulting in an F1 measure for each evaluation level
334 gene, transcript and exon (Table S4) We find that in many cases GeMoMa

335 using RNA-seq evidence outperforms MAKER2. The reason for this observa-
336 tion might be that RNA-seq data and homology based gene prediction is used
337 in MAKER2 to train ab-initio gene predictors, in this case Augustus. With
338 the recommended parameter setting, homology-based gene predictions are
339 not directly used for the final prediction and doing so might further improve
340 performance.

341 **3.3 Influence of reference species**

342 Utilizing different fly species from FlyBase (Gramates *et al.*, 2017), we scrupu-
343 lize the influence of different or multiple reference species on the perfor-
344 mance of GeMoMa using RNA-seq data (Tab. S5). In Fig. 2, we depict
345 gene sensitivity and gene specificity for eight different reference species indi-
346 cated by points. We find that performance varies with the reference species.
347 In this specific case, *D. sechellia* and *D. persimilis* yield the worst re-
348 sults for single reference-based predictions. This observation might be re-
349 lated to the fact that genome assembly of *D. sechellia* and *D. persimilis* is
350 of lower quality (Clark *et al.*, 2007), while the genome of *D. simulans* has
351 been updated (Hu *et al.*, 2013) later. Besides these two outliers, the per-

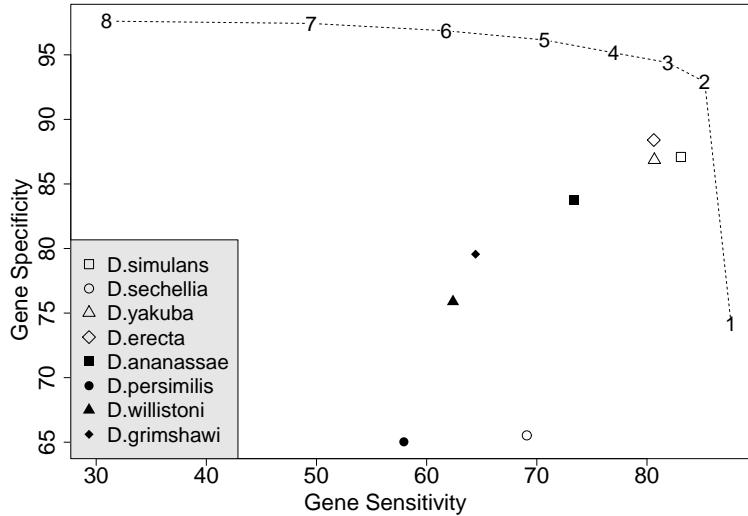


Figure 2: Gene sensitivity and specificity for *D. melanogaster* using different or multiple reference species in GeMoMa. The points correspond to the eight reference species. In addition, the dashed line indicates the usage of multiple reference species. Using multiple reference species allows for filtering identical predictions from several reference as indicated by the numbers.

352 formance of the different fly species as reference species for *D. melanogaster*
353 in GeMoMa correlates with their evolutionary distance (Singh *et al.*, 2009).
354 Generally speaking, the closer a reference species is related to the target
355 species *D. melanogaster*, the better is the performance in terms of gene sen-
356 sitivity and specificity. Hence, we speculate that two requirements must be
357 met to have a good reference species. First, the evolutionary distance be-
358 tween reference and target species should be small and second, the genome
359 assembly and annotation of the reference species should be comprehensive
360 and of high quality.

361 The new GAF module of GeMoMa allows for combining the predictions
362 based on different reference organisms. The combined predictions may be
363 filtered by number of reference species with perfect support (#evidence), as
364 indicated by the dashed line. We find that combining multiple reference or-
365 ganisms improves prediction performance and stability. Depending on the
366 number of supporting reference organisms required, gene specificity and gene
367 sensitivity may be balanced according to the needs of a specific application.
368 We observe that (i) gene sensitivity increases but specificity decreases when
369 requiring support from at least one reference organism, whereas (ii) gene
370 specificity increases but sensitivity decreases severely filtering for perfect sup-
371 port from all eight reference species. In summary, the inclusion of multiple
372 reference species may yield an improved prediction performance for GeMoMa
373 using the GAF module, where we suggest to filter predictions for support by
374 at least two but not necessarily all reference species.

