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Abstract. Biological datasets are large and complex. Machine learning models are therefore es-
sential to capture relationships in the data. Unfortunately, the inferred complex models are often
di�cult to understand and interpretation is limited to a list of features ranked on their importance
in the model.
We propose a computational approach, called Foresight, that enables interpretation of the patterns
uncovered by Random Forest models trained on biological datasets. Foresight exploits the correla-
tion structure in the data to uncover relevant groups of features and the interactions between them.
This facilitates interpretation of the computational model and can provide more detailed insight
in the underlying biological relationships than simply ranking features. We demonstrate Foresight
on both an artificial dataset and a large gene expression dataset of breast cancer patients. Using
the latter dataset we show that our approach retrieves biologically relevant features and provides
a rich description of the interactions and correlation structure between these features.

Keywords: Machine learning, Random Forest, Model Interpretation, Information extraction, Breast
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1 Introduction

The advent of high-throughput genome-wide measurement techniques has allowed researchers to inves-
tigate the interaction between many biological components in an organism as well as their e↵ect on
phenotype. Such studies frequently depend on computational modeling as the sheer amount of variables
and data is beyond what the human intellect can appreciate. Many successful computational models have
been developed allowing for such feats as cancer sub-typing [14], survival prediction [12] and personalized
medicine recommendation [18] - all based on large and heterogeneous datasets. On the downside, the
predictive power of these models is often in sharp contrast with the domain expert’s ability to understand
them. This is because most inference methods result in ’black-box models’ that lack a good biological
interpretation. In most cases a simple list of features, ranked on their importance in the model is the only
output that is accessible to the domain expert. This limited interpretability impedes the formulation of
novel hypotheses or follow-up experiments.

One strategy to address this challenge is to limit the complexity of the model. For instance, one
could - a priori - severely reduce the number of features in the model by means of feature selection or
cluster averaging to ensure the final predictor remains interpretable. Alternatively, model complexity
can be reduced by restricting the model class to linear models, possibly combined with regularization
such as the lasso [26] and group lasso [30], thereby allowing some interpretation by inspection of the
regression coe�cients. However, evidence is mounting that complex non-linear models, such as Random
Forest models, are much better at fitting to the data [5, 19]. Such models are able to adapt to structure
in the data that is not captured using linear models or by models in a reduced feature space. In this
work we therefore take an alternative approach, that is, instead of limiting the complexity of the model
beforehand we aim to inspect the structure of a complex non-linear model to enable interpretation of the
underlying biology captured by the model. Our approach, called Foresight, is tailored to interpretation
of a Random Forest (RF) model trained on a large collection of features and summarizes interactions
between informative features in a network representation. Importantly, Foresight is not a feature selection
method, but a post-hoc analysis, which derives relevant features and their interactions from trained RFs.

The Random Forest is an ensemble learning method [3] which has gained much popularity in the
analysis of biological datasets due to its high prediction accuracy in noisy, high dimensional and under-
sampled classification tasks, typical for biological problems [27]. It is also a clear example of a black-box
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2 Mining the forest: uncovering biological mechanisms by interpreting Random Forests

model, as an RF consists of thousands of individual decision trees. As a result, RFs are di�cult to
interpret. The most widely used method to interpret RFs is to rank individual features by the RF’s
variable importance score (see the Extended Methods and materials in the Supplemental Information for
more details) and to select the top features [10]. This has been successfully exploited in the identification
of gene signatures for predicting drug-sensitivity [20] and detection of prognostic markers for recurrence
of hepatocellular carcinoma [29].

A significant challenge for the post-hoc interpretation of RFs and other classification models is the
complex patterns of correlation between features [10]. The reason for this is that correlated features are
e↵ectively interchangeable within the model. This causes dilution of importance scores within a correlated
group of features. As a result, models are likely to attribute high importance to only one or a few features
from a correlated group of features. This can potentially lead to ambiguous interpretation because small
di↵erences in the underlying dataset give rise to entirely di↵erent sets of important features. This is a
well-known impediment for the biological interpretation of signature genes for breast cancer outcome
prediction as di↵erent studies report di↵erent gene sets with only minimal overlap [15, 8].

