

Chronic ethanol ingestion impairs *Drosophila melanogaster* health in a microbiome-dependent manner

James Angus Chandler^{1,*}, Lina Victoria Innocent¹, Isaac L. Huang¹, Jane L. Yang¹, Michael B. Eisen^{1,2,3}, and William B. Ludington^{1,4,*}

¹Department of Molecular and Cell Biology, University of California, Berkeley

²Department of Integrative Biology, University of California, Berkeley

³Howard Hughes Medical Institute

⁴Present Address: Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, 21218, USA

*Corresponding authors: jachandler@berkeley.edu and ludington@carnegiescience.edu

Summary

Ethanol is one of the worlds most abused drugs yet the impacts of chronic ethanol consumption are debated. Ethanol is a prevalent component in the diets of diverse animals and can act as a nutritional source, behavior modulator, and a toxin. The source of ethanol is microbes, which can both produce and degrade ethanol, and the gut microbiome has been associated with differential health outcomes in chronic alcoholism. To disentangle the various and potentially interacting roles of bacteria and ethanol on host health, we developed a model for chronic ethanol ingestion in the adult fruit fly, *Drosophila melanogaster*, which naturally consumes a diet between 0 and 5% ethanol. We took advantage of the tractability of the fly microbiome, which can be experimentally removed to separate the direct and indirect effects of commensal microbes. We found that moderate to heavy ethanol ingestion decreased lifespan and reproduction, without causing inebriation. These effects were more pronounced in flies lacking a microbiome, but could not be explained by simple bacterial degradation of ethanol. However, moderate ethanol ingestion increased reproduction in bacterially-colonized flies, relative to bacteria-free flies. Ethanol decreased intestinal stem cell turnover in bacterially-colonized flies and decreased intestinal barrier failure and increased fat content in all flies, regardless of microbiome status. Analysis of host gene expression finds that ethanol triggers the innate immune response, but only in flies colonized with bacteria. Taken together we show that, chronic ethanol ingestion negatively impacts fly health in a microbiome-dependent manner.

Introduction

Ethanol is common in the diets of many animals and is also among the most abused drugs in the world. Naturally fermenting diets can contain appreciable amounts of ethanol, which is consumed by a variety of animals including primates, birds, bats, treeshrews, and insects (Hockings et al. 2015; Mazeh et al. 2008; Wiens et al. 2008; Sánchez et al. 2004). The common fruit fly, *Drosophila melanogaster*, naturally consumes ethanol and has long been used as a model for investigating the effects of ethanol on animals (Devineni & Heberlein 2013). Flies have an attraction to ethanol (Devineni & Heberlein 2009; Ja et al. 2007) and display many hallmarks of human alcoholism including tolerance, addiction, and withdrawal (Kaun et al. 2011; Devineni & Heberlein 2009; Ghezzi et al. 2014; Robinson et al. 2012). While the developmental effects of ethanol have been studied in fly larvae (McClure et al. 2011; Logan-Garbisch et al.

47 2015), the role of long-term oral ingestion of moderate ethanol in adult flies has not been
48 investigated as previous studies focused on larval development and adult intoxication through
49 ethanol vapor. To fill this gap, we developed a *Drosophila* model of chronic ethanol ingestion.
50

51 *Drosophila* is a powerful model system for investigating the commensal animal microbiome
52 (Broderick & Lemaitre 2012; Douglas 2018). Flies can be cleared of their microbial communities
53 so that both direct and indirect effects of the microbiome can be investigated (Koyle et al. 2016).
54 Experiments investigating the role of the microbiome can be done on a large scale in flies,
55 testing many variables in parallel (Wong et al. 2014; Gould et al. 2018). Studies have shown that
56 commensal bacteria affect many components of fly fitness and physiology and many of these
57 effects are seen only in a diet-specific context (Shin et al. 2011; Storelli et al. 2011).
58

59 Ethanol can be both produced and consumed by microbes, and therefore play a key role in host
60 exposure. In humans, the microbiome is implicated in many of ethanol's negative consequences,
61 although the relative roles of direct ethanol-induced damage and indirect damage through
62 ethanol's ability to change the microbiota composition are unclear (Chen & Schnabl 2014;
63 Hartmann et al. 2015). Here we use flies deconstruct the complex interplay between host,
64 microbiome, and ethanol. We find that fly fitness in the presence of ethanol is heavily influenced
65 by the microbiome, and that many aspects of fly biology, including intestinal homeostasis, lipid
66 content, and the immune response, are mediated by microbes following ethanol ingestion. Taken
67 together, our newly developed model of chronic ethanol ingestion in flies provides insight into
68 how the animal microbiome modulates the effects of dietary ethanol.
69

70 **Methods**

71

72 *Fly stocks, husbandry, and creation of ethanol media*

73 All experiments used *Wolbachia*-free *D. melanogaster* Canton-S strain (Bloomington Line
74 64349) as previously described (Obadia et al. 2017). Flies were maintained at 25°C with 60%
75 humidity and 12-hour light/dark cycles on autoclaved glucose-yeast medium (10% glucose, 5%
76 Red Star brand active dry yeast, 1.2% agar, 0.42% propionic acid). Flies were three to six days
77 old before bacterial or ethanol treatments were applied (i.e. all flies were bacteria-free and raised
78 on 0% ethanol diets at birth). Bacteria-free flies were generated by sterilizing dechorionated
79 embryos (Ridley et al. 2013). Bacteria-free stocks were kept for several generations and checked
80 regularly for presence of yeasts, bacteria, and known viruses. Bacterially-colonized flies were
81 created by allowing approximately 50 normally-colonized young adults (from unmanipulated lab
82 stocks) to seed autoclaved media with their frass for about 10 minutes, removing these flies, and
83 then introducing bacteria-free flies. 0% to 15% ethanol media was made by adding 100% ethanol
84 to autoclaved glucose-yeast medium after it had cooled to 50°C. Vials were stored under
85 equivalent ethanol vapor pressure to reduce evaporation until use. Because we were interested in
86 the toxic, rather than nutritional, effects of ethanol, and because the caloric value of ethanol is
87 not easily comparable to that of sugars (Xu et al. 2012), we did not adjust amount of glucose in
88 an attempt to create an isocaloric diet (except where indicated, Figures 2C and 2D). Flies were
89 transferred to fresh media every three to four days, except for the experiment which controlled
90 for ethanol evaporation by transferring every day (Figure 2C).
91
92

93 *Ethanol concentrations of fly diets*

94 Evaporation and bacterial metabolism may decrease the effective ethanol concentration of the fly
95 diets. Using a clinical grade breathalyzer, we developed a method to measure ethanol vapor
96 within the headspace of a vial and use this a proxy for dietary ethanol concentration [following
97 (Morton et al. 2014)]. Briefly, a 14-gauge blunt needle attached to 50 mL syringe is used to
98 sample the headspace of vial. The sampled air is then pushed through the mouthpiece of an
99 Intoximeters Alco-Sensor® III breathalyzer. Using 2.5%, 5%, and 10% ethanol media, with
100 either 20 bacterially-colonized or bacteria-free flies, we checked ethanol concentration once per
101 day for four days. Four (2.5% and 5%) or five (10%) replicate vials of each of the ethanol
102 treatments were used. Preliminary experiments show that ethanol vapor concentration in the
103 headspace stabilizes within two hours of opening a vial or taking a measurement (data not
104 shown).

105

106 *Inebriation Assay*

107 Inebriation was measured using an established method (Sandhu et al. 2015). Briefly, vials were
108 gently tapped and the number of individuals that were able to stand up 30 seconds later was
109 recorded. Inebriation was measured on bacterially-colonized and bacteria-free flies on diets
110 containing 5%, 10%, 12.5% and 15% ethanol, with four independent replicates per ethanol and
111 bacterial treatment. As a positive control, one mL of 85% ethanol was added to a cellulose
112 acetate plug that was pushed into the middle of a vial, and this vial was capped tightly with a
113 rubber stopper. Within 30 minutes, this method leads to inebriation in approximately 50% of
114 flies under a variety of experimental conditions (Sandhu et al. 2015). To measure ethanol vapor
115 in the positive control, a valve was attached to the rubber stopper and the headspace was sampled
116 at 30 minutes using the breathalyzer method described above.

117

118 *Internal ethanol concentration of flies*

119 To quantify the ethanol concentration to which fly tissues are exposed, we measured the internal
120 ethanol concentration using a colorimetric enzymatic assay (Sigma-Aldrich MAK076). This
121 approach measures the combined effects of ethanol uptake and internal metabolism. We
122 measured ethanol concentration in individual flies fed 0% or 10% ethanol diets for 15 days. As a
123 positive control, a group of flies not previously exposed to ethanol were enclosed in a rubber-
124 stoppered vial with a cotton ball soaked with two ml of 35% ethanol [similar to (Fry 2014)]. A
125 dry cotton ball was added above the ethanol soaked one so that flies were unable to ingest
126 ethanol, while still being exposed to ethanol vapor. After 60 minutes, individuals that could not
127 stand, but still showed leg movements were selected. To calculate final internal concentration per
128 fly, ethanol was considered to be primarily located in the hemolymph and the hemolymph
129 volume was assumed to be 85 μ L per fly (Troutwine et al. 2016; Cowmeadow et al. 2005).