375 Furthermore, we check whether GeMoMa allows for identifying new tran-
376 scripts in *D. melanogaster* that do not overlap with any annotated transcript
377 but are supported by RNA-seq data. First, we check whether we could
378 identify transcripts based on the GeMoMa predictions using *D. simulans* as
379 reference organism. We find 35 multi-coding-exon predictions that do not
380 overlap with any annotated transcript but have a tie of 1, i.e., all introns are
381 supported by split reads in the RNA-seq data (see Methods). In addition,
382 we find 15 single-coding-exon predictions that do not overlap with any an-
383notated transcript but have a tpc of 1, i.e., that are fully covered by mapped
384 RNA-seq reads. Second, we check whether we could identify transcripts that
385 are supported by at least two of the eight reference species (cf. above). We
386 find 14 multi-coding-exon predictions that do not overlap with any anno-
387 tated transcript, obtain a tie of 1 and are supported by at least two of the
388 eight reference species. In addition, we find 9 single-coding-exon predictions
389 that do not overlap with any annotated transcript, have a tpc of 1 and are
390 supported by at least two of the five reference species. In summary, those
391 genes supported by multiple reference organisms or additional RNA-seq data
392 might be promising candidates for extending the existing genome annotation
393 of *D. melanogaster*.

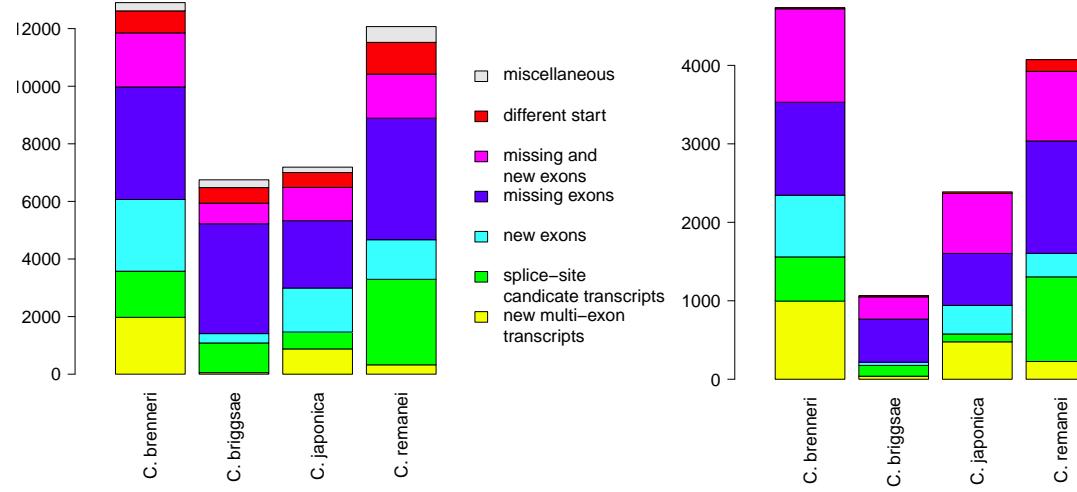


Figure 3: Summary of difference for GeMoMa predictions with tie=1. The relaxed evaluation (left panel) depicts differences between GeMoMa predictions and annotation without any filter on the annotation, while the conservative evaluation (right panel) applies additional filters for the annotation (cf. main text). Predictions that do not overlap with any annotated CDS are depicted in yellow, Predictions that differ from annotated CDSs only in splice sites are depicted in green, predictions that have additional exons compared to annotated CDSs are depicted in turquoise, predictions that missed some exons compared to annotated CDSs are depicted in blue, predictions with additional and missing exons compared to annotated CDSs are depicted in pink, predictions that only differ in the start of the CDS compared to annotated CDS are depicted in red, and any other category is depicted in gray.

