

**Use-dependent plasticity in human primary motor hand area:
Synergistic interplay between training and immobilisation-**

Estelle Raffin ^{*1,2,3}, Hartwig Roman Siebner^{1,4}

¹ Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

² Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France

³ Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland

⁴ Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark

Corresponding authors:

Estelle RAFFIN and Hartwig Roman SIEBNER

Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.

Tel.: +45 38622975.

E-mail address: esteller@drcmr.dk and h.siebner@drcmr.dk

Abstract: (146 words)

Training and immobilization are powerful drivers of use-dependent plasticity in human primary motor hand area ($M1_{HAND}$). Here we used transcranial magnetic stimulation to clarify how training and immobilisation of a single finger interact within $M1_{HAND}$. Healthy volunteers trained to track a moving target with a finger for one week. The tracking skill acquired with the trained finger was transferred to a non-trained finger of the same hand. The cortical representations of the trained and non-trained finger muscle converged in proportion with skill transfer. Finger immobilisation alone attenuated the corticomotor representation and pre-existing tracking skill of the immobilized finger. The detrimental effects of finger immobilization were blocked by concurrent training of the non-immobilized finger. Conversely, immobilization of the non-trained fingers accelerated learning during the first two days of training. The results provide novel insight into use-dependent cortical plasticity, revealing synergistic rather than competitive interaction patterns within $M1_{HAND}$.

1 **Introduction**

2

3 Use-dependent plasticity of motor representations in the primary motor
4 hand area ($M1_{HAND}$) plays a critical role for learning dexterous movements (Plautz
5 et al., 2000; Mawase et al., 2017; Lemon, 1999). In humans, motor representations
6 within $M1_{HAND}$ are dynamically shaped by sensorimotor experience (Siebner and
7 Rothwell, 2003; Classen et al., 1998). Use-dependent representational plasticity
8 has been extensively studied in rodents (Alaverdashvili and Paterson, 2017; Kleim
9 et al., 1998) and monkeys (Nudo and Milliken, 1996; Nudo et al., 1996; Schieber
10 and Deuel, 1997), suggesting a competition between cortical motor
11 representations. In monkeys, trained representations in $M1$ expanded at the
12 expense of the representational zones of the adjacent body parts (Nudo et al.,
13 1996). In contrast, long-term sensorimotor immobilization led to shrinkage of the
14 “restricted” corticomotor representations, boosting the adjacent representations
15 as in monkeys and rodents (e.g. Milliken et al., 2013) (e.g. Viaro et al., 2014).

16 Plastic changes in corticomotor representations can be mapped non-
17 invasively in human $M1_{HAND}$ with Transcranial Magnetic Stimulation (TMS)
18 (Thickbroom et al., 1999; Wassermann et al., 1992; Wilson et al., 1993; Kleim et
19 al., 2007). Classically, a figure-of-eight shaped coil is discharged over a grid of scalp
20 positions and the mean amplitude of the Motor Evoked Potentials (MEPs) is
21 calculated for each grid site, enabling the construction of a corticomotor map for
22 the target muscle. TMS-based corticomotor mapping revealed *use-dependent*
23 *representational plasticity of single muscle representations* in $M1_{HAND}$. Echoing the
24 results obtained in animals, trained cortical muscle representations increased
25 after repeated practice of simple or complex sequential movements (Classen et al.,

26 1998; Muellbacher et al., 2001; Pascual-Leone et al., 1994), whereas forced
27 immobilization attenuated corticomotor representation (Liepert et al., 1995).
28 While these studies provided converging evidence that training and
29 immobilization are powerful drivers for plasticity in M1_{HAND}, it remains to be
30 clarified how experience-driven changes of distinct motor representations within
31 M1_{HAND} interact and determine within-area plasticity of human M1_{HAND}.

32 To address this question, we investigated how finger-specific visuomotor training
33 or immobilisation interactively shape representational plasticity within human
34 M1_{HAND}. We hypothesized that finger-specific training or finger-specific
35 immobilization would impact on the skill level and cortical representation of the
36 finger that was not targeted by the intervention (i.e., non-trained or non-
37 immobilized finger).

38 Despite widespread and intermingled motor representations in primate M1_{HAND}
39 (Georgopoulos et al., 1999), there is a consistent latero-medial somatotopic
40 gradient of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI)
41 muscle (Beisteiner et al., 2004; Beisteiner et al., 2001; Gentner and Classen, 2006;
42 Quandt et al., 2012) . We have recently introduced a novel neuronavigated TMS
43 mapping approach which readily reveals the somatotopic arrangement of the
44 ADM and FDI representations within M1_{HAND} (Raffin et al., 2015) (Dubbioso et al.,
45 in prep.). Here we exploited this TMS mapping approach to probe within-area
46 somatotopic re-arrangement of motor finger representations in response to
47 training or immobilisation of specific fingers.

48 Our experimental approach enabled us to test whether within-area plasticity in
49 M1_{HAND} is characterized by competition or cooperation. Training-induced
50 strengthening of one motor representation may occur at the expense of the non-

51 trained motor representations. This competition may be particularly expressed
52 when one motor representation is strengthened by training and the other is
53 weakened through immobilization. Alternatively, experience-induced plasticity
54 induced by finger-specific changes in sensorimotor experience may be mutually
55 synergistic, benefitting also motor representations that are not directly targeted
56 by training. A cooperative and synergistic mode of interaction implies that
57 training of one motor representation would not benefit from concurrently
58 weakening another one by immobilization. The prediction would rather be that
59 the strengthening of the trained motor representation would stabilize the
60 deprived motor representation.

61

62 *Insert Figure 1 approximately here.*

63

64 To test which mode of interaction characterizes within-area representational
65 plasticity within human M1_{HAND}, healthy right-handed volunteers performed two
66 sessions of a visuomotor tracking task one week apart (Fig. 1a). The tracking task
67 required subjects to tracking a moving line with the left index or little finger (Fig.
68 1a). The tracking task was programmed as application on a smartphone which
69 was attached to a wooden platform. The wrist and the non-trained fingers were
70 fixed to the platform with Velcro strap to stabilize their position and to minimize
71 co-contraction during tracking.

72 Participants were assigned to three groups, which were exposed to different
73 sensorimotor experiences during the week between the two experimental
74 sessions (Fig. 1b). Group A trained the same task with either their index or their
75 little finger three times ten minutes a day, while task difficulty gradually increased

76 from day to day. Group B underwent finger immobilization without any training
77 (Group B). Group C received the same training as group A but with their adjacent
78 fingers immobilized. Learning performances were quantified globally and
79 gradually during the week using the absolute deviation between the target line
80 and the movement performed by the subjects (Fig. 1c). Using neuronavigation,
81 TMS was applied to seven M1_{HAND} targets which reflected the individual shape of
82 the central sulcus (i.e., the “hand knob”) (Raffin et al., 2015). Sulcus-shape based
83 TMS mapping was performed at baseline and after one week to capture
84 experience-dependent changes in mediolateral cortical representations of left
85 ADM and FDI muscles in the right M1_{HAND}.

86

87 **Results.** 63 healthy volunteers were either exposed to one week of finger training,
88 finger immobilization or finger training combined with immobilization of the
89 remaining fingers. One week of finger-specific training or immobilisation was
90 sufficient to shape dexterity as well as muscle-specific corticomotor
91 representations in human M1_{HAND}. Critically, each intervention had different
92 effects on manual tracking skill and produced different patterns of within-area
93 reorganization in human M1_{HAND}.

94

95 **Changes in visuomotor tracking performance.** We assessed the cumulative
96 improvement in tracking ability using the percentage change in tracking accuracy
97 at day 8 relative to baseline performance at day 1 (Fig. 2, left panel). Please note
98 that the visuomotor tracking tasks performed at day 1 and 8 were matched in
99 difficulty (Fig. 1c). A mixed ANOVA including all three interventional groups
100 revealed a significant effect for the finger targeted by the interventions ($F_{(1,52)} =$

101 52.31, $p < 0.001$). This was due to an overall increase in tracking accuracy for the
102 trained finger (Group A and C) or not immobilized (Group B) relative to the non-
103 trained finger (Group A) or immobilized finger (Group B and C). The relative
104 improvement in accuracy for the targeted finger depended on the type of
105 intervention ($F_{(2,52)} = 10.05$, $p < 0.001$), while there was no systematic difference
106 in the amount of overall learning between the little or index finger ($F_{(1,52)} = 1.88$,
107 $p = 0.18$). A mixed ANOVA only including the data obtained in two learning groups
108 (Group A and C) yielded similar results. There was a main effect for the *finger*
109 *targeted by training* ($F_{(1,38)} = 60.01$, $p < 0.001$) and an interaction between *type of*
110 *intervention* and *trained finger* ($F_{(1,38)} = 33$, $p < 0.001$).

111

112 *Insert Figure 2 approximately here.*

113

114 The significant interaction between the *type of intervention* and the *trained finger*
115 motivated a follow-up analysis of overall learning within each interventional
116 group. In group A, learning without concurrent immobilization only resulted in a
117 trend advantage in tracking performance for the trained compared to the non-
118 trained fingers ($t_{(22)} = 1.94$, $p = 0.07$). At the individual level, the improvement in
119 tracking with the trained fingers correlated with improved tracking performance
120 in the non-trained, non-immobilized finger ($r = 0.66$, $p < 0.001$; Fig. 2, upper right
121 panel). In the “training only” group, the non-trained finger showed a significantly
122 higher tracking accuracy at day 8 relative to the non-trained and non-immobilized
123 finger in the “immobilization only” group (Group A vs group B, $t_{(40)} = 4.85$, $p <$
124 0.001). Together, the data indicate efficient transfer of the learned visuomotor

125 tracking skill to the non-trained finger in the “training only” group (Fig. 2, upper
126 panels).

127 In contrast, no learning transfer was found, when learning was combined with
128 immobilisation (Group C). After one week of training, there were significant
129 differences in tracking performances between the learned and the immobilized
130 fingers ($t_{(20)} = 7.88$, $p < 0.001$) without any correlation among them ($r = 0.1$, $p =$
131 0.7; Fig. 2, lower panels).

132 Finger immobilization without concurrent training of the adjacent finger
133 degraded visuomotor tracking ability of the immobilized finger (Group B, Fig. 2,
134 middle panels). Pair-wise comparison showed a consistent decay in tracking
135 performance at day 8 for the immobilized finger relative to the non-immobilized
136 non-trained finger ($t_{(18)} = 3.59$, $p = 0.002$). The relative decrease in tracking
137 accuracy in the immobilized finger did not correlate with tracking performance in
138 the non-immobilized, non-trained finger ($r = -0.28$, $p = 0.29$), which showed
139 similar tracking performance at day 1 and 8.

140

141 Concurrent immobilization of the non-trained fingers failed to boost the
142 acquisition of the tracking skill in the trained finger. Tracking performance was
143 comparable for the trained finger in group A and C ($t_{(42)} = 1.14$, $p = 0.26$), showing
144 that overall learning was not enhanced by immobilization of the non-trained
145 fingers in group C. However, concurrent training prevented degradation of
146 tracking skill of the immobilized finger in group C (Fig. 2, lower left panel). The
147 immobilized finger combined with training of the adjacent finger showed better
148 tracking performance than participants in whom the finger was immobilized

149 without concurrent training of the adjacent finger (Group C vs group B; $t_{(38)} = 4.33$,
150 $p < 0.001$).