130

131 *Measurement of fecundity and lifespan*

132 Lifespan and fecundity were measured simultaneously during the same experiment. Four
133 replicate vials of 20 females each were created for the two bacterial treatments (bacterially-
134 colonized and bacteria-free) and the seven ethanol treatments (0% to 15%, in 2.5% increments)
135 resulting in 56 total vials for the 14 treatments. Survival was checked each day and dead flies
136 were removed with each transfer. Fecundity was calculated by the number of adults that emerge
137 per transfer to new diet, divided by the number of females alive at the start of that transfer,
138 summed over the entire experiment. Approximately 90% of all pupae that formed survived to

139 adulthood with no differences in eclosion rate between ethanol or microbial treatments (Figure
140 S6) and thus only adult emergence data is shown. Development rate was measured as the day the
141 first pupae formed following a transfer to a new vial. In a follow-up fecundity experiment that
142 controlled for ethanol evaporation, flies were transferred to new freshly-inoculated media every
143 day. This experiment also included a diet that was isocaloric with the 2.5% ethanol diet. The
144 isocaloric diet was created by the addition of 4.4% glucose (to the 10% glucose added to all
145 diets) and assumes ethanol is 7 kcal/g and glucose is 4 kcal/g (Ja et al. 2007).

146

147 *Bacterial abundance within flies*

148 This experiment was set up identical to the lifespan and fecundity experiment, except that only
149 three replicate vials were used. On days 14, 21, 28, and 31, one to three individual flies from
150 each replication and treatment were externally sterilized, homogenized, serially diluted, and
151 plated onto MRS media (Obadia et al. 2017). For the 12.5% and 15% ethanol treatments, we did
152 not sample flies on days 31, and 28 and 31, respectively, because of fly death before the end of
153 the experiment. Eight to 16 individuals were plated per ethanol treatment (mean=11.5). Colony
154 forming units (CFUs) were identified by visual comparison to laboratory stocks of various
155 species of *Acetobacter* and *Lactobacillus*. Additionally, the identity of representative CFUs was
156 confirmed using 16S rRNA sequencing (Supplementary Data X). In only one of 81 individual
157 flies sampled was there a CFU that had neither *Acetobacter* nor *Lactobacillus* morphology.
158 Because this CFU morphology represented less than 2% of the total bacterial community of this
159 fly, it was disregarded as potential contamination.

160

161 *Bacterial sensitivity to ethanol in vitro*

162 We tested *A. pasteurianus*, *L. plantarum*, and *L. brevis*, isolated in the bacterial abundance
163 experiment, for sensitivity to ethanol. Isolates were grown overnight at 30°C in an appropriate
164 medium (MYPL for *A. pasteurianus* and MRS for *L. plantarum* and *L. brevis*) and diluted to a
165 working OD of 0.01. For *A. pasteurianus* and *L. plantarum*, growth was measured in 0% to 15%
166 ethanol media in a 96-well plate using a TECAN Infinite F200 PRO, set to 30°C and 5 minutes
167 of orbital shaking per 10 minutes. For *L. brevis*, which forms a pellet when grown in a 96-well
168 plate, two mL of 0% to 15% ethanol MRS was inoculated with the overnight culture and shaken
169 continuously in cell culture tubes at 30°C. After 24 hours, maximum final OD was determined
170 for each isolate, and a two-parameter Weibull function was fit to the normalized maximum ODs
171 from the aggregate data for each strain (R package drc: Analysis of Dose-Response Curves). The
172 inhibitory concentration for 50% growth (IC50) was calculated as the ethanol percentage that
173 reduced normalized maximum OD by half.

174

175 *Bacterial abundance on the diet*

176 Experiments were set up as above, except only 0%, 7.5%, 10%, 12.5%, and 15% ethanol diets
177 were used. On day three five flies from each of four replicates per treatment were individually
178 homogenized, serially diluted in a 96-well plate, and pinned on selective media (MRS for *L.*
179 *plantarum*, MRS+X-Gal for *L. brevis*, and MYPL for *A. pasteurianus*) using a 96-pin replicator
180 (Boekel), (Obadia et al., 2017 and/or Gould et al., 2018). After fly removal from the vials, one
181 mL of PBS and approximately ten glass beads were added. This was shaken gently on a Nutator
182 at speed 3 for ten minutes, at which time 200 μ L was serially diluted and pinned as above. To
183 convert pinned colony growth to actual bacterial abundance, overnight cultures of *L. plantarum*,
184 *L. brevis*, and *A. pasteurianus* were serially diluted in 96-well plates as above. These serial

185 dilutions were both plated onto agar plates (to determine actual abundance) and pinned (to
186 determine pinning efficacy). A standard curve was created relating actual abundance to growth
187 due to pinning.

188

189 *Intestinal Barrier Failure*

190 We measured the level of intestinal barrier failure (IBF) by supplementing fly diet with 2.5%
191 (w/v) FD&C Blue No. 1 (Rera et al. 2012). Two independent experiments were done, the first
192 with 0% and 5% ethanol diets and the second 0%, 5%, and 7.5% ethanol diets, each with
193 bacterially-colonized and bacteria-free treatments. For each, three or four vials of 10 flies were
194 monitored over their entire lifespan and degree of IBF determined by the amount of blue
195 coloration in tissues upon death. For statistical purposes, individuals in IBF categories 0 and 1
196 were considered IBF negative and individuals with IBF categories 2 and 3 were considered IBF
197 positive (Clark et al. 2015). No significant differences were found between experiment 1 and
198 experiment 2, so they were combined into a single dataset. Because the blue dye accumulates in
199 flies with IBF and increases mortality (Clark et al. 2015), we did not directly compare the
200 lifespan data from these IBF experiments with experiments lacking blue dye.

201

202 *Lipid content*

203 Bacterially-colonized or bacteria-free flies were reared on 0%, 5%, and 10% ethanol diets for 16
204 days, as described above. Four to ten individuals were pooled by sex (mean=9.5), with three to
205 five replicates for each bacteria-ethanol-sex treatment. The mass of pooled flies was determined
206 to the nearest 1/10 of a milligram on a Mettler Toledo microbalance. Free and total lipid content
207 was determined using established colorimetric methods (SIGMA F6428, T2449, and G7793),
208 (Wong et al. 2014; Tennesen et al. 2014).

209

210 *Measurement of gene expression*

211 We used NanoStrings profiling to quantify *D. melanogaster* gene expression changes due to
212 ethanol ingestion and bacterial colonization (NanoStrings Technologies, Inc. Seattle, WA, USA).
213 A custom NanoStrings probeset was designed to target genes related to ethanol metabolism,
214 innate immunity and inflammation, ethanol-mediated behavior, among others (A full list of
215 genes, raw counts, normalized counts, and P-Values are found in Supplementary Dataset S1).
216 Additionally, probes were designed to the bacterial 16S ribosomal RNA and alcohol
217 dehydrogenase A and B genes. Bacterially-colonized or bacteria-free flies were reared on 0%
218 and 10% ethanol diets for 11 days. Total RNA was obtained from individual whole flies using a
219 Trizol/Chloroform extraction [following (Elya et al. 2016)]. 50 to 75 ng of purified RNA per
220 sample was hybridized to the NanoString reporter and capture probesets following
221 manufacturing instructions, and profiled on an nCounter SPRINT machine (Laboratory of Greg
222 Barton, UC Berkeley). Raw counts were normalized to internal NanoStrings positive and
223 negative control probes and three housekeeping genes (Actin 5C, Gadph, and Ribosomal Protein
224 L32). The correlation between each of the three housekeeping genes and the final normalization
225 factor was always greater than 0.89. Treatment effects were determined with a two-way ANOVA
226 using ethanol and bacterial colonization as independent variables and normalized counts (i.e.
227 expression level) as the dependent variable (Supplementary Dataset S1). Significance was
228 determined using a 5% Benjamini-Hochberg False Discovery Rate. For all bacterial 16S genes,
229 the normalized counts were greater than 10-fold higher in the bacterially-colonized treatments
230 compared to the bacteria-free treatments (Supplementary Dataset S1). For all bacterial ADH

231 genes, the normalized counts in the bacteria-free treatment were within three standard deviations
232 of the negative control probes and were greater in the bacterially-colonized treatments
233 (Supplementary Dataset S1).

234

235 **Results and Discussion**

236

237 *Establishing a model for chronic ethanol ingestion in flies*

238

239 Here we investigated the effects of chronic ethanol ingestion on *D. melanogaster* adults and if
240 the microbiome can mediate these effects. We first developed an administration method in which
241 ethanol is ingested directly from the media and asked how this method compares to established
242 methods of ethanol administration in adult flies. Previous methods used liquid ethanol added to
243 tightly capped vials, causing flies to absorb ethanol vapor through their cuticle.

244

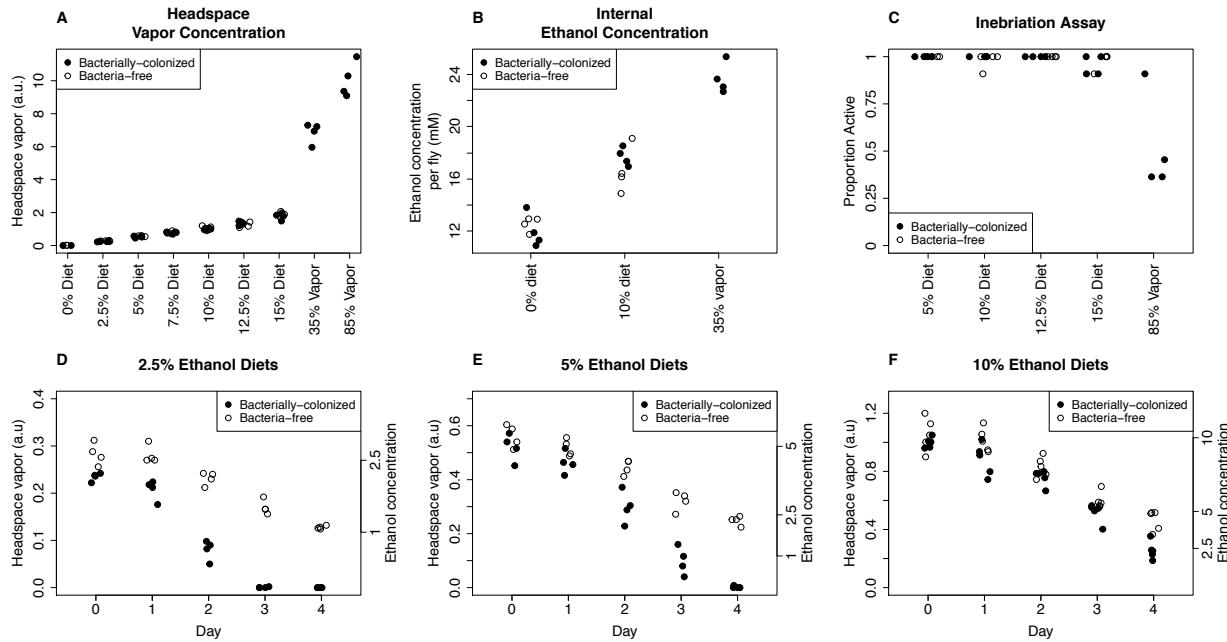
245 For all subsequent experiments, we used two microbiome treatments: Bacteria-free and
246 bacterially-colonized. Bacteria-free flies were generated using established protocols (Koyle et al.
247 2016) and bacterially-colonized flies were created by allowing approximately 50 normally-
248 colonized adults (from unmanipulated lab stocks) to seed autoclaved media with their frass,
249 removing these flies, and then introducing bacteria-free flies.