394

3.4 Analysis of nematode species

395

The relatively poor results for *C. elegans* in the benchmark study, might be due to insufficiencies in the current *C. briggsae* annotation. Hence, we decided to scrutinize the Wormbase annotation of four nematode species comprising *C. brenneri*, *C. briggsae*, *C. japonica*, and *C. remanei* based on the model organism *C. elegans*. We compare GeMoMa predictions with manually curated CDS from Wormbase. Based on RNA-seq evidence, we collect multi-coding-exon predictions of GeMoMa with tie=1 and compare these to the annotation as depicted in Fig. 3.

396

397

398

399

400

401

402

403

404

405

406

In summary, we find between 6 749 differences for *C. briggsae* and 12 903 for *C. brenneri* (cf. Fig. 3(a)). The most interesting category are new multi-coding-exon predictions, which vary between 53 for *C. briggsae* and 1 974 for *C. brenneri*. The largest category are GeMoMa predictions that missed exons

407 compared to annotated CDSs, which vary between 2 340 for *C. japonica* and
408 4 220 for *C. remanei*.

409 We additionally filter the transcripts showing differences to obtain a
410 smaller, more conservative set of high-confidence predictions. First, we filter
411 new multi-coding exon GeMoMa predictions for $tpc=1$ obtaining between
412 39 and 996 for *C. briggsae* and *C. brenneri*, respectively. Second, we fil-
413 ter GeMoMa predictions that have different splice sites compared to highly
414 overlapping annotated transcripts, contain new exons, have missing exons,
415 or have new and missing exons for $tie < 1$ of the overlapping annotation. We
416 obtain between 100 and 1 079 predictions with different splice-site, between
417 42 and 786 predictions containing new exons, between 548 and 1 431 pre-
418 dictions with missing exons, and between 284 and 1 191 predictions with
419 new and missing exons. Finally, for GeMoMa predictions that differ in the
420 start codon compared to the annotation, we filter for $tpc=1$ of the GeMoMa
421 prediction and $tpc < 1$ for the annotation obtaining between 14 and 149 for
422 *C. brenneri* and *C. remanei*, respectively. In summary, we obtain between
423 1 065 predictions differing from the annotation for *C. briggsae* and 4 735 pre-
424 dictions for *C. brenneri*, respectively (cf. Fig. 3(b)) using these strict criteria.
425 Despite the overall reduction of transcripts considered, GeMoMa predictions
426 that missed exons compared to annotated CDSs are the largest category for
427 all four nematode species.

428 For both evaluations, we find that the predictions for *C. briggsae* are in
429 better accordance with the annotation than the predictions of the remaining
430 three nematode species. One possible explanation might be that the anno-
431 tation of *C. briggsae* has recently been updated using RNA-seq data (Gary
432 Williams, personal communication), while the annotation of *C. japonica* is
433 based on Augustus (Erich Schwartz, personal communication) and the anno-
434 tation of the other two nematodes are NGASP sets from multiple ab-initio
435 gene prediction programs (Coghlan *et al.*, 2008). For *C. japonica*, we find the
436 second best results, although *C. japonica* is phylogenetically more distantly
437 related to *C. elegans* than the remaining two nematodes (Kiontke *et al.*,
438 2011). This is additional evidence that the annotation pipeline employed
439 has a decisive influence on the quality and completeness of the annotation.

440 In addition, we checked for *C. brenneri* whether the GeMoMa predictions
441 partially overlap with cDNAs or ESTs mapped to the *C. brenneri* genome. In
442 472 cases, the prediction overlaps with a cDNA or EST, but not with the an-
443 notation. In 364 out of these 472 cases, the prediction has $tie=1$. To evaluate
444 the predictions, we manually checked about 9% (43) of the predicted missing
445 genes with $tie=1$. Based on RNA-seq data, protein homology, cDNA/ESTs
446 and manual curation, 95% were genuine new isoforms which have been missed
447 in the original *C. brenneri* gene set. This shows that GeMoMa is valuable in
448 finding isoforms missed by traditional prediction methods.