To deal with this challenge, Foresight takes the correlation structure between features into account
by di↵using importance scores between correlated features and correlated interacting feature pairs. This
di↵usion process has the e↵ect of boosting the importance scores of correlated predictive features, thus
counter-acting the dilution of importance scores within correlated groups. Furthermore, by boosting the
scores of the entire group, this approach is much more likely to select the majority of the features in a
correlated feature group. This is of significant advantage in downstream analyses of biological datasets as
this allows us to identify biological pathways and/or functions that are overrepresented in high-ranking
genes.

We demonstrate the utility of our approach by applying it both to an artificial dataset and to the
METABRIC dataset, one of the largest gene expression datasets of breast cancer samples to date [6]. In
the latter dataset the objective is to di↵erentiate between two prominent types of invasive breast cancer:
invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). It is important to note that,
as ILCs can be readily distinguished from IDCs using histopathology, the goal of this classification is
not to predict cancer subtypes for new patients. Instead, we are interested in delineating the di↵erences
between the subtypes at the molecular level. Understanding the molecular mechanisms that determine
the di↵erence between ILC and IDC could facilitate a tailored treatment that targets each of the distinct
pathological subtypes specifically, ultimately leading to benefits for the patient. In this work, we show
how interpretation of this dataset using Foresight can help to reach these important goals.

2 Approach

Foresight’s approach consists of four steps, which are graphically depicted in Figure 1 and are explained
in more detail in the Methods. Briefly, in the first step, a trained RF model is used to calculate support
scores for both individual features and pairs of features (Figure 1A). For single features, the support score
is based on the number of times an individual feature occurs in the forest. For pairs of features, this
score is based on the number of times two features co-occur in a tree of the forest. Second, support scores
are di↵used across correlated features and correlated feature pairs using a k-nearest-neighbor di↵usion
approach (Figure 1B). This counteracts the dilution of support scores across many correlated features.
Third, the individual features and feature pairs are ranked based on their di↵used support scores (Figure
1C) and the highest ranking ones are selected. In the final step, the selected features are visualized in a
network representation (Figure 1D). This representation facilitates interpretation by highlighting both
feature co-occurrence, which indicate a synergistic relation between the corresponding biological features,
and feature correlation, which points to a similar biological role for these features.

Name Abbr. Type Equation Ranking single Ranking pairs

Support S Single 1

Used directly

Minimum score of members in

the pair

Di↵used support DS Single 3

Variable Importance VI Single S1

Pair support PS Pairwise 2

Flatten pair list, rank by or-

der in flattened list

Used directlyDi↵used pair support DPS Pairwise 4

Table 1. An overview of the scores used to rank single features and feature pairs.
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Fig. 1. Overview of Foresight’s approach. (A) Features and feature pairs are scored using the support score.
(B) The scores are adapted using di↵usion to account for correlation between features. (C) The feature (pairs)
are ranked based on the di↵used support scores. (D) The highest-ranking features are visualized in a network
representation. In this example features F1, F2, F3 and F6 are equally predictive and only features F3 and F6
are correlated.

3 Methods

3.1 Scoring of features and feature pairs

Individual features and feature pairs are scored using the support score. For single features this score is
defined as the number of times the feature is used at a decision node (non-leaf node) in trees of the RF.
Thus, the single feature support score (S) of a feature f is defined as:

Sf =
X

t2T

X

n2Nt

I(Fn = f) (1)

in which T represents the collection of all decision trees t in the forest, Nt the collection of all non-leaf
nodes n of the decision tree t and Fn the feature used in node n. A high value for the score indicates that
the feature is highly predictive, as it is frequently used in the predictions of the individual trees in the
forest. A low support score means that the feature is rarely used in the prediction process and therefore
of little predictive value.