250

251 We first wanted to know how ethanol headspace vapor in our experiments compares with the
252 vapor levels of ethanol used in established ethanol inebriation studies and if headspace vapor
253 serves as a good proxy for dietary ethanol. To measure ethanol content, we developed a low-cost
254 and rapid method to measure ethanol in the vapor headspace of the fly vial using a breathalyzer
255 and used this as a proxy for dietary ethanol content [following (Morton et al. 2014)]. We
256 sampled the headspace vapor of freshly prepared vials with 0% to 15% dietary ethanol added.
257 Additionally, we used two methods to expose flies to ethanol vapor. In the first, we soaked a
258 cotton ball with 2 mL of 35% ethanol and covered with a dry cotton ball so flies could not ingest
259 the ethanol [similar to (Fry 2014)]. In the second, we added 1 mL of 85% ethanol to a cellulose
260 acetate plug (Sandhu et al 2015). We found that headspace vapor accurately measures dietary
261 ethanol (Figure 1A and S1). We also found that these methods lead to ethanol vapor levels many
262 times greater than our dietary ethanol method (Figure 1A). Therefore, our chronic ingestion
263 model exposes flies to a much lower headspace vapor than previously established acute
264 inebriation models, and suggests the main source of ethanol uptake is ingestion.

265

266 To confirm that flies effectively uptake ethanol when it is mixed directly in the media, we
267 measured the internal ethanol concentrations of flies fed ethanol diets. We found that flies fed
268 10% ethanol diets contain higher internal concentrations of ethanol than flies fed 0% ethanol
269 diets, which shows that in our treatment conditions flies successfully ingest dietary ethanol
270 (Figure 1B). We were also interested in how internal ethanol concentrations in flies fed ethanol
271 compare to flies exposed to ethanol vapor. We found that inebriated flies (exposed to 35%
272 ethanol vapor, which causes most flies to become immobile within an hour) have even higher
273 internal ethanol levels. This suggests that our dietary regime exposes flies to sub-inebriating
274 levels of ethanol.


275

276 We next asked if flies show behavioral signs of intoxication using the inebriation assay of
277 Sandhu et al. 2015, which measures inebriation as the inability for flies to stand after gently
278 tapping the vials. We found that, after 30 minutes, less than 5% of flies show signs of
279 inebriation, even on the highest ethanol diets, while half of flies exposed to 85% ethanol vapor
280 are inebriated (Figure 1C). Importantly, there was no effect of bacterial treatment on inebriation,
281 consistent with results from a previous study that used antibiotics to clear flies of their bacterial
282 communities (Sandhu et al 2015).

283
284 Finally, we asked how dietary ethanol concentration changes over time and hypothesized that
285 both evaporation and bacterial metabolism reduce ethanol content. As expected, the ethanol
286 vapor decreases over time (Figures 1D-1E). For 10% ethanol media, approximately half the
287 ethanol remained after 3 days. Colonization of vials with fly gut bacteria reduced the ethanol
288 levels further, particularly at low concentrations. For example, in the 2.5% ethanol treatment,
289 there is no detectable ethanol in the bacterially-colonized treatment on day two, but for the 10%
290 ethanol treatment there was no difference in the ethanol concentrations until day four. These
291 results suggest ethanol loss by two mechanisms. First, evaporation decreases ethanol
292 concentration. Second, bacterial metabolism consumes ethanol. The lag in bacterial ethanol
293 degradation presumably occurs because bacterial populations in the vials start off small. All vials
294 are initially sterile and are inoculated with the transfer of bacterially-colonized flies. Thus
295 bacterial abundance only becomes great enough to affect the measured ethanol on day two or
296 later.

297
298 Taken together, we have established an experimental model of chronic ethanol ingestion in adult
299 *D. melanogaster*. Ethanol remains in the media long enough for flies to uptake, ethanol is
300 detectable internally after ingestion, and flies do not show overt signs of inebriation. By adding
301 ethanol directly to the diet, we mimicked the route of natural ingestion for flies and increase the
302 translational power of our model, as humans consume ethanol via their diet rather than through
303 inhalation.

304

305
306

Figure 1: Establishing a chronic ethanol ingestion model in *Drosophila*.

307
308
309
310
311

A: Dietary ethanol leads to less headspace ethanol vapor than standard methods for ethanol inebriation. Headspace vapor was determined by sampling the vial headspace with a syringe and forcing this mixture through a medical-grade breathalyzer. For the 35% and 85% ethanol treatments, either a cotton ball (35%) or a cellulose acetate plug (85%) was soaked with liquid ethanol in a tightly capped vial (Fry 2014; Sandhu et al. 2015).

312
313
314
315

B: Flies uptake ethanol from their diet, but this still leads to lower internal ethanol concentrations than inebriating levels of ethanol vapor. Internal ethanol concentration was assayed enzymatically on individual flies fed either 0% or 10% ethanol diets or exposed to 35% ethanol vapor (Fry 2014).

316
317
318
319

C: Dietary ethanol does not lead to inebriation by standard assay. Proportion active is the proportion of 11 individual flies that can stand up after gently tapping the vial 30 minutes after initial exposure to ethanol. 85% ethanol vapor (final column) robustly leads to inebriation in about half of the individuals at this timepoint (Sandhu et al. 2015).

320
321
322
323
324

D, E and F: Dietary ethanol content decreases over time with greater loss in bacterially-colonized treatments. Ethanol concentration (right axis) was calculated from day 0 measurements (Figure S1). Measurements from 0% ethanol media are always below 0.02 and are therefore not shown. Note that flies are transferred to fresh vials on day 3 or 4 (Figure 2A and B, 3, 4, and 5) or day 1 (Figure 2C).

325
326
327
328
329
330
331
332
333

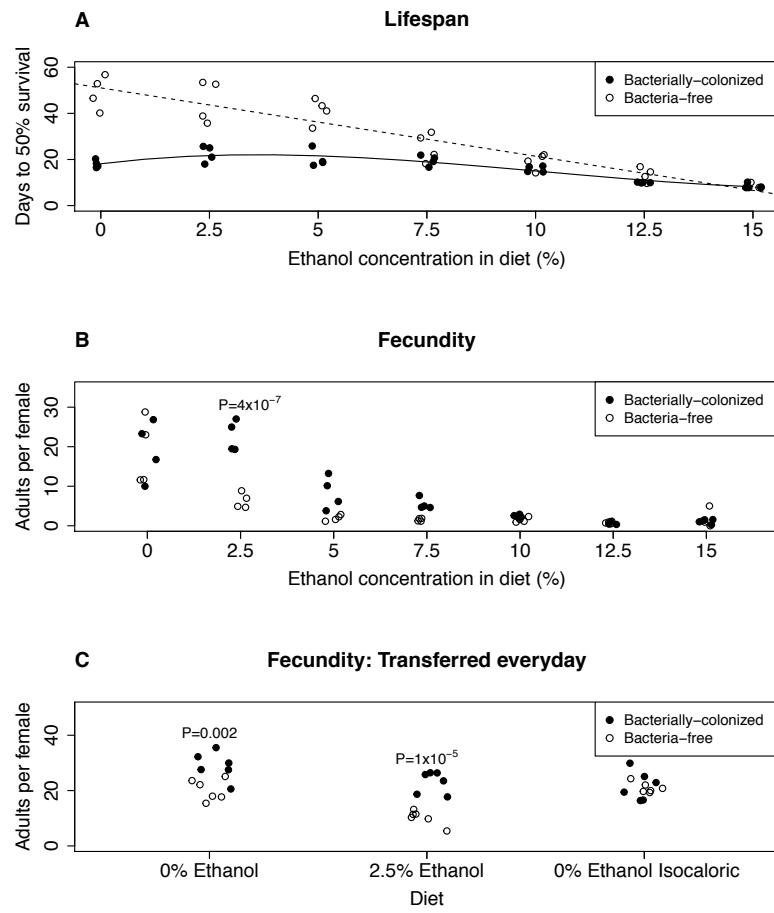
334 *Bacterial colonization of flies masks the negative effects of ethanol on lifespan*

335

336 We sought to determine the effects of ethanol and the microbiome on fly fitness, focusing on
337 lifespan and fecundity (Gould et al. 2018), which have not been investigated in a fly ethanol
338 model. While the results in humans are conflicting at very low ethanol consumption, in general
339 ethanol consumption is associated with shorter lifespan (Wood et al. 2018). The natural habitat
340 of *D. melanogaster*, fermenting fruit, often contains 1-5% ethanol and the unnatural but common
341 habitat of vineyards can contain up to 10% ethanol (Gibson et al. 1981). We therefore tested
342 dietary ethanol concentrations from 0% to 15%, which spans from ecologically relevant
343 concentrations to concentrations above those to which flies are normally exposed.

