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Abstract 

An improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro 

data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets.  

We demonstrate using virtual experiments as a means to help untangle plausible causes of inaccurate 

extrapolations.  We start with virtual mice that have biomimetic software livers.  Earlier, using those 
mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also 

providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity.  We 

isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in 

both culture and mice.  We expected the two dose-response curves to be displaced.  We were surprised 

that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different 
for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged.  

Crossing dose-response curves is a virtual example of an in vivo-to-in vitro disconnect.  We use detailed 

results of experiments to explain the disconnect.  Individual hepatocytes contribute differently to system 

level phenomena.  In liver, hepatocytes are exposed to acetaminophen sequentially.  Relative production 
of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes.  

Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not 

respond the same.   A virtual Culture-to-Mouse translation can stand as a scientifically challengeable 

theory explaining an in vitro-in vivo disconnect.  It provides a framework to develop more reliable 

interpretations of in vitro observations, which then may be used to improve extrapolations.  
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Introduction 

Results of quantitative hepatocyte-based in vitro-to-in vivo extrapolations continue to improve 

[Tetsuka et al., 2017, Poulin et al., 2016].  In vitro strategies for liver toxicity testing have experienced 

concurrent advances [Soldatow et al., 2013] aided by increasing knowledge about factors that limit 

accuracy [Vellonen et al., 2014, Fraczek et al., 2013, Godoy et al., 2013, LeCluyse et al., 2012].  
Nevertheless, even for straightforward predictions of hepatic clearance from in vitro intrinsic clearance 

values, published results are typically more than 40% outside of in vivo values [Bowman and Benet, 

2016], and some are 2-fold or more.  

Different factors can contribute to inaccurate extrapolations.  The following are five examples: 1) 

variability among livers; 2) periportal-to-pericentral hepatocyte differences; 3) variation in relative 
numbers of periportal, midzonal, and pericentral hepatocytes in cultured populations; 4) up- and down-

regulation of genes during and after isolation; and 5) variation in hepatocyte health and phenotype caused 

by isolation and/or culture protocol differences.  The prospect of being able to limit or avoid such changes 

is motivating interest in 3D hepatocyte cultures and microfluidic in vitro systems, with the expectation 
that they can become reliably more predictive of in vivo and human hepatic phenotypes.     

An improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in 

vitro data correctly.  We conjecture that insights gained from virtual experiments can help untangle and 

identify causes of inaccurate extrapolations to in vivo and human targets.  The resulting new knowledge 

can then be used to improve in vitro-to-in vivo extrapolation methods.  Figure 1 illustrates the key ideas.  
There are four essential requisites. 1) One can create many concrete, model mechanism-based, 

individualizable virtual hepatocytes that are demonstrably analogous to actual hepatocytes in particular 

ways.  2) The 3D organization of virtual hepatocytes is analogous to a rodent and human liver.  3) We 

achieve specific qualitative and quantitative validation targets for virtual counterparts of xenobiotics by 

changing the configurations of virtual hepatic mechanisms.  4) It is straightforward to “isolate” all virtual 
hepatocytes from the liver, without altering intra-hepatocyte mechanisms; and then reorganize them to 

simulate a 2D hepatocyte culture to study responses to virtual counterparts of xenobiotics.  We recently 

reported using experiments on virtual mice to discover model mechanisms that together provide plausible 

causal explanations for major temporal characteristics of acetaminophen (APAP) hepatotoxicity in mice 
[Smith et al., 2016].  Those virtual mice meet the first three requisites.  They utilize a software liver 

analog that is biomimetic across relevant anatomical, hepatic zonation, and cell biology attributes.  Quasi-

autonomous virtual hepatocytes populate virtual liver lobules.  Each virtual hepatocyte uses the local 

values of periportal-to-pericentral gradients to configure its mechanisms for reactive metabolite 

formation, Glutathione (GSH) depletion, accumulation of mitochondrial damage, and triggering necrosis.   
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An objective of this research was to demonstrate the feasibility of achieving requisite (4).  An early, 