Similarly, the feature pair support score (PS) is defined as the number of times that two features
co-occur at decision nodes along a single path from the root of a tree to one of its leaves. As such, the
support of a feature pair (f, g) is defined as:

Sf,g =
1

2
·
X

t2T

X

n2Nt

X

m2Nt/n

I(Fn = f)I(Fm = g)I
path

(t, n,m) (2)

with I
path

(t, n,m) = 1 if nodes n and m occur in a single path from the root of tree t to one of its leaves
and 0 otherwise.

As an example, Figure 1 states both types of support score for a single decision tree. Note that
features F5 and F6 are counted as a co-occurring feature pair as they occur along the same path from
the root of the tree to its right-most leaf. However, features F1 and F6 do not form a feature pair, as
they do not co-occur in any path from root to leaf. The feature pair (F1,F2) occurs twice in the tree,
once in the left half of the tree and once in the right, and is therefore assigned a support score of 2.
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3.2 Di↵usion of scores within correlated neighborhoods

Highly correlated features are e↵ectively interchangeable for classification. As a result, the support scores
within a group of highly correlated features are diluted among the members of the group, thus lowering
the scores of the individual features. In Foresight this e↵ect is counteracted by aggregating contributions
from features within the correlation neighborhood of each feature through a di↵usion step. This step
e↵ectively boosts the support scores of correlated features to better reflect their true predictive value.
We use a k-nearest-neighbor approach such that the same number of features (k) contributes support
scores to each feature. These contributions are weighted based on correlation. The resulting di↵used
support score (DS) is defined as:

Ŝk
f =

1

k
·
X

i2Fk
f

Cf,i · Si (3)

with Cf,i denoting the absolute Pearson correlation weight between features f and i and the set F k
f

representing set of k features closest to feature f in terms of their correlation. Note feature f is itself
also present in this set.

Support scores for feature pairs are di↵used in a similar manner. Here, the correlation neighborhood
of a feature pair (f, g) is defined based on the product of the individual feature correlations to features
f and g. Specifically, the di↵used pair support (DPS) is defined as:

Ŝk
f,g =

1

k2
·
X

i2Fk
f

X

j2Fk
g

Cf,i · Cg,j · Si,j (4)

Again, f and g are included in Ff and Fg, respectively. This ensures that the support score between f

and g will contribute most towards Ŝk
f,g, because Cf,f and Cg,g are 1.

Note that we defined the extent of the di↵usion of the score of a feature based on its k-nearest-
neighbors instead of based on the correlation scores of all other features. Thus, the di↵usion neighborhood
is of equal size for features and feature pairs with many correlates and those with just a few. Moreover,
in this way we do not have to rely on a strict clustering of features.

The choice of k involves a trade-o↵ between limited di↵usion (low values of k), which potentially
masks relevant features and feature pairs, or high di↵usion (i.e. high values of k), which may include
contribution of uncorrelated neighbors and may bias for larger groups of correlated features. In this work
we use k = 15, but show that the results are relatively insensitive to its setting.

3.3 Ranking of features and feature pairs

The (di↵used) support scores are used to rank features and feature pairs based on their importance in
the RF. The resulting ranking is used to identify the top features and feature pairs, which are selected
for visualization in the final step of the approach.

In the following, we will compare four di↵erent scores that are based on the (di↵used) support scores.
Table 1 provides an overview of these scores along with the variable importance score (VI). The VI score
is included for later comparison with the support scores, since it is the default score used to rank features
using RFs. It is based on the mean decrease in Gini impurity, and is calculated as part of the training
procedure of the RF (see Methods and materials for more details). Abbreviations for each of the scores
are listed in Table 1, which we will use in the remainder of the paper.

To allow for a comparison between the single feature scores (S, DS and VI) and the feature pair scores
(PS and DPS), we convert the single scores to pair scores by calculating the score of each individual
feature in a pair and taking the minimum of these two scores as the pair score. For example, for the
VI we obtain a feature pair score as: VIf,g = min(VIf ,VIg). Reciprocally, single feature rankings are
obtained from pair scores by first using the pair score to rank feature pairs and subsequently ranking
the single features by the order in which they appear in the ranked pair list.