151

152 *Insert Figure 3 and Table 1 approximately here.*

153

154 **Day-to-day changes in finger tracking performance.** We analysed the
155 behavioural data that had been recorded on the smartphone during home-based
156 training sessions from day 2 to 7. Tracking accuracy was normalized to the gradual
157 increase in difficulty level of the task from day to day. Daily training resulted in a
158 gradual improvement of tracking skill (Fig. 3a). Mixed-effects ANOVA showed a
159 main effect of *day of training* $F_{(3.24,37)} = 15.6$, $p < 0.001$) which did not differ
160 between training with the index or little finger ($F_{(1,37)} = 3.29$, $p = 0.08$. While the
161 total amount of performance improvement from baseline to day 8 was similar
162 between group A and C, we found differences in the dynamics of day-to-day
163 learning in the trained fingers between Group A and C (Fig. 3a & b). This was
164 confirmed by a *day of training* by *type of intervention* interaction ($F_{(5,37)} = 2.54$, $p =$
165 0.03). The immobilization of the adjacent fingers accelerated early learning in
166 group C. Group C showed a better tracking accuracy on days 3, 4 and 5 relative to
167 Group A in which finger tracking was trained without concurrent immobilisation
168 of the adjacent fingers (see Fig. 3a & b for the incremental learning curves for both
169 trained fingers and Table 1 for post hoc t-tests comparisons).

170 When learning was performed without concurrent immobilisation, the amount of
171 early learning (mean of day 2 and day 3) correlated with the magnitude of late
172 learning (mean of day 6 and day 7), suggesting a linear increase in skill over
173 consecutive days (Group A, $r = 0.72$, $p < 0.001$, Fig. 3c). This gradual continuous

174 performance gain was not found when learning was combined with
175 immobilisation of the adjacent fingers (Group C; $r = -0.16$, $p = 0.49$, Fig. 3d).
176 Concurrent immobilization of the adjacent fingers modified the gradual build-up
177 of skill from session to session during one week of training, accelerating early
178 learning while flattening the slope of late learning. In group C, the rapid early
179 increase in tracking performances (day 2 – day 3) scaled with the amount of
180 cortical disinhibition in M1_{HAND} as reflected by the relative reduction in SICI from
181 day 1 to day 8 ($r = 0.54$, $p = 0.012$, corrected for multiple comparisons).

182

183 *Insert Figures 4 and 5 approximately here.*

184

185 **Experience-dependent within-area plasticity in right M1_{HAND}.** Sulcus-shape
186 based TMS mapping was used to map the corticomotor representations of the left
187 FDI and ADM muscles in each individual. Sulcus-shape based mapping showed
188 that all interventions triggered a reorganization of cortical representations which
189 involved changes in corticomotor excitability and spatial representation. (Fig. 4 &
190 5). Corticospinal excitability was measured as *Area Under the Curve* (AUC),
191 representing the mean MEP amplitude for all seven-map positions. The ratio
192 between AUC values obtained at day 8 (post-training) and day 1 (baseline)
193 reflected relative changes in corticomotor excitability from day 1 to day 8.

194 **Changes in regional corticospinal excitability.** Visuomotor tracking training
195 increased regional corticospinal excitability in the trained muscles regardless of
196 which finger was trained (Fig. 4 & 5, panels A and C). Conversely, immobilisation
197 alone attenuated corticospinal excitability of the immobilized muscle (Fig.4 & 5,
198 panel B). The opposite effects of training and immobilization were reflected by a

199 statistical interaction between *type of intervention* and *muscle* for the AUC ratio
200 ($F_{(2,55)}=3.81$, $p=0.03$). The bi-directional use-dependent change in corticospinal
201 excitability did not differ between the FDI or ADM muscle ($F_{(1,55)}=0.16$, $p=0.69$).
202 There was also a main effect of *muscle* caused by larger AUC values for FDI relative
203 to ADM muscle across all conditions ($F_{(1,55)}=40.63$, $p<0.001$), presumably
204 reflecting the higher relevance of the FDI muscle for dexterous movements during
205 everyday life.
206 Follow-up comparisons revealed that one week of visuomotor finger training
207 produced similar excitability increases in the training muscle regardless of
208 whether the non-trained finger was immobilized or not (Group A vs. Group C: $t_{(42)}$
209 = 0.75, $p = 0.45$). Immobilization only induced a reduction in AUC in the
210 “immobilization only” group, but this reduction in corticospinal excitability of the
211 immobilized muscle was prevented by concurrent training of the non-
212 immobilized finger (group C vs. group B, $t_{(36)}=3.07$, $p = 0.004$). Moreover, the
213 “training-only” group showed larger AUCs of the non-trained finger muscle
214 compared to the non-trained, non-immobilized finger muscle in the
215 “immobilization only” group (group A vs. group B, $t_{(38)}=7.7$, $p < 0.001$).
216

217 **Within-area reorganization in right M1_{HAND}.** Sulcus-shape based TMS mapping
218 confirmed the well-known somatotopic arrangement of cortical finger
219 representations in the M1_{HAND} with the FDI muscle being represented more
220 laterally than the ADM muscle (Fig. 5). Accordingly, statistical comparison of mean
221 MEP amplitudes at each stimulation position showed an interaction between
222 *location of TMS* and *muscle* ($F_{(6,300)} = 34.25$, $p < 0.001$).

223 Selective finger training resulted in a convergence of cortical muscle
224 representations, but only when the non-trained fingers were mobile. The spatial
225 representations of the FDI and ADM muscle in M1_{HAND} had moved towards each
226 other after training, showing more overlap in group A, but not in group B and C.
227 This pattern was confirmed by mixed-effects ANOVA which tested how the various
228 interventions altered the distance between finger representations. We used the
229 distance between the *Amplitude-Weighted Mean Position* (D_{WMP}) of the FDI and
230 ADM excitability profiles as index of spatial proximity between finger
231 representations (see methods section). Mixed effects ANOVA revealed a change in
232 spatial proximity between the FDI and ADM representation after one week
233 relative to pre-interventional baseline (main effect of *session*: $F_{(1,57)} = 6.7$, $p =$
234 0.011). The spatial shift critically depended on the type of intervention, as
235 indicated by an interaction between *session* and *type of intervention* ($F_{(2,55)} = 3.32$,
236 $p = 0.043$). In the “training only” group, pairwise post-hoc t-tests showed that the
237 mean position of the trained and non-trained muscle profiles shifted toward each
238 other, resulting in smaller D_{WMP} values (group A; $t_{(22)} = 3.45$, $p = 0.002$, paired t-
239 test). In contrast, mean D_{WMP} did not change in group B and C in which
240 immobilisation was applied ($p > 0.5$).
241

242 *Insert Figure 6 approximately here.*

243
244 **Experience-dependent changes in intracortical inhibition.** Paired-pulse TMS
245 mapping at an inter-stimulus interval of 2 ms was used to examine the magnitude
246 or spatial distribution of short-latency intracortical inhibition (SICI). The overall
247 strength of SICI, as reflected by the AUC of SICI across all stimulation sites

248 (AUC_{SICI}), was modified depending on the type of intervention. Only participants,
249 who had been practicing visuomotor tracking movements for a week, showed
250 reduced SICI in the trained muscle representation as revealed the mean AUC_{SICI}
251 (Fig. 6). Mean AUC_{SICI} showed an interaction between *type of intervention* and
252 *session* for SICI in the trained finger muscle ($F_{(2,56)} = 1.4$, $p = 0.037$). We calculated
253 the ratio between AUC_{SICI} on day 8 and AUC_{SICI} at baseline to quantify the
254 individual change in overall SICI. Using this variable, follow-up comparisons
255 confirmed less SICI for the trained finger muscle representation in both training
256 groups (Groups A and C) relative to the non-trained and non-immobilized muscle
257 in group B which only underwent immobilization (Group A vs group B: $t_{(42)} = 2.9$,
258 $p = 0.006$; Group C vs group B: $t_{(36)} = 5.22$, $p < 0.001$). No difference in AUC_{SICI} was
259 found between the two training groups (Group A vs group C: $t_{(38)} = 0.18$, $p = 0.86$).
260 While both training interventions reduced intracortical inhibition in the cortical
261 representation of the trained muscle, they differed in terms of their impact on
262 intracortical inhibition of the non-trained muscle representation. (Fig. 6). When
263 finger training was not combined with immobilization, training-related
264 disinhibition occurred in the cortical representations of both, the trained and non-
265 trained muscles (Group A). In contrast, it remained restricted to the cortical
266 representation of the trained muscle in individuals, in whom finger training was
267 combined with immobilization (Group C). Considering only the two groups in
268 which training was performed, ANOVA of SICI revealed an interaction between
269 *type of intervention* and *muscle targeted by training* ($F_{(1,36)} = 6.9$, $p = 0.012$) and a
270 main effect for the trained muscle ($F_{(1,36)} = 24.96$, $p < 0.001$). Post-hoc analyses
271 showed a difference between AUC_{SICI} of the trained and immobilized muscle in the
272 group, in which training and immobilization were combined (Group C, $t_{(20)} = 7.34$,

273 $p < 0.0001$). In contrast, there was no difference in AUC_{SICI} between the trained
274 and non-trained muscle after training in the “training only” group (Group A, $t_{(22)} =$
275 $0.96, p = 0.35$).

276 Immobilization alone increased intracortical inhibition in $M1_{HAND}$. In the
277 immobilized muscle, SICI increased from baseline to day 8 in individuals who
278 underwent immobilisation without any training (Group B; Fig. 6). Immobilisation
279 caused a relative decrease in $AUC_{(SICI)}$ ratio, while the AUC_{SICI} ratio did not change
280 in the non-immobilized, non-trained muscle, resulting in a significant difference
281 between immobilized and non-immobilized muscle at day 8 ($t_{(18)} = 2.33, p =$
282 0.032).

283 In terms of spatial expression of SICI in $M1_{HAND}$, the relative strength of SICI
284 showed no clear difference in the relative magnitude of SICI among the cortical
285 target sites. The spatial profile of conditioned MEP amplitudes followed those of
286 the unconditioned MEPs evoked by the test pulse alone, showing that the relative
287 magnitude of SICI was comparable across stimulation sites. Accordingly, ANOVA
288 revealed no interaction between *location of TMS* and *Muscle* for SICI ($F_{(6,336)} = 1.79,$
289 $p = 0.1$). None of the interventions had a consistent effect on the spatial
290 arrangement of muscle-specific SICI profiles. Using the D_{WMP} values for the SICI
291 excitability profiles as dependent variable, the mixed ANOVA revealed neither
292 main effects nor interactions between *type of intervention* or *session* ($p > 0.54$).

293

294 **Relation between representational plasticity and visuomotor learning.** We
295 were interested to see whether our TMS-derived measures of representation
296 plasticity would predict inter-individual differences in visuomotor skill learning
297 of the trained finger or in learning transfer to the non-trained finger. To this end,

298 we performed separate forward stepwise multiple regression analyses for the two
299 training groups (Group A and C) treating the total learning scores as dependent
300 variable. The DwMP and AUC ratios of both finger muscles (FDI and ADM muscle)
301 acquired with single-pulse and paired-pulse TMS were entered as potential
302 predictors.

303 We first report the results regarding visuomotor learning of the trained finger. In
304 the learning-only group (group A), the only TMS-based marker of representational
305 plasticity that predicted the individual amount of training-induced visuomotor
306 learning was the AUC increase of single-pulse MEPs in the trained muscle (Beta:
307 0.5, $p=0.014$; Table 2). The forward stepwise multiple regression model was
308 significant ($F_{(1,21)}=7.14$, $p=0.014$) and explained approximately 20% of the
309 variance in overall finger tracking learning. For exploratory purposes, we also
310 performed Pearson's correlation analyses, which showed a positive correlation
311 between learning from day 1 to day 8 and the relative AUC increase in the trained
312 muscle ($r = 0.5$, $p = 0.014$, for all the other correlations: $p > 0.05$, corrected for
313 multiple comparisons).