working hypothesis was that simulated APAP metabolism and toxicity would be essentially the same for 

virtual culture and mouse experiments.   
We created a virtual hepatocyte culture and verified that it met requisite (4).  We conducted dose-

response experiments to challenge our working hypothesis.  Because simulated transformation to culture 

configuration eliminates lobular structures, we expected dose-response curves to be somewhat displaced 

from each other but have similar shapes.  We were initially surprised that the two curves crossed because 
it evidenced that simulated APAP metabolism and toxicity are different for virtual culture and mouse 

contexts even though individual hepatocyte mechanisms were unchanged.  That evidence falsified our 

working hypothesis.  Crossing dose-response curves is a virtual example of an in vivo-to-in vitro 

disconnect (Fig. 1C).  

We use results of experiments to explain the apparent disconnect in detail (Fig. 1D).  Individual 
hepatocytes exposed to the same amounts of APAP respond the same in both contexts.  However, the 

relative contribution of different individual hepatocytes to the system level phenomenon is different.  In 

liver, hepatocytes are exposed to APAP sequentially, periportal to pericentral, and both APAP intrinsic 

clearance and relative production of reactive metabolite are largest (smallest) in pericentral (periportal) 

hepatocytes.  That sequential exposure is absent in culture.  An important characteristic of sequential 
exposure is that relative numbers of hepatocytes are periportal > midzonal > pericentral.  Accordingly, 

hepatocytes from different lobular locations do not respond the same when studied in culture.   

We suggest that virtual translational experiments, like those described herein, can be used to begin 

exploring, untangling, and identifying causes of inaccurate extrapolations.  Those improved insights can 
guide selecting additional in vitro measurements to enable more reliable interpretations of in vitro data.  

The approach provides a new, knowledge- and mechanism-grounded means to begin closing in vitro-in 

vivo disconnects.    

Material and Methods 

 Our virtual mouse is engineered to have software components that are concrete and strongly 

analogous to counterpart mouse components, but only to the extent needed to achieve prespecified by 

Targeted Attributes [Smith et al., 2016].  To stress that analogies—although numerous, qualitative, and 
quantitative—are limited, we refer to the virtual mouse as Mouse Analog.  To limit confusion hereafter 

and distinguish Mouse (Culture) Analog components, characteristics, and phenomena from mouse 

(culture) counterparts, we capitalized the former.  We used the scientific method to falsify three plausible 

model mechanisms for APAP Hepatotoxicity and discover a fourth, which is the one used here.  To 

support the model mechanism-based explanations of results that follow, we provide abridged descriptions 
of Mouse Analog, intra-Hepatocyte Mechanisms, requirements, and technical details.    

Mouse Analog 
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Mouse Analog, which is illustrated in Fig. 2A, comprises Liver, Body, and a space to contain Dose.  

Liver, which uses Monte Carlo-determined Lobule variants, is designed and built to be scientifically 

useful in a variety of usage contexts, including developing model mechanism explanations of drug-
induced liver injury.  It is engineered to be quantitatively and qualitatively biomimetic during execution 

and is strongly analogous to actual livers across several anatomical, hepatic zonation, and cell biology 

characteristics.  Having already achieved several qualitative and quantitative Target Attributes [Smith et 

al., 2016, Smith et al., 2014, Yan et al., 2008a, Yan et al., 2008b, Park et al., 2009, Park et al., 2010], 
Liver composition is now stable and robust.  In this work, a Target Attribute is a characteristic trait of the 

liver and APAP metabolism, disposition, and toxicity to which a prespecified Similarity Criterion is 

assigned.  The latter is a performance requirement.  Each wet-lab measurement that we seek to mimic, 

such as hepatic extraction ratio, clearance, metabolite ratios, and necrosis, becomes a Target Attribute.  A 

Similarity Criterion specifies the requisite degree of similarity.  An example is that the mean virtual 
experiment measurement falls within ± 1 standard deviation of the mean wet-lab measurement.  By 

increasing the strength and variety of analogies between measurements made during experiments on 

Mouse Analog and corresponding measurements made during experiments on mice (left side of Fig. 1D), 

the credibility of the Liver’s multilevel model mechanisms increases. 