3.4 Visualization of feature correlation and interaction for interpretation

The final step of Foresight’s approach is to select the top ranking features and feature pairs, and to
visualize these in a network representation that highlights interaction and correlation between features.
Pairs of features are considered to interact if they are frequently selected together by the RF. This
means that the specific combination of these two features is beneficial for accurate classification. In a
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Fig. 2. AUC and ROC curves for the selection of single features and feature pairs in the artificial
dataset. Figures A and B respectively depict the AUC and ROC curves for the selection of individual features.
Figures C and D shown similar curves for the selection of feature pairs. The AUC curves demonstrate the
performance of the various scores across di↵erent noise levels, specified by noise parameter ↵. Both ROC curves
were created with ↵ = 0.5 to illustrate score performance at an intermediate noise level.

cancer-related dataset, such a pair of features may represent two separate biological processes that must
be perturbed simultaneously for the development of the cancer. On the other hand, correlation between
features points to a similar role for these features. For example, two highly correlated features may be
expected to function in a single signaling pathway or protein complex and therefore play a similar role in
tumorigenesis. By visualizing both these relations in a single network representation, we allow the user to
identify groups of highly correlated features and, importantly, simultaneously identify strong interactions
between these groups.

Features are represented as nodes in the network and may be connected by two di↵erent types of
edges: correlation edges and interaction edges. Two feature nodes are only connected by a (red) correlation
edge if the correlation between their features exceeds the preset minimum correlation threshold. Similarly,
two nodes are only connected by a (black) interaction edge if the support value of their interaction pair
exceeds the predefined minimum support threshold. Furthermore, the transparency of the edges is used
to visualize the relative magnitude of the co-occurrence or correlation, with higher scores corresponding
to more opaque edges.

Nodes in the network are positioned based on their correlation, such that highly correlated features
manifest as groups and uncorrelated features as distinct entities. This approach adds considerable clarity
to the resulting network by allowing edges in the network to be analyzed at the level of grouped features
instead of single features. Foresight determines the positions of nodes in the network using classical mul-
tidimensional scaling to reduce the matrix of absolute feature correlation distances to a two dimensional
space.

4 Results

4.1 Identification of predictive features in artificial data

Construction of the artificial dataset To test the performance of our approach, we created a realistic
artificial dataset, with a known ground truth, based on a colon cancer gene expression dataset [17]. The
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Fig. 3. Foresights network representation of the top 100 features (ranked by the DPS) in an instance
of the artificial dataset with ↵ = 0.2. Nodes in the network correspond to the individual features and are
colored based on the rank of their feature, with a darker color corresponding to a higher rank. A red correlation
edge connects two nodes if their correlation exceeds 0.8. Similarly, nodes are connected by a black feature pair
edge if their pair support exceeds 75. These two thresholds were chosen to balance the information content and
the sparsity (and thus the interpretability) of the network. The transparency of both edge types indicates their
relative strength in the network. The locations of the predictive features in clusters X1, X2 and X3 are indicated
by their respective colored regions, showing that this network representation provides a clear view of both the
correlation structure within each cluster and degree of support between two clusters.

top 5000 most variable genes in the gene expression data were selected as features for the artificial
dataset. The features were clustered using the correlation distance measure to identify clusters of highly
correlated features. Three of these clusters, containing 7, 17 and 14 correlated features respectively, were
selected to define the ground truth of the dataset. These clusters will hence be referred to as X

1

, X
2

and
X

3

. Using these clusters, the class label of each sample was defined as:

L =

(
A if (X

1

> T
1

V
X

2

> T
2

)
W

X
3

> T
3

B otherwise
(5)

in which Xi > Ti is only true if all features in cluster Xi exceed the predefined thresholds specified in Ti.
Note that Ti contains a threshold for each feature in Xi, which were determined emperically to balance
the size of the classes.