314 In the group in which training and immobilization were combined (group C), the
315 forward stepwise multiple regression model was not significant (Table 2).
316 However, in line with the finding in group A, group C displayed a trend-wise
317 positive correlation between the total learning and the AUC increase in the trained
318 muscle ($r = 0.42$, $p = 0.05$).

319

320 We also tested which TMS-derived measure of representational plasticity predicts
321 improvement in tracking skill in the non-trained muscle. In the learning-only
322 group (group A), regression analysis revealed that the increasing proximity of the

323 corticomotor representations of the FDI and ADM muscle predicted individual
324 acquisition of visuomotor tracking skill with the non-trained finger (Beta: -0.51,
325 $p=0.012$, *Table 2*). The forward stepwise multiple regression model on the total
326 learning was significant ($F_{(1,21)}=7.48$, $p=0.012$) and explained approximately 20%
327 of total variance. The more the two muscle representations converged, the
328 stronger was the amount of learning transfer to the non-trained muscle ($r = -0.47$,
329 $p = 0.023$, for all the other correlations: $p > 0.05$). This was not the case in group C,
330 the forward stepwise multiple regression model was non-significant (see *Table 2*),
331 indicating that prevention of immobilization-induced skill degradation by
332 concurrent training was not explained by any of the four TMS derived measures
333 of representation plasticity.

334

335 *Insert Table 2 approximately here.*

336

337 **5. Discussion**

338 To the best of our knowledge, this is the first study showing that experience-
339 induced representational plasticity of one motor representation can exert
340 synergistic effects on another motor representation in human M1_{HAND}. While there
341 is an extensive behavioural literature demonstrating transfer of skill learning
342 between hands (Laszlo et al., 1970; Schulze et al., 2002; Wang and Sainburg, 2004;
343 Wang and Sainburg, 2004), this is the first demonstration that the motor system
344 can transfer a learned visuomotor skill between single effectors of the hand (i.e.
345 fingers). At the cortical level, learning transfer was paralleled by a convergence of
346 finger muscle representations of the trained and non-trained finger in M1_{HAND}
347 with the magnitude of convergence predicting skill transfer. By targeting the FDI

348 or ADM muscle, we were able to internally replicate our findings. The three
349 interventions induced analogous changes at the behavioural and representational
350 level. This shows that the observed plasticity patterns can be generalized and
351 were not specific for a given hand muscle.

352 Finger immobilization alone weakened the motor representation and impaired
353 pre-existing tracking skill of the immobilized finger. Concurrent training with the
354 non-immobilized finger neutralized the detrimental effects of finger
355 immobilization. Conversely, immobilization of the non-trained fingers accelerated
356 learning during the first two days of training without enhancing the total amount
357 of skill improvement during the entire week of training. Figure 7 gives a synopsis
358 of the reorganization patterns induced by the different types of interventions. In
359 the following, we first discuss the cortical reorganization produced by visuomotor
360 learning alone and then elaborate on how the learning-induced reorganization
361 pattern was modified by concurrent immobilisation of the adjacent fingers.

362 Training a visuomotor finger tracking skill shaped the corticomotor
363 representation of the trained as well as the non-trained muscle (Fig. 7, group A1
364 and A2). One week of finger tracking training boosted the representation strength
365 of the trained muscle representation, increased the spatial overlap, and
366 attenuated intracortical inhibition of the trained and non-trained finger muscle of
367 the same hand (Fig. 7). The overall increase in corticomotor excitability of the
368 trained muscle predicted the individual amount of practice-induced visuomotor
369 learning. This finding is in agreement with previous animal studies (Kleim et al.,
370 1998; Nudo et al., 1996; Molina-Luna et al., 2008; Pruitt et al., 2016) or grid-based
371 TMS mapping (Pascual-Leone et al., 1995; Svensson et al., 2003; Boudreau et al.,
372 2013; Kleim et al., 2006; Tyc and Boyadjian, 2006) showing an expansion of the

373 cortical representational maps of the trained body part. Likewise, there is
374 consistent evidence showing that learning-induced up-scaling of corticomotor
375 excitability in the trained muscle supports the acquisition of novel motor skills
376 (Bagce et al., 2013; Koenenke et al., 2006).

377 In addition to an overall strengthening of the trained corticomotor representation,
378 a spatial reorganisation within M1_{HAND} emerged over the course of one week (Fig.
379 7, group A1 and A2). Finger tracking training shortened the distance between the
380 two mean positions of the trained and non-trained cortical motor representations.
381 The convergence of corticomotor representations within M1_{HAND} predicted
382 individual transfer of the learned tracking skill to the non-trained finger. The more
383 the cortical representations converged, the higher the learning transfer to the
384 non-trained muscle.

385 Using cortical microstimulation, previous animal studies showed a shift towards
386 the motor territory of the adjacent non-trained body parts or an increased overlap
387 with neighbouring representations of adjacent non-trained body parts (Kleim et
388 al., 1998; Nudo et al., 1996; Molina-Luna et al., 2008). Our findings significantly
389 extend these studies in two directions. Firstly, we show that a partial fusion of
390 cortical motor representations does also occur within the cortical motor area
391 presenting the same body part. Secondly, the results indicate that learning
392 transfer of motor skills may at least partially be mediated within the primary
393 motor cortex, possibly through a stronger overlap of functional representations.
394 The prevailing notion is that learning transfer is mainly mediated through
395 intermediate motor representations in premotor and parietal areas, which encode
396 general knowledge of visuomotor predictions and skills (Grafton et al., 1998;
397 Romei et al., 2009; Diedrichsen and Kornysheva, 2015). Our finding raises the

398 possibility that some learning transfer might actually occur at the executive level
399 in the M1_{HAND} through shared cortical motor representations. This hypothesis is
400 in line with a recent study showing that the “trained” motor representation may
401 contribute to intermanual transfer by “educating” the untrained motor
402 representation or supporting the exchange of information between them (Gabitov
403 et al., 2015).

404 Paired-pulse TMS of gamma-aminobutyric acid (GABA) mediated, intracortical
405 inhibition revealed an attenuation of intracortical inhibition in contralateral
406 M1_{HAND} after one week of training. Sulcus-shape based TMS mapping revealed that
407 training-induced intracortical disinhibition was not confined to a distinct cortical
408 site or to a specific muscle representation. On the contrary, the reduction in SICI
409 was evenly expressed across all stimulation sites in M1_{HAND} and comprised the
410 representation of the non-trained muscle. These observations significantly extend
411 previous paired-pulse TMS studies which found training-induced reductions in
412 intracortical inhibition (Stavrinos and Coxon, 2017; Coxon et al., 2014;
413 Rosenkranz et al., 2007; Cirillo et al., 2011), showing that selective motor skill
414 training with a single finger produces wide-spread disinhibition in M1_{HAND}.
415 Previous studies have shown that a reduction of gamma-aminobutyric acid
416 (GABA) mediated, intracortical inhibition promotes synaptic plasticity in motor
417 cortex and hereby, motor skill learning (Hess and Donoghue, 1994; Jacobs and
418 Donoghue, 1991; Castro-Alamancos et al., 1995; Rioult-Pedotti et al., 1998).
419 However, in the present study, the individual magnitude of SICI reduction did not
420 scale with overall improvement in tracking performance after one week of
421 training. The amount of disinhibition also did not predict the amount of skill
422 transfer to the non-trained muscle. We therefore conclude that selective finger

423 tracking training produces a widespread disinhibition of corticomotor
424 representations in the “trained” M1_{HAND}. Although GABAergic disinhibition, as
425 measured with the SICI paradigm, may facilitate the expression of synaptic
426 plasticity, it might not determine the final level of visuomotor tracking skill that
427 can be acquired during one week of training. As we will discuss in more detail
428 below, this might be different during early motor skill training, during which the
429 focality and magnitude of intracortical inhibition might be more relevant. When
430 the adjacent fingers were immobilized, selective finger training produced a more
431 confined cortical reorganisation pattern (Fig.7, Group C1 and C2). Training
432 enhanced the corticomotor representation of the trained muscle but not the non-
433 trained, immobilized muscle without producing any spatial shifts. Like the
434 increase in corticospinal excitability, training-induced cortical disinhibition was
435 only expressed in the trained muscle. At the behavioural level, the magnitude of
436 acquired tracking skill in the trained muscle was not enhanced after one-week of
437 training as opposed to finger training alone. Training also produced no learning
438 transfer to the non-trained muscle, when the non-trained muscle was
439 immobilized. The effects of immobilization on training-induced plasticity and skill
440 learning clearly speak against the notion that cortical motor representations are
441 competing with each other for neural resources in the human M1_{HAND}. If this were
442 the case, immobilization-induced sensorimotor deprivation would have promoted
443 an expansion of the trained muscle representation into the “deprived cortex” and
444 hereby, boosted the learning success of the trained finger.

445 When training was combined with immobilization, sulcus-shape based TMS
446 mapping of SICI revealed a more selective disinhibition of intracortical GABAergic
447 circuits in the M1_{HAND} (Fig.7, Group B1 and B2). Relative reduction in SICI was

448 limited to the trained muscle, while the immobilized muscle showed no consistent
449 change (Fig. 8). We hypothesize that the muscle-specific attenuation of
450 intracortical disinhibition in the trained muscle might have contributed to a faster
451 learning rate during the first days of learning in the combined learning-
452 immobilisation group. This hypothesis is supported by the observation that the
453 rapid increase in tracking performances correlated with the reduction in SICI
454 obtained after one week. Although speculative, it is possible that SICI reduction
455 facilitates skill acquisition especially at the early phase of learning, while its
456 functional role becomes less prominent during continued learning. This is in
457 accordance with a recent study showing an early decrease in SICI after one day of
458 learning and no change later on (Spampinato and Celnik, 2017). Furthermore,
459 rapid GABAergic disinhibition can be induced acutely in M1_{HAND} by ischemic nerve
460 block and has been shown to locally boost the expression long-term potentiation-
461 like plasticity (Ziemann et al., 1998).
462 The modulatory influence of concurrent immobilisation of the adjacent fingers on
463 training induced plasticity in M1_{HAND} can only be fully understood, when one
464 considers the effects of immobilization alone on the corticomotor representations
465 and visuomotor tracking skill (Fig. 7; group B1 and B2). Finger immobilization led
466 to a selective down-regulation of corticomotor excitability with an increase in SICI,
467 which was confined to the corticomotor representation of the immobilized
468 muscle. The immobilized finger also showed a degradation of visuomotor tracking
469 performance relative to pre-immobilization baseline. The findings indicate that
470 one week of reduced sensorimotor experience is sufficient to weaken the deprived
471 cortical representation and to deteriorate associated sensorimotor skills. These
472 detrimental effects of finger immobilization were prevented by concurrent

473 training of the non-immobilized fingers. Visuomotor tracking training of the
474 neighbouring sensorimotor representation stabilized the pre-existing excitability
475 and skill level of the immobilized muscle (Fig. 7). In line with previous animal data
476 suggesting that recovery of a lesioned area depends on the activity of the adjacent
477 cortical regions (Castro-Alamancos and Borrel, 1995), our findings provide
478 additional support for a collaborative and synergistic mode of interaction between
479 motor representations within M1_{HAND}: The combined intervention resulted in a
480 relative “up-scaling” of both muscle representations in M1_{HAND}, increasing the
481 trained muscle representation and preserving the immobilized muscle
482 representation. Likewise, the net effect of finger training on dexterity was
483 synergistic, improving the tracking skill in the trained muscle and maintaining the
484 pre-existing skill level in the non-trained muscle despite of immobilization-
485 induced deprivation.