A Lobule comprises a directed graph with a particular Sinusoid Segment (SS) object (a software 
agent) at each graph node.  SS dimensions are Monte Carlo-determined within constraints that we refined 

as we achieved additional Target Attributes.  Graph nodes are organized into three Zones.  Intra-Zone 

edges within Zones 1 and 2 (there are none in Zone 3) mimic interconnections among sinusoids.  

Numbers of intra- and inter-Zone edges are fixed, but their node-to-node assignment is Monte Carlo 
determined for each execution.  All flow paths follow the directed graph.  One Lobule maps to a tiny 

random sample of possible lobular flow paths within a whole liver.  Bile (dotted green) flows separately 

from blood (solid red) but is not a factor for this work. 

Each SS functions as an analog of a random sample of a portion of a sinusoid plus adjacent tissue.  

It comprises Core, Bile Space, and four same-size grids: the Blood-Cell Interface (simply Interface 
hereafter), Endothelial Cell Space, Space of Disse, and Hepatocyte Space.  Cell objects occupy most of 

Endothelial Cell (99%) and Hepatocyte (90%) spaces. APAP, its Metabolites, and some other Solutes are 

mobile objects.  A fraction of APAP in Body (along with other mobile objects) is transferred to Portal 

Vein each simulation cycle.  From there, APAP enters Core and Interface spaces at the upstream end of 

all Zone 1 SS.  They percolate stochastically through accessible spaces influenced by configuration-
controlled local flow.  APAP that reaches the distal end of Core and Interface spaces are transferred along 

a connecting edge to another SS.  Mobile objects exit Zone 3 SS into Central Vein, where they get moved 

to Body.  

Entry and exit of Solutes from each Endothelial Cell and Hepatocyte is mediated by the cell 
according to the Solute’s properties.  Endothelial Cells contain Binders that bind and release APAP (maps 
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to non-specific binding).  Hepatocytes (~14,000 per Lobule) used previously validated event management 

modules [Petersen et al., 2014], which control material entry and removal along with binding and the 

object transformations described in Fig. 3.  The order of events is (pseudo) randomized each simulation 
cycle. 

Culture Analog 

Petersen et al. [Petersen et al., 2016] used a similar Mouse Analog along with 2D models of 

hepatocyte cultures to explore and challenge mechanism-based hypotheses about immune-mediated P450 

down-regulation in vitro.  The Hepatocytes utilized in the two systems contained the same internal 

components.  However, because Petersen et al. parameterized them separately, they simulated rather than 
explain the in vitro-in vivo disconnect (Fig. 1C) within the validation data.  

Culture Analog is illustrated in Fig. 2B.  It uses Media Space and SS Space.  Media Space mimics a 

well-mixed system.  Culture Analog does not use the Lobule’s directed graph.  All SSs from a Lobule are 

simplified, reinstantiated, and then placed into Culture’s SS Space.  A Culture Analog does not use Core 

and Bile spaces, nor does it use Endothelial Cell and Disse grids.  It does use Hepatocyte and Interface 
grids.  We remap the latter as the Media-Cell interface.  Each simulation cycle, a small fraction of APAP 

(and other specified Solutes) in Media is transferred randomly to each Media-Cell Interface grid.  From 

there Solutes move within Hepatocyte Space and enter and exit Hepatocytes exactly as they do in Mouse 

Analog Lobules.  Unless specified otherwise, Mouse and Culture Hepatocyte Mechanisms use the same 

location-specific configuration values (Fig. 3B). 

Intra-Hepatocytes Mechanisms 

Objects within Hepatocytes and their capabilities are identical to those used previously [Smith et 
al., 2016].  The event descriptions that follow are per simulation cycle.  Hepatocytes contain four types of 

physiomimetic modules [Petersen et al., 2014]: InductionHandler (not used in this work), 

EliminationHandler, MetabolismHandler, and BindingHandler.  

