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Abstract

The RNA world hypothesis relies on the ability of ribonucleic acids to spontaneously acquire

complex structures capable of supporting essential biological functions. Multiple sophisticated

evolutionary models have been proposed for their emergence, but they often assume specific

conditions. In this work we explore a simple and parsimonious scenario describing the emergence

of complex molecular structures at the early stages of life. We show that at specific GC-content

regimes, an undirected replication model is sufficient to explain the apparition of multi-branched

RNA secondary structures – a structural signature of many essential ribozymes. We ran a

large scale computational study to map energetically stable structures on complete mutational

networks of 50-nucleotide-long RNA sequences. Our results reveal that the sequence landscape

with stable structures is enriched with multi-branched structures at a length scale coinciding

with the appearance of complex structures in RNA databases. A random replication mechanism

preserving a 50% GC-content may suffice to explain a natural enrichment of stable complex

structures in populations of functional RNAs. By contrast, an evolutionary mechanism eliciting

the most stable folds at each generation appears to help reaching multi-branched structures at

highest GC content.
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1 Introduction

RNA are versatile molecules that can virtually fulfill all fundamental needs and functions of the

living, from storing information to catalyzing chemical reactions and regulating gene expression.

The RNA world hypothesis [12, 18] builds upon this observation to describe a scenario of the emer-

gence of life based on RNAs. Despite criticisms [37, 47, 56], recent studies presented plausible

paths towards an early assembly of RNA molecules has contributed to strengthening this hypoth-

esis [6, 24, 40, 42, 46]. Yet, the emergence of nucleic acids is only one part of this problem. We

also need to elucidate the mechanisms that enabled the discovery of functional molecules and the

transmission of genetic information [64].

Many non-coding RNAs acquire functions through structures. Classically, we describe these

structures at two levels of abstraction. The secondary structure encompasses the Watson-Crick

and Wobble base pairs, while the tertiary structure describes the 3D coordinates of all atoms.

Noticeably, RNA secondary structures are more conserved than sequences and thus provide a

reliable signature of RNA function [34]. Moreover, many essential molecular functions are supported

by nucleic acids with complex shapes often characterized by the occurrence of a k-way junction (a

loop connecting three or more stem-like regions also known as multi-loop; See Fig. 1C) in their

secondary structure (e.g. 5s rRNA, tRNA, hammerhead ribozyme). A theory describing how RNA

populations evolve to “discover” these functional multi-branched secondary structures is therefore

an important step toward a validation of the RNA world hypothesis [22].

Since the first analysis of RNA neutral networks (i.e. networks of RNA sequences with identical

structures) [45], computer simulations are the method of choice for characterizing the evolutionary

landscape and population dynamics of structured RNA molecules. Indeed, secondary structures

can be reliably predicted from sequence data only [31], allowing fast and accurate prediction of

phenotypes (i.e. secondary structure) from genotypes (i.e. sequence).

A large body of literature has been dedicated to the computational analysis of RNA sequence-

structure maps (i.e. genotype-phenotype maps) and properties of RNA populations evolving under

natural selection. In a seminal series of papers P. Schuster and co-workers set up the basis of

a theoretical framework to study the evolutionary landscape of RNA molecules, and used it to

reveal intricate properties of networks of sequences with the same structure (a.k.a. neutral net-
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works) [14, 20, 45, 51, 53, 55]. This work inspired numerous computational studies that refined

our understanding of neutral models [2, 3, 11, 69, 73], as well as kinetics of populations of evolving

nucleic acids [27, 59, 61].

In this paper, we perform computer simulations to study the evolutionary mechanisms that

enabled the emergence of multi-branched secondary structures. This feature turns out to be rela-

tively common even for short RNAs. An analysis of the consensus secondary structures available

in the Rfam database reveals that multi-loops can be found in approximately 10% of RNA families

whose average size of sequences ranges from 50 to 100 nucleotides (See Fig. 1A). This observation

contrasts with earlier studies that revealed that the vast majority of predicted minimum free energy

(MFE) secondary structures obtained from a uniform sampling of shorter RNA sequences (i.e. 35

nt.) are stem-like structures (i.e. no multi-loop) [60], which render a spontaneous emergence of

complex structures (i.e. secondary structures with a multi-loop) unlikely on such short sequences.

Nonetheless, computational studies of RNA sequence-structure maps showed that neutral net-

works percolate the whole sequence landscape [16, 54]. Even though this property undeniably

augments the accessibility of target structures, the size and connectivity of neutral networks also

decreases drastically with the complexity of structures.

In the most commonly accepted scenarios, the establishment of a stable, autonomous, and

functional self-reproductive molecular system subject to natural selection, relies on the presence of

polymerases [22]. Such molecules are long (200 nt.) and thus unlikely to be discovered randomly.

Instead, it has been suggested that evolution proceeded by stages [30]. Polymerases were assembled

from smaller monomers (∼50 nt.) that are more likely to emerge from prebiotic chemistry [21, 68].

At this point, and not before, parallel natural selection processes of specific functional structures

could be triggered.

Interestingly, in vitro experiments revealed the extreme versatility of random nucleic acids [4, 5,

43, 50], and suggested that essential RNA molecules such as the hammerhead ribozyme could have

multiple origins [49]. All together, these observations reinforce the plausibility of a spontaneous

emergence of multiple functional sub-units. But they also question us about the likelihood of such

events and the existence of intrinsic forces promoting these phenomena.