#evidence	tpc = 0	0 < tpc < 1	tpc = 1
1	1 971 (11)	878 (14)	1 005 (137)
2	204 (19)	158 (8)	299 (55)
3	200 (16)	126 (5)	257 (92)
4	91 (17)	43 (9)	168 (83)
Σ	2 466 (63)	1 205 (36)	1 729 (367)

a) Single-coding-exon predictions

#evidence	tie = 0	0 < tie < 1	tie = 1
1	9 671 (287)	942 (211)	1 681 (775)
2	283 (36)	86 (32)	456 (196)
3	155 (31)	64 (43)	382 (223)
4	142 (57)	55 (37)	302 (196)
Σ	10 251 (411)	1 147 (323)	2 821 (1 390)

b) Multi-coding-exon predictions

Table 2: Predictions that do not overlap with any high or low confidence annotation. The numbers in parenthesis depict those predictions that are partially supported by any best BLAT hit of ESTs.

449 3.5 Analysis of barley

450 Complementary to the studies in animals in the last subsection, we used
 451 GeMoMa to predict the annotation of protein-coding genes in barley
 452 (*Hordeum vulgare*). Based on the benchmark results for *D. melanogaster*,
 453 we used several reference organisms to predict the gene annotation using
 454 GeMoMa and GAF and finally obtain 75 484 transcript predictions. Most
 455 of the predictions showed a good overlap with the annotation ($F_1 \geq 0.8$).
 456 Nevertheless, 27 204 out of these 75 484 predictions had little ($F_1 < 0.8$) or no
 457 overlap with high or low confidence gene annotations. However, thousands
 458 of the transcripts contained in the official annotation do not have start or
 459 stop codons (Mascher *et al.*, 2017), which renders an exact comparison of
 460 predictions with perfect or at least very good overlap unreasonable.

461 Hence, we focus on 19 619 predictions with no overlap with any anno-
 462 tated transcript (Tab. 2). Scrutinizing these predictions, we find 1 729
 463 single-coding-exon predictions that are completely covered by RNA-seq reads
 464 (tpc=1) but that are not contained in the annotation. Out of these, 367 are
 465 partially supported by best BLAT matches of ESTs to the genome. In ad-
 466 dition, we analyzed multi-coding-exon predictions and find 2 821 predictions
 467 that obtain tie=1, stating that each predicted intron is supported by at least
 468 one split read from mapped RNA-seq data. Out of these, 1 390 are partially
 469 supported by best BLAT matches of ESTs to the genome.

470 Besides predictions that are well supported by RNA-seq data, we also
471 observe thousands of predictions that are not ($tpc = 0$ or $tie = 0$) or only
472 partially ($0 < tpc < 1$ or $0 < tie < 1$) supported by RNA-seq. Despite no or
473 only partial RNA-seq support, we find that 833 are partially supported by
474 best BLAT matches of ESTs to the genome.

475 Alternatively, we can utilize the number of reference organisms that sup-
476 port a prediction (#evidence) to filter the predictions as noted for *D.*
477 *melanogaster*. This approach will decrease sensitivity, but increase speci-
478 ficity obtaining predictions with a high confidence. Although, we find the
479 most predictions with #evidence = 1, we also find about 3 500 predictions
480 with #evidence > 1, more than 1 100 of these predictions are additionally
481 supported by RNA-seq data or ESTs.