486 Our findings have practical implications for preserving or recovering manual
487 motor skills. In patients, in whom the upper limb has to be partially immobilized,
488 intensive motor training of the non-immobilized part of the limb may help to
489 minimize a functional degradation of motor skills relying on the immobilized
490 muscles. Besides, immobilisation of the non-affected limb is a commonly used
491 strategy to boost motor function of the affected limb in patients with chronic
492 motor stroke (Taub et al., 1993; Taub and Morris, 2001; Taub and Uswatt, 2006;
493 Morris et al., 1997). While constraint induced movement therapy may improve
494 motor function of the affected limb, immobilization of the non-affected limb is
495 likely to weaken the “immobilized” corticomotor representations in the healthy
496 non-lesioned hemisphere. Future studies are warranted which systematically
497 assess the effects of constraint induced movement therapy on the motor

498 representations in the healthy non-lesioned hemisphere and how this might affect
499 skilled hand function of the intact limb.

500

501

502 **Methods.**

503 **Participants**

504 63 healthy individuals (25 females, age range: 19 – 48 years) participated in the
505 study. Participants had no history of neurological or psychiatric illness and took
506 no centrally acting drugs. Only individuals with little (less than 2 years) or no
507 formal music training were included. All participant were strongly right handed
508 according to the Edinburg Handedness Inventory (Oldfield, 1971). Prior to the
509 study all participants gave written informed consent according to a protocol
510 approved by the Ethical Committees of the Capital Region of Denmark (H-4-2012-
511 106).

512

513 **Experimental design**

514 Using a parallel-group design, participants were randomly assigned to one of three
515 interventions (Fig. 1b). Group A (n=23, 12 females, mean age: 27.4 years) had to
516 train a visuomotor tracking task for one week. The tracking task was programmed
517 as application on a smartphone. The smartphone was attached to a wooden
518 platform. The wrist and the non-trained fingers were fixed to the platform with
519 Velcro strap to stabilize their position and to minimize co-contraction during
520 tracking (Fig. 1a). At the inclusion (Day 0), we performed a careful multi-channel
521 EMG measurement to ensure that participants were only activating the target
522 muscle during tracking while keeping all other muscles relaxed.

523 Participants were required to make smooth abduction-adduction finger
524 movements to follow a moving dot on the smartphone screen. Visuomotor
525 tracking was either carried out with the left index finger involving the first dorsal
526 interosseus (FDI) muscle (group A₁; n= 10) or left little finger involving the
527 abductor digiti minimi (ADM) muscle (group A₂; n=13). Group B (n=19, 7 females;
528 mean age: 26.1 years) performed no training, but digits III to V (Group B₁; n= 10)
529 or digits II to IV (Group B₂; n=9) were immobilized. Group C (n=21, 8 females;
530 mean age: 28.4 years) performed the same training task as group A for one week,
531 but the adjacent fingers were concurrently immobilized. 10 participants (Group
532 C₁) trained with the index finger, while digits III to V were immobilized (Figure
533 1b). 11 participants (Group C₂) trained with the little finger, while digits II to IV
534 were immobilized. Visuomotor tracking performance was assessed in the
535 laboratory at baseline (day 1) and post-intervention (day 8) using the same
536 tracking task as for training. Performance was tested at a low difficulty level,
537 which was identical for day 1 and 8 (level 1).

538 Using neuronavigation, sulcus-shape based TMS mapping of the corticomotor
539 representations of the left FDI and ADM muscles was carried out on day 1 and 8.
540 We applied single-pulse TMS to trace changes in the spatial profile of FDI and ADM
541 representations along the hand knob in the right primary motor hand area
542 (M1_{HAND}). We performed the same mapping procedure with paired-pulse TMS to
543 assess changes in magnitude and spatial distribution of short-latency intracortical
544 inhibition (SICI). We also performed functional MRI during visuomotor tracking
545 on day 1 and 8. These data will be reported separately.

546

547 **Finger tracking training**

548 Participants assigned to group A or C performed daily visuomotor tracking
549 exercises with a dedicated smartphone for one week (Fig.1c). Participants had to
550 track a moving line with a dot controlled by their index or little finger. Daily
551 training lasted 30 minutes and was distributed over three separate sessions to
552 avoid fatigue. The difficulty of visuomotor tracking was step-wise increased from
553 day 2 to day 7 and tracking performance was recorded on the smartphone. The
554 velocity and the range of motion on the horizontal axis increased sequentially
555 from level 1 (baseline level) to level 24 (highest level) to allow fair comparison
556 between subjects. Hence, the tracking task became gradually more challenging for
557 all the participants across the training week, starting from really slow movements
558 requiring a maximum of 20 degrees of abduction-adduction to fast tracking
559 requiring 60 degrees abduction-adduction. The time line of visuomotor training is
560 illustrated in Figure 1d.

561

562 **Finger immobilization**

563 In group B or C, three adjacent fingers were immobilized in a syndactily-like
564 position for the entire week (day 1-7) by means of an individually shaped splint.
565 The splint was made up of a rigid plastic form, covered with soft tissue, placed at
566 the level of second phalangeal joint. We took care to ensure that the fingers were
567 immobilized in a physiological position to prevent pain, swelling, or excessive
568 sweating. The device was effective in restricting abduction-adduction and
569 flexion-extension movements of the constrained fingers. Subjects were still able
570 to perform a number of daily-life motor activities with the non-immobilized
571 fingers of the left hand. Splint-wearing participants were only allowed to remove
572 the splint during their daily washing procedures. In group C, participants

573 performed additional training and were asked to take the splint off for training to
574 match training conditions to group A (training without immobilisation). All
575 participants tolerated immobilization without reporting problems. In particular,
576 none of them experienced sustained pain during or after wearing the splint.

577

578 **Transcranial magnetic stimulation**

579 *Resting motor threshold.* First, the site at which a single TMS pulse elicited a
580 maximal motor response was determined for the left FDI muscle. The resting
581 motor threshold (RMT_{FDI}) was then determined at this stimulation site using the
582 Parameter Estimation by Sequential Testing (MLS-PEST) approach (Awiszus,
583 2003). Stimulus intensity of TMS was adjusted to individual RMT of the FDI muscle
584 (RMT_{FDI}).

585

586 *Sulcus-shape based, linear TMS mapping of M1_{HAND}.* We applied a novel linear
587 mapping approach, which we have recently developed in our laboratory to study
588 the somatotopic representation of the intrinsic hand muscles in human M1_{HAND}
589 (Raffin *et al.*, 2015). The mapping approach uses neuronavigation to deliver TMS
590 at equidistant sites along a line that follows the individual shape of the central
591 sulcus forming the so-called hand knob (Yousry *et al.*, 1997). Our sulcus-shape
592 based, linear TMS mapping method yields a one-dimensional spatial
593 representation of the corticomuscular excitability profile in M1_{HAND} (Raffin *et al.*,
594 2015). We stimulated seven targets placed along the bending of the right central
595 sulcus with a coil orientation producing a tissue current perpendicular to the wall
596 of the central sulcus at the target site. The order of target stimulation was varies
597 across subjects but maintained constant within subjects. Each of the seven targets

598 was first stimulated with 10 single TMS pulses followed by 10 paired TMS pulses.

599 Single-pulse TMS was applied at an intensity of 120% RMT_{FDI}.

600 Paired-pulse TMS was used to measure the magnitude and spatial distribution of
601 short-interval intracortical inhibition (SICI) in M1_{HAND}. Paired-pulse TMS used at
602 an inter-stimulus interval of 2 ms. The intensity of the CS was set at 80% and the
603 TS at 120% of RMT_{FDI} (Roshan et al., 2003). SICI is thought to be mainly mediated
604 through gamma-aminobutyric acid-A (GABA-A) receptors (Ziemann et al., 1996).
605 The magnitude of SICI is dynamically modified depending on the motor state. For
606 example, SICI is reduced during voluntary contraction (Ridding and Rothwell,
607 1995; Opie et al., 2016) and is thought important for fractionated movement
608 control (Zoghi et al., 2003). We performed paired-pulse TMS to trace changes in
609 intracortical inhibition, because intracortical inhibition and cortical plasticity are
610 tightly intertwined in M1_{HAND}. A reduction of GABA-ergic intracortical inhibition
611 has been shown to boost synaptic plasticity in motor cortex and to promote motor
612 skill learning (Hess and Donoghue, 1994; Jacobs and Donoghue, 1991; Castro-
613 Alamancos et al., 1995; Rioult-Pedotti et al., 1998). In humans, paired-pulse TMS
614 measurements of SICI showed that motor training reduces intracortical inhibition
615 which may contribute to training-induced plasticity (Stavrinos and Coxon, 2017;
616 Coxon et al., 2014; Rosenkranz et al., 2007; Cirillo et al., 2011).

617

618 *Electromyographic (EMG) recordings.* Using a bipolar belly-tendon montage,
619 motor evoked potentials (MEPs) were recorded with surface electrodes from the
620 left abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles
621 during complete muscle relaxation (Ambu Neuroline 700, Ballerup, Copenhagen).
622 The analogic signal was amplified and band-pass filtered (5-600 Hz) with a

623 Digitimer eight-channel amplifier, digitized at a sampling rate of 5000 Hz using a
624 1201 micro Mk-II unit, and stored on a PC using Signal software (Cambridge
625 Electronic Design, Cambridge, UK).

626

627 **Data analyses.**

628 *Corticomotor mapping.* Individual MEPs were visually inspected to remove trials
629 with significant artefacts or EMG background activity (< 1%). The peak-to-peak
630 amplitude of MEPs was extracted using Signal software in the time window
631 between 10 and 40 ms after the TMS stimulus (Cambridge Electronic Design,
632 Cambridge, UK). For the ADM and FDI muscle, we constructed medio-lateral
633 corticomotor excitability profiles based on the mean MEP amplitudes for each
634 TMS target site along the central sulcus forming the hand knob. We compared the
635 medio-lateral distribution of mean MEP amplitudes in a mixed ANOVA, with the
636 mean *MEP amplitude* evoked by single-pulse TMS at a given stimulation site as
637 dependent variable. The *type of intervention* (group A vs. group B vs. group C) and
638 which *finger received training or immobilization* (subgroup 1 [A₁, B₁ or C₁] vs.
639 subgroup 2 [A₂, B₂ or C₂]) were included as between-subject factors, while the
640 *location of TMS* (target 1 to 7) and *session* (Day 1 vs. Day 8) and *muscle* (ADM vs.
641 FDI) as within-subject factors.