Various theoretical models have been proposed to highlight mechanisms that may have favoured

the birth and growth of structural complexity from replications of small monomers. Computational
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studies have been of tremendous help to explore various scenarios. In particular, numerical simula-

tions enabled us to study the effects of polymerization on mineral surfaces [7, 62] or the importance

of spatial diffusion [57]. Noticeably, the majority of these scenarios are proposing a development of

RNA structural complexity outside a cellular barrier. But this assumption results in major chal-

lenges. The first of them is to explain how a system that evolved and adapted in an exposed milieu

would transition to a membrane-protected environment. In particular, the presence of a membrane

would radically change the tradeoff between stability and complexity of RNA structures. Indeed,

stable folds often lack the complexity necessary to support novel functions but are more resilient

to harsh pre-cellular environments [25].

In this work, we aim to characterize the structural repertoire accessible by replicating RNA

populations. This scenario is compatible with the hypothesis of an early development of membranes

[1, 8, 35, 64] and does not require invoking hybridization on surfaces, or the presence of large self-

replicating ribozymes [39]. Importantly, we exclude directed evolution scenarios characterized by

a progressive adaptations to a phenotype (e.g replication with errors minimizing the distance of

Minimum Free Energy (MFE) structures to a target structure [52]). Instead, we rely on intrinsic

forces (i.e. increasing secondary structure stability) for driving the evolutionary process and study

the impact of GC-content bias.

We apply customized algorithms to study the distribution of structures accessible to all mutant

sequences with 50 nucleotides [71, 72]. This approach considerably expands the scope and signifi-

cance of comprehensive RNA evolutionary studies that were previously limited to sequences with

less than 20 nucleotides [9, 20], or restricted to explore a small fraction of the sequence landscape

of sequences [11, 60]. Our simulations reveal that based on the strength of the selective pressure

applied on the replicating population, different GC content biases facilitate the emergence of com-

plex secondary structures with k-way junctions. In the absence of selective pressure, low to medium

GC contents (0.3-0.5) may suffice to explain the distribution of multi-loop structures observed in

databases. By contrast, high GC contents help populations eliciting sequences with stable folds

to discover structure with k-way junctions. These results provide valuable insights into previous

contributions studying GC content biases in stability-flexibility tradeoffs [28], prebiotic nucleotide

distributions [17, 41] and the accessibility of complex phenotypes [60].
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2 Results

2.1 Our approach

We apply complementary techniques to explore the RNA mutation landscape and characterize the

structures accessible from an initial pool of random sequences under distinct evolutionary scenarios

(See Fig. 2). Importantly, our analysis explicitly models GC content bias to understand the effect

of potential nucleotide scarcity in prebiotic conditions [17, 41].

Our first algorithm RNAmutants (see Sec. 4.2) enumerates all mutant sequences and samples

the ones with the globally lowest folding energy [71]. It enables us to identify the most stable

structures accessible through mutation processes. Noticeably, RNAmutants sorts the sequences by

the number of mutations separating them from the initial population. We note that RNAmutants

does not constitute a model of replicating populations but rather a sampling method to obtain

representative statistics on the space of stable mutant sequences.

An important element of this work is the interpretation of RNAmutants curves where the x-axis

shows the number of mutations (e.g. Fig. 3). When this number of mutations is null or very low,

the data represents the values we expect from uniformly sampled sequences. By contrast, large

numbers of mutations (50 being the maximum number of mutations on sequences of length 50 since

it is possible that all positions contain a mutation) are associated with an increased preference for

mutants with stable folds and a loss of sequence specificity. The largest hamming neighbourhoods

(See Fig. S7) are therefore the ones with strongest thermodynamical pressure.

Equipped with a global view of the mutational landscape from RNAmutants, we implemented

replication-based algorithms to understand how such a landscape could be traversed by popula-

tions. We present mateRNAl which has been developed for this study. mateRNAl simulates the

evolution of a population of replicating RNA sequences that preferentially selects the most stable

structures under GC content bias. We also developed variants of this algorithm enabling us to

study the antagonistic effect of a negative selection pressure against the most stable structures.

Since initial pools of random 50nt sequences are unlikely to contain self-replicating RNA, we frame

our experiments in the context of non-catalytic replication [36, 64] which could have been at play

until structures with self-replicating abilities are discovered [48].

We study the evolutionary landscape of RNA sequences of length 50 preserving GC contents
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varying between 0.1 and 0.9 (1 being full G or C sequences). The size of molecules is of particular

interest as 50 nucleotides appears to be the upper limit for non-enzymatic self-replicating processes

[22], but also because multi-branched structures occur only on RNAs with sizes above 40 (See

Fig. 1). It also turns out to the be minimal known size for a natural ribozyme [13]. Shorter

ribozymes have been synthesized [66] yet these would not feature complex secondary structure

motifs characteristic of most ribozymes.