482 **4 Conclusions**

483 Summarizing the methods and results, we present an extension of GeMoMa
484 that allows for the incorporation of RNA-seq data into homology-based gene
485 prediction utilizing intron position conservation. Comparing the performance
486 of GeMoMa with and without RNA-seq evidence, we demonstrate for all four
487 organism included in the benchmark that RNA-seq evidence improves the
488 performance of GeMoMa. GeMoMa performs equally well or better than
489 BRAKER1, MAKER2, CodingQuarry, and purely RNA-seq-based pipelines
490 on the benchmark data sets including plants, animals and fungi. In addition,
491 we demonstrate that GeMoMa helps to improve the performance of combined
492 gene predictor pipelines as for instance MAKER2. Notably, model organisms
493 have been used as target organisms in this benchmark, whereas they would
494 typically be used as reference organisms in real applications. Hence, the
495 performance of homology-based gene prediction programs might be underes-
496 timated. In summary, we recommend to use homology-based gene prediction
497 using RNA-seq data as implemented in GeMoMa whenever high-quality gene
498 annotations of related species are available.

499 Interestingly, we find that GeMoMa works especially well for
500 *D. melanogaster* in the benchmark study compared to the performance of
501 its competitors. One possible reason could be that Flybase used homol-
502 ogy and RNA-seq data besides other evidence to infer the gene annota-
503 tion (Matthews *et al.*, 2015). In contrast, we find the worst results in *C. el-*
504 *egans* in the benchmark study, which might be related to the fact that
505 the *C. elegans* gene set contains many rare isoform community submissions
506 whereas *C. briggsae* was annotated by a large scale gene predictions effort
507 based on RNA-seq.

508 Scrutinizing the annotation in Wormbase, we predicted protein-coding
509 transcripts for four nematode species based on the annotation of the model
510 organism *C. elegans*. We find that a substantial part of the GeMoMa pre-

511 diction is either missing, marked as modification of annotated transcripts
512 or alternative transcripts. Especially for the three nematodes, *C. brenneri*,
513 *C. japonica* and *C. remanei*, that are annotated solely using ab-initio gene
514 prediction, we find a large part of the annotation that is marked as ques-
515 tionable or missing. This may give an indication, why homology-based gene
516 prediction for *C. elegans* shows less good performance in the benchmark
517 study. The GeMoMa predictions of the four nematodes will be included in
518 Wormbase in the upcoming releases. Furthermore, GeMoMa will be included
519 in the WormBase gene curation process and trialled for strain annotation.

520 Furthermore, we predicted protein-coding transcripts for barley using four
521 reference species and find several hundreds of predictions that are not in-
522 cluded in the reference annotation but are supported by RNA-seq data,
523 ESTs or multiple reference species. Hence, we conclude that these are valua-
524 ble predictions harboring additional barley genes. These predictions will be
525 incorporated in the new barley annotation.

526 GeMoMa provides a user-friendly documentation and can be use
527 as command line tool or through the Galaxy workflow manage-
528 ment system (Afgan *et al.*, 2016) providing its own Galaxy integra-
529 tion (Fig. S1). GeMoMa is freely available under GNU GPL3 at
530 <http://www.jstacs.de/index.php/GeMoMa>.

531 **Acknowledgements**

532 We thank Katharina Hoff for providing the BRAKER1 benchmark data
533 sets, Carson Holt for assisting the MAKER2 comparison, Gil dos Santos
534 for his comments on the quality of the Drosophila genome assemblies, Erich
535 Schwartz for his comments on *C. japonica*, Gary Williams for his comments
536 on *C. briggsae*, and Thomas Berner for technical assistance.

537 **References**

538 Afgan, E., Baker, D., vandenBeek, M., Blankenberg, D., Bouvier, D., Cech, M., Chilton, J., Clements, D.,
539 Coraor, N., Eberhard, C., Grning, B., Guerler, A., Hillman-Jackson, J., VonKuster, G., Rasche, E.,
540 Soranzo, N., Turaga, N., Taylor, J., Nekrutenko, A., and Goecks, J. (2016). The galaxy platform for
541 accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nucleic Acids Research*,
542 44(W1), W3.

543 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment
544 search tool. *Journal of Molecular Biology*, 215(3), 403 – 410.

