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Abstract

A phenotype is defined as an organism’s physical traits. In the
macroscopic world, an animal’s shape is a phenotype. Geometric
morphometrics (GM) can be used to analyze its shape. Let’s pose
protein structures as microscopic three dimensional shapes, and ap-
ply principles of GM to the analysis of macromolecules. In this paper
we introduce a way to 1) abstract a structure as a shape; 2) align
the shapes; and 3) perform statistical analysis to establish patterns
of variation in the datasets. We show that general procrustes super-
imposition (GPS) can be replaced by multiple structure alignment
without changing the outcome of the test. We also show that estimat-
ing the deformation of the shape (structure) can be informative to
analyze relative residue variations. Finally, we show an application of
GM for two protein structure datasets: 1) in the a-amylase dataset we
demonstrate the relationship between structure, function, and how the
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dependency of chloride has an important effect on the structure; and
2) in the Niemann-Pick disease, type C1 (NPC1) protein’s molecular
dynamic simulation dataset, we introduce a simple way to analyze the
trajectory of the simulation by means of protein structure variation.

Keywords: Procrustes superimposition, Shape analysis, Protein
structure comparison

Introduction

Geometric morphometrics is a collection of approaches for the multivariate
statistical analysis of Cartesian coordinate data [Slice, 2007]. The “geome-
try” referred to by the word “geometric” is the estimation of mean shapes
and the description of sample variation of shape using the Procrustes dis-
tance (Kendall’s shape space) [Rohlf, 2002]. It is mainly based on landmarks
which are “discrete anatomic loci that can be recognized as the same loci in
all specimens of study” [Zelditch et al., 2004, p.443], and must: be homol-
ogous anatomical loci, not alter their topology or position relative to other
landmarks, provide adequate coverage of the morphology, be consistently
assigned, and lie within the same plane [Zelditch et al., 2004].

Landmark data is more informative than traditional data (linear mea-
surements in the geometric morphometrics context) since its coordinates also
contain positional information and thus geometric structure. Once homolo-
gous landmarks are assigned, “noisy” factors affecting the dimensionality and
degrees of freedom of the possible shape analysis are removed by means of
generalized Procrustes superimposition (GPS). Such factors being rotation,
translation and size, and are dealt with by [Adams et al., 2004, Zelditch et al.,
2004]:

1. Assign homologous landmarks to meaningful and descriptive parts of
the shape.

2. Center each configuration of landmarks at the origin by subtracting the
coordinates of its centroid from the corresponding (X or Y) coordinates
of each landmark: Removing positional variation by translating each
centroid to the origin.

3. Scale the landmark configuration to unit centroid size by dividing each
coordinate of each landmark by the centroid size of the configuration.
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4. Set one configuration as a reference and rotate the other configura-
tions to minimize the summed squared distances between homolog
landmarks, thus removing rotational variation.

The above method can be expressed as [Rohlf and Slice, 1990]:
X, =pXH+17 (1)

where matrix X is the original configuration; p is the scaling done to X; 17 is
the translation performed to X; to a reference position; and H is a rotation
(with an angle of rotation #) matrix of the form:

sinff cosf

I— [cosé’ —smﬂ

Then, the set of all matrices representing the landmark configurations
(configuration space), becomes the shape space, and its dimensions are given
by:

KM — (M +1) (2)

where K is the number of landmarks, and M the number of dimensions in
each landmark. After removing the effects of size, rotation and translation,
2K — 4 degrees of freedom are left for 2D data and 3K — 7 for 3D data
[Zelditch et al., 2004].

The comparison and analysis of the superimposition is based in the the
Procrustes distance (Dp). GPA applies the Procrustes analysis method to
align a population of shapes instead of only two shape instances [Dryden
and Mardia, 1998]. The Procrustes distance is the square root of the sum of
squared differences between the positions of the landmarks in two optimally
superimposed configurations (C} and Cy) [Rohlf, 2002]:

K
dp = @y —2j2)” + (Y1 — y5)°] (3)
j=1

where d% is the squared Procrustes distance, and K is the number of
landmarks. This metric can then be used in several statistical multivari-
ate analyses to attain differences in shapes, clustering, changes in time, test
symmetry, etc. Here shapes can be treated as a single point in a multidimen-
sional space, and therefore the information can be summarized in an efficient
way using standard multivariate techniques. Some traits can also be treated
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independently in the analyses, extracting information of particular aspects
of the shape.