2.2 Energy landscape of RNA mutational networks

We start by characterizing the distribution of folding energies of stable structures accessible from

random seeds in the mutational landscape using RNAmutants. Our simulations show that, initially,

increasing mutational distances from random seeds results in more stable structures at all GC

content regimes (See solid lines in Fig. 3). We observe that the folding energies of the samples

represent at least 80% of the global minimum energy attainable over all k mutations within less

than 10 mutations from the seed (see Fig. S3). This suggests that over short evolutionary periods,

mutations can play an important stabilizing role as stable structures are likely to be found near

the seed.

By contrast, at larger mutational distances (i.e. 15 mutations and above) we notice an increase

in the ensemble energy for all GC content regimes. This behaviour is likely due to the exponential

growth in sequence space that accompanies higher mutational distances, which results in a more

uniform sampling of the ensemble. In this case, less stable sequences outnumber lower energy

sequences with high Boltzmann weights (See Fig. S2).

As expected, we observe that the nucleotide content is an important factor in determining the

stability of achieved sequence-structure pairs across mutational networks. The accessible sampled

energies are strongly constrained by the allowed GC content of sequences in all GC content regimes,

whereby higher GC contents favor the sampling of more stable states. However, despite these

constraints, all mutational ensembles effectively produce more stable states than the initial state.

Next, we characterize the diversity of structures sampled by RNAmutants. First, we calculate

the number of unique structures found in each mutant neighbourhood. Fig. 3B shows two dis-

tinct regimes. At low to intermediate GC contents (≤ 0.5), the immediate neighbourhood (≤ 10

mutations) of seed sequences is dominated by few stable structures, after what the percentage of
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unique structures suddenly increases. This sudden change of regime accompanies the increase of

the average folding energies observed in Fig. 3A. By contrast, at higher GC contents (≥ 0.7) the

structural diversity increases only at very large mutational distances (≥ 40), when the footprint

from the seed is almost fully lost.

We also explore the repertoire of secondary structure elements represented in the low energy

mutational neighbourhoods. Fig. S5 and 4A show the percentage of secondary structures with an

internal loop or multi-loop. Although these structural elements are relatively frequent in random

sequences (i.e. seeds), they are also not very stable (Fig. 3A). When the mutational distance

increases, mutations tend to create stable stem-loop structures and erase irregularities in the original

phenotypes. Although, after this stabilization phase, the fraction of internal and multi-branched

loops rises again explaining the structural diversity discussed above.

In this work, we focus on the occurrence of multi-branched secondary structures because this

motif is often found in functional RNAs such as the hammerhead ribozyme. While previous studies

of short randomly sampled RNA sequences (< 35 nt.) have shown that simple hairpin structures

dominate the low-energy structural landscape, we find that for longer molecules (i.e. 50 nt.) this

landscape is enriched with complex multi-branched structures. This finding is in good qualitative

agreement with databases of evolved structures where multi-loop structures emerge in families

slightly under 50 nucleotides long (Fig. 1A).

Across all runs, we sampled a total of 9419 sequences containing a multi-loop (no more than 1

multi-loop per structure was ever observed as is to be expected for such length scales). Interestingly,

we find that unlike internal loops, multi-loops occur under very specific conditions in our sampling.

We identify a clear surge in multi-loop frequency at a mutational distance of ∼ 35 (See Fig. 4A),

with a mean GC content of ∼ 0.45 (See Fig. 4C). Furthermore, their energy distribution is tightly

centered around ∼ −15 kcal mol−1 (See Fig. 4B). These values are remarkably close to those of

multi-branched structures of similar lengths observed in the Rfam database (See Fig. 1A). In

particular, the latter shows a clear bias toward medium GC contents as we identified 148 Rfam

families with multi-loops with a GC content of 0.5 (among all Rfam families with sequences having

at most 200 nucleotides), but only 80 with a GC content 0.3 and 40 with a GC content of 0.7.

This serves as further evidence that GC content is an important determinant of the evolution of

structural complexity. It also appears that these features are a general property of the distribution
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of multi-loops in the mutational landscape given the sequence entropy of the set of sequences

containing multi-loops is quite high (0.945 out of 1). This indicates that the observed properties

are likely a feature of the GC content bias and not due to over-representation by isolated groups

of similar sequences. Further analysis carried out in Section 2.3 suggests that this enrichment of

complex structures is not simply an artifact of larger Hamming neighbourhoods that accompanies

deeper mutational explorations.

We also note a smaller peak of multi-loop occurences closer to the seed sequences (∼ 6 muta-

tions) for higher GC contents around 0.7. Interestingly, with folding energies ranging from −25 to

−40 kcal mol−1, these multi-branched structures are significantly more stable than those present in

the main peak (See Fig. 4B). This is also in agreement with the energies observed in the Rfam

database for structures within this range of GC content values (See Fig.1B).

Observation 1

• Low and intermediate GC contents (≤ 0.5) promote structural diversity.

• Internal and multi-branched loops are relatively frequent in the low-energy landscape.

• The frequency of stable multi-branched loops in the low-energy landscape is in good

qualitative agreement with the Rfam distribution.

2.3 Random replication without selection

In the previous section, we observed that the low-energy structural landscape is enriched with

multi-loop architectures at specific GC contents. We must next determine under which conditions

a replicating population can reach this reservoir. Our first scenario aims to study the behaviour and

outcome of random replication process without natural selection. Here, we consider a simple model

in which RNA molecules are duplicated with a small error rate, but preserving the GC content [65].