This construction ensures that the dataset contains many clusters of correlated features, of which
only the three selected clusters are truly predictive. As such, the dataset mimicks a potential biological
situation in which three groups of co-expressed genes together result in a specific phenotype. Furthermore,
as the features are based on actual gene expression data, both the size and composition of the clusters
in the dataset reflect that of an actual biological dataset.

Evaluation of scores for ranking single features We assessed the performance of the (di↵used)
support scores and the VI in the selection of individual features by ranking the features in the artificial
dataset on each of the scores and comparing the resulting rankings against the known ground truth
(consisting of the features in clustersX

1

,X
2

andX
3

). The rankings were scored against the known ground
truth of the dataset by calculating the receiver operating characteristic (ROC) and the corresponding
area under the curve (AUC). To emphasize the importance of identifying ground truth features early in
the ranked list, AUCs were only calculated for FPR < 0.1. This AUC is subsequently multiplied by 10
to scale the score between 0 and 1. We refer to this score as the AUC01.

The robustness to noise of each of the scores was evaluated by repeating this procedure with di↵erent
levels of noise in the dataset. The amount of noise in the dataset was defined by a parameter ↵, with
↵ = 0 corresponding to a situation without noise and ↵ = 1 to a dataset only consisting of noise (see the
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Extended Materials and methods in the supplement for more details). The variability in the calculated
AUCs was determined by repeating the analysis for 10 instances of the artificial dataset at each noise
level, in which only the stochastic noise di↵ers between instances. Note that the noise level also reflects
the di�culty of classification for the RF model, resulting in the trained models having a mean out-of-bag
(OOB) prediction error of approximately 0.14 for ↵ = 0 and OOB errors of 0.16, 0.18 and 0.44 for
↵ = 0.5, ↵ = 0.75 and ↵ = 1, respectively.

The resulting AUC curves for single features are depicted in Figure 2A, with the ROC curves for a
single instance with ↵ = 0.5 shown in Figure 2B. From the AUCs it is evident that the DPS outperforms
the other measures for ↵ < 0.75, indicating that it is indeed beneficial to include pair information in the
ranking of individual features. We also find that the DS outperforms the S and the VI marginally for low
noise levels with its advantage increasing at higher levels of noise. From the ROC curve (shown in Figure
2B) we see that the advantage of the DS is mainly attributable due to its overall higher true positive
rate (TPR), as for lower false positive rates (FPR) the score lags behind the S and the VI. This indicates
that the main benefit of the single feature di↵usion comes from ensuring that all features from the three
clusters are selected, whereas the S and VI measures fail to select some of the predictive features.

Evaluation of scores in the ranking of feature pairs The same approach was used to assess the
performance of the scores in the ranking of feature pairs. For feature pairs we defined the ground truth
of the artificial dataset as all interactions between the three ground truth clusters (i.e. all combinations
of features X

1

-X
2

, X
1

-X
3

and X
2

-X
3

), as these pairs constitute all interactions between the three
predictive clusters. As the amount of feature pairs is much larger than the amount of individual features,
the rankings of feature pairs are scored using the AUC001, which is similar to the AUC01 but limits it
calculation of the AUC to FPR < 0.01 and is multiplied by 100 to scale the score between 0 and 1.

From the feature pair AUCs (Figure 2C) we see that the DPS notably outperforms the other measures
up to a noise level of 0.75, which is a similar result to that of the single feature case. Though the VI
performs reasonably, it is outperformed by the di↵used scores. This is due to its failure to select all
predictive feature pairs, as is evident from the ROC curve (Figure 2D). Interestingly, the pair support
measure performs poorly, showing that the di↵usion step is crucial for the performance of the di↵used
pair support.

Overall these results demonstrate that the DPS outperforms the S, PS, DS and VI scores in both
the selection of single features and feature pairs. This shows that both the di↵usion and the inclusion
of pair information contributes considerably to accurate feature selection in this artificial dataset. This
advantage is only lost at high noise levels (↵ > 0.75), likely due to the loss of correlation and/or loss
of informative features at these high noise levels. Furthermore, additional experiments have shown that
this result is robust across di↵erent sizes of the RF (Suppl. Figure S1) and di↵erent values of the KNN
di↵usion parameter k (Suppl. Figure S2).