This paper shows how these geometric morphometric methods and ap-
plications can be use to analyze protein structure variation. It will start
by proposing a method to abstract a protein structure as a shape. Then a
demonstration that the scaling applied in the General Procrustes Superim-
position (GPS), which does not apply to protein structures, can be omitted
without changing the results will be shown. It will also be shown that GPS
can be replaced by a Multiple Structural Alignment (MStA), which handles
the rotation and translation part of the transformation. A simple method to
analyze individual residue variation within this context and relate it to struc-
tural issues will be introduced. Finally, we will show general applications of
GM-like methods for protein structure variation analysis in two datasets of
actual protein structures.

Material and methods

Abstracting a protein structure as a shape

A landmark will be defined as the centroid of each homologous residue, and
is defined by (x,y,2):

A

1 1. 18
1 j=1 7=1

j=

where A will be the number of heavy atoms that constitutes the side chain of
a residue including the C,. This procedure takes into account only homolo-
gous residues assigned by a structural alignment using the MStA application
MATT [Menke et al., 2008]. Only ungapped homologous sites will be taken
into account.

Testing the effect of scaling in protein datasets

The HOMSTRAD (386 datasets) and SABmark (425 datasets) superfamily
subsets reported in MATT’s paper [Menke et al., 2008 were used. The former
database was design to store structures based on the quality of the X-ray
analysis and accuracy of the structure, while the latter database was designed
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to test multiple alignment problems. Residue homology was determined by
MATT-reported alignment [Menke et al., 2008, http://groups.csail .mit.
edu/cb/matt/]. The centroid’s coordinates (see section Abstracting a protein
structure as a shape) for each homologous residue were computed and stored.
To the resulting centroid’s coordinates file, GPS with and without scaling
were performed with the R [R, 2011] package “Shapes” [Dryden, 2011]. A
correlation analysis was performed graphically and using the Pearson test
for correlation using the MatPlotLib [Hunter, 2007], and Scipy [Jones et al.,
2001] libraries in Python.

Testing GPS versus structural alignments in protein
datasets

As in section Testing the effect of scaling in protein datasets, the HOM-
STRAD and SABmark datasets where used to test the effect of aligning the
protein structures with GPS or the flexible MStA implementation in MATT.
The matrix of pairwise RMSD per dataset were computed, and a correla-
tion analysis was made following the methods of section Testing the effect of
scaling in protein datasets.

Analysis of the deformation in superimposed structures/shapes

The inter-landmark distance matrix (form configuration) is computed using
the Euclidean distance for each entry in m dimensions:

m

d(a,b) = | Y (am — bp)? (5)

1

where d(a,b) stands for the Euclidean distance between variables a and b.
Therefore the form matrix (F'M) is [Claude, 2008]:

)

dig -+ din
FM = : .
dij - dij

F'M is then a square symmetric matrix, with zeros in the diagonal entries. If

two forms (shapes in the inter-landmark framework) are identical, they will
have the same entries in the F'M matrix. The matrix of differences in form
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[The form difference matrix or FDM as named by Claude, 2008] between
two configurations S1 and S2 is given by:

F Mg,
FDMs: =
% FMg

(6)

The score of the most influential point (/) in the data can be computed by
adding the sum of the differences to the median value per column (variable)
and ranking the positions. This can be computed as:

I+ mam(i |FDM — median(FDM)|;.) (7)

=1

where ¢ is the column index, and FDM is the form difference matrix.
However, as shown in equation 6, this FDM is the representation of the
difference between two shapes. We can generalize by summing the residuals
of all shapes versus a hypothetical mean shape. For simplicity this can be
calculated as the per-variable per-dimension average. In other words, the
average of each dimension of each landmark. This approach will then return a
Form Difference (FD) value per landmark, however; this value is not bounded
and is difficult to interpret. For this reason we scaled the resulting FD vector
(FD) such that it is bounded from -1 (least variation) to 1 (highest variation)

with: . .
FD, — FD: mm(FD)q Lo 1 (8)
max(FD) —min(FD)

To illustrate how this works, a simulation of 500 hexagons was performed.
Giving an initial shape, for each point and each dimension in the point, a
distribution of random normal numbers is created. This distribution has
a given standard deviation (0.05 for regular points, 0.005 for low variation
points, and 0.2 for highly variable points). The mean was set to 0. This
distribution per point and per dimension was then added to the original
shape, creating the simulated dataset with controlled variation. To explore
a more complex system than the hexagon, a protein simulation was also
performed in the same fashion as for the 2D case. In this case more extreme
points were used for visualization purposes, being 0.0005 the lowest variation
and 0.5 the highest. The protein used for the simulation and visualization
was the Porcine Pancreatic Amylase (PPA) with pdb code 1PPI.