In our simulations, we use an error rate of 0.02 (probability of introducing a point mutation) to

allow immediate comparison of the number of elapsed generations, and identical transitions and

transversions rates. Under these assumptions, we can directly compute the expected number of

mutations in sequences at the ith generation (see Methods). Fig. S6 shows the results of this

calculation for GC content biases varying from 0.1 to 0.9. Noticeably, our data reveals that after

a short initialization phase (i.e. after ∼ 50 generations), sequences with a GC content of 0.5
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have on average slightly more than 35 mutations. This observation is in good adequacy with the

peak of multi-branched structures identified in Fig. 4A and Fig. 4C. This combination of events

suggests that the population is randomly exploring the sequence landscape and gets fixed once stable

structures are discovered. Indeed, the mutation distance where multi-loops are observed coincides

with the largest mutational neighbourhood (See Fig. S7), thus where the sequence specificity

pressure is minimal. We conclude that a simple undirected replication mechanism could explain an

enrichment of RNA populations with stable multi-branched structures.

To complete this analysis and assess the different structural compositions between the uniform

and low-energy landscapes, we sample sequences at each mutational neighbourhood uniformly at

random and compute their minimum free energy (MFE) value and secondary structure. We com-

pare in Fig. 5 the average MFE and frequency of multi-loops in MFE structures between the

uniform (“Random”) samples and sequences sampled from the RNAmutants low-energy ensemble.

Importantly, we report separately the statistics for sequences with or without multi-loops.

Unsurprisingly, the accumulation of mutations does not impact the results in random popula-

tions. First, we note that although multi-branched structures are relatively frequent in random

populations (on average between 1 and 10%), they also have higher folding energies than sequences

in the low-energy landscape. Higher GC contents tend to increase these trends. This data supports

previous observations made on shorter sequences showing that multi-branched structures are rare

and relatively unstable in random pools of sequences [60].

By contrast, RNAmutants samples exhibit a different pattern. While multi-branched structures

are rare in random populations (i.e. no mutations), their frequency increases with the number of

mutations (i.e. increased preference toward stable structures). Interestingly, the frequency of stable

multi-branched structures almost matches those obtained with random sequences at GC contents

between 0.3 and 0.5 and mutational distances from 30 and 40 (second row in the third and fourth

columns of Fig. 5).

The analysis of folding energies reveals another interesting phenomenon. While the average

energies of multi-branched structures remains steady at all mutational distances, this is not the

case of other structures with simpler architectures (first row of Fig. 5). Lower GC content regimes

from 0.3 to 0.5 are characterized by a clear increase of average energies at mutational distances over

20 (i.e. MFE structures are less stable), which is not observed at higher GC contents. We conclude
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from these observations that the relative weight of multi-branched structures in the low energy

ensemble (i.e. RNAmutants) increases due to a better (collective) resilience of this architecture

to point-wise mutations and/or a more uniform distribution in the sequence landscape. In turn,

it increases their density in the large/distant mutational neighbourhoods. Moreover, it is worth

noting that the values of the folding energies at these GC regimes are also close to those observed

in Rfam.

Eventually, we also distinguish a secondary peak of occurrences of multi-branched structures

in the vicinity of the seeds (i.e. 5-10 mutations) at higher GC regimes (0.7). By contrast, this

higher density appears to result from mutants folding with marginally lower energies. It suggests

the presence of mutants with improved fitness to the structures of the seeds rather than a global

enrichment of multi-branched structures in these neighbourhoods. We discuss this phenomenon in

the next sub-section.

Observation 2

• Multi-branched structures are relatively common but unstable in random populations.

• At intermediate GC contents (0.3 − 0.5), multi-branched loops are frequent among the

stablest structures.

• The folding energies of stable multi-loop is similar to those observed in databases.

2.4 Random replication with selection for stable structures

Our RNAmutants and random replication simulations suggest that mutational networks contain

reservoirs of complex structures accessible by undirected replication mechanisms. At this point,

our main question is to determine if a natural selection process, independent of a particular target,

could help reaching these regions.

To address this question we build an evolutionary algorithm named mateRNAl, where the fit-

ness is proportional to the folding energies of the molecules. Intuitively, mateRNAl simulates the

behaviour of a population of RNAs selecting at each generation the most stable sequences regard-

less of the structure adopted to carry functions (See Methods 4.1). This setting is similar to

the energy-based selection described by Fontana et al. [15] on binary sequences. These selected

structures are therefore by-products of intrinsic adaptive forces.
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We start all simulations from random populations of size 1000 and sequences of length 50, and

performed 50 independent simulations for each GC content and varying mutation rates. Impor-

tantly, we also vary the strength of the selective pressure applied on the population (i.e. the β in

Eq. 1). All simulations were run for 1000 generations.

We show the frequency and folding energy of multi-branched structures observed during our

simulations with mateRNAl in Fig. 6. Here, a higher selective pressure (i.e. larger values of β) and

GC content reduces the frequency of multi-loops but increases the folding energy. Interestingly,

a transition occurs when the value of β shift from 0.01 to 0.05. By contrast, higher GC contents

increase both the frequency of multi-loops and folding energies. Yet, variations of the selective

pressure result in more variance of the folding energy.