344

345 We measured lifespan, fecundity, and microbiome composition (see next section) in the same
346 experiment. Four replicate vials of 20 flies were used for each ethanol and bacterial treatment. In
347 our first experiment, we transferred flies to fresh food every three to four days to balance
348 between maintaining dietary ethanol concentration, which decreases over time, (see Figure 1D-
349 F) and maintaining bacterial colonization, which requires less frequent transfers (Blum et al.
350 2013)].


351

352 Bacterially-colonized flies consistently showed a shorter lifespan than bacteria-free flies, in
353 agreement with previous studies (Figure 2A; Table S1; Data for individual flies is shown in
354 Figure S2; Lifespan curves are shown in Figure S3), (Ridley et al. 2012; Clark et al. 2015;
355 Steinfeld 1927). However, the shorter lifespan in bacterially-colonized flies was robust to dietary
356 ethanol, with no significant ethanol-induced decrease in average or maximum lifespan observed
357 except at levels above those experienced in nature (12.5% and 15%). This was in sharp contrast
358 to the bacteria-free flies, which overall live longer, but show a nearly linear and dose-dependent
359 decrease in average and maximum lifespan beginning at just 2.5% ethanol. Overall, these data
360 suggest that two independent mechanisms interact to determine lifespan in this system: bacterial
361 colonization and ethanol exposure. First, the effect of bacterial colonization is dominant to the
362 effect of ethanol at levels below 10%. Second, there is a clear negative effect of ethanol, but its
363 effect is completely masked by bacteria at low to moderate ethanol concentrations.

364

365 That bacterially-colonized flies have a reduced lifespan compared to bacteria-free flies has been
366 reported before though never with the same magnitude we found here, suggesting that the flies in
367 our lab may be colonized with a particularly lifespan-shortening consortium of bacteria.
368 However, an equally plausible explanation would be that our media, which lacks the commonly-
369 used microbial growth inhibitor tegosept, may have greater bacterial loads than other studies
370 (Obadia et al. 2018). This would lead to a greater difference in dietary bacterial load between the
371 bacterially-colonized and bacteria-free treatments which could explain the more drastic lifespan
372 reduction that we observe.

373

374

375 **Figure 2: Bacteria mediate the effect of ethanol on fly fitness**

376 **A: Bacterial colonization and ethanol negatively affect fly lifespan, with the negative effect**
377 **of ethanol being unmasked in bacteria-free flies.** Days to 50% survival is per replicate and
378 calculated from birth (see methods). Each replicate began with 20 female flies. Lines show the
379 best fit lines for each bacterial treatment (Solid: bacteria-free, linear, $R^2=0.874$; Dashed:
380 bacterially-colonized, third order, $R^2=0.832$). Data for individual flies is shown in Figure S2 and
381 Table S1.

382 **B: Bacteria ameliorate the negative effects of ethanol on fly fecundity.** Adults per female is
383 calculated by the number of adults that emerge per flip, divided by the number of females alive
384 at the start of the egg laying period. Each replicate began with 20 females. P-values are
385 calculated from a pairwise t test between bacterial treatments for a given ethanol treatment and
386 are Holm-Bonferroni corrected for multiple comparisons. Non-significant P-values are not
387 shown. An independent replication of this experiment (with 0% and 2.5% ethanol) is shown in
388 Figure S4.

389 **C: The effect of 2.5% ethanol on fecundity is not due to ethanol evaporation or the caloric**
390 **contribution of ethanol.** Flies were transferred to fresh diets each day to reduce the effect of
391 ethanol evaporation (Figure 1D). The isocaloric diets have added glucose so they contain
392 identical calories as the 2.5% ethanol diets. Adults per female was calculated as in Figure 2B,
393 however in this experiment each replicate began with 10 females per replicate. P-values are
394 calculated from a pairwise t test between bacterial treatments for a given dietary treatment and
395 are Holm-Bonferroni corrected for multiple comparisons. Non-significant P-values are not
396 shown.

397 *Bacteria ameliorate the negative effects of ethanol on fecundity*

398

399 We found a strong effect of ethanol on fly fecundity that is mediated by bacterial treatment
400 (Figure 2B). Without ethanol, there was no difference in fecundity between bacterially-colonized
401 and bacteria-free flies, which is consistent with previous work (Ridley et al. 2012). For both
402 bacterial treatments, ethanol reduced fecundity, but bacteria-free flies were more sensitive: at
403 2.5% ethanol, bacterially-colonized flies had significantly higher fecundity ($P=4\times 10^{-7}$, Figure
404 2B; $P=0.03$, Figure S4). The same trend was observed on both 5% and 7.5% ethanol diets
405 (though not statistically significant at $P<0.05$ after correction for multiple comparisons).
406 Interestingly, we found that ethanol does not lead to the typical tradeoff between lifespan and
407 fecundity observed by varying nutrients (Zera & Harshman 2001; Djawdan et al. 1996) – instead
408 we found that ethanol decreases both components of fitness (Figures 2A and 2B, Figure S5).
409 This suggests that ethanol, even at the low concentrations used in this study, is acting more like a
410 toxin than a source of calories.

411

412 On 2.5% ethanol media, ethanol content is significantly reduced by day two in the bacterially-
413 colonized treatment (Figure 1D). Therefore, the difference in fecundity observed in the 2.5%
414 ethanol treatment (Figure 2B) could simply be due to less dietary ethanol in the bacterially-
415 colonized treatment. Although the fecundity difference between bacterially-colonized and
416 bacteria-free flies remains even when accounting for differential ethanol loss (Supplementary
417 Dataset 2), we nonetheless repeated the fecundity experiment but transferred the flies to fresh
418 diets every day. To ensure the persistence of the intestinal bacterial communities, we seeded each
419 daily batch of media with the frass of bacterially-colonized flies. Also, to test whether the
420 calories added by the ethanol in the 2.5% treatment affect the flies, we added a 0% ethanol
421 treatment that is isocaloric with the 2.5% ethanol treatment.

422

423 The daily transfer experiments showed comparable results. In concordance with the 3-4 day
424 transfers, bacterially-colonized flies had greater fecundity in the 2.5% ethanol treatment relative
425 to bacteria-free flies ($P=1\times 10^{-5}$, Figure 2C). This strongly suggests that bacterial metabolism of
426 ethanol on the food does not cause the difference in fecundity between the bacterial treatments.
427 We also found no effect of bacterial treatment in the isocaloric diets suggesting that the
428 differences in fecundity cannot be attributed to ethanol's caloric contribution.

429

430 The observed fecundity differences could be due either to maternal egg production or larval
431 survival. To differentiate between these causes, we measured larval development time as a proxy
432 for larval survival because we could not directly count egg laying (and thus could not calculate
433 survival from egg to adulthood). Although development time increased on the highest ethanol
434 diets (Figure S6), we found no effect on development time between bacterially-colonized and
435 bacteria-free treatments at the 0%, and 2.5% ethanol treatments (all pairwise t-tests, $P>0.2$),
436 consistent with a previous result that ethanol does not affect larval development except in the
437 final larval stage at 5 days (McClure et al. 2011), when most of the ethanol has evaporated from
438 the media (Figures 1D, 1E and 1F). Furthermore, previous work has shown that 12% ethanol over
439 the entire developmental period reduces larval survival to 25% (McClure et al. 2011). We find
440 that fecundity drops to near zero at 5% ethanol for bacteria-free flies versus 10% ethanol for
441 bacterially-colonized flies. Thus, maternal egg production, rather than larval survival, accounts
442 for fecundity effects seen in Figure 2B.

443

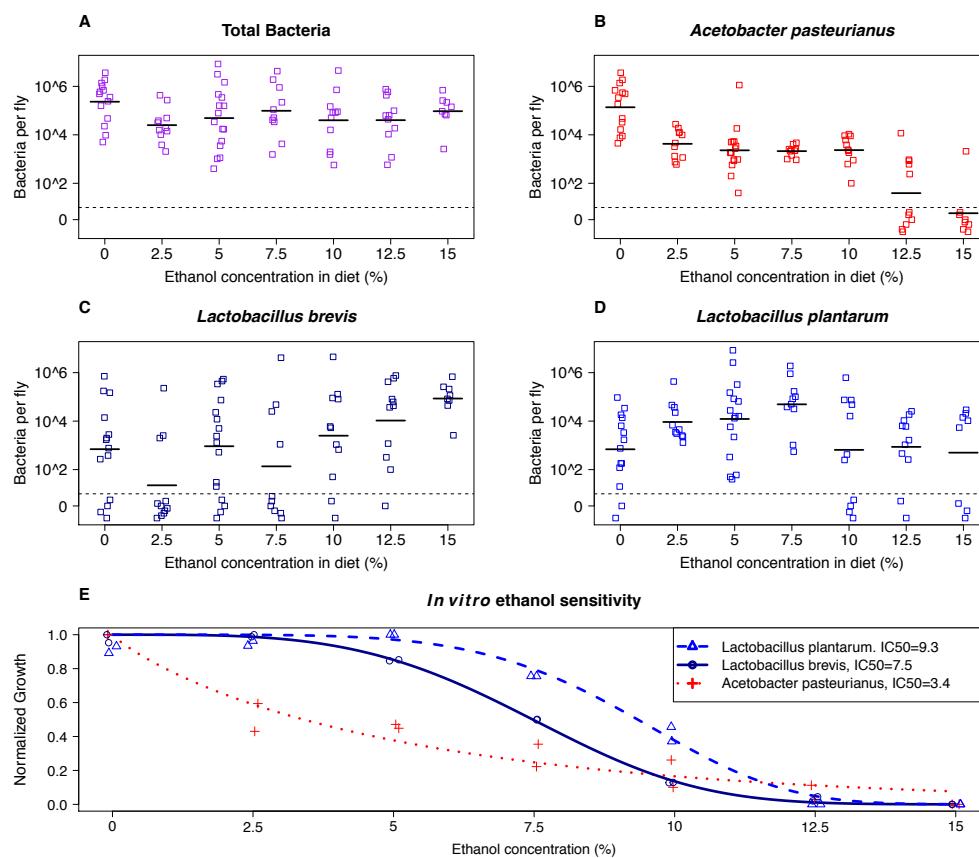
444 Taken together, these results suggest significant ecological and evolutionary impacts of microbes
445 in mediating the negative effects of ethanol toxicity on fly fecundity. While the exact doses of
446 ethanol that flies consume in the wild remains obscure, the concentration in naturally fermenting
447 fruit is typically 1-5% and can be as high as 10% in wineries (Gibson et al. 1981). In all cases for
448 flies fed 2.5% to 7.5% ethanol, we found that bacterially-colonized flies had higher fecundity
449 than bacteria-free flies and this effect persists even when controlling for ethanol metabolism by
450 daily transfers to fresh media. Thus, at ecologically relevant concentrations of ethanol, bacterial
451 colonization mitigates the negative effects on fecundity.