To test the variation in an evolutionary perspective, a protein structure
sampling was performed. A PFAM [Finn et al., 2010] seed alignment of the
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a-Amylase family was gathered and used to seed a PSI-BLAST [Altschul
et al., 1997] search. The PSI-BLAST search was restricted to structures
available at the protein data bank (http://www.rcsb.org/pdb/). There were
135 structures gathered in total (Table S1 in Supplementary data) whose
homology and membership to the a-amylase family (the Glycoside Hydro-
lase Family 13, GH13) was guaranteed. After the sampling, the methods
mentioned above were applied to the dataset and analyzed with F'D and
FD,.

Statistical analysis of protein structural data

A multidimensional scaling (principal coordinates) analysis and FDj esti-
mation and analysis were performed to two real datasets. The first one,
as described above, is a dataset of 135 structures of the a-Amylase family.
With this dataset, the variation observed is assumed to be driven by the
evolutionary history of the structure.

The second dataset is a molecular dynamic simulation of the Niemann-
Pick, type C1 N-terminal domain (NPC1), in solution. The software GRO-
MACS 4.5 [Hess et al., 2008] was used with the force fields OPLS-AA /L [Jor-
gensen and Tirado-Rives, 1988] for the protein, and the TIP3P [Jorgensen
et al., 1983] for the water molecules. The data was collected every 20 picosec-
onds for 100 nanoseconds discarding the first 10 nanoseconds of simulation to
achieve stability. This process was performed using a 24-core GPU-enabled
workstation. Each sample was treated as an individual observation for the
subsequent analysis, and the data are extracted and processed as explained in
sections above. In this dataset two simulations were performed: with Choles-
terol (NPC1’s ligand) bound to the structure, and another one without the
ligand.

Results and Discussion

A protein fold can be essentially defined as a 3D geometric shape. Sequence
analyses help to understand some trends, but explain little about geometry.
GM can be used to perform shape analysis from a geometric point of view.
It also can be used to give insight into the phylogenetic relationships of the
structures rather than the sequences. However, the application of GM to
protein structures is not trivial. The scaling component of the Procrustes
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analysis has no conceptual equivalent for proteins. Since organisms grow, it
makes sense to extract the size effect on shape in order to compare young
with adults. On the other hand, in proteins the atoms do not stretch or
grow, and therefore scaling [as proposed in Adams and Naylor, 2000, 2003]
is not appropriate.

In [Adams and Naylor, 2000] and [Adams and Naylor, 2003| proposal,
they:

Abstract a residue as a landmark.

Determine the homologous residues, using ClustalW [Thompson et al.,
1994].

Delete non-homologous sites.

Perform morphometric analyses.

The use of sequence alignment without structural information to infer
structural homology is not accurate since the amount of gaps that can be
allowed in a loop region can be different than in other regions of the protein
[Kann et al., 2005, Kjer et al., 2007], and therefore the definition of structural
homology can be different as well. Moreover, since structures are more con-
served than sequences, the alignment based on the structures allows a more
reliable asssignment of homology in more distant clades [Wohlers et al., 2012].

In contrast, here we used protein structural alignment which has been
worked on extensively [Kolodny et al., 2005, Hasegawa and Holm, 2009,
Poleksic, 2011, Joseph et al., 2011, Shibberu et al., 2012]. In particular
we used a flexible structure alignment method [MATT; Menke et al., 2008].
This approach strips out rotational and translational information as well as
the variability induced by flexible hinges, which has been shown to be more
accurate than rigid body superimpositions in the assignment of homology
[Menke et al., 2008, Konc and Janezi¢, 2010, Nguyen et al., 2011, Daniluk
and Lesyng, 2011, Joseph et al., 2012, Shah and Sahinidis, 2012, among oth-
ers|.