In our simulations, only high GC contents (≥ 0.7) produce populations with multi-loop frequen-

cies comparable to those observed in databases. It follows that the mateRNAl evolutionary scenario

does not seem fit to explain how to reach multi-branched sequences with low to intermediate GC

content (0.3−0.5). However, as noted earlier, there is a second pool of multi-branched structures at

higher GC content (≥ 0.7) that are characterized by their proximity to the seed (See Fig.4B, S1)

and lower folding energies (See Fig.4D). Under our assumption, the mateRNAl scenario appears to

be a legitimate candidate to explain how these structures are reached.

We find that mateRNAl populations are able to quickly find low energy multi-branched structures

(less ∼ 12 mutations from the initial populations; See Fig. 6), with higher GC content regimes

leading to more stable structures. Multi-branched structures are mostly found near the seeds (≤ 20

mutations) and rather in earlier generations.

We also note an interesting dichotomy between populations at 0.7 and 0.9 GC ratios. While

the frequency of multi-loops reached by populations at 0.7 roughly matches the one computed by

RNAmutants (See Fig. 4A), it is not the case for higher GC contents. Indeed, the mateRNAl

simulations find a significant number of multi-loops not sampled by RNAmutants. The folding

energies of these structure appears to be similar to the ones found in Rfam (See Fig. 1B).

All together, these observations suggests that a selective pressure on stable structures might

help finding stable multi-branched architectures at the highest GC contents (i.e. 0.9) that are

otherwise eclipsed by the vast number of stable single stem structures. At 0.7 though this selection

mechanism could still be used to accelerate and promote the discovery of these complex structures
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uniformly distributed in the sequence landscape.

Observation 3

• Multi-loops emerge only in populations with highest GC contents (≥ 0.7).

• Highest GC contents help to quickly reach multi-loops in the vicinity of the seeds.

• A selection pressure toward stable structure promote the discovery of rare stable multi-

branched structures at 0.9.

3 Discussion

We provided evidence that in the absence of selective pressure, the structure of the mutational

landscape could have helped to promote the emergence of complex RNA phenotypes. To support our

hypothesis, we built a comprehensive representation of the mutational landscape of RNA molecules,

and investigated scenarios based on distinct hypotheses.

Our results support parsimonious evolutionary scenarios based on undirected molecular replica-

tions with occasional mutations. In these simple models, the GC content appears as a key feature in

determining the probability of discovering stable multi-branched secondary structures. Our study

reveals two distinct phenomena. At low to intermediate GC contents (0.3− 0.5) the distribution of

multi-loops in a replicating population eliciting sequences with the most stable structures resembles

the one observed in RNA databases. This observation suggests that an evolutionary scenario in

which sequences are replicated without selection but where the most stable structures are selected

upon their discovery is sufficient to explain the structural complexity needed for the emergence of

life at the molecular level.

By contrast, at higher GC contents (≥ 0.7) the presence of multi-branched structures appears

to require the help of a selective pressure to reach these complex phenotypes. In this work, we

simulate replicating RNA populations selecting sequences with the most stable structures at each

generation. Then, we show that this mechanism enables a quick discovery of multi-loops in the

vicinity of random sequences at GC content regimes at or above 0.7. This finding is in agreement

with previous theoretical studies that showed that neutral networks percolate the whole sequence

landscape [16, 54]. It also suggests a different origin for multi-branched structures at high GC

content. In such scenario, a population of molecules would progressively improve the functional
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efficiency of the molecules by improving their stability.

The preservation of intermediate GC content values appeared to us as a reasonable assumption,

which could reflect the availability of various nucleotides in the prebiotic milieu. This nucleotide

composition bias can be interpreted as an intrinsic force that favoured the emergence of life. It also

offers novel insights into fundamental properties of the genetic alphabet [17]. Incidentally, these ob-

servations suggest further investigations into the role of more complex nucleotide distributions [29].

It is worth noting that our scenario remain compatible with further selection mechanisms that

may come into play once a functional and stable architecture is identified to rapidly improve active

sites [11, 26]. Eventually, our results could also be used to put in perspective earlier findings

suggesting that natural selection is not required to explain pattern composition in rRNAs [58].

Our analysis completes recent studies that aimed to characterize fundamental properties of

genotype-phenotype maps [19, 32], and showed that their structure may contribute to the emergence

of functional molecules [11]. Whereas previous studies focused on characterizing the static genotype-

phenotype map of random sequences, we show that the landscape of stable mutants arising from

random seeds favours the discovery of complex structures. It also emphasizes the relevance of

theoretical models based on a thermodynamical view of prebiotic evolution [38].

The size of the RNA sequences considered in this study has been fixed at 50 nucleotides. This

length appears to be the current upper limit for non-enzymatic synthesis [23], and therefore maxi-

mizes the expressivity of our evolutionary scenario. Variations of the sizes of populations or lengths

of RNA sequences resulting from indels could be eventually considered with the implementation

of dedicated algorithms [70]. Although, if these variations remain modest, we do not expect any

major impact on our conclusions.

The error rates considered in this study were chosen to match values used in previous related

works (e.g [33]). This choice is also corroborated by recent experiments suggesting that early life

scenarios could sustain high error rates [44]. Nevertheless, lower mutation rates would only increase

the number of generations needed to reach the asymptotic behaviour (See Fig. S6), and thus would

not affect our results.