545 Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C., Estep, M., Feng,
546 L., Vaughn, J. N., Grimwood, J., Jenkins, J., Barry, K., Lindquist, E., Hellsten, U., Deshpande, S.,
547 Wang, X., Wu, X., Mitros, T., Triplett, J., Yang, X., Ye, C.-Y., Mauro-Herrera, M., Wang, L., Li, P.,
548 Sharma, M., Sharma, R., Ronald, P. C., Panaud, O., Kellogg, E. A., Brutnell, T. P., Doust, A. N.,
549 Tuskan, G. A., Rokhsar, D., and Devos, K. M. (2012). Reference genome sequence of the model plant
550 Setaria. *Nature Biotechnology*, 30(6), 555–561.

551 Burset, M. and Guigó, R. (1996). Evaluation of gene structure prediction programs. *Genomics*, 34(3),
552 353 – 367.

553 Clark, A. G., Eisen, M. B., Smith, D. R., Bergman, C. M., Oliver, B., Markow, T. A., Kaufman, T. C.,
554 Kellis, M., Gelbart, W., Iyer, V. N., *et al.* (2007). Evolution of genes and genomes on the *Drosophila*
555 phylogeny. *Nature*, **450**(7167), 203–218.

556 Coghlan, A., Fiedler, T. J., McKay, S. J., Flieck, P., Harris, T. W., Blasius, D., nGASP Consortium, and
557 Stein, L. D. (2008). ngasp—the nematode genome annotation assessment project. *BMC bioinformatics*,
558 **9**, 549.

559 Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szczęśniak,
560 M. W., Gaffney, D. J., Elo, L. L., Zhang, X., and Mortazavi, A. (2016). A survey of best practices
561 for RNA-seq data analysis. *Genome Biology*, **17**(1), 13.

562 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
563 Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, **29**(1), 15.

564 Gramates, L. S., Marygold, S. J., Santos, G. d., Urbano, J.-M., Antonazzo, G., Matthews, B. B., Rey,
565 A. J., Tabone, C. J., Crosby, M. A., Emmert, D. B., Falls, K., Goodman, J. L., Hu, Y., Ponting, L.,
566 Schroeder, A. J., Strelets, V. B., Thurmond, J., Zhou, P., and (2017). FlyBase at 25: looking to the
567 future. *Nucleic Acids Research*, **45**(D1), D663–D671.

568 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B.,
569 Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks,
570 N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., and Regev,
571 A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for
572 reference generation and analysis. *Nat. Protocols*, **8**(8), 1494–1512.

573 Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M., and Stanke, M. (2016). BRAKER1: Unsupervised
574 RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. *Bioinformatics*, **32**(5),
575 767.

576 Holt, C. and Yandell, M. (2011). MAKER2: an annotation pipeline and genome-database management
577 tool for second-generation genome projects. *BMC Bioinformatics*, **12**(1), 491.

578 Howe, K. L., Bolt, B. J., Cain, S., Chan, J., Chen, W. J., Davis, P., Done, J., Down, T., Gao, S.,
579 Grove, C., Harris, T. W., Kishore, R., Lee, R., Lomax, J., Li, Y., Muller, H.-M., Nakamura, C.,
580 Nuin, P., Paulini, M., Raciti, D., Schindelman, G., Stanley, E., Tuli, M. A., VanAuken, K., Wang, D.,
581 Wang, X., Williams, G., Wright, A., Yook, K., Berriman, M., Kersey, P., Schedl, T., Stein, L., and
582 Sternberg, P. W. (2016). Wormbase 2016: expanding to enable helminth genomic research. *Nucleic
583 Acids Research*, **44**(D1), D774.

584 Hu, T. T., Eisen, M. B., Thornton, K. R., and Andolfatto, P. (2013). A second-generation assembly
585 of the *Drosophila simulans* genome provides new insights into patterns of lineage-specific divergence.
586 *Genome Research*, **23**(1), 89–98.

587 International Brachypodium Initiative (2010). Genome sequencing and analysis of the model grass
588 *Brachypodium distachyon*. *Nature*, **463**(5), 763–8.