Recapitulation of dataset structure using the network visualization To determine if our network
visualization is able to recapitulate the structure underlying the artificial dataset, we used the DPS to
select and visualize the strongest feature pairs in the dataset. Figure 3 shows the result after minimal
manual manipulation (the raw Cytoscape visualization is given in Figure S6). From the visualization the
three ground truth clusters X

1

, X
2

and X
3

can easily be identified as the three distinct groups of features
that are highly connected by correlation edges within their group. Furthermore, the large amount of black
edges between the three groups clearly shows a high degree of co-occurrence between the features of the
respective groups, reflecting the importance of combining features from the three groups for accurate
prediction. Altogether this shows that this approach can clearly identify the feature structure embedded
in the artificial dataset.

4.2 Interpretation of features that discriminate between ILC and IDCs in METABRIC

After establishing the usefulness of Foresight on artificial data, we set out to determine if our approach
could facilitate the interpretation in an actual dataset. To this end, we applied Foresight to a RF trained
to discriminate ILC and IDC breast cancer subtypes based on gene expression. We evaluated the ranked
features and feature pairs by determining enrichment in gene sets. Gene set enrichment analyses, for
example GSEA [16, 24] and DAVID [11], have become a standard approach for high level functional
interpretation of gene lists. We used the number of enriched gene sets as a measure of interpretability.
Furthermore, we evaluated the results by overlaying them with protein-protein interaction networks, and
through inspection of the network visualization.
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Fig. 4. Top 10 gene sets identified by Foresights DPS (Figure A) and the VI (Figure B). Gene sets
clearly related to breast cancer are highlighted in red. For each gene set we show a box plot of the ranks of the
genes in the gene set to illustrate how the genes are ranked by the DPS and VI respectively. The FDR of each
gene set and its rank in the other approach is shown for comparison. The FDRs of significantly enriched gene
sets (FDR < 0.1) are indicated in bold. From the FDRs and the overall gene ranks within the gene sets it is
clear that Foresight identifies more enriched gene sets than the VI.

Fig. 5. Network visualization of the top 100 features in the METABRIC ILC vs. IDC dataset (as
ranked by the di↵used pair support). Nodes are labeled by the gene symbol that corresponds to the Illumina
probe ID of their feature, with numbered su�xes added for genes with multiple probes. Node colors correspond
to the relative rank of their features, ranging from dark green (high) to white (low). Highly correlated features
are connected by red links and highly scoring feature pairs are indicated by black links, with the transparency
of the links indicating their relative strength. Genes indicated in orange correspond to genes that are known to
distinguish ILCs and IDCs, those colored in purple are known to play a role in the development of IDCs.

The ILC vs. IDC gene expression dataset is a subset of the METABRIC dataset. We randomly selected
a total of 294 tumors, which were spread evenly over both classes to avoid biasing the RF towards either
of the classes. Non-informative features were removed by selecting the top 5000 most variable features
as input for the analysis. This dataset was used to train a RF of 2000 trees with a reasonably high
prediction accuracy, as indicated by the model’s OOB error of 0.21.

Identification of relevant enriched gene sets with GSEA The di↵used pair support score (DPS,
Eq. 4) was used to rank the features in the dataset, after which we applied GSEA to determine if the
ranking was enriched for breast-cancer or, more specifically, IDC/ILC related gene sets. The same GSEA
analysis was also performed on a gene list ranked by the VI score for comparison with the VI-based
approach.

The analysis revealed that the DPS finds substantially more enriched gene sets than the VI, identifying
123 enriched gene sets with FDR < 0.1 versus only 2 found by the VI. We further compared the top ten
gene sets of both approaches (ranked by the FDR) and used boxplots to visualize the distribution of the
ranks of the genes in each gene set (Figure 4). Overall, the ranks of the genes in the DPS top gene sets
(Figure 4A) are considerably better than those of the sets identified by the VI (Figure 4B). Moreover,
within the selected gene sets the rankings of the DPS are better than those of the VI. This explains, to a
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large extent, the di↵erence in the enrichment between the two rankings and demonstrates that the DPS
does indeed enrich for functionally coherent sets of genes. This analysis clearly shows the e↵ect of taking
into account both the correlation structure and the analysis of pairs of features.