642 We derived two complementary measures from the MEP-amplitude profiles to
643 study in more detail dynamic changes in the muscle-specific representations in
644 M1_{HAND}. The *Area Under the Curve* (AUC) was taken as index sensitive to a global
645 up- or down-scaling in corticomotor excitability. The *distance between* the
646 *Amplitude-Weighted Mean Position* (WMP) of the FDI and ADM excitability profiles

647 was used to assess changes in spatial proximity of muscle-specific corticomotor
648 representations. The amplitude-WMP was calculated according to the following
649 formula:

$$650 \quad WMP = \frac{\sum_{k=1}^7 \text{Target}(k) * \text{Mean MEP Amplitude Target}(k)}{\sum_{k=1}^7 \text{Mean MEP Amplitude Target}(k)}$$

651 The AUC ratio (AUC at day 8/ AUC at day 1) and the distance between the WMP of
652 the ADM and FDI muscle representation were analysed in separate mixed ANOVA
653 models with *type of intervention* (group A, B, and C) and which *finger received*
654 *training or immobilization* (subgroup 1 and 2) as between-subject factor. *Muscle*
655 (FDI vs ADM) was added as additional within-subject factor to the ANOVA
656 assessing AUC ratio. The factor *session* (day 1 and day 8) was only implemented in
657 the ANOVA modelling WMP. The same statistical analysis was applied to the MEP-
658 amplitude profiles evoked by paired-pulse stimulation at 2 ms using the
659 normalized MEPs (Conditionned/Unconditionned MEPs) as dependent variable.

660

661 *Relation between representational plasticity and visuomotor learning*

662 We were interested to examine whether changes in AUC or in WMP distance
663 obtained with single- or paired-pulse TMS would predict inter-individual
664 differences in visuomotor skill learning of the trained finger in group A (training
665 without immobilisation) and group C (training and immobilisation of adjacent
666 fingers). To this end, we performed group-specific multiple regression analyses,
667 treating the improvement in tracking performance of the trained finger from day
668 1 to day 8 as dependent variable. The predictive value of four TMS-derived
669 measures were tested in a stepwise multiple regression model: (1) training-
670 associated change in AUC assessed with single-pulse TMS (2) training-associated

671 increase in AUC assessed with paired-pulse TMS at an ISI of 2 ms (3) training-
672 associated change in distance between WMPs of the FDI and ADM excitability
673 profiles assessed with single-pulse TMS (4) training-associated change in distance
674 between WMPs of the FDI and ADM excitability profiles assessed with paired-
675 pulse TMS at an ISI of 2 ms.

676 We conducted two additional regression analyses to examine whether changes in
677 AUC or in WMP distance obtained with single- or paired-pulse TMS would predict
678 the learning transfer of a visuomotor tracking skill from the trained to the non-
679 trained finger in group A (training without immobilisation) and group B (training
680 and immobilisation of adjacent fingers). We used the same stepwise multiple
681 regression approach as described above. The only difference was that the total
682 improvement in tracking performance of the non-trained finger from day 1 to day
683 8 as dependent variable.

684 Finally, another set of correlational analyses explored whether the changes in AUC
685 or distance in WMP from day 1 to day 8 correlated with the amount of incremental
686 learning (early learning score: Day 3/Day 2 and late learning score: Day 7/Day 6)
687 and total learning (total learning score: Day 8/Day 1).

688 *Visuomotor tracking.* Learning of visuomotor tracking movements was assessed
689 from two perspectives. To quantify the total amount of learning after the week of
690 training (referred to as *total learning*), we compared the final tracking
691 performance on day 8 with performance at baseline using a tracking task with the
692 same difficulty level. To assess the gradual day-to-day improvement in tracking
693 skill (referred to as *gradual learning*), we quantified mean tracking performance
694 at each day of training and normalized this performance to the associated task
695 velocity to take into account the increase in task difficulty.

696 Visuomotor performance was quantified using the mean relative error for each
697 block, calculated as the difference in displacement between the tracking finger and
698 a 3 mm target area centred around the target line every 100 ms of the task using a
699 custom-made python script which calculated the percentage of time spent in the
700 tolerance interval for each tracking block (in %).

701 The amount of *total learning* was determined by dividing the tracking
702 performance measured on day 8 by initial performance on day 1 and expressed in
703 percentage of improvement relative to baseline. We performed a global mixed
704 ANOVA in which the improvement in tracking performance was treated as
705 dependent variable. The *finger* (index vs. little finger) was treated as within-
706 subject factor and the *type of intervention* (group A vs. group B vs. group C) and
707 which *finger received training or immobilization* (i.e. subgroup 1 [A₁, B₁ and C₁] vs.
708 subgroup 2 [A₂, B₂ and C₂] as between-subject factors. We also computed a more
709 restricted ANOVA model which only included the groups that actually trained for
710 one week, treating *finger* (index vs. little finger) as within-subject factor and the
711 *type of intervention* (group A vs. group C) and which *finger received training* (i.e.
712 subgroup 1 [A₁ and C₁] vs. subgroup 2 [A₂ and C₂] as between-subject factors.
713 Conditional on significant main effects or interactions, we performed follow-up t-
714 tests. In Group A and C, we tested whether total learning in the trained finger
715 would predict the transfer of learning to the non-trained finger, using Pearson's
716 correlation.

717 To analyse *gradual learning* in group A and C, we multiplied the performance of a
718 given training day with the corresponding tracking velocity to take into account
719 the manipulation in task difficulty and normalized to the first training day. This
720 measure was entered into a mixed effects ANOVA model with *day of training* (day

721 2 to day 7) and the *type of intervention* (group A and C) and which *finger received*
722 *training* (subgroup 1 [A₁ or C₁] vs. subgroup 2 [A₂ or C₂]). We further tested for a
723 correlation between early gradual learning (day 3 / day 2) and late gradual
724 learning (day 7/ day 6).

725

726

727 *Statistical considerations*

728 All statistical analyses were performed using SPSS 19 for Windows (IBM, Armonk,
729 NY, USA). The level of significance was defined as $\alpha = 0.05$. Bonferroni-Sidak's
730 procedure was used to correct for multiple comparisons. Data are given as mean
731 \pm standard error of the mean (SEM). Normal distribution of the data was
732 confirmed using the Kolmogorov-Smirnov test for all variables. For ANOVA, the
733 Mauchly's test of sphericity was performed. Greenhouse-Geisser correction
734 method was applied to correct for non-sphericity.

735

736 **Acknowledgements:**

737 We would like to thank Arkadiusz Stopczynski for coding the smartphone
738 application and all the volunteers for their participation.

739

740 **Funding:**

741 This work was supported by a Grant of Excellence sponsored by The Lundbeck
742 Foundation Mapping, Modulation & Modelling the Control of Actions (ContAct,
743 R59-A5399) to H.R.S..

744

References:

1. Plautz EJ, Milliken GW, Nudo RJ. 2000. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. *Neurobiol Learn Mem* **74**:27-55. doi: 10.1006/nlme.1999.3934
2. Mawase F, Uehara S, Bastian AJ, Celnik P. 2017. Motor Learning Enhances Use-Dependent Plasticity. *J Neurosci* **37**:2673-2685. doi: 10.1523/JNEUROSCI.3303-16.2017
3. Lemon RN. 1999. Neural control of dexterity: what has been achieved? *Exp Brain Res* **128**:6-12. doi:
4. Siebner HR, Rothwell J. 2003. Transcranial magnetic stimulation: new insights into representational cortical plasticity. *Exp Brain Res* **148**:1-16. doi: 10.1007/s00221-002-1234-2
5. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. 1998. Rapid plasticity of human cortical movement representation induced by practice. *J Neurophysiol* **79**:1117-1123. doi:
6. Alaverdashvili M, Paterson PG. 2017. Mapping the dynamics of cortical neuroplasticity of skilled motor learning using micro X-ray fluorescence and histofluorescence imaging of zinc in the rat. *Behav Brain Res* **318**:52-60. doi: 10.1016/j.bbr.2016.11.002
7. Kleim JA, Barbay S, Nudo RJ. 1998. Functional reorganization of the rat motor cortex following motor skill learning. *J Neurophysiol* **80**:3321-3325. doi:
8. Nudo RJ, Milliken GW. 1996. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. *J Neurophysiol* **75**:2144-2149. doi:
9. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. 1996. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. *J Neurosci* **16**:785-807. doi:
10. Schieber MH, Deuel RK. 1997. Primary motor cortex reorganization in a long-term monkey amputee. *Somatosens Mot Res* **14**:157-167. doi:

11. Milliken GW, Plautz EJ, Nudo RJ. 2013. Distal forelimb representations in primary motor cortex are redistributed after forelimb restriction: a longitudinal study in adult squirrel monkeys. *J Neurophysiol* **109**:1268-1282. doi: 10.1152/jn.00044.2012
12. Viaro R, Budri M, Parmiani P, Franchi G. 2014. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats. *J Physiol* **592**:2137-2152. doi: 10.1113/jphysiol.2013.268821
13. Thickbroom GW, Byrnes ML, Mastaglia FL. 1999. Methodology and application of TMS mapping. *Electroencephalogr Clin Neurophysiol Suppl* **51**:48-54. doi:
14. Wassermann EM, McShane LM, Hallett M, Cohen LG. 1992. Noninvasive mapping of muscle representations in human motor cortex. *Electroencephalogr Clin Neurophysiol* **85**:1-8. doi:
15. Wilson SA, Thickbroom GW, Mastaglia FL. 1993. Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. *J Neurol Sci* **118**:134-144. doi:
16. Kleim JA, Kleim ED, Cramer SC. 2007. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. *Nat Protoc* **2**:1675-1684. doi: 10.1038/nprot.2007.206
17. Classen J, Knorr U, Werhahn KJ, Schlaug G, Kunesch E, Cohen LG, et al. 1998. Multimodal output mapping of human central motor representation on different spatial scales. *J Physiol* **512 (Pt 1)**:163-179. doi:
18. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M. 2001. Role of the human motor cortex in rapid motor learning. *Exp Brain Res* **136**:431-438. doi:
19. Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallett M. 1994. Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. *Electroencephalogr Clin Neurophysiol* **93**:42-48. doi:
20. Liepert J, Tegenthoff M, Malin JP. 1995. Changes of cortical motor area size during immobilization. *Electroencephalogr Clin Neurophysiol* **97**:382-386. doi:
21. Georgopoulos AP, Pellizzer G, Poliakov AV, Schieber MH. 1999. Neural coding of finger and wrist movements. *J Comput Neurosci* **6**:279-288. doi:
22. Beisteiner R, Gartus A, Erdler M, Mayer D, Lanzenberger R, Deecke L. 2004. Magnetoencephalography indicates finger motor somatotopy. *Eur J Neurosci* **19**:465-472. doi: 10.1111/j.1460-9568.2004.03115.x
23. Beisteiner R, Windischberger C, Lanzenberger R, Edward V, Cunnington R, Erdler M, et al. 2001. Finger somatotopy in human motor cortex. *Neuroimage* **13**:1016-1026. doi: 10.1006/nimg.2000.0737
24. Gentner R, Classen J. 2006. Modular organization of finger movements by the human central nervous system. *Neuron* **52**:731-742. doi: S0896-6273(06)00776-8 [pii] 10.1016/j.neuron.2006.09.038
25. Quandt F, Reichert C, Hinrichs H, Heinze HJ, Knight RT, Rieger JW. 2012. Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study. *Neuroimage* **59**:3316-3324. doi: 10.1016/j.neuroimage.2011.11.053