589 Keibler, E. and Brent, M. R. (2003). Eval: A software package for analysis of genome annotations. *BMC
590 Bioinformatics*, **4**(1), 50.

591 Keilwagen, J., Wenk, M., Erickson, J. L., Schattat, M. H., Grau, J., and Hartung, F. (2016). Using intron
592 position conservation for homology-based gene prediction. *Nucleic Acids Research*, **44**(9), e89.

593 Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. *Genome Research*, **12**(4), 656–664.

594 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate
595 alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biology*,
596 **14**(R36).

597 Kiontke, K. C., Félix, M.-A., Ailion, M., Rockman, M. V., Braendle, C., Pénigault, J.-B., and Fitch,
598 D. H. (2011). A phylogeny and molecular barcodes for caenorhabditis, with numerous new species
599 from rotting fruits. *BMC Evolutionary Biology*, **11**(1), 339.

600 Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K.,
601 Alexander, D. L., Garcia-Hernandez, M., Karthikeyan, A. S., Lee, C. H., Nelson, W. D., Ploetz, L.,
602 Singh, S., Wensel, A., and Huala, E. (2012). The *Arabidopsis* Information Resource (TAIR): improved
603 gene annotation and new tools. *Nucleic Acids Research*, **40**(D1), D1202.

604 Lomsadze, A., Burns, P. D., and Borodovsky, M. (2014). Integration of mapped rna-seq reads into
605 automatic training of eukaryotic gene finding algorithm. *Nucleic Acids Research*, **42**(15), e119.

606 Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S. O., Wicker, T., Radchuk, V.,
607 Dockter, C., Hedley, P. E., Russell, J., Bayer, M., Ramsay, L., Liu, H., Haberer, G., Zhang, X.-
608 Q., Zhang, Q., Barrero, R. A., Li, L., Taudien, S., Groth, M., Felder, M., Hastie, A., Šimková, H.,
609 Staňková, H., Vrána, J., Chan, S., Muñoz Amatriaín, M., Ounit, R., Wanamaker, S., Bolser, D.,
610 Colmsee, C., Schmutzler, T., Aliyeva-Schnorr, L., Grasso, S., Tanskanen, J., Chailyan, A., Sampath,
611 D., Heavens, D., Clissold, L., Cao, S., Chapman, B., Dai, F., Han, Y., Li, H., Li, X., Lin, C., McCooke,
612 J. K., Tan, C., Wang, P., Wang, S., Yin, S., Zhou, G., Poland, J. A., Bellgard, M. I., Borisjuk, L.,
613 Houben, A., Doležel, J., Ayling, S., Lonardi, S., Kersey, P., Langridge, P., Muehlbauer, G. J., Clark,
614 M. D., Caccamo, M., Schulman, A. H., Mayer, K. F. X., Platzer, M., Close, T. J., Scholz, U., Hansson,
615 M., Zhang, G., Braumann, I., Spannagl, M., Li, C., Waugh, R., and Stein, N. (2017). A chromosome
616 conformation capture ordered sequence of the barley genome. *Nature*, **544**(7651), 427–433.

617 Matthews, B. B., dos Santos, G., Crosby, M. A., Emmert, D. B., St. Pierre, S. E., Gramates, L. S., Zhou,
618 P., Schroeder, A. J., Falls, K., Strelets, V., Russo, S. M., Gelbart, W. M., and the FlyBase Consortium
619 (2015). Gene model annotations for drosophila melanogaster: Impact of high-throughput data. *G3: Genes, Genomes, Genetics*, **5**(8), 1721–1736.

620 Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R. L.,
621 Lee, Y., Zheng, L., Orvis, J., Haas, B., Wortman, J., and Buell, C. R. (2007). The tigr rice genome
622 annotation resource: improvements and new features. *Nucleic Acids Research*, **35**(suppl_1), D883.

623 Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., and Salzberg, S. L. (2015).
624 StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotech*,
625 **33**(3), 290–295.