To determine if Foresight’s di↵usion specifically enriches for gene sets that are relevant to the distinc-
tion between ILCs and IDCs, we examined the selected top gene sets for their relevance to breast cancer
and/or the discrimination between ILCs and IDCs. Of the top ten Foresight gene sets, four can be di-
rectly related to breast cancer. The highest ranking gene set (Bertucci) corresponds to a gene expression
signature that was previously determined to distinguish ILCs and IDCs using microarray gene expression
data [1]. The idenification of the Smid luminal A gene set (rank 2) is in line with the observation that
ILCs are generally luminal A breast cancers, whilst IDCs are typically more diverse [13]. Similarly, ILCs
tend to have a lower grade than IDCs [21], explaining the enrichment of the Sotirou grade gene set
(ranked no. 5). The bias for lower grades and the luminal A subtype were indeed confirmed from the
clinical data of the samples (Supplementary Tables S1 and S2). Additionally, the presence of the Smid
relapse gene set is likely due to the di↵erences in metastatic spread between ILCs and IDCs, as IDCs are
more often found to form lung metastases than ILCs [9].

The VI approach also identifies the Bertucci and Smid relapse gene sets as top hits that are directly
related to breast cancer, however only the Bertucci set is statistically significant with FDR < 0.1 (FDR =
9.14 ·10�2, compared to 3.00 ·10�4 in the Foresight ranking). The relevance of other genes sets in the top
10 is unclear. For example, though the RAC1 pathway has been associated with migratory and invasive
behavior [7], its enrichment is weak and stems solely from the high ranks of CDH1 and MAP3K1.
Additionally, although the FGF, CDC42 and MET pathway gene sets are attributed to invasive behavior
and metastasis in the literature [25, 23, 2, 22], their role specific to IDCs and ILCs is unclear and their
set enrichment and the overall gene ranks are underwhelming.

In summary, these results support the idea that the DPS score in Foresight enables a better interpre-
tation of the METABRIC ILC vs. IDC dataset than the traditional VI. Specifically, ranking of the genes
based on DPS leads to more significant gene sets, many of which are directly relevant to the biological
problem under investigation.

Visualization and interpretation of structure between predictive features To gain additional
insight into the correlation structure and interaction between features in the METABRIC dataset, we
selected the top 100 features from the ranked list and visualized these features using Foresight’s network
representation. The resulting network (shown in Figure 5, the raw Cytoscape visualization is provided in
Figure S7) contains 85 unique genes and can clearly be divided into two groups of correlated features and
a small group of features without high-ranking correlates. Of the 85 genes in Figure 5, we identified five
genes (CDH1, SPRY1, CCL14, SPP1 and THBS4) that have previously been identified to distinguish
ILCs and IDCs by Turashvili et al. [28]. Another six genes (MFAP4, SPARCL1, ELN, ALDH1A1, DPT
and CD34) are included in the Bertucci ILC vs. IDC gene signature [1] that was enriched in our GSEA
analysis. Additionally, genes such as GJB2, COL11A1, MMP11, PLAUR and PLAU have been associated
with the development of IDCs[4]. Taken together, these results show that many genes in the network are
known to play a role in the development of ILCs and IDCs.

The topology of the network also reveals clear substructure between the selected features. There
appear to be two main clusters, which are not only di↵erent in terms of their gene expression (Sup-
plementary Figures S3 and S4) but also heavily connected by support edges. This means that features
from both clusters frequently co-occurred in the RF, indicating that combinations of features from these
clusters are important in discriminating between IDCs and ILCs. The high functional enrichment ob-
served when ranking genes based on the DSP prompted us to investigate whether gene pairs that were
highly ranked by DSP were indeed functionally related. Using a shortest path distance approach between
gene pairs in protein-protein interaction networks, we determined that, indeed, gene pairs selected by
Foresight are connected by shorter paths than pairs selected by other approaches such as the VI (Suppl.
Figures S8 and S9).