26. Raffin E, Pellegrino G, Di Lazzaro V, Thielscher A, Siebner HR. 2015. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. *Neuroimage*;10.1016/j.neuroimage.2015.07.024. doi: 10.1016/j.neuroimage.2015.07.024
27. Dubbioso R, Raffin E, Karabanov A, Nielsen S, Thielscher A, Siebner H. in prep. Center-surround facilitation in the human sensorimotor system. doi:
28. Laszlo JI, Baguley RA, Bairstow PJ. 1970. Bilateral transfer in tapping skill in the absence of peripheral information. *J Mot Behav* **2**:261-271. doi: 10.1080/00222895.1970.10734884
29. Schulze K, Luders E, Jancke L. 2002. Intermanual transfer in a simple motor task. *Cortex* **38**:805-815. doi:
30. Wang J, Sainburg RL. 2004. Limitations in interlimb transfer of visuomotor rotations. *Exp Brain Res* **155**:1-8. doi: 10.1007/s00221-003-1691-2
31. Wang J, Sainburg RL. 2004. Interlimb transfer of novel inertial dynamics is asymmetrical. *J Neurophysiol* **92**:349-360. doi: 10.1152/jn.00960.2003
32. Molina-Luna K, Hertler B, Buitrago MM, Luft AR. 2008. Motor learning transiently changes cortical somatotopy. *Neuroimage* **40**:1748-1754. doi: 10.1016/j.neuroimage.2007.11.018
33. Pruitt DT, Schmid AN, Danaphongse TT, Flanagan KE, Morrison RA, Kilgard MP, et al. 2016. Forelimb training drives transient map reorganization in ipsilateral motor cortex. *Behav Brain Res* **313**:10-16. doi: 10.1016/j.bbr.2016.07.005
34. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. 1995. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. *J Neurophysiol* **74**:1037-1045. doi:
35. Svensson P, Romaniello A, Arendt-Nielsen L, Sessle BJ. 2003. Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training. *Exp Brain Res* **152**:42-51. doi: 10.1007/s00221-003-1517-2
36. Boudreau SA, Lontis ER, Caltenco H, Svensson P, Sessle BJ, Andreasen Struijk LN, et al. 2013. Features of cortical neuroplasticity associated with multidirectional novel motor skill training: a TMS mapping study. *Exp Brain Res* **225**:513-526. doi: 10.1007/s00221-012-3391-2
37. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, et al. 2006. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. *Nat Neurosci* **9**:735-737. doi: 10.1038/nn1699
38. Tyc F, Boyadjian A. 2006. Cortical plasticity and motor activity studied with transcranial magnetic stimulation. *Rev Neurosci* **17**:469-495. doi:
39. Bagce HF, Saleh S, Adamovich SV, Krakauer JW, Tunik E. 2013. Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error. *J Neurophysiol* **109**:1097-1106. doi: 10.1152/jn.00304.2012
40. Koeneke S, Lutz K, Herwig U, Ziemann U, Jancke L. 2006. Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. *Exp Brain Res* **174**:199-209. doi: 10.1007/s00221-006-0440-8

41. Grafton ST, Hazeltine E, Ivry RB. 1998. Abstract and effector-specific representations of motor sequences identified with PET. *J Neurosci* **18**:9420-9428. doi: [10.1016/j.jneurosci.1998.07.040](https://doi.org/10.1016/j.jneurosci.1998.07.040)
42. Romei V, Thut G, Ramos-Estebanez C, Pascual-Leone A. 2009. M1 contributes to the intrinsic but not the extrinsic components of motor-skills. *Cortex* **45**:1058-1064. doi: [10.1016/j.cortex.2009.01.003](https://doi.org/10.1016/j.cortex.2009.01.003)
43. Diedrichsen J, Kornysheva K. 2015. Motor skill learning between selection and execution. *Trends Cogn Sci* **19**:227-233. doi: [10.1016/j.tics.2015.02.003](https://doi.org/10.1016/j.tics.2015.02.003)
44. Gabitov E, Manor D, Karni A. 2015. Learning from the other limb's experience: Sharing the "Trained" M1's representation of the motor sequence knowledge. *J Physiol* **591**:10113/JP270184. doi: [10.1113/jphysiol.2015.10113](https://doi.org/10.1113/jphysiol.2015.10113)
45. Stavrinos EL, Coxon JP. 2017. High-intensity Interval Exercise Promotes Motor Cortex Disinhibition and Early Motor Skill Consolidation. *J Cogn Neurosci* **29**:593-604. doi: [10.1162/jocn_a_01078](https://doi.org/10.1162/jocn_a_01078)
46. Coxon JP, Peat NM, Byblow WD. 2014. Primary motor cortex disinhibition during motor skill learning. *J Neurophysiol* **112**:156-164. doi: [10.1152/jn.00893.2013](https://doi.org/10.1152/jn.00893.2013)
47. Rosenkranz K, Williamon A, Rothwell JC. 2007. Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. *J Neurosci* **27**:5200-5206. doi: [27/19/5200 \[pii\] 10.1523/JNEUROSCI.0836-07.2007](https://doi.org/10.1523/JNEUROSCI.0836-07.2007)
48. Cirillo J, Todd G, Semmler JG. 2011. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. *Eur J Neurosci* **34**:1847-1856. doi: [10.1111/j.1460-9568.2011.07870.x](https://doi.org/10.1111/j.1460-9568.2011.07870.x)
49. Hess G, Donoghue JP. 1994. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. *J Neurophysiol* **71**:2543-2547. doi: [10.1152/jn.1994.71.4.2543](https://doi.org/10.1152/jn.1994.71.4.2543)
50. Jacobs KM, Donoghue JP. 1991. Reshaping the cortical motor map by unmasking latent intracortical connections. *Science* **251**:944-947. doi: [10.1126/science.251.4994.944](https://doi.org/10.1126/science.251.4994.944)
51. Castro-Alamancos MA, Donoghue JP, Connors BW. 1995. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. *J Neurosci* **15**:5324-5333. doi: [10.1523/JNEUROSCI.1034-95.1995](https://doi.org/10.1523/JNEUROSCI.1034-95.1995)
52. Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. 1998. Strengthening of horizontal cortical connections following skill learning. *Nat Neurosci* **1**:230-234. doi: [10.1038/678](https://doi.org/10.1038/678)
53. Spampinato D, Celnik P. 2017. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning. *Sci Rep* **7**:40715. doi: [10.1038/srep40715](https://doi.org/10.1038/srep40715)
54. Ziemann U, Corwell B, Cohen LG. 1998. Modulation of plasticity in human motor cortex after forearm ischemic nerve block. *J Neurosci* **18**:1115-1123. doi: [10.1523/JNEUROSCI.2700-97.1998](https://doi.org/10.1523/JNEUROSCI.2700-97.1998)
55. Castro-Alamancos MA, Borrel J. 1995. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. *Neuroscience* **68**:793-805. doi: [10.1016/0304-3940\(95\)87003-3](https://doi.org/10.1016/0304-3940(95)87003-3)
56. Taub E, Miller NE, Novack TA, Cook EW, 3rd, Fleming WC, Nepomuceno CS, et al. 1993. Technique to improve chronic motor deficit after stroke. *Arch Phys Med Rehabil* **74**:347-354. doi: [10.1016/0896-3983\(93\)90005-3](https://doi.org/10.1016/0896-3983(93)90005-3)
57. Taub E, Morris DM. 2001. Constraint-induced movement therapy to enhance recovery after stroke. *Curr Atheroscler Rep* **3**:279-286. doi: [10.1007/s11883-001-0033-2](https://doi.org/10.1007/s11883-001-0033-2)

58. Taub E, Uswatt G. 2006. Constraint-Induced Movement therapy: answers and questions after two decades of research. *NeuroRehabilitation* **21**:93-95. doi: 10.1411/nre.05.050
59. Morris DM, Crago JE, DeLuca SC, Pidikiti RD, Taub E. 1997. Constraint-induced movement therapy for motor recovery after stroke. *NeuroRehabilitation* **9**:29-43. doi: 10.3233/NRE-1997-9104
60. Oldfield RC. 1971. The assessment and analysis of handedness: the Edinburgh inventory. *Neuropsychologia* **9**:97-113. doi: 10.1016/0028-3259(71)90021-9
61. Awiszus F. 2003. TMS and threshold hunting. *Suppl Clin Neurophysiol* **56**:13-23. doi: 10.1159/000068221
62. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, et al. 1997. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. *Brain* **120** (Pt 1):141-157. doi: 10.1093/brain/120.1.141
63. Roshan L, Paradiso GO, Chen R. 2003. Two phases of short-interval intracortical inhibition. *Exp Brain Res* **151**:330-337. doi: 10.1007/s00221-003-1502-9
64. Ziemann U, Bruns D, Paulus W. 1996. Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. *Neurosci Lett* **208**:187-190. doi: 10.1016/0304-3940(96)125751 [pii]
65. Ridding MC, Rothwell JC. 1995. Reorganisation in human motor cortex. *Can J Physiol Pharmacol* **73**:218-222. doi: 10.1139/y95-024
66. Opie GM, Evans A, Ridding MC, Semmler JG. 2016. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance. *Neuroscience* **330**:247-256. doi: 10.1016/j.neuroscience.2016.06.002
67. Zoghi M, Pearce SL, Nordstrom MA. 2003. Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. *J Physiol* **550**:933-946. doi: 10.1113/jphysiol.2003.042606

Tables.

Table 1. Statistical results of post hoc t-tests comparing the normalized gradual learning across days in the two groups receiving training. Group A: Training without immobilization, group C: Training with immobilization of the adjacent fingers.

Day	t values	Df	p values
2	-1.29	39	0.21
3	-3.27	39	0.002*
4	-3.35	39	0.002*
5	-2.65	39	0.012*
6	-1.35	39	0.19
7	-1.84	39	0.07

Table 2: Regression analyses and predictive models for the learning transfer:
Separate models were computed for group A and C. The following predictors were entered into the regressions as independent variables using a backward stepwise technique: total learning scores obtained by the adjacent finger, the distance of amplitude-weighted mean position (D_{WMP}) on the spTMS profiles, and the area under the curve ratios acquired with single pulse and paired pulse TMS (AUC_{SP} and AUC_{PP}).

	Models				Significant predictors		
	Adj. R ²	F-value	Df	P-value	Variable	Beta	P
	Group A (training without immobilization of the adjacent fingers)						
	0.22	7.14	21	0.014	AUC_{SP}	0.5	0.014
	Group C (training with immobilization of the adjacent fingers)						
	<i>Not significant</i>				--		
	Group A (training without immobilization of the adjacent fingers)						
	0.23	7.48	21	0.012	D_{WMP}	-0.51	0.012
	Group C (training with immobilization of the adjacent fingers)						
	<i>Not significant</i>				--		

Figure captions:

Figure 1A. Smartphone-based finger training using a flexible setup adjustable for training either the left index or little finger (left). The tracking task consisted in a moving line going from the top of the screen to the bottom. The red circle reflects the actual position of the subject's training finger. This red circle was controlled by the index or index placed on the grey line. Feedbacks about the remaining time and online performances were provided. The right pictures display the immobilization procedure of three adjacent fingers (fingers III-V or II-IV) with an individually made splint; **1B:** Types of interventions: Group A1 and A2. Selective finger training without immobilization of adjacent fingers; Group B1 and B2: Immobilization of three adjacent fingers without training; Group C1 and C2: Selective finger training with simultaneous immobilization of adjacent fingers. Subgroups 1 and 2 differed in terms of the targeted finger; **1C:** Assessment of visuomotor tracking skill: Finger tracking with the index and little finger was assessed at day 1 and 8 using exactly the same task settings and during each training session at day 2 to 7 with a gradual increase in difficulty during consecutive sections.

Figure 2. Individual changes in tracking accuracy from day 1 to day 8. **Left panels.** The y-values reflect individual tracking accuracy at day 8 expressed as percentage of day 1 for each group. **Right panels.** The scatter graphs plot the individual performance changes for the two fingers of the same hand separately for each group. The straight grey line reflects the fit of the linear regression and the curved lines represent the 95% confidence interval.