Finally, we emphasize that our results do not exclude the use of more advanced evolutionary

mechanisms [7, 57, 62, 63]. Instead, they provide additional evidence supporting an RNA-based

scenario for the origin of life, and can serve as a solid basis for further investigations of more
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sophisticated models.

4 Materials and Methods

4.1 Evolutionary Algorithm (mateRNAl)

Here we describe an evolutionary algorithm (EA) for energy-based selection with GC content bias.

The algorithm is implemented in Python and is freely available at http://jwgitlab.cs.mcgill.

ca/cgoliver/maternal.git.

We first define a population at a generation t as a set Pt of sequence-structure pairs. We denote

a sequence-structure pair as (ω, s) such that s is the minimum free energy structure on sequence

ω as computed by the software RNAfold version 2.1.9 [31]. Each sequence is formed as a string

from the alphabet B := {A,U,C,G}. For all experiments we work with constant population size of

|Pt| = 1000 ∀t, and constant sequence length len(si) = 50 ∀si ∈ Pt . We then apply principles

of natural selection under Wright-Fisher sampling to iteratively obtain Pt+1 from Pt for the desired

number of generations in the simulation

4.1.1 Initial Population

.

Sequences in the initial population, i.e. generation t = 0, are generated by sampling sequences

of the appropriate length uniformly at random from the alphabet B.

4.1.2 Fitness Function

In order to obtain subsequent generations, we iterate through Pt and sample 1000 sequences with

replacement according to their relative fitness in the population. Selected sequences generate

one offspring that is added to the next generation’s population Pt+1. Because we are sampling

with replacement, higher fitness sequences on average contribute more offspring than lower fitness

sequences. The relative fitness, or reproduction probability of a sequence ω is defined as the

probability F (ω, s) that ω will undergo replication and contribute one offspring to generation t+ 1.

In previous studies, F (ωi, si) has been typically defined as a function of the base pair distance
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between the MFE structure of ω and a given target structure. However, in our model, this function

is proportional to the free energy of the sequence-structure pair, E(ω, s) as computed by RNAfold.

F (ω, s) = N−1e
−βE(ω,s)

RT (1)

The exponential term is also known as the Boltzmann weight of a sequence-structure pair. N is a

normalization factor obtained by summing over all other sequence-structure pairs in the population

as N =
∑

ω′,s′∈St exp[−βE(ω′,s′)
RT ]. This normalization enforces that reproduction probability of a

sequence-structure pair is weighted against the Boltzmann weight of the entire population. β is

the selection strength coefficient. Higher values of β result in stronger selection for stability and

vice versa. R = 0.000 198 71 kcal mol−1 K−1 and T = 310.15K are the Boltzmann constant and

standard temperature respectively.

When a sequence is selected for replication, the child sequence is formed by copying each

nucleotide of the parent RNA with an error rate of µ known as the mutation rate. µ defines the

probability of incorrectly copying a nucleotide and instead randomly sampling one of the other 3

bases in B.

4.1.3 Controlling population GC content

There are two obstacles to maintaining evolving populations within the desired GC content range

of ±0.1. First, an initial population of random sequences sampled uniformly from the full alphabet

naturally tends converge to a GC content of 0.5. To avoid this, we sample from the alphabet

with probability of sampling GC and AU equal to the desired GC content. This way our initial

population has the desired nucleotide distribution. Second, when running the simulation, random

mutations are able to move replicating sequences outside of the desired range, especially at ex-

tremes of mutation rate and GC content. To avoid this drift, at the selection stage, we do not

select mutations that would take the sequence outside of this range. Instead, if a mutation takes a

replicating sequence outside the GC range, we simply repeat the mutation process on the sequence

until the child sequence has the appropriate GC content. Given that populations are initialized in

the appropriate GC range, we are likely to find valid mutants relatively quickly and always avoid

drifting away from the target GC.
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4.2 RNAmutants

The evolutionary algorithm implemented in mateRNAl is similar to a local search. At every time

step new sequences are close to the previous population and in particular to the elements with

higher fitness.

In contrast, RNAmutants [71] can sample sequence-structure pairs (ω, s) such that (1) the se-

quence is a k-mutant from a given seed ω0—for any k—and (2) the probability of seeing the pair

is proportional to its fitness compared to all pairs (ω′, s′) where w′ is also an k-mutant of ω0.

In addition RNAmutants provides an unbiased control of the samples GC content allowing direct

comparisons with mateRNAl.

We note that although the structure sampled is not in general the MFE replacing them by it

does not significantly change the results, as shown in Fig. S2. Therefore we replace the sampled

structure with the MFE to simplify the study.

For each GC content in {0.1, 0.3, 0.5, 0.7, 0.9}(±0.1) we generated 20 random seeds of length

50. For each seed, at each mutational distance (i.e. number of mutations from the seed) from 0 to

50, at least 10 000 sequence-structure pairs within the target GC content of the seed were sampled

from the Boltzmann distribution. The software was run on Dual Intel Westmere EP Xeon X5650

(6-core, 2.66 GHz, 12MB Cache, 95W) on the Guillimin High Performance Computing Cluster of

Calcul Québec. It took over 12 000 CPU hours to complete the sampling.