452

453 *Ethanol shifts the composition of bacteria associated with *D. melanogaster**

454

455 Diet is a strong determinant of microbiome composition in flies and other animals. In particular,
456 fruit feeding flies, which are exposed to naturally produced dietary ethanol, have significantly
457 different bacterial and yeast communities than flies collected from other substrates (Chandler et
458 al. 2011; Chandler et al. 2012). We hypothesized that the bacterial communities associated with
459 flies would shift in response to ethanol ingestion. In particular, we expected that ethanol would
460 strongly decrease the total abundance of bacteria in high ethanol treatments and these shifts
461 would favor the abundance of bacteria with low sensitivity to ethanol. Thus, in a parallel
462 replicate of the lifespan-fecundity experiment (Figures 2A and 2B), we determined fly bacterial
463 load and composition by homogenizing individual flies and plating onto selective media. The
464 different bacterial strains were identified by colony morphology.


465

466 We found that total bacterial load per fly was between 9×10^3 and 3×10^6 colony forming units
467 (CFUs) for the 0% ethanol containing diets (mean= 7×10^5). This is comparable to previous
468 studies of *D. melanogaster* (Blum et al. 2013; Obadia et al. 2017). Contrary to our expectations,
469 we found that total bacterial load was relatively constant up to the highest ethanol treatment
470 (Figure 3A). We next asked how the bacterial composition changes in response to ethanol. In
471 agreement with the previous work in our laboratory and that of others, our flies are dominated by
472 species in the genera *Acetobacter* and *Lactobacillus* (Broderick & Lemaitre 2012). Different
473 bacteria had different responses to dietary ethanol. *Acetobacter pasteurianus* concentrations
474 decreased 10-fold from 0% to 2.5% ethanol and remained constant until 12.5% ethanol where
475 they dropped to essentially 0 (Figure 3B). Conversely, we found that the response of the
476 *Lactobacilli* to ethanol was remarkably different than *A. pasteurianus*. The abundance of *L.*
477 *brevis* increased with dietary ethanol and this was the only species that was present in all flies at
478 15% ethanol (Figure 3C). *L. plantarum* was most abundant at intermediate concentrations of
479 ethanol, but like *L. brevis*, it did not appear as sensitive to high levels of ethanol as *A.*
480 *pasteurianus* (Figure 3D).

481

482 To confirm the direct effect of ethanol on the bacterial growth, we measured the *in vitro* growth
483 response to ethanol of *A. pasteurianus*, *L. plantarum* and *L. brevis* strains isolated during the
484 experiment in Figure 3A-3D. These experiments confirmed that *A. pasteurianus* is more
485 sensitive to ethanol than *L. brevis* and *L. plantarum* (Figure 3E). These results indicate that the
486 bacterial composition of flies varies, at least in part, according the ethanol sensitivities of the
487 bacterial strains. However, because these *in vitro* experiments show that these bacteria are more
488 sensitive to ethanol than is suggested by their *in vivo* abundances, we hypothesized that the fly

489 intestine protects bacteria from ethanol toxicity. In support of this, we found high abundance of
490 *L. brevis* and *L. plantarum* within flies fed a 15% ethanol diet despite these bacteria being
491 undetectable on this media (Figure S8). Similarly, *A. pasteurianus* is present within flies fed
492 12.5% ethanol despite this bacterium being absent on this media (Figure S8). This confirms that
493 the host shields the effect of ethanol on the bacteria.
494

495
496 **Figure 3: Bacterial community dynamics in response to ethanol diets.**
497 **A, B, C and D: The abundance of *Acetobacter pasteurianus* decreases with increasing**
498 **dietary ethanol, while the abundance of *Lactobacillus plantarum* and *Lactobacillus brevis***
499 **remain high.** Each point represents an individual fly. All points below the dashed line are 0 and
500 are expanded for clarity. The black bars represent the mean of the log transformed bacterial load.
501 Number of individual flies per treatment: 0% N=14; 2.5% N=11; 5% N=16; 7.5% N=10;
502 10% N=11; 12.5% N=11; 15% N=8. We found no effect of fly age [multivariate ANOVA
503 (Adonis, package vegan in R; P = 0.159)] and therefore all four timepoints are pooled (see
504 methods).

505 **E. *A. pasteurianus* is more sensitive to ethanol than *L. plantarum* or *L. brevis* in vitro.**
506 Strains were isolated in the *in vivo* bacterial abundance experiment (Figure 4). Growth was
507 measured using MRS or MYPL liquid media containing 0% to 15% ethanol in either a 96-well
508 plate (*A. pasteurianus* and *L. plantarum*) or cell culture tubes (*L. brevis*) for 24 hours at 30°C.
509 Datapoints are the final normalized OD of two independent replicates. A two-parameter Weibull
510 function was fit to the normalized ODs from the aggregate data for each strain (R package drc:
511 Analysis of Dose-Response Curves). The inhibitory concentration for 50% growth (IC₅₀) was
512 calculated as the ethanol percentage that reduced normalized maximum OD by half.

513

514 *Dietary ethanol decreases intestinal barrier failure*

515

516 To explore the fly physiology underlying mortality following ethanol ingestion in flies, we
517 examined intestinal barrier failure (IBF), which is strongly linked to alcoholic liver disease in
518 humans (Chen & Schnabl 2014) and is a hallmark of aging-related death in flies (Rera et al.
519 2012; Clark et al. 2015). We used the Smurf assay (Rera et al. 2012), rearing flies on a diet
520 containing blue dye no. 1 and scoring them for a blue body coloration, which is indicative of a
521 permeabilized gut. Consistent with previous results (Rera et al. 2012; Clark et al. 2015), we
522 found that nearly all flies on a 0% ethanol diet show IBF upon death. Quite surprisingly, on
523 ethanol diets, we found a significant decrease in the proportion of flies that show IBF (Figures
524 4A and S9). Furthermore, bacteria-free flies (which are more sensitive to ethanol) show
525 significantly less IBF than bacterially-colonized flies on ethanol diets. Examining the effects of
526 bacteria and ethanol together, we detect a significant interaction ($P=1\times 10^{-4}$, Figure 4A). Taken
527 together, this suggests that IBF is not the causative mechanism of ethanol-induced lifespan
528 decline in flies. That some individuals in the ethanol treatments nonetheless showed IBF can be
529 explained by the normal background aging process (Rera et al. 2012; Clark et al. 2015).

530

531

532

533

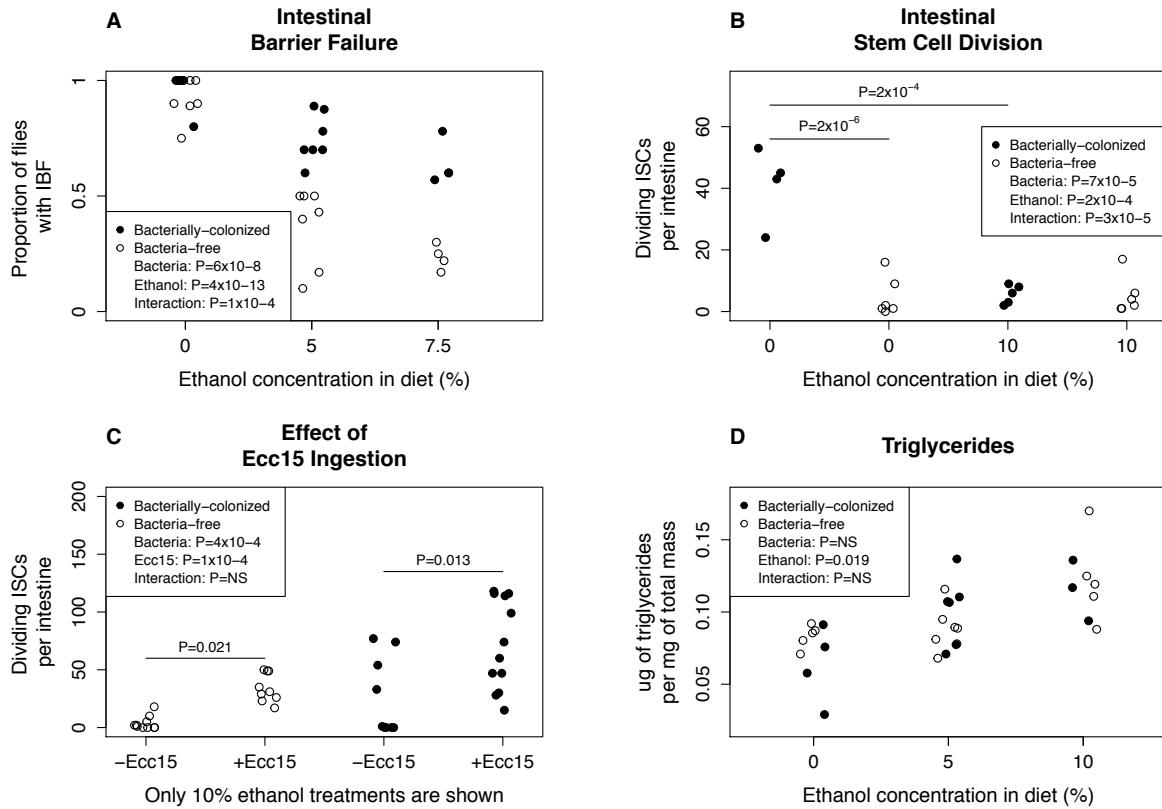
534

535

536

537

538


539

540

541

542

543

544

545

546 **Figure 4: Bacteria mediate the effect of ethanol on fly physiology**

547 Within each panel, values in the legend are the results from a two-way ANOVA. Comparison P
 548 values are calculated from a pairwise t test between treatments and are Holm-Bonferroni
 549 corrected for multiple comparisons within an experiment. All data shown is for females. Male
 550 data for IBF is shown in Figure S9 and for triglyceride content is shown in Figure S11.