The abstraction of the residues and landmarks is similar to that in [Adams
and Naylor, 2000] and [Adams and Naylor, 2003]; however, those papers did
not fully describe the abstraction.
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The effect of scaling in GPS: Insights form HOMSTRAD
and SABmark superfamily databases

In protein structure datasets it is expected that the scaling does not play
a major role in the alignment of structures. To test such expectation, a
correlation test between the two approaches was performed. The Homstrad
dataset showed a correlation coefficient of 0.998, significant (pval < 0.001),
and with an R? of 0.997. The SABmark dataset also showed a significant
and high correlation coeficient (r = 0.994, pval < 0.001) with an R? of 0.987.

We have shown here not only that scaling is not conceptually acceptable
in the context of protein structures (fixed lengths of atomic bonds), but
that doing so won’t significantly affect the results, supported in high and
significant correlation coefficients. From this point further, all GPS analyses
made here will be referred as non-scaled GPS.

Comparing MATT flexible alignment and GPS: Results
from the HOMSTRAD and SABmark super family databases

To be able to compare between the MStA and GPS the two types of anal-
yses have to be done independently but comparatively (e.g, using the same
variables). However, GPS requires the assignment of homology of the land-
marks. As mentioned in Methods, this homology is estimated by the multiple
structural alignment. The GPS is an alignment itself, so providing a start-
ing alignment might bias the result of the superimposition. To address this
bias, the protein structures are aligned using MATT [Menke et al., 2008] for
both approaches and the homologous residues’ index for each structure is
recorded. For the GPS, the coordinates of the residues corresponding to the
recorded indexes are used. This process is performed for each independent
structure, therefore avoiding (or at least diminishing) the bias.

Since GPS aligns the structures based only on rotation and translation,
it is logical to think of it as a rigid body superimposition. It does not allow
any deformation of the structure (shape), like the flexibility that softwares
like MATT have. Therefore, it is plausible to hypothesize that a flexible
alignment will do better than GPS, as they do against non-flexible align-
ments [Menke et al., 2008, Konc and Janezi¢, 2010, Nguyen et al., 2011,
Daniluk and Lesyng, 2011, Joseph et al., 2012, Shah and Sahinidis, 2012,
among others]. Other flexible structural alignment softwares have shown a
slightly better performance than MATT, however,the improvements are not
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significant [Joseph et al., 2012] and MATT returns more core residues than
most of its competitors, as well as a statistical test of the “goodness” of the
alignment [Menke et al., 2008].

In both databases (Homstrad and SABmark), the correlation coefficients
were found to be greater than 0.99, showing that there is no difference in
the use of either approach. This was an unexpected result since if a protein
structure is allowed to bend, it is reasonable to expect a better fit. For the
datasets explored this seems not to be the case. This observation can be ex-
plained if most of the analyzed datasets comprise single domain (which they
do) proteins and are therefore more likely to behave as rigid bodies. Also,
since GPS depends on the definition of homology inferred by an alignment
provided by MATT, GPS could be functioning as a secondary alignment.

Because of this lack of difference, MATT alone is used in the rest of this
manuscript.

Form difference: Insights into residue variation

A sibling field to GM, Dysmorphometrics [Claes et al., 2012], can be used
to explore the impact of outlier variables. Dysmorphometrics is in summary,
“the modeling of morphological abnormalities” [Claes et al., 2012]. Such
exploration can be performed by means of corrected maximum likelihood
estimates approach [as in Claes et al., 2012] or by means of the Euclidean
distance matrix analysis approach [Claude, 2008]. Here we use the latter
since it is simpler and requires fewer parameters to be set.

Claude [2008], after the work of Lele and Richtsmeier [1992], proposed a
way to examine the influence of landmarks in shape difference by calculating
the sum of residuals from the median for each landmark given the FDM
matrix. The landmarks that influence the most difference in shape would
have a higher score which can be mapped to the given shape. In the context
of geometric morphometrics, the FDM accounts for landmarks that have an
excessive variation among a pair of shapes.