An APAP object maps to a tiny fraction of an actual APAP Dose.  There is a direct mapping 
between the probability of an APAP metabolism event and amounts of metabolic enzymes.  Both the 

probability of an APAP metabolic event and the probability that the Metabolite is NAPQI increase 

threefold from Portal Vein entrance to Central Vein exit.  All other metabolites are lumped together and 

divided equally between G&S (maps to the glucuronide and sulfate metabolites).  A Mechanism uses 

particular values from each of the Fig. 3B gradients (from Portal Vein entrance to Central Vein exit).  
Each gradient is implemented explicitly as a function of distance from PP entrance to the Hepatocyte’s 

position.  The APAP Liver extraction ratio measured at steady-state (with constant rate APAP infusion) 

averages 0.5.  

With probability to react = 0.5, each NAPQI undergoes a reaction.  At early times, each NAPQI 

reaction decrements the Hepatocyte’s GSH Depletion Threshold value by 1.0, which maps to depleting a 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/216556doi: bioRxiv preprint 

https://doi.org/10.1101/216556
http://creativecommons.org/licenses/by-nd/4.0/


Nov. 08, 2017, under review, JPET 

7 

7 

fraction of a hepatocyte’s available GSH.  Each Hepatocyte has a location-determined GSH Depletion 

Threshold value.  A small or zero Threshold value means that Hepatocyte is most sensitive to NAPQI-

caused hepatotoxicity.  After the GSH Depletion Threshold is breached, NAPQI reacts to form one of two 
types of Damage products.  We parsimoniously specified these Damage products: “mitochondrial damage 

products,” called mitoD (maps to mitochondrial damage), and “non-mitochondrial damage products,” 

called nonMD (maps to all other types of damage). 

The downstream resolution of events triggered by Damage products is inadequate to simulate 
toxicity phase events.  Mindful of our strong parsimony guideline, we specified that one NAPQI → (1 + 

n) mitoD, where n is a pseudo-random draw from the uniform [1, 6].  MitoD amplification also maps to 

the accumulation of reactive oxygen/nitrogen species.  Cell Death (Necrosis) is triggered when the 

amount mitoD > Necrosis Trigger Threshold value.  Once an aHPC designated Dean (necrotic), it stops 

Metabolizing APAP. 
Cell Death always follows a Necrosis Trigger event.  Because necrosis is a process, there is a delay 

between the triggering event and when necrosis becomes detectable in stained tissue sections.  Death 

Delay maps to that process. Thus, the time of a detectable aHPC Death = time of Trigger event + a 

pseudo-random draw from uniform [1.2, 12] hours. 

Hepatocytes utilize multiple mechanisms to mitigate or reverse different types of damage.  
Consistent with our strong parsimony guideline, we implemented a single mitigation Mechanism, 

repurposing a Metabolism Module, and named it Repair.  It maps to a conflation of all actual 

mitigation/recovery mechanisms.  With a location-specified probability, a Repair object replaces a 

Damage product.  We focused on mitoD because only it can trigger Necrosis.  By specifying that the 
probability of a mitoD Repair event decreases sigmoidally from Portal Vein entrance to Central Vein exit, 

we enabled Necrosis Trigger events to occur first close to Central Vein, which was the key Targeted 

Attribute in [Smith et al., 2016].   

Requirements 

We use the virtual experiment approach described by Kirschner et al. [Kirschner et al., 2014] along 

with the enhanced strategies detailed by Petersen et al. [Petersen et al.; 2016, Petersen and Hunt, 2016].  

The model mechanisms and methods require meeting the following four requirements.  

1. Mouse and Culture Analogs during execution must exhibit all five primary characteristics of a 

biologically explanatory mechanism [Darden, 2008]: 1) the mechanism is biomimetic and 

responsible for the phenomena; 2) the mechanism has components: modules, entities, and activities; 

3) components are arranged spatially and can exhibit structure, localization, orientation, 

connectivity, and compartmentalization; 4) activities have temporal aspects, including rate, order, 
duration, and frequency; and 5) the mechanism has a context, which can include being in a series 

and/or a hierarchy. 
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2. Components and spaces (Fig. 2) are concrete, biomimetic [Hunt et al., 2011, Pogson et al., 2006], 

and sufficiently modular to facilitate analogical reasoning [Bartha, 2013, Frigg and Hartmann, 

2012]. 
3. Phenomena measured at a higher level or layer of organization arise mostly from local component 

interactions at a lower level of organization. 