551 **A. The prevalence of intestinal barrier failure (IBF) decreases with dietary ethanol and this**
 552 **decrease is greater in bacteria free flies.** Each point represents the average from a replicate
 553 vial. Flies were scored within 24 hours of death.

554 **B. Ethanol reduces intestinal stem cell turnover in bacterially colonized, but not bacteria**
 555 **free, flies.** Each datapoint indicates the number of pH3 stained cells in an individual intestine.
 556 Results from an independent experiment as shown in Figure S10.

557 **C: Ethanol does not inhibit the ability of ISCs to regenerate following oral ingestion of**
 558 ***Erwinia carotovora carotovora* 15 (Ecc15).** Each datapoint indicates the number of pH3 stained
 559 cells in an individual intestine.

560 **D: Ethanol ingestion increases stored triglycerides in flies, regardless of bacterial**
 561 **treatment.** Each point represents a pooled sample of 4 to 10 flies.

562

563 *The effect of ethanol on ISC turnover is microbiome dependent*

564

565 Intestinal barrier function is maintained through controlled intestinal stem cell (ISC) turnover
 566 (Lemaitre & Miguel-Aliaga 2013). Because stem cell hyper-proliferation leads to loss of
 567 intestinal function (Li & Jasper 2016), we hypothesized that the reduction in IBF was due to a
 568 decrease in ISC turnover. To quantify stem cell turnover, we measured mitotic cells in the gut by

569 phospho-histone H3 antibody staining (Apidianakis & Rahme 2011). In two independent
570 experiments, we found that in the absence of ethanol, ISC division was significantly greater in
571 bacterially-colonized flies ($P=2\times10^{-6}$, Figure 4B; $P=2\times10^{-6}$, Figure S10), consistent with previous
572 work showing that ISC hyper-proliferation caused by commensal bacteria shortens fly lifespan
573 [(Figure 2A), (Buchon et al. 2009; Guo et al. 2014)].

574
575 In the presence of ethanol, we found that ISC division is significantly decreased in bacterially-
576 colonized flies, but unchanged in bacteria-free flies ($P=2\times10^{-4}$, Figure 4B; $P=3\times10^{-6}$, Figure
577 S10). These results are in accord with the IBF data presented in Figure 4A for bacterially-
578 colonized flies (specifically, that both IBF and ISC division, two processes linked to intestinal
579 homeostasis, are reduced), but suggest an additional mechanism reduces IBF in bacteria-free
580 flies fed ethanol. Why these two phenotypes are uncoupled in bacteria-free flies, in which
581 ethanol decreases IBF with no change in ISC turnover, remains unknown and suggests different
582 mechanisms of ethanol-induced pathology in bacterially-colonized and bacteria-free flies.
583

584 The decrease in dividing ISCs in bacterially-colonized flies led us to hypothesize that ethanol
585 might inhibit the ability of ISCs to regenerate following a biological or chemical challenge. To
586 test this hypothesis, we infected flies with *Erwinia carotovora carotovora 15* (Ecc15), a non-
587 lethal pathogen of *Drosophila*, which reliably induces ISC division following oral ingestion
588 (Buchon, Broderick, Poidevin, et al. 2009). In both bacteria-free and bacterially-colonized flies
589 ingesting ethanol, infection with Ecc15 increases ISC division ($P=0.021$ and $P=0.013$,
590 respectively, Figure 4C). Thus, ethanol does not inhibit the ability of ISCs to regenerate despite
591 the observed decrease in ISC division in bacterially-colonized and ethanol-fed flies (Figures 4B
592 and S10).

593
594 *Ethanol ingestion increases stored triglycerides in flies*
595

596 The maintenance of intestinal homeostasis with ethanol treatment may be due to a change in
597 overall fly metabolism. In flies, poor quality diets are linked to both ISC turnover and obesity
598 (Skorupa et al. 2008; Regan et al. 2016). In humans, increased fat deposits in the liver are a
599 hallmark of alcoholic liver disease (Diehl 2002). We hypothesized that ethanol ingestion is
600 leading to greater accumulation of stored triglycerides in flies. Triglycerides are a primary
601 molecule for fat storage in flies and are mainly found in adipocytes within the fat body, an organ
602 analogous to the mammalian liver that is responsible for the majority of energy reserves in adult
603 fly (Arrese & Soulages 2010). We therefore measured stored triglycerides in bacteria-free and
604 bacterially-colonized flies on 0%, 5% or 10% ethanol diets. Consistent with our hypothesis, we
605 found that dietary ethanol increases triglycerides regardless of bacterial colonization, with no
606 effect on either total fly mass or free glycerides (Figures 4D and S11, Table S2). Because dietary
607 sugars increase triglyceride content in flies (Skorupa et al. 2008), our finding is consistent with
608 ethanol acting as an energy source with regards to fat storage, despite the lack of tradeoff
609 between lifespan and fecundity due to ethanol ingestion (Figure S5). The finding that there is no
610 difference in triglyceride content between bacterially-colonized and bacteria-free flies is
611 consistent with the minimal role of bacterial metabolism on 5% and 10% ethanol diets (Figures
612 1E and 1F) and suggests that fat accumulation does not directly explain either the lifespan
613 (Figure 2A) or intestinal homeostasis (Figures 4A and 4B) results.
614

615 *Ethanol ingestion and bacterial colonization affect expression of innate immunity genes*

616

617 To understand the molecular mechanisms underpinning the differences in lifespan between
618 bacteria-free and bacteria-colonized flies ingesting ethanol (Figure 2A), we surveyed fly gene
619 expression using a custom NanoStrings probeset and selected candidate genes likely to be
620 influenced by ethanol or microbiome status. In concordance with previous work (Broderick et al.
621 2014), we found many immune system (e.g. lysozyme X and the PGRPs), stress related (e.g.
622 GstD5 and HSP23), and cell differentiation (e.g. upd3) genes to be upregulated in response to
623 bacterial colonization (Table 1). Likewise, and in agreement with Elya et al 2016, we found that
624 anti-microbial peptides (AMPs) as a group show increased expression in bacterially-colonized
625 treatments (Table S3).

626

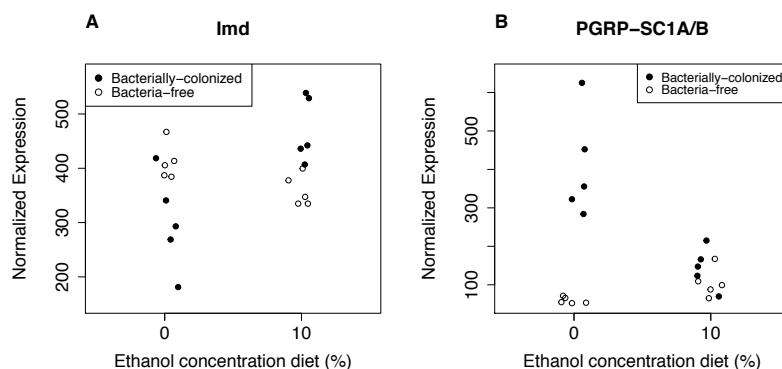
627 We examined many genes and molecular pathways known to mediate the effects of ethanol
628 intoxication in flies, but we found that ethanol only subtle changes the expression of
629 neuropeptideF (Table 1). This is consistent with ethanol ingestion not leading to inebriation
630 (Figure 1C) and flies fed ethanol having a lower internal concentration of ethanol than inebriated
631 flies (Figure 1B).

632

633 There are two potential mechanisms that may contribute to the ethanol-induced lifespan
634 reduction in bacteria-free, but not bacterially-colonized, flies. First, host metabolism of ethanol
635 may be more efficient in bacterially-colonized flies, leading to a faster clearance of ingested
636 ethanol. Contrary to this hypothesis, we did not find that genes in the ethanol metabolism
637 pathway [alcohol dehydrogenase (Adh) and acetaldehyde dehydrogenase (Aldh)] were more
638 strongly induced in bacterially-colonized flies (Table 1), which is consistent with the equivalent
639 internal ethanol concentrations we observed for bacteria-free and bacterially-colonized flies fed
640 10% ethanol (Figure 1B). This result suggests that ethanol metabolism does not directly underpin
641 the differences in lifespan between bacteria-free and bacteria-colonized flies.