Interestingly, DAVID [11] reveals cluster-specfic functional enrichment (summarized in Figure 5, de-
tailed results in Supplementary Files S1 and S2). This observation directly points to the possible inter-
action between biological functions important in the context of ILCs and IDCs, which warrants further
investigation by domain experts.
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5 Discussion

The utility of complex computational models in biology is not limited to their predictive performance
or data fit, but also the extent to which they can help domain experts generate new hypotheses or
experiments. This seems somewhat paradoxical as these complex models exceed the human intellect and
are thus considered black-box models. Therefore, post-processing steps have to be taken to extract useful
information from the model. For example, in most models importance scores can be calculated, allowing
the identification of the most informative features.

If these features are genes, a common additional post-processing step is gene set enrichment analysis.
This allows long lists of genes to be summarized by a small number of enriched gene sets that represent
the biological functions underlying the gene list. This greatly helps in providing the domain expert insight
into the model and explains the large appeal and wide use of these approaches.

Here, we have introduced a post-hoc analysis for the Random Forest, a classification model that has
gained much traction in the field of computational biology due to its robustness and overall high prediction
accuracy. Our approach, called Foresight, facilitates the interpretation of RF models by identifying and
visualizing the informative features and their interactions. Central to this approach is the use of the
correlation structure between the features and the identification of important feature pairs in the RF.

Using the METABRIC ILC vs. IDC dataset, we have shown that this approach allows us to iden-
tify more enriched gene sets that are relevant to the underlying biology than the traditional variable
importance score. Furthermore, selection and visualization of high scoring feature pairs in a network rep-
resentation, enabled us to identify correlated groups of features with distinct biological properties. These
results exemplify the contribution of Foresight, which is to facilitate domain experts in the interpretation
of RFs applied to large datasets.

We observed that exploiting pairs of features outperforms the use of single feature scores as well as
the more sophisticated VI score to retrieve the true relationships in the data. While it is computationally
expensive to analyze feature pairs, with current computation power this is certainly not prohibitive. In
future it may even become straightforward to analyze feature pairs and possibly even feature triplets.

Although our approach is practical and robust, several important considerations must be mentioned.
First, a potential drawback of the di↵usion approach to boost the scores of correlated features is that
it may inadvertently bias feature scores as a function of the size of the correlated group. Our results
indicate, however, that important players in ILC vs. IDC di↵erentiation, such as CDH1, were without
correlates in the data, yet still discovered by our approach. Nevertheless, it is important to investigate
to what extent group size biases di↵used scores and if other measures than the Pearson correlation
coe�cient may be more suitable.

Second, there can be alternative reasons why feature pairs are jointly selected in trees in a RF
other than that they contain di↵erent information and that their combination is informative for the
class labels. For example, it is also possible that they contain similar information and their combination
provides robustness for classification, in which case the features will be both highly correlated and co-
occurrent. Untangling these types of pairwise relations will provide considerably more insight into the
manner in which features are used in the classification model.

Third, the current approach provides a general view of the structure of the RF as scores are aggregated
over the entire forest, but does not take structure between samples into account (other than through
the class labels). Analyzing the RF on a per-sample basis or for subsets of samples may be valuable
as it will allow the distinction of groups of predictive features that explain distinct subsets of samples
in the dataset. This would be especially relevant in the analysis of biological datasets, considering the
heterogeneous nature of biological samples.

An important avenue for further study is to investigate if other types of black box models are amenable
to interpretation as well. We believe that the underlying principle of Foresight, i.e. a co-occurrence
analysis whilst taking into account the correlation structure in the data, is readily applicable to other
complex models. This will be essential for leveraging the full potential of the vast amounts of data that
are currently being generated in the fields of molecular medicine and the life sciences in general.
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