Shape simulation

To illustrate this effect, a hexagon simulation was performed where the vari-
ation among the observations is controlled. Figure 1 shows the plotting of
500 samples in this simulation.
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Figure 1: Hexagon simulation. Points 2, 3, 5, and 6 have a standard deviation
of 0.05, while point 1 (low) have 0.005 and point 4 (high) have an standard
deviation of 0.2. This plot was performed using the python library Matplotlib
[Hunter, 2007].

Here a point with high variation (point 4 in Figure 1) and a point with
minimal variation (point 1 in Figure 1) are introduced, along with four other
points exhibiting an average variation in the context of geometric morpho-
metrics [von Cramon-Taubadel et al., 2007].

Table 1: Scaled FD values for the simulation illustrated in Figure 1.

Landmark Standard deviation Scaled FD

1 0.005 -1
2 0.05 -0.78
3 0.05 -0.33
4 0.2 1
5 0.05 -0.28
6 0.05 -0.83
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Table 1 and Figure 1 show that the F' D, represents the overall influence of
a point in the shape. Negative values of F'D mean a more conserved point,
being -1 the most conserved. On the other hand, positive F'Dy values are
related to more influential points, being +1 the most variable. From Table
1, one can also see that the “average” points are closer to the least variation
than to the highest one, therefore displaying a negative tendency. At fist
sight it might seem trivial to use the F'Dj since the standard deviation (sd)
seems to correlate with it. However, F'D, represents the influence of a land-
mark relative to the overall shape, as opposed to the sd which represents the
variation at a single variable level. Variables with high sds in a medium-sd
neighbourhood will have very high F' D,, while very low-sd points will have
low FD,. This suggests that the sd can be used as proxy for F'D. However,
in a setting where all the points have high sd, the relation between sd and
F'D is not as direct. Moreover, for the relationship between sd and F'D, to
be proportional, a model of isotropic variation in all dimensions is needed.
Such model assumes an equal amount of variation at each landmark and at
each dimension in each landmark. It also assumes that landmarks are inde-
pendent, which is not a fair assumption in most shape analysis [Klingenberg,
2003].

Non-scaled FD can be also used to screen a set of points in a shape to
look for “Pinocchio” outliers, using statistical tests as the Dixon’s Q test or
the Grubbs’ test for outliers.

a-Amylase simulation and evolutionary dataset

To test the form difference (FD) in more complex shapes, the a-Amylase
dataset was used. First a simulation using the porcine pancreatic amylase
(1PPI) was used to control the variation in two random residues (see section
Analysis of the deformation in superimposed structures/shapes for details).
Figure 2A shows the result of the FD analysis on the simulation.

Here we can see which residues contribute the most and the least to the
overall shape, as well as their relative position.

As expected for the real dataset of homologs (Figure 2B), the most vari-
able (and therefore with positive F Dy values) residues are in located in loops.
The residue ArglO was the most variable, and is also located at the begin-
ning of the chain after the signal peptide; therefore its high variability may
be explained by this location in the primary structure.The residue with the
least variation is Phel36 which is also found in a loop. The Phel36 residue is
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(a) Simulation (b) 135 homologs

Figure 2: F'D, values mapped in the porcine pancreatic Amylase structure
(PDB code: 1PPI). Red represents the highly variable, while blue the least
variable. A) A simulation of the values (The locations of the points are
selected at random and do not represent any biological meaning). The highest
and lowest F'D, are represented in red and blue respectively and pointed by
arrows. Here the color scale was offset by 0.5 and the midpoint was set at
0.01 for visualization. B) The F D; for a dataset of 135 structures, gathered
with a PSI blast seeded with a PFAM seed alignment. The structure used for
FD mapping is the porcine pancreatic amylase (PDB code: 1PPI). The grey
chain correspond to the non homologous section of the 1PPI with respect
to the alignment. Both figures were rendered with VMD v1.91 [Humphrey
et al., 1996].

not reported to bind to ligands or be involved in catalytic activity. However,
this residue is within 15 A (in a C, — C, perspective) of metal and ligand
binding residues and it is also highly conserved.
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NPC1 dataset: Analysis of the residue variation in the context of
ligand binding

The Niemann-Pick, Type C-1 protein (NPC1) binds cholesterol and oxys-
terols [Infante et al., 2008] and has an important role in the metabolism of
cholesterol and other lipids. Defects in NPC1 cause malfunction of the choles-
terol, sphingolipids, phospholipids, and glycolipids pathways. The protein
contains 1278 residues, with 13 membrane helices and three large loops that
project to the lumen of lysosomes [Infante et al., 2008]. The first luminal do-
main is the N-terminal domain, which comprises approximately 240 amino
acids. This is a lumen domain, and therefore not in the trans-membrane
region of the protein.