4. Each mobile object type maps to a particular chemical entity.  Quasi-autonomous components (i.e., 

software agents such as SS and Hepatocytes) recognize different mobile objects and adjust their 
response appropriately.  For example, an Hepatocyte recognizes that an adjacent object has the 

property membraneCrossing = yes, and allows it to enter stochastically.  

To achieve Requirement 2, Mouse Analogs are written in Java, utilizing the MASON multi-agent 

simulation toolkit [Luke et al., 2005].  

Analog technical details 

Analogs are treated as a form of data, using both the implicit schema of Java, JavaScript, and R and 

the explicit schema of the configurations.  Mouse Analogs and configuration files are managed using the 
Subversion version control tool in two repositories, one private (Assembla) and another public.  The data 

presented herein along with Mouse and Culture Analog code are available (https://simtk.org/home/isl/). 

The entire toolchain, including the operating system, configurations, and I/O handling is open-

source.  All project generated released data is available to be licensed as open data.  We execute virtual 

experiments using local hardware and in a cloud environment.  Experiments described herein were run 
using local hardware and virtual machines [Ropella and Hunt, 2010] on Google Compute Engine, running 

64-bit Debian 7.  Analog quality assurance and control details are discussed in [Smith et al., 2016] along 

with practices followed for validation, verifications, sensitivity analyses, and uncertainty quantification. 

Results 

Dose-response curves 

We use the occurrence of Necrosis Trigger events as our measurement of response.  In both Mouse 

and Culture Analogs, cumulative Trigger events reach a plateau within 180 minutes.  We conducted 

Dose-Response (D-R) experiments (12 Monte Carlo variants).  We exposed aHPCs to identical Doses of 

APAP ranging from 6,000 to 500,000 (largest APAP Dose) objects per Monte Carlo variant.  Figure 4 
displays results.  Dose-dependent differences were also observed (not shown) in measurements of other 

attributes.  Differences in occurrence of Necrosis Trigger events between Mouse and Culture Analog 

experiments is a complex consequence of differences in aHPC exposure to APAP and aHPC 

heterogeneity (discussed below).  In Culture, the organizational structure of Lobules is absent.  
Consequently, on average, aHPCs are exposed to APAP that is distributed uniformly within the Media-
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Cell interface grids.  Within a Mouse Lobule, however, aHPCs are exposed to APAP sequentially.  

During a given interval, upstream and downstream aHPCs are “seeing” different amounts of extra-

Hepatocyte APAP.  Differences in exposure dynamics between Mouse and Culture Analogs alter intra-
Hepatocyte phenomena.  The different D-R curves in Fig. 4 are a consequence.   

Hepatocyte-level APAP disposition and toxicity measurements 

At the end of each simulation cycle (1 second), we measured the number ofNecrosis Trigger events. 

Virtual measurements are made analogous to wet-lab counterparts to facilitate comparisons when wet-lab 

data are available.  Crossing Dose-response curves indicate that Mechanism entities and activities are 

contributing differently to cumulative Necrosis Trigger events from smallest to largest Doses.  To help 
identify and explain those differences, measurements of selected phenomena, averaged over all Liver 

aHPCs, are plotted in Fig. 5.  Simulated IP dosing causes peak APAP amounts in the Mouse to occur later 

than in Culture.  For each row of plots in Fig. 5, compare the temporal profile in Mouse to that in Culture 

for each Dose.  Cumulative Necrosis Trigger events in Mouse are greater than in Culture at the smallest 

Dose, but that relationship is reversed at the largest Dose.  For APAP in aHPCs, the Mouse-to-Culture 
profile relationships are about the same for all three Doses.  That is not the case for NAPQI, GSH 

Depletion events, and Mitochondrial Damage.   