4.2.1 Sequence-structure pairs weighted sampling

Given a seed sequence ω0, a fixed number of mutations k, and the ensemble Skω0
of all pairs sequence-

structure such that the sequences are at hamming k from ω0. Similarly to Sec. 4.1.2 the probability

of sampling a sequence-structure pair (ω, s) ∈ Skω0
will be its Boltzmann weight, a function of its

energy. Formally, if the energy of the sequence ω in conformation s is E(ω, s) then the weight of

the pair is:

e
−E(ω,s)
RT
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where as before the Boltzmann constant R equals 0.000 198 71 kcal mol−1 K−1and the temperature

T is set at 310.15K. The normalization factor, or partition function, Z can now be defined as:

Z =
∑

(ω′,s′)∈Skω0

e
−E(ω′,s′)

RT

and thus the probability of sampling a pair (ω, s) is:

P(ω, s) =
e
−E(ω,s)
RT

Z
.

By increasing k from 1 to |ω0|(= 50) an exploration of whole mutational landscape of ω0 is

performed. To compute Z for each value of k, RNAmutants has a complexity of O(n3k2). This has

to be done only once per seed. The weighted sampling of the sequences themselves has complexity

of O(n2).

4.2.2 Controlling sample GC content

Due to the deep correlation between the GC content of the sequence and its energy, the GC base

pair being the most energetic in the Turner model [67] which is used by RNAmutants, sampling from

any ensemble S will be highly biased towards sequences with high GC content. To get a sample

(ω, s) at a specific target GC content, a natural approach is to continuously sample and reject

any sequence not fitting the requirements. Such an approach can yield an exponential time so a

technique developed in [72] is applied.

An unbiased sampling of pairs (ω, s) for any given GC target can be obtained by modifying the

Boltzmann weights of any element (ω, s) with a term wω ∈ [0, 1] which depends on the GC content

of ω. At its simplest, it can be the proportion of GC in ω. The weight of (ω, s) becomes

wωe
−E(ω,s)
RT

which implies that a new partition function Zw needs to be defined as follows:

Zw =
∑

(ω′,s′)∈Skω0

wωe
−E(ω′,s′)

RT .
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To find the weights w for any target GC an exact solution could be found. In practice, the weight

wω is determined as follows, applying the bissection algorithm. Given the number of GC in ω, |ω|GC

(resp number of AU |ω|AU) and two weight wGC and wAU. We define wω as wω := w
|ω|GC

GC ×w|ω|AU

AU .

At the first iteration, a thousand sequences are sampled with wGC and wAU both as 0.5. If the

average GC content on the sampled sequences is too high, the value of wGC is decreased by half

and wAU increased accordingly. If the average GC content is too low, the opposite is done. Each

time, the sequences with the desired GC content are kept. This process is repeated until the

desired amount of sequences with the required GC content is produced. In practice, after a few

iterations almost all sampled sequences contain the target GC content and as shown this sampling

is unbiased [72]. An interesting observation is that the same method can be applied to preferentially

sample sequences with any other desired feature.

4.3 Sequence divergence in a random replication model

We estimate the expected number of mutations in randomly replicated sequences (section 2.3) using

the transition matrix defined by K. Tamura [65]. We use a mutation rate α = 0.02 mirroring the

mutation rate used in mateRNAl, and assume that transition and transversion rates are identical.

The target GC content is represented with the variable θ = {0.1, 0.3, 0.5, 0.7, 0.9}. The transition

matrix is shown below.

A U C G

A 1− α(1 + θ) (1− θ)α θα θα

U (1− θ)α 1− α(1 + θ) θα θα

C (1− θ)α (1− θ)α 1− (1− α(1 + θ)) θα

G (1− θ)α (1− θ)α θα 1− (1− α(1 + θ))

This matrix gives us the transition rate from one generation to the next one. To obtain the

mutation probabilities at the kth generation, we calculate the kth exponent of this matrix. Then,

we sum the values along the main diagonal to estimate the probability of a nucleotide to be the