To check the overall contribution of each of the residues to the deforma-
tions during the simulation, equation 6 was applied and results were mapped
on the original protein structure. Figure 3 shows that once the cholesterol
is bound to the NPC1 (Figure 3A), most of the higher F'D residues are not
contributing to the deformation. It seems that most residues’” movement is
been held in place by interactions with the ligand.

A B

Figure 3: FDM analysis of the NPC1 N-terminal domain (pdbcode 3GKH)
with 3A and without 3B ligand. The color represents the F'D, red being a
higher score and blue the lowest. For comparison, the scale was set from
the minimum FD value in both, to the maximum between the two. In this
particular case, lower F'D values (therefore the least variables) dominate the
scale and the most influential is shown in red.
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The opposite behaviour can be seen in Figure 3B. When cholesterol is
not bound to it, the residues in charge of the cholesterol intake/outtake
are more movable. Therefore, these residues are responsible for most if the
deformation.This makes sense if the binding pocket must be flexible enough
to open and close upon binding with the ligand.

GM-like analysis of protein data: An example from the
multidimensional scaling

a-Amylase homologs: Geometry, function and structural similarity

After aligning the structures and applying the methods exposed in section
Material and methods, a principal coordinate analysis (PCoA) was performed
to the resulting landmark data (Figure 4). Analyzing the geometry of the
protein structures using a PCoA can give us insight into the relationships
of such shapes. This procedure test for differences in the structures being
compared, and will show patterns of clustering based on their geometric sim-
ilarity which in turn might be highly correlated with the functional similarity
[Wright and Dyson, 1999].

The PCoA of the multiple structure alignment (Figure 4), showed seven
distinct and tightly clustered groups:

Chloride-dependent a-Amylases

The first group corresponds to the Cloride-dependent a-Amylases (with
amylase function or EC # 3.2.1.1). The similarity among these a-
amylases is not a new observation. D’Amico et al. [2000] identified
potential chloride-dependent amylases, based on the chloride allosteric
activation positives: A) PPA or porcine (Sus scrofa) pancreatic a-
amylase; B) HPA or human (Homo sapiens) pancreatic a-amylase; C)
TMA or Tenebrio molitor (mealworm) a-amylase; and D) AHA or
Pseudoalteromonas haloplanktis (before classified as Alteromonas) a-
amylase. They showed that the side chains of residues Arg195, Asn298
and Arg/Lys337 (PPA numbering), are related to chloride ion binding
capabilities [Da Lage et al., 2004].

Thermal/alkalostable or calcium independent a-Amylases

The next tightly defined group in Figure 4 are structures that show
higher stability in extreme PH and/or thermal conditions or are cal-
cium independent. As shown in Figure 4 there is a subgroup of mutants
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with higher structural shift from the main group. In this sub-cluster
three thermo-stable a-amylases (EC # 3.2.1.1) mutants from the genus
Bacillus can be found. In two of the three cases (3DCO0, Rahimzadeh
et al., 2012; 1BF2, Fujimoto et al., 1998) the directed mutagenesis was
performed to increase thermal stability. In the case of 1UA7, it is a
mutant of the catalytic site that is not supposed to change stability or
function with respect to the wild type [Kagawa et al., 2003]. However,
this structure was modeled using 1BF2, and the clustering observed in
its structure suggests a higher performance or thermal-stability than
other non-chloride binding bacterial amylases. The rest of the group
includes a-amylases that exhibit higher thermal/alkaline stability or
enhanced efficiency with respect to other amylases of similar function
(a-1,4-glucan-4-glucanohydrolase, EC # 3.2.1.1) [Shimi et al., 2008].
Most of these structures were created by directed mutagenesis to en-
hance their industrial applicability by either increasing their thermal or
alkaline resistance [Hwang et al., 1997, Machius et al., 1998, Brzozowski
et al., 2000, Machius et al., 2003, Lyhne-Iversen et al., 2006, Shirai et al.,
2007, Shimi et al., 2008, Alikhajeh et al., 2010] or to make them calcium
independent [Prakash and Jaiswal, 2010]. There is also a structure
with a different enzymatic classification, the maltohexaosidase from
Bacillus licheniformis (1WP6; glucan 1,4-a-maltohexaosidase or EC
# 3.2.1.98). Despite carrying a slightly different reaction, its native
state exhibit higher alkaline stability than other native amylases [Kanai
et al., 2004a)].