At comparable times, the differences in NAPQI amounts in Culture aHPCs, relative to those in 

Mouse, increase with increasing APAP Dose. We see a similar trend for Mitochondrial Damage.  

However, that trend is reversed for GSH Depletion events.  At the smallest Dose, relative to results in 
Culture, fewer Mouse GSH Depletion events caused a larger number of Necrosis Trigger events.  That 

observation seems counterintuitive.  At the largest Dose, we do not see that difference: for both Mouse 

and Culture, the relationship between cumulative GSH Depletion events and cumulative Necrosis Trigger 

events is similar.  Explanations of those results, including the counterintuitive observation, require the 
more detailed, Lobular-location dependent information provided in Fig. 6.   

Amounts of APAP, NAPQI, and Mitochondrial Damage per aHPC, along with GSH Depletion 

events were measured separately in SSs in Zone 1, 2, and 3.  We measured Trigger events in Pericentral, 

Midzonal, and Periportal regions (defined in the legendto Fig. 6) and plotted them in Fig. 6.  For Mouse, 

values for APAP and GSH Depletion in Zone 3 during the first 10 minutes are largest for all three Doses, 
whereas, in Culture, the Zone 1 values are largest.  That striking difference highlights Mechanism 

differences between aHPCs in Mouse and Culture and contributes to an explanation of the virtual Mouse-

Culture disconnect.  That difference is a consequence of two factors: 1) the sequential versus 

simultaneous aHPC exposure described above.  2) The majority of Lobular aHPCs are in Zone 1.   For 

each Lobule variant, there are 45 SS in Zone 1, 20 in Zone 2, and 3 in Zone 3.  That structure maps 
directly to the polyhedral nature of lobules.  Compounds in blood entering portal vein tracts get exposed 

to many more hepatocytes than blood exiting the central vein.  In Liver Analogs, the Zone1/Zone 3 aHPC 
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ratio averages about 12.5, with 66.5% of aHPCs in Zone 1 and 5.3% Zone 3.  Consequently, APAP/aHPC 

in Zone 3 is > than in Zones 2 and 1.  The ratio would be larger except for a mitigating factor: as specified 

in Fig. 3B, the probability of an APAP Metabolism event is Zone 3 > Zone 2 > Zone 1; Zone 3 aHPCs are 
drained of APAP faster than Zone 1 aHPCs.  In Culture, one might expect APAP/aHPC to be about the 

same because Unbound APAP is directly proportional to local APAP amounts within the Media-Cell 

Interface grid.  However, APAP/aHPC values for Zones 2 and 3 are smaller primarily because the 

probability of an APAP Metabolism event is larger in Zones 2 and 3 than in Zone 1. 
Because NAPQI formation increases periportal-to-pericentral (Fig. 3B), the amounts of 

NAPQI/aHPC in Mouse are largest in Zone 3.  Only at early times, is the same true for Culture.  At 

comparable times after 20 minutes, compare Mouse-to-Culture NAPQI/aHPC at each Dose.  For the 

smallest Dose, the values for Zone 2 and 3 are larger for Mouse.  For the largest Dose, the values for 

Zones 1 and 2 are greater for Culture.  That reversal is caused primarily by a combination of two factors: 
the sequential versus simultaneous aHPC exposure and by 10 minutes, all Zone 3 aHPC in both Mouse 

and Culture have experienced Necrosis Trigger events.  

By 30 minutes after the small APAP Dose, Mouse GSH Depletion events in Zone 2 begin 

exceeding those in Zone 3.  That transition is a consequence of two factors: 1) as plotted in Fig. 3B, 

average GSH Depletion Threshold values are Zone 2 > Zone 3.  So, more GSH Depletion can occur in 
Zone 2.  2) Depletion events accumulate more slowly in Zone 2 because less APAP got Metabolized to 

NAPQI in Zone 2 relative to Zone 3.  In Culture, cumulative Depletion events are largest for Zone 1 

because Depletion Threshold values for Zone 1 aHPCs are largest; there is more GSH to get depleted.  