same at the initial and kth generation.
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Figure 1: Statistics on Rfam families [34]. (A) We plot the number of families with respect to the
average length of the sequences in these families. Red dots show the numbers of families with a
consensus structure that contains a multi-loop, while blue dots show those without. (B) We plot
the average folding energy and length of sequences for each Rfam families having multi-branched
consensus structures. The color indicates the average GC content of the family. (C) An illustration
of an RNA 2D fold (generated using VARNA [10]) and label its secondary structure elements as
internal loop (IL), multi-loop (ML) and hairpin (HP).
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Figure 2: Illustration of mutational sampling methods. Concentric ellipses represent the space of
sequence k-mutant neighbourhoods around a root sequence pictured at the centre of the ellipses.
Each ring holds all sequences that are k mutations from the root. We show the contrast be-
tween an evolutionary trajectory (mateRNAl) along this space and mutational ensemble sampling
(RNAmutants) represented respectively as circles and triangles. The layer below the mutational
space represents the space of all possible secondary structures, and dotted lines illustrate the map-
ping from sequences to structures. The colour of the sampled mutants denotes the energy of the
sequence-structure pair sampled. In both sampling methods, sequence-structure pairs with lower
energies are favoured. Evolutionary sampling is always limited to explore sequences accessible from
the parental sequence and so we have arrows pointing from parents to children over various gener-
ations yielding an adaptive trajectory. RNAmutants considers the entire ensemble of k mutants to
generate independent samples of stable sequence-structure pairs and thus reveals features such as
complex structures that are hard to reach by local methods such as mateRNAl.
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Figure 3: (A) Energy of RNAmutants and mateRNAl mutational landscape. Shaded regions include
one standard deviation of RNAmutants energy per mutational distance. Dashed lines mark mean
values for mateRNAl energies binned by mutations from starting sequence using mutation rate
µ = 0.02. (B) Fraction of unique structures at every k neighbourhood found by RNAmutants.
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Figure 4: Analysis of the distribution of multi-branched structures in the RNA mutational landscape
sampled by RNAmutants. (a) The frequency of multi-branched structures with respect to the number
of mutations from the seed sequence. (b) Plot of folding energies and GC contents of each individual
multi-branched structure. (c) Distribution of the GC content of multi-branched structures. (d)
Distribution of folding energies of multi-branched structures.
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Figure 5: Analysis of multi-loop distributions in uniform and low energy populations. First row:
average minimum free energies of uniformly sampled mutants (“Random”; dotted lines) and se-
quences from the low energy ensemble (“RNAmutants”; plain lines). Sequences with a minimum
free energy structure having a multi-loop (“ML”; blue) are separated from the others (“no ML”;
orange). Second row: frequency of multi-branched structures in the minimum free energy structure
of uniformly sampled mutants (“Random”; dotted grey lines) and sequences sampled from the low
energy ensemble (“RNAmutants”; purple lines)
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Supplemental Materials: “On the emergence of structural complexity in RNA

replicators”

Carlos Oliver, Vladimir Reinharz, Jérôme Waldispühl

1 Sampling schemes

RNAmutants samples sequence-structure pairs according to their ensemble weight. This method

therefore does not guarantee the sampling of the minimum free energy (MFE) structure for a

given sequence. However, for a given “suboptimal” sampling we can use RNAfold to obtain the

MFE structure for every sequence, producing a set of sequence-structure pairs that can be directly

compared to mateRNAl data which samples only MFE structures. In Fig. S2 we show that this

procedure produces sequence-structure pairs with nearly identical ensemble frequencies, allowing

us to proceed with MFE structures in downstream analysis.

2 Energy landscapes

With free energy being the driving force in our simulations, we next compared mean energy values

for mutation populations in mateRNAl and RNAmutants. We show in Fig. S3 that a random

starting seed in RNAmutants is on average under 15 mutations away from the global minimum of

its mutational ensemble. This feature of the energy of mutational landscapes is exploited by the

local search nature of mateRNAl which is able to rapidly identify stable solutions with very few

mutations. More specifically, we tested various mutation rates (µ) for mateRNAl and superimposed

mean values to those obtained by RNAmutants, Fig. S4. We note that higher mutation rates lead to

deeper mutational explorations yet never reaching as far as RNAmutants. Regardless, it appears that

the most stable structures are maintained at lower mutation rates, suggesting a tradeoff between

exploration and refinement.

3 Structural complexity

Here we summarize the structural features discovered by mateRNAl and RNAmutants. In this study

we distinguish between three major structural features: stack, internal loop, and multiloop. The
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stack is produced from consecutive base pairing interactions and thus higher stack numbers form

longer stem structures. These represent the simplest of the structural motifs. The internal loop

occurs when a stacking is interrupted by unpaired bases forming a loop like structure within a stem.

A multi-loop is also an unpaired region that forms a loop but which connects three or more stems,

also known as a junction. Fig. S5 shows the effect of GC content on the occurence of internal

looping structures as a function of mutational distance in RNAmutants simulations.

4 Analysis of Hamming neighbourhoods

We provide complementary data to characterize the sequences available at specific mutational

distances and GC contents. Fig. S6 shows the number of mutations accumulated in populations

evolving under a random model preserving the GC content. We use for this purpose the model

introduced by K. Tamura [65] (See Sec. 4.3). Fig. S7 indicates the number of sequences with

exactly k mutations and with a GC content within ±0.1 of the target GC content. Thus, it shows

the size of the neighbourhoods.
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Figure S1: Distribution of multi-loop occurrences for mateRNAl (A) with selection pressure β = 0.04
and RNAmutants (B).
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Figure S2: Frequency of sequence-structure pair in Boltzmann ensemble for MFE (A) and subop-
timal sampling (B) in RNAmutants. Since the RNAmutants is not guaranteed to sample the MFE
structure for all sequences, we compute the MFE structure using RNAfold for all the sampled
sequences and plot the resulting energies.
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Figure S3: Percentage of the global minimum energy reached by RNAmutants by mutational
distance.
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Figure S4: Average energy comparison between mateRNAl and RNAmutants using different mutation
rates for mateRNAl.
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Figure S5: Fraction of k-mutant neighbourhoods populated with internal looping structures in
RNAmutants.
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Figure S6: Number of mutations accumulated in populations evolving under a random GC-
preserving replication model.
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Figure S7: Number of sequences in hamming neighbourhoods.
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