Figure 3. Day-to-day improvement in tracking accuracy of the trained finger. Data from the index and little fingers are pooled together. For details regarding the calculation of the daily learning rate see the main text. **(A and B)** The panels show day-by-day improvements in visuomotor tracking for the trained fingers depending on the status of the adjacent fingers. Panel A shows the learning rate for each day. Panel B shows the difference in learning rate compared to the previous day. Training with immobilisation shows faster early learning than training without immobilisation. **(C and D)** The panels plot early day-to-day learning against late day-to-day learning for learning without (C) or with (D) immobilisation of the adjacent fingers. The straight grey line reflects the fit of the linear regression and the curved lines represent the 95% confidence interval. Early learning only scaled linearly with late learning when finger training was performed without concurrent immobilization of the adjacent fingers.

Figure 4. Mediolateral cortical excitability profiles of the FDI and ADM muscle obtained with neuronavigated single-pulse TMS in the three experimental groups (A1/A2, B1/B2, C1/C2). The colour of the lines indicates whether the muscle was trained (green), immobilized (red), or neither immobilized nor trained (grey) on day 1 (dotted line) and day 8 (full line). Data points represent the mean value of each group. Error bars equal SEM.

Figure 5. Individual changes in mediolateral corticomotor representations of the left FDI and ADM muscles in right M1_{HAND} following finger-specific training or immobilization. Corticomotor representations were probed with sulcus-shape based single-pulse TMS mapping. **Left panels:** Relative changes in the area under the curve

(AUC) from day 1 to day 8 given as percentage of baseline values. The colour of the lines indicates whether the muscle was trained (green), immobilized (red), or neither immobilized nor trained (grey); **Right panels:** Distance between the average mediolateral position of the muscle profiles (D_{WMP}) before and after the intervention. Triangles symbolize the index finger and circles symbolize the little finger.

Figure 6. Effects of finger-specific training or immobilization on mediolateral representations of short-latency intracortical inhibition (SICI) in $M1_{HAND}$ probed with sulus-shape based, dual-pulse TMS. The $AUC_{(SICI)}$ at day 7 were expressed as percentage of $AUC_{(SICI)}$ at baseline to capture relative changes in overall SICI after immobilization and training. **Left panels.** Individual $AUC_{(SICI)}$ ratios for the FDI and ADM muscle representations for the three types of interventions. An AUC ratio above the 100% line reflects a post-interventional decrease in SICI (i.e., disinhibition) relative to baseline. The colour of the lines indicates whether the muscle was trained (green), immobilized (red) or neither immobilized nor trained (grey); **Right panels.** Distances between the average mediolateral position of the SICI profiles (D_{WMP}) are displayed before and after the intervention for the three main types of interventions. Triangles symbolize the index finger and circles symbolize the little finger.

Figure 7. Synopsis of within-area reorganization in right $M1_{HAND}$ observed in Group A₁, B₁, C₁ and A₂, B₂ and C₂. The left panels illustrate the pre-interventional state with the grey areas reflecting the cortical representations of the FDI and ADM muscle in the right $M1_{HAND}$. The arrows close to the schematic drawings of the hand summarize changes in learning performances for the trained and non-trained fingers. The grey shading illustrates “absence of intervention”, the green shading illustrates

“training”, and the red shading illustrates “immobilization”. The arrows close to the schematic drawing of the central sulcus illustrate the direction of intervention-specific changes in muscle representations and intracortical inhibition.