626 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., and Salzberg, S. L. (2016). Transcript-level expression
627 analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nature Protocols*, **11**(9),
628 1650–1667.

629 Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness,
630 markedness & correlation. *Journal of Machine Learning Technologies*, **2**(1), 37–63.

631 Rawat, V., Abdelsamad, A., Pietzenik, B., Seymour, D. K., Koenig, D., Weigel, D., Pecinka, A., and
632 Schneeberger, K. (2015). Improving the annotation of arabidopsis lyrata using rna-seq data. *PLOS
633 ONE*, **10**(9), 1–12.

634 Rhind, N., Chen, Z., Yassour, M., Thompson, D. A., Haas, B. J., Habib, N., Wapinski, I., Roy, S., Lin,
635 M. F., Heiman, D. I., Young, S. K., Furuya, K., Guo, Y., Pidoux, A., Chen, H. M., Robbertse, B.,
636 Goldberg, J. M., Aoki, K., Bayne, E. H., Berlin, A. M., Desjardins, C. A., Dobbs, E., Dukaj, L.,
637 Fan, L., FitzGerald, M. G., French, C., Gujja, S., Hansen, K., Keifenheim, D., Levin, J. Z., Mosher,
638 R. A., Müller, C. A., Pfiffner, J., Priest, M., Russ, C., Smialowska, A., Swoboda, P., Sykes, S. M.,
639 Vaughn, M., Vengrova, S., Yoder, R., Zeng, Q., Allshire, R., Baulcombe, D., Birren, B. W., Brown,
640 W., Ekwall, K., Kellis, M., Leatherwood, J., Levin, H., Margalit, H., Martienssen, R., Nieduszynski,
641 C. A., Spatafora, J. W., Friedman, N., Dalgaard, J. Z., Baumann, P., Niki, H., Regev, A., and
642 Nusbaum, C. (2011). Comparative functional genomics of the fission yeasts. *Science*, **332**(6032),
643 930–936.

644 She, R., Chu, J. S.-C., Uyar, B., Wang, J., Wang, K., and Chen, N. (2011). genBlastG: using BLAST
645 searches to build homologous gene models. *Bioinformatics*, **27**(15), 2141–2143.

646 Singh, N. D., Larracuente, A. M., Sackton, T. B., and Clark, A. G. (2009). Comparative genomics on
647 the drosophila phylogenetic tree. *Annual Review of Ecology, Evolution, and Systematics*, **40**(1),
648 459–480.

649 Slater, G. and Birney, E. (2005). Automated generation of heuristics for biological sequence comparison.
650 *BMC Bioinformatics*, **6**(1), 31.

651 Solovyev, V., Kosarev, P., Seledsov, I., and Vorobyev, D. (2006). Automatic annotation of eukaryotic
652 genes, pseudogenes and promoters. *Genome Biology*, **7**(1), S10.

653 Stanke, M., Diekhans, M., Baertsch, R., and Haussler, D. (2008). Using native and syntenically mapped
654 cDNA alignments to improve de novo gene finding. *Bioinformatics*, **24**(5), 637.

655

656 Steijger, T., Abril, J. F., Engström, P. G., Kokocinski, F., Hubbard, T. J., Guigó, R., Harrow, J.,
657 Bertone, P., Consortium, R., *et al.* (2013). Assessment of transcript reconstruction methods for
658 RNA-seq. *Nature methods*, **10**(12), 1177–1184.

659 Testa, A. C., Hane, J. K., Ellwood, S. R., and Oliver, R. P. (2015). CodingQuarry: highly accurate hidden
660 Markov model gene prediction in fungal genomes using RNA-seq transcripts. *BMC Genomics*, **16**(1),
661 170.

662 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L.,
663 Wold, B. J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unan-
664 notated transcripts and isoform switching during cell differentiation. *Nature biotechnology*, **28**(5),
665 511–515.

666 Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics.
667 *Nature Reviews Genetics*, **10**(1), 57–63.