642

643 In the second mechanism, ethanol may be eliciting the innate immune response in bacteria-free,
644 but not bacterially-colonized, flies. Immune activation promotes shorter lifespan in flies
645 (Garschall & Flatt 2018; DeVeale et al. 2004; Eleftherianos & Castillo 2012) and resistance to
646 ethanol vapor in flies is linked to the innate immunity response (Troutwine et al. 2016). In
647 mammals, dysregulation of the immune response and persistent inflammation is linked to aging
648 (Gomez et al. 2008; Shaw et al. 2010). Two innate immunity genes showed a significant change
649 in expression due to the combination of ethanol and bacterial colonization (Figure 5): Immune
650 deficient (Imd) and Peptidoglycan recognition protein SC1A/B (PGRP-SC1A/B). Imd is a master
651 regulator of innate immunity in response to gram-negative bacteria (Lemaire & Hoffmann
652 2007). PGRP-SC1A/B is a peptidoglycan scavenger that negatively regulates the IMD pathway
653 (Kurata 2014). Consistent with their known interaction pathway, PGRP-SC1A/B increased and
654 Imd decreased with ethanol ingestion in bacterially-colonized flies. However, both of these genes
655 show greater changes with ethanol ingestion in the bacterially-colonized treatment, with little or
656 no change in the bacteria-free treatment (Figure 5), and therefore do not directly explain the
657 lifespan differences identified in Figure 2A. We next examined whether antimicrobial peptide
658 (AMP) gene expression, which is a downstream target of Imd, was affected. We found no
659 ethanol dependence of AMP stimulation, (Table S3). This finding is consistent with literature
660 showing that the AMP expression can be muted when Imd is triggered in the absence of a


661 pathogen (Lhocine et al. 2008). Regardless, because of the recognized role of the IMD pathway
662 and innate immunity in regulating fly lifespan, Imd and PGRP-SC1A/B are promising targets to
663 pursue to further our understanding of microbiome by ethanol fitness effects in *Drosophila*.
664

Genes affected by ethanol ingestion		
Gene	P-value	Fold-Change
neuropeptideF	0.015	1.5
Acetaldehyde Dehydrogenase	0.035	1.6
Acetyl-CoA synthetase	0.038	2.8
HSP70Bc	0.047	3.1
Alcohol Dehydrogenase	0.047	1.8

Genes affected by bacterial colonization		
Gene	P-value	Fold-Change
PGRP SC1A/B	0.0029	3.3
upd3	0.030	5.5
LysozymeX	0.030	18
upd2	0.030	69
Crys	0.030	9
Defensin	0.030	5.3
Charon	0.030	3.8
GstD5	0.030	2.7
PGRP SD	0.030	4.2
PGRP LB	0.030	2.2
Drosomycin-like 1	0.031	44
HSP23	0.040	2.3
PGRP LC	0.048	2.7

665 **Table 1: Genes showing significant expression changes in response to either ethanol**
666 **ingestion or bacterial colonization.** P-values are adjusted using a 5% Benjamini-Hochberg false
667 discovery rate correction. Genes with less than a 1.5 fold-change or with average normalized
668 counts within two standard deviations of the negative control probes are excluded.

669
670 **Figure 5. Ethanol induces the Imd response in bacterially-colonized, but not bacteria-free,**
671 **flies.** A two-way ANOVA finds a significant bacteria-by-ethanol interaction on the expression of
672 Imd (Panel A) and PGRP-SC1A/B (Panel B). For both genes, the P-value of the interaction is
673 0.023 after a 5% Benjamini-Hochberg false discovery rate correction.

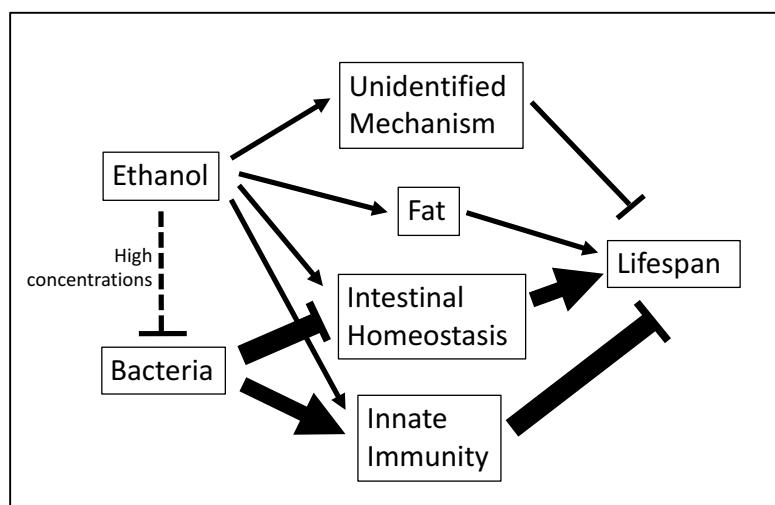
674 Conclusion: the interaction of bacteria and ethanol shape fly fitness and physiology

675

676 Previous studies of the microbiome's role in alcoholic pathology have focused on alcoholic liver
677 disease, finding that specific bacteria can reduce alcoholic liver disease through a decrease in gut
678 permeability (Forsyth et al. 2009; Bull-Otterson et al. 2013). However, isolating experimental
679 variables has proven challenging due to the complex composition of the microbiome as well as
680 contextual effects that depend on an interaction between the microbiome and diet (Wong et al.
681 2014).

682

683 Our *Drosophila* model of chronic alcoholic pathology shows that ethanol's effects are mediated
684 by the microbiome. For ecologically relevant levels of dietary ethanol, fecundity was greater in
685 bacterially-colonized flies, highlighting the context-dependence of the microbiome in host
686 physiology. Despite the greater fecundity, bacterially colonized flies had much shorter lifespans
687 than bacteria-free flies, indicating that the microbiome mediates tradeoffs between physiological
688 states (Figure S5).


689

690 We were curious to understand how dietary ethanol and the microbiome interact to shape fly
691 lifespan. We propose that in the absence of ethanol or at low ethanol concentrations, the negative
692 effects of bacteria are dominant and reduce lifespan by disrupting intestinal homeostasis and
693 inducing innate immunity (Figure 6). In the absence of a microbiome, the negative effects of
694 ethanol are unmasked, which accounts for the dose-dependent decrease in lifespan of bacteria-
695 free flies. This effect is likely independent of overt inebriation (Figure 1C), disruption of
696 intestinal homeostasis (Figures 4A and 4B), or induction of the innate immune response (Figure
697 5 and Table S3). We speculate there is an unidentified mechanism of ethanol-induced health
698 decline in flies and this is chiefly observable in bacteria-free conditions.

699

700 For bacterially-colonized flies fed higher ethanol concentrations (which have the same lifespan
701 as flies not fed ethanol), two offsetting mechanisms are occurring: First, ethanol is reducing
702 lifespan through the unidentified mechanism described above. Second, ethanol is changing
703 microbiome composition to a less pathogenic state [potentially through the reduction in
704 *Acetobacter* abundance (Figure 3B)]. Future research will use gnotobiotic flies with defined
705 microbial communities to isolate the independent effects of the microbiome and dietary ethanol.

706

707

708
709 **Figure 6: Model of microbiome-dependent ethanol-induced lifespan decline in flies.**
710 In the absence of ethanol or at low ethanol concentrations, the negative effects of bacteria are
711 dominant and reduce lifespan by disrupting intestinal homeostasis and inducing innate immunity.
712 At high ethanol concentrations, the microbiome changes composition (primarily through the
713 reduction of *Acetobacter* abundance). This eliminates the bacteria-dependent lifespan reduction,
714 but is offset via an unknown ethanol-dependent mechanism which is damaging to fly health (so
715 the net result is no change in lifespan). This mechanism is primarily independent of intestinal
716 homeostasis and the innate immune response. It is also likely different from known intoxication
717 pathways in flies because our method of ethanol administration does not lead to overt
718 inebriation.
719

720 **Acknowledgements**

721 This work is supported by an NIH Postdoctoral Fellowship to JAC (F32AA024376), an NIH
722 Director's Early Independence award to WBL (1DP5OD017851-01), a Bowes Research
723 Fellowship to WBL, and an HHMI Independent Investigator Award to MBE. LVI was supported
724 by the Bridges to Baccalaureate program under NIH Grant R25GM095401 to Dr. Gary
725 Firestone. We thank members of the Ludington lab, including Anjali Jain, Alison Gould, Tüzün
726 Güvener, Benjamin Obadia, Vivian Zhang, and Carlos Zuazo, for helpful contributions to this
727 project. We thank the laboratory of Matt Welch for use of their plate reader, April Price and the
728 laboratory of Greg Barton for assistance with NanoStrings data collection, Henrik Jasper for an
729 aliquot of pH3 antibody, and James Fry for help with interpretation of the internal ethanol
730 concentration and NanoStrings results. We thank Alison Gould and Benjamin Obadia for
731 providing helpful comments to the manuscript.
732

733 **References**

734
735
736 Apidianakis, Y. & Rahme, L.G., 2011. *Drosophila melanogaster* as a model for human intestinal
737 infection and pathology. *Disease models & mechanisms*, 4(1), pp.21–30.
738 Arrese, E.L. & Soulages, J.L., 2010. Insect fat body: energy, metabolism, and regulation. *Annual
739 review of entomology*, 55(1), pp.207–225.
740 Blum, J.E. et al., 2013. Frequent replenishment sustains the beneficial microbiome of *Drosophila
741 melanogaster*. *MBio*, 4(6), pp.e00860–13–e00860–13.
742 Broderick, N.A. & Lemaitre, B., 2012. Gut-associated microbes of *Drosophila melanogaster*. *Gut
743 microbes*, 3(4), pp.307–321.
744 Broderick, N.A., Buchon, N. & Lemaitre, B., 2014. Microbiota-induced changes in *drosophila
745 melanogaster* host gene expression and gut morphology. *MBio*, 5(3), pp.e01117–14.
746 Buchon, N. et al., 2009. Invasive and indigenous microbiota impact intestinal stem cell activity
747 through multiple pathways in *Drosophila*. *Genes & development*, 23(19), pp.2333–2344.
748 Bull-Otterson, L. et al., 2013. Metagenomic analyses of alcohol induced pathogenic alterations in
749 the intestinal microbiome and the effect of *Lactobacillus rhamnosus* GG treatment. *PloS one*,
750 8(1), p.e53028.
751 Chandler, J.A. et al., 2011. Bacterial communities of diverse *Drosophila* species: ecological
752 context of a host-microbe model system. H. S. Malik, ed. *PLoS genetics*, 7(9), p.e1002272.
753 Chandler, J.A., Eisen, J.A. & Kopp, A., 2012. Yeast communities of diverse *Drosophila* species:

754 comparison of two symbiont groups in the same hosts. *Applied and environmental*
755 *microbiology*, 78(20), pp.7327–7336.