For Mouse and Culture, the relative per Zone profile patterns for the amount of mitoD/aHPC are 
similar to those for NAPQI except that amount of mitoD/aHPC in Zones 2 and 3 are lower than in Zone 3 

by more than 10x.  That large difference is because of greater rates of Damage Repair in Zones 1 and 2 

limits the accumulation of mitoD. 

To see why the D-R curves cross, first, consider the high Dose cumulative Trigger event profiles.  

Within 30 minutes, Necrosis gets triggered in all Pericentral aHPCs in Mouse and Culture.  Because of 
the more rapid Periportal depletion of Culture GSH relative to Mouse GSH, Trigger events accumulate 

faster in Culture in Periportal aHPCs.  By 60 minutes, Necrosis has also been triggered in all Midzonal 

aHPCs in Culture, whereas in Mouse, Midzonal aHPCs values are still increasing.  The situation is 

entirely different for cumulative Trigger event profiles following the small Dose.  In Mouse, Pericentral 

aHPCs, which are most sensitive to NAPQI toxicity, experience greater APAP exposures than do 
upstream aHPCs.  That is not the case in Culture.  Relative to Mouse, exposure per aHPC is the same in 

Culture.   

For Mouse at all three Doses, early Trigger events occur close to Central Vein exit in the 

Pericentral region.  At t = 100 for the smallest Dose, Midzonal Trigger events in both Mouse and Culture 
are similar, yet in Mouse, Trigger events are even larger in Pericentral aHPCs, whereas in Culture, they 
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are smallest.  Further, Necrosis in Mouse has been Triggered in most Pericentral aHPCs, whereas in 

Culture, Trigger events have occurred in only a fraction of Pericentral aHPCs.  Those differences 

contribute to an explanation of the virtual Mouse-Culture disconnect.  

Discussion 

Software mechanisms become scientifically interesting and useful as analogies when temporal 
measurements of a generated phenomenon are quantitatively similar to wet-lab counterparts, within some 

prespecified criterion.  Mouse Analog’s Liver and Hepatocytes are analogous to an actual liver and 

hepatocytes, but only to the extent needed to achieve validation by prespecified Targeted Attributes 

[Smith et al., 2016].  This same characterization applies to components within aHPCs (Fig. 3) and the 

multilevel model Mechanisms used to simulate targeted APAP hepatotoxicity phenomena.  We embedded 
Model mechanism knowledge along with structural information within Mouse and Culture analogs.  

Comparison of virtual experiments on the Mouse and Culture Analogs can help identify and explain 

mechanistic similarities and differences between in vitro and in vivo systems.  Information obtained in 

these comparisons are expected to enable exploring possible explanations for a known or suspected 
disconnect and can be used to incrementally develop scientifically challengeable theories (plausible 

explanations) that may explain the disconnect.   

To fully understand the behaviors of hepatocytes in an experimental context, we must take into 

account various relevant contexts in which they function to generate phenomena of interest, and how 

function and phenomena change according to context.  To advance that understanding, we must consider 
the methods and processes used to engineer an in vitro (and other) experimental system from whole 

animal sources.  The methods used herein are intended to contribute to that larger effort.  The information 

needed to begin closing or bridging the in vitro–in vivo disconnect cannot be obtained using wet-lab 

methods alone because complete hepatocyte behavior cannot be measured either in vitro or in vivo, and 

changes in hepatocyte states during isolation are challenging to control.  We suggest that one can begin 
bridging that disconnect by hypothesizing, instantiating, and then exploring plausible model Mechanisms 

for Culture and Mouse contexts.  The complemental methods presented here use virtual experiments to 

measure changes that occur when all Hepatocytes from a Mouse Analog’s Liver are precisely translated 

into a 2D configuration, which is strongly analogous to hepatocytes in 2D cultures.  The result is a 
Culture Analog.  We learned about Mouse-Culture disconnects by comparing the similarities and 

differences in how the two systems respond to simulated Doses of APAP.   