Cyclomaltodextrinase-like a-Amylases

The Cyclomaltodextrinase + Neopullulanase + Maltogenic Amylases
group (Figure 4) includes enzymes classified in seemingly different func-
tional groups (Cyclomaltodextrinases EC # 3.2.1.54; maltogenic amy-
lases, EC # 3.2.1.133; neopullulanases EC # 3.2.1.135) that can hy-
drolyze cyclomaltodextrins efficiently [Park et al., 2000] but not starch
and pullulan as efficiently [Lee et al., 2002]. However, Lee et al. [2002]
have shown that despite their different enzyme codes, there are no
thoroughly documented differences in the literature about their func-
tion or structure. They proposed to unify this group under the same
enzyme number and the same name (Cyclomaltodextrinases). The re-
sult, shown in Figure 4, suggests that this is the case given our clus-
tering based on shape. It is important to mention that this Cyclomal-
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todextrinase group has to be distinguished from the Cyclomatodextrin
glucotransferase group, since those are extracellular enzymes whereas
the Cyclomaltodextrinase-like a-Amylases are intracellular[Lee et al.,
2002].

Cyclomaltodextrinase-like a-Amylases with structural shifts
The Neopullunanases with structurally shifting mutations groups is a
subset of the Cyclomaltodextrinases described above. They carry the
same functions (mainly Neopullunanse; EC # 3.2.1.135), but have been
subjected to mutagenesis either for binding studies (i.e. 2FH8 and
2FHB ; Mikami et al., 2006) or to inactivate the enzyme using site-
directed mutagenesis [Ohtaki et al., 2001, Yokota et al., 2001, Ohtaki
et al., 2004, Mizuno et al., 2005]. As can be seen in Figure 4, even a
small number of substitution cause structural shifts that can be iden-
tified by means of a PCoA.

Cyclomatodextrin glucotransferases-like a-Amylases

This group is composed entirely of bacterial (mainly from the genus
Bacillus) a-Amylases that catalyze the conversion of starch to cy-
clodextrins (EC # 2.4.1.19) [Kanai et al., 2004b]. As can be seen in
Figure 4, it is a tightly defined group markedly different from the rest.
These differences can be explained by the presence of four aromatic
residues that are not present in other amylases and are strongly asso-
ciated with the protein function [Tonkova, 1998, Kanai et al., 2004b].

Maltotetraose-forming exo-amylase

This is singleton group, containing the structure 1GCY [Mezaki et al.,
2001] from Pseudomonas stutzeri. It is a glucan 1,4-alpha-maltotetraohydrolase
(EC # 3.2.1.60) that works hydrolyzing amylaceous polysaccharides
and removing successive maltotetraose residues from the non-reducing
chain ends [Fleischmann et al., 2004]. It behaves as an exo-amylase and
structural differences with respect to endo-amylases were expected, to
be able to remove the residues at the end of the chain instead of just
breaking the 1-4 glycosidic linkages. The PCoA in Figure 4 expresses
this differences by showing a distance between this structure with the
“endo-amylases” .

Sucrose-related isomerases and hydrolases
This group contains the structures mainly classified as Sucrose glucosyl-
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mutases (or Isomaltulose synthase EC # 5.4.99.11)[Fleischmann et al.,
2004]. However, it also contains three structures (namely 2ZIC, 2ZID,
and 4AIE), with Glucan 1,6-alpha-glucosidase (EC # 3.2.1.70) func-
tion [Kim et al., 2005, Hondoh et al., 2008, Mgller et al., 2012], from
which the 2ZIC and 2ZID are have been subjected to directed mutage-
nesis to improve their catalytic efficiency. This group also harbors an
a-glucosidase (2ZE0; Shirai et al., 2008) and an Oligo-1,6-glucosidase
(Isomaltase; 1AXH) mutant [Yamamoto et al., 2011]. The rest of struc-
tures there are Isomaltulose synthases (EC # 5.4.99.11), including three
(4GIN,4GI6, and 4H2C) misannotations (inexistent EC # 5.4.11.99 in-
stead of EC # 5.4.99.11). Despite the somewhat disparity in function,
they all are classified in the GH13 family [Cantarel et al., 2009, Svens-
son and Janecek, 2013], and the results shown in Figure 4 suggest a
high structural similarity.