756 Chen, P. & Schnabl, B., 2014. Host-microbiome interactions in alcoholic liver disease. *Gut and*
757 *liver*, 8(3), pp.237–241.

758 Clark, R.I. et al., 2015. Distinct Shifts in Microbiota Composition during Drosophila Aging
759 Impair Intestinal Function and Drive Mortality. *Cell reports*, 12(10), pp.1656–1667.

760 Cowmeadow, R.B., Krishnan, H.R. & Atkinson, N.S., 2005. The slowpoke gene is necessary for
761 rapid ethanol tolerance in Drosophila. *Alcoholism, clinical and experimental research*,
762 29(10), pp.1777–1786.

763 Devineni, A.V. & Heberlein, U., 2009. Preferential ethanol consumption in Drosophila models
764 features of addiction. *Current biology : CB*, 19(24), pp.2126–2132.

765 Devineni, A.V. & Heberlein, U., 2013. The Evolution of Drosophila melanogaster as a Model for
766 Alcohol Research. *dx.doi.org*.

767 Diehl, A.M., 2002. Liver disease in alcohol abusers: clinical perspective. *Alcohol (Fayetteville,*
768 *N.Y.)*, 27(1), pp.7–11.

769 Djawdan, M. et al., 1996. Metabolic aspects of the trade-off between fecundity and longevity in
770 *Drosophila melanogaster*. *Physiological Zoology*, 69(5), pp.1176–1195.

771 Douglas, A.E., 2018. The Drosophila model for microbiome research. *Lab animal*, 47(6),
772 pp.157–164.

773 Elya, C. et al., 2016. Stable Host Gene Expression in the Gut of Adult *Drosophila melanogaster*
774 with Different Bacterial Mono-Associations. W. J. Etges, ed. *PloS one*, 11(11), p.e0167357.

775 Forsyth, C.B. et al., 2009. Lactobacillus GG treatment ameliorates alcohol-induced intestinal
776 oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis.
777 *Alcohol (Fayetteville, N.Y.)*, 43(2), pp.163–172.

778 Fry, J.D., 2014. Mechanisms of naturally evolved ethanol resistance in *Drosophila melanogaster*.
779 *Journal of Experimental Biology*, 217(Pt 22), pp.3996–4003.

780 Ghezzi, A., Krishnan, H.R. & Atkinson, N.S., 2014. Susceptibility to ethanol withdrawal
781 seizures is produced by BK channel gene expression. *Addiction biology*, 19(3), pp.332–337.

782 Gibson, J.B., May, T.W. & Wilks, A.V., 1981. Genetic variation at the alcohol dehydrogenase
783 locus in *Drosophila melanogaster* in relation to environmental variation: Ethanol levels in
784 breeding sites and allozyme frequencies. *Oecologia*, 51(2), pp.191–198.

785 Gomez, C.R. et al., 2008. Innate immunity and aging. *Experimental gerontology*, 43(8), pp.718–
786 728.

787 Gould, A.L. et al., 2018. High-dimensional microbiome interactions shape host fitness.

788 Guo, L. et al., 2014. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis
789 and extend lifespan. *Cell*, 156(1-2), pp.109–122.

790 Hartmann, P., Seebauer, C.T. & Schnabl, B., 2015. Alcoholic liver disease: the gut microbiome
791 and liver cross talk. *Alcoholism, clinical and experimental research*, 39(5), pp.763–775.

792 Hockings, K.J. et al., 2015. Tools to tipple: ethanol ingestion by wild chimpanzees using leaf-
793 sponges. *Royal Society open science*, 2(6), p.150150.

794 Ja, W.W. et al., 2007. Prandiology of *Drosophila* and the CAFE assay. *Proceedings of the*
795 *National Academy of Sciences of the United States of America*, 104(20), pp.8253–8256.

796 Kaun, K.R. et al., 2011. A *Drosophila* model for alcohol reward. *Nature neuroscience*, 14(5),
797 pp.612–619.

798 Koyle, M.L. et al., 2016. Rearing the Fruit Fly *Drosophila melanogaster* Under Axenic and
799 Gnotobiotic Conditions. *JoVE (Journal of Visualized Experiments)*, (113).

800 Lemaitre, B. & Hoffmann, J., 2007. The host defense of *Drosophila melanogaster*. *Annual review of immunology*, 25, pp.697–743.

801 Lemaitre, B. & Miguel-Aliaga, I., 2013. The digestive tract of *Drosophila melanogaster*. *Annual review of genetics*, 47(1), pp.377–404.

802 Lhocine, N. et al., 2008. PIMS modulates immune tolerance by negatively regulating *Drosophila* innate immune signaling. *Cell host & microbe*, 4(2), pp.147–158.

803 Li, H. & Jasper, H., 2016. Gastrointestinal stem cells in health and disease: from flies to humans. *Disease models & mechanisms*, 9(5), pp.487–499.

804 Logan-Garbisch, T. et al., 2015. Developmental Ethanol Exposure Leads to Dysregulation of Lipid Metabolism and Oxidative Stress in *Drosophila*. *G3: Genes| Genomes| Genetics*, 5(1), pp.49–59.

805 Mazeh, S. et al., 2008. The influence of ethanol on feeding in the frugivorous yellow-vented bulbul (*Pycnonotus xanthopygos*). *Behavioural processes*, 77(3), pp.369–375.

806 McClure, K.D., French, R.L. & Heberlein, U., 2011. A *Drosophila* model for fetal alcohol syndrome disorders: role for the insulin pathway. *Disease models & mechanisms*, 4(3), pp.335–346.

807 Obadia, B. et al., 2018. Diet influences host-microbiota associations in *Drosophila*. *Proceedings of the National Academy of Sciences*, 115(20), pp.E4547–E4548.

808 Obadia, B. et al., 2017. Probabilistic Invasion Underlies Natural Gut Microbiome Stability. *Current biology : CB*, 27(13), pp.1999–2006.e8.

809 Regan, J.C. et al., 2016. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. *eLife*, 5, p.e10956.

810 Rera, M., Clark, R.I. & Walker, D.W., 2012. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in *Drosophila*. *Proceedings of the National Academy of Sciences of the United States of America*, 109(52), pp.21528–21533.

811 Ridley, E.V. et al., 2012. Impact of the resident microbiota on the nutritional phenotype of *Drosophila melanogaster*. F. Leulier, ed. *PloS one*, 7(5), p.e36765.

812 Ridley, E.V., Wong, A.C.-N. & Douglas, A.E., 2013. Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from *Drosophila melanogaster*. *Applied and environmental microbiology*, 79(10), pp.3209–3214.

813 Robinson, B.G. et al., 2012. Neural adaptation leads to cognitive ethanol dependence. *Current biology : CB*, 22(24), pp.2338–2341.

814 Sandhu, S. et al., 2015. An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in *Drosophila*. *JoVE (Journal of Visualized Experiments)*, (98), pp.e52676–e52676.

815 Sánchez, F. et al., 2004. The possible roles of ethanol in the relationship between plants and frugivores: first experiments with egyptian fruit bats. *Integrative and comparative biology*, 44(4), pp.290–294.

816 Shaw, A.C. et al., 2010. Aging of the innate immune system. *Current opinion in immunology*, 22(4), pp.507–513.

817 Shin, S.C. et al., 2011. *Drosophila* microbiome modulates host developmental and metabolic homeostasis via insulin signaling. *Science (New York, N.Y.)*, 334(6056), pp.670–674.

818 Skorupa, D.A. et al., 2008. Dietary composition specifies consumption, obesity, and lifespan in *Drosophila melanogaster*. *Aging cell*, 7(4), pp.478–490.

819 Steinfeld, H.M., 1927. *Length of life of Drosophila melanogaster under aseptic conditions*, Ph.D. Thesis. Department of Zoology. University of California, Berkeley.

846 Storelli, G. et al., 2011. Lactobacillus plantarum promotes *Drosophila* systemic growth by
847 modulating hormonal signals through TOR-dependent nutrient sensing. *Cell metabolism*,
848 14(3), pp.403–414.

849 Tennessen, J.M. et al., 2014. Methods for studying metabolism in *Drosophila*. *Methods (San
850 Diego, Calif.)*, 68(1), pp.105–115.

851 Troutwine, B.R. et al., 2016. Alcohol resistance in *Drosophila* is modulated by the Toll innate
852 immune pathway. *Genes, brain, and behavior*, 15(4), pp.382–394.

853 Wiens, F. et al., 2008. Chronic intake of fermented floral nectar by wild treeshrews. *Proceedings
854 of the National Academy of Sciences*, 105(30), pp.10426–10431.

855 Wong, A.C.-N., Dobson, A.J. & Douglas, A.E., 2014. Gut microbiota dictates the metabolic
856 response of *Drosophila* to diet. *Journal of Experimental Biology*, 217(Pt 11), pp.1894–1901.

857 Wood, A.M. et al., 2018. Risk thresholds for alcohol consumption: combined analysis of
858 individual-participant data for 599 912 current drinkers in 83 prospective studies. *Lancet
859 (London, England)*, 391(10129), pp.1513–1523.

860 Xu, S. et al., 2012. The propensity for consuming ethanol in *Drosophila* requires rutabaga
861 adenylyl cyclase expression within mushroom body neurons. *Genes, brain, and behavior*,
862 11(6), pp.727–739.

863 Zera, A.J. & Harshman, L.G., 2001. The physiology of life history trade-offs in animals. *Annual
864 review of ecology and systematics*, 32, pp.95–126.

865