Bridging wet-lab disconnects will be considerably more challenging than bridging a virtual 

disconnect, so we first consider how the latter might be accomplished.  Given only the Culture data in 

Figs. 4 and 5, but no details about Culture Mechanism, we face a virtual in vitro-in vivo disconnect: it is 
infeasible to predict (within some reasonable tolerance) cumulative Necross Trigger events within Mouse 

Analogs, even though Culture data in Fig. 5 is quite detailed.  Even knowing that experiments in Figs. 4 
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and 5 met requisite four in the Introduction (i.e., same intra-Hepatocyte mechanisms), we need some 

measure of aHPC homogeneity, or lack thereof, in Culture to begin constructing a Mechanism-based 

theory to bridge across the disconnect.  An example of a virtual measurement of aHPC heterogeneity: 
create many non-membrane-crossing mobile Reporter objects.  Include them with the  APAP Dose.  

When adjacent to an aHPC, a Reporter object asks the aHPC, is the value of your GSH Depletion 

Threshold ≥ 2?  If no, the Reporter takes on a value of 0 and then departs; if yes, it asks, is your Threshold 

≥ 4?  If no, it takes on a value of 1; if yes, it takes on a value of 2 and leaves.  Each aHPC only responds 
once to a Reporter object.  Given the cumulative fraction of Dosed Reporters having values 0, 1, and 2, 

we can estimate the relative numbers of pericentral, midzonal, and pericentral aHPCs in that Culture.   

It is feasible to obtain similar wet-lab information, e.g., by measuring the percent of cells that stain 

positive for a periportal or pericentral location marker.  In general, results from wet-lab measurements 

that provide information about the heterogeneity of relevant mechanism component parts, component 
operations, and their organization would be among the “multi-attribute similarities” requested on the right 

side of Fig. 1D.  However, there are no wet-lab measurements that will recover lost lobular structural and 

organizational properties that influence the phenomena of interest in vivo.  Lobular architecture and intra-

aHPC mechanisms are entangled within lobules and cannot be separated.  Having achieved multi-attribute 

similarities between Mouse and Liver Analogs and wet-lab measurements for multiple compounds, we 
use the ability to transition smoothly between Culture and Mouse Analogs to simulate that entanglement.   

Once we establish quantitative multi-attribute similarities between Culture Analog and wet-lab 

counterparts, we can reconfigure Culture Analog aHPCs into an organized Lobule structure within Mouse 

Analog.  The intra-aHPC model mechanisms will be the same.  Virtual experiments on the resulting 
Virtual Mouse Analogs can provide plausible model mechanism-based predictions of corresponding 

experiments in mice.  The credibility of those predictions will be wholly dependent on the credibility of 

the model mechanisms and multi-attribute similarities established on the right and left sides of Fig. 1D.  

The virtual Culture-to-Mouse translation can stand as a concrete, scientifically challengeable theory 

explaining the in vitro-in vivo disconnect.  That model mechanism-based theory provides the framework 
to develop more reliable interpretations of in vitro observations, which then may be used to improve 

extrapolations. 

In vitro to in vivo extrapolation is a method to bridge the in vitro-in vivo disconnect.  Such 

extrapolation is similar to the translation discussed above: mapping measurements from one model to 

another using assumptions above missing or unknown information (spatial, structural, networking, 
mechanism gradient, etc.).  For some xenobiotics, this information is available or can be approximated 

using virtual experiments.  In those cases, we can generate sufficiently reliable extrapolations 

(predictions).  However, for other xenobiotics, it may not be feasible.  By tightly coupling virtual and 

wet-lab methods we can identify characteristic xenobiotic traits that distinguish the two sets.      
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Figures and Legends 

Figure. 1. An approach to improve in 
vitro-to-in vivo extrapolations: the focus is 
mechanism-based explanations for 
differences in phenomena between two 
model systems.  (A) An illustration of an 
ideal relationship: all phenotypic 
differences between in vivo and in vitro are 
understood; therefore, predictions and 
translations are knowledge based.  (B) 
Some of the knowledge and information