18


https://doi.org/10.1101/219030
http://creativecommons.org/licenses/by-nc-nd/4.0/

61

2 Cyclomatodextrin glucotransferase-like

- + Eukaryota
+ + Bacteria

15

Cyclomaltodextrinase + Neopullulanase +

. Maltogenic Amylases
Thermal/alkalostable or

calcium independent

Axis 2

~Chloride-dependent Neopullunanases with structurally

shifting mutations

-10

Sucrose-related isomerases
and hydrolases

*9sua|| [euoneuaiu] 0y AN-ON-AgG-DDe Japun
a|ge|rene apew si 1| “Aumadiad uljuudaid ayy Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou
sem yaiym) Juudaid siy Joj 1spjoy 1ybuAdod syl "2T0Z ‘ST JoquianoN palsod uoisIaA siu) :0£06T2/TOTT 0T/Bi0"10p//:sdny :1op Juidaid AIxHolq

~2573 20 -15 -10 -5 0 5 10 15 20

Axis 1

Figure 4: Principal Co-ordinates Analysis (PCoA) of 135 protein crystals of the a-Amylase. The circled
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As can be seen, the principal coordinate analysis of protein structures
is tightly correlated with function, and might give some insights into mis-
sannotations or potential functional discoveries. This can be useful for the
classification of proteins. This clustering scheme might show an apparent
correlation with phylogeny. However, this approach showed to be sensitive
to structural changes. It identified even mutants from the wild type if a struc-
tural shift has occurred. This may suggest that this approach is capturing
more structural similarities than only phylogenetic ones. It would be inter-
esting to explore phylogenetic signal free variables to test such a hypothesis,
but even now this approach seems to be robust to find functional/structural
groups.

NPC1 molecular dynamic data

The NPC1 N-terminal domain dataset was explored using a PCoA (Figures
5A and 5B) to analyze the trajectories as a composite measure of overall
structures (principal coordinates).

30 30,

20 20|

10 10]

2 0
Ed

-10.

—20.

R T p—— T T —T 0 10 20 30 0 % ~20 -10 0 10 20 30

Figure 5: Principal coordinate analysis of 495 snapshots from 100 ns of molec-
ular dynamic simulations of the NPC1 N-terminal domain without (5A) and
with (5B) cholesterol bound to it. The gray scale is proportional to the time
of the simulation getting progressively lighter as the simulation develops.
The symbols () and A represent the starting and final points respectively

This exploratory analysis seems to indicate that a burn-in of 10 nanosec-

onds and a sampling every 20 ps achieves stability in both cases (Figure
5). The overall structure seems to sample the space around the initial point
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(Figure 5). However, the simulation with the cholesterol (5B) seems to have
a narrower shift (as per first axis) than the ligand-free (5A). The shifts here
are represented for a wider move in the principal coordinates space. This
technique can be used to see if clusters of structures appear, and therefore
a deviation from equilibria or representation of multiple states in a molecu-
lar dynamic simulation. This method in conjunction with the energy profile
and a clustering scheme, can provide useful information about the dynamic
properties of proteins.

Conclusions

Here we have shown how to apply GM-like methods to the protein struc-
ture variation analysis problem. We have also shown that by using GM-like
methods, it is possible to explore patterns in both evolutionary and dynamic
samplings. Due to the scarcity of space, a full application of different statis-
tical techniques could not be done. However, the application of techniques,
such as linear discriminant analysis, support vector machine, random for-
est, multivariate analysis of variance, different types of regression, among
others, are simple extensions of what we have shown here. Such techniques
might help in classification of proteins (structurally or phylogenetically) as
well as characterizing the variation associated with different parameters in
the structural space.
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Table S1: PDB codes of the a-amylase homologues, the species from it was
crystallized, and its corresponding equivalence number in the PCoA plot in
Figure 4. Only the chain A, corresponding to the catalytic domain, was used.

Supplementary data
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