Figure 1

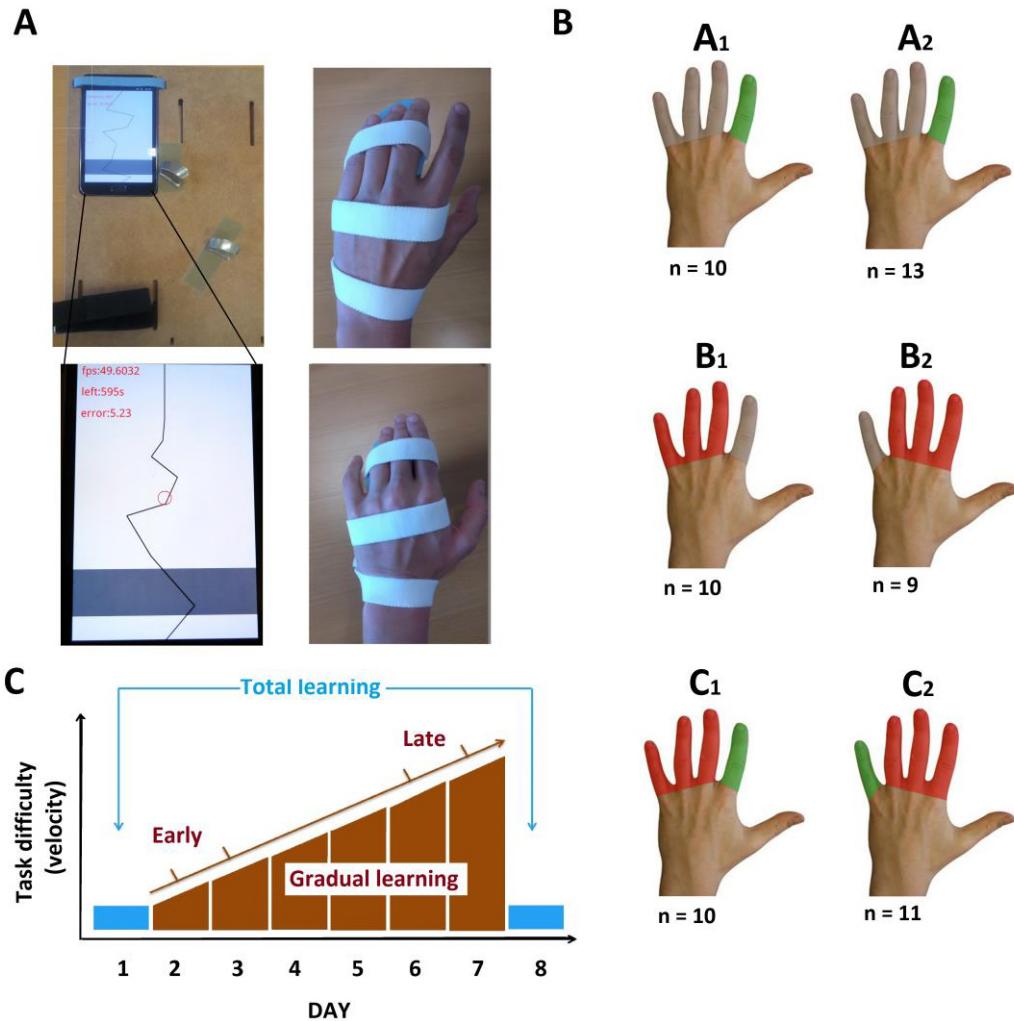


Figure 2

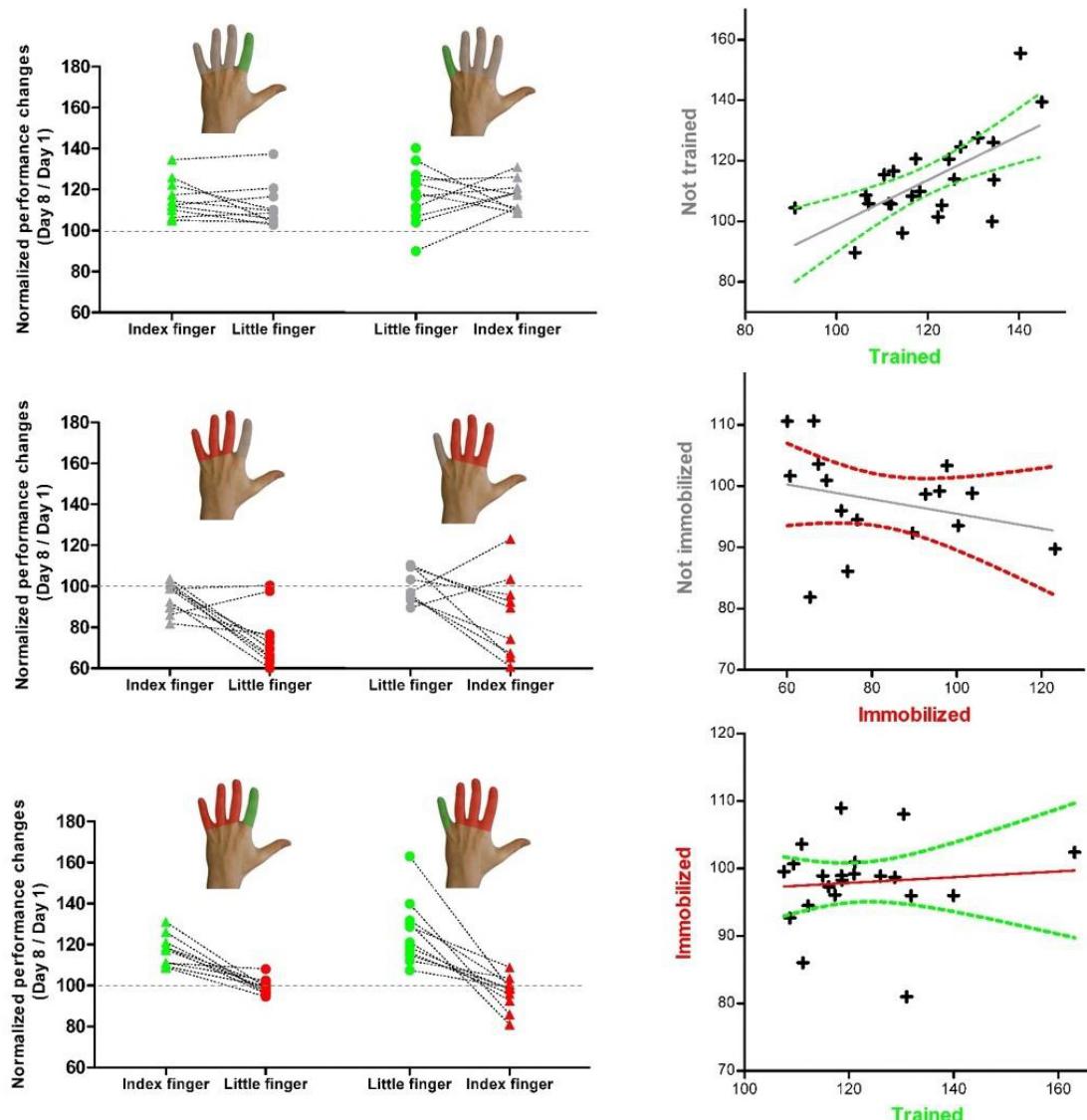


Figure 3

Figure 4

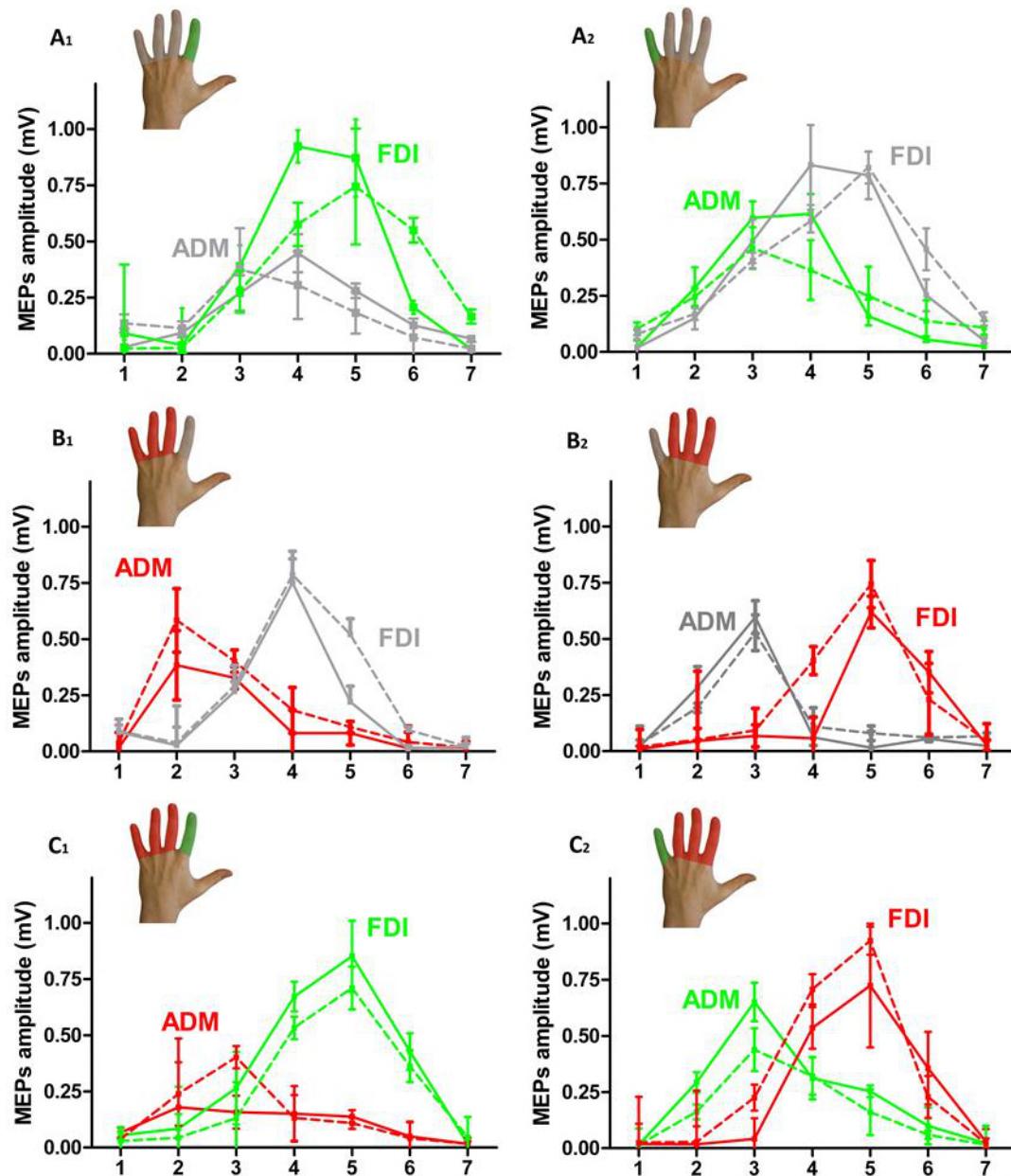


Figure 5

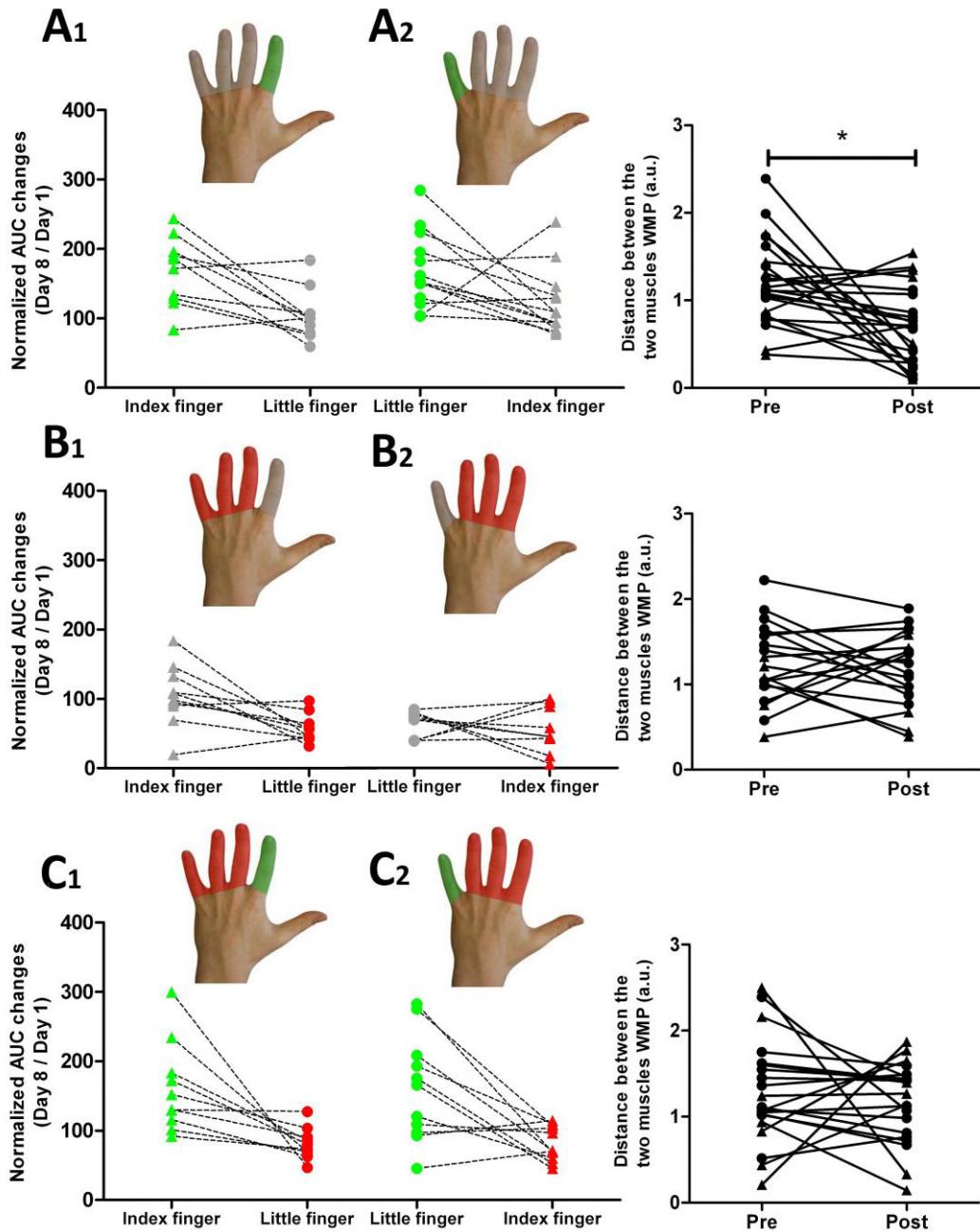


Figure 6

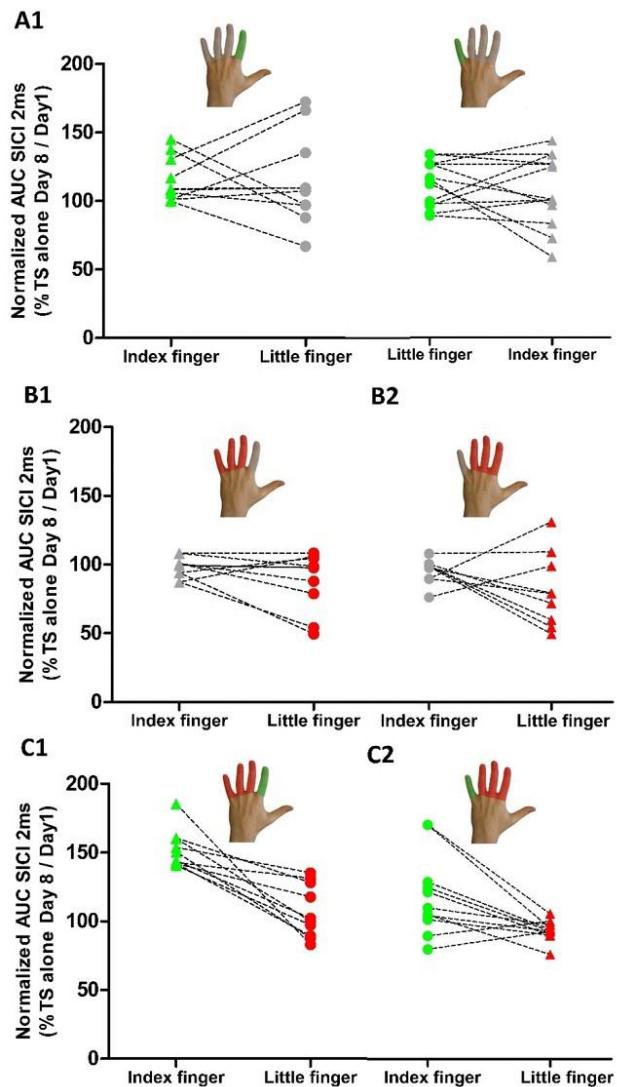
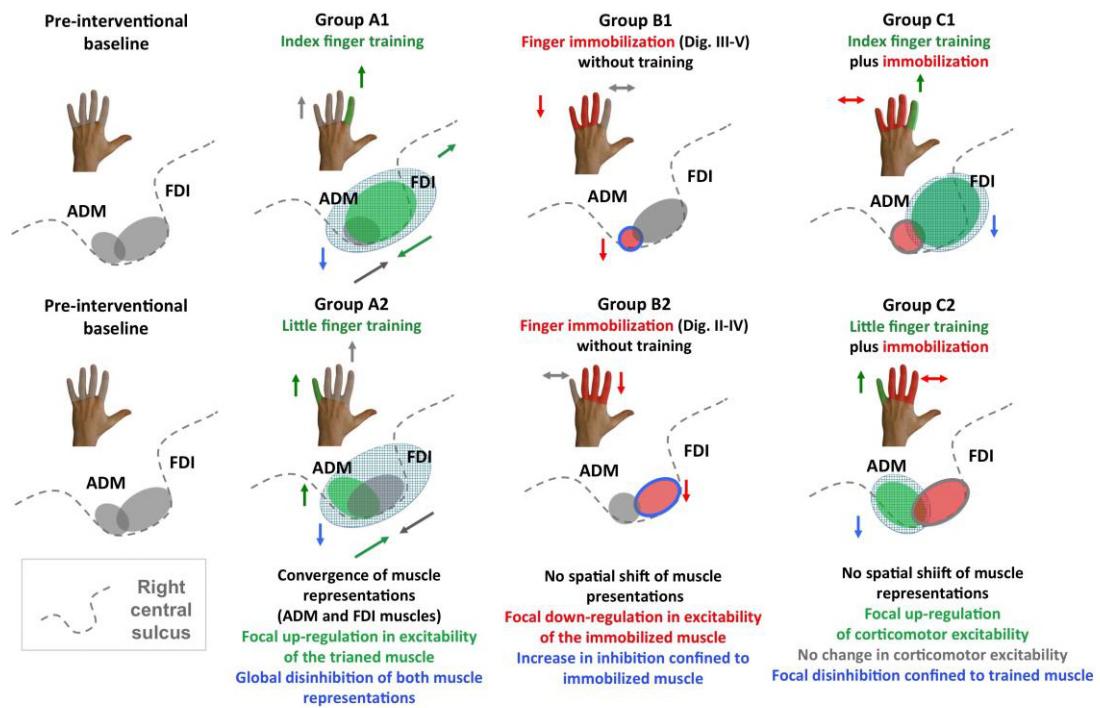



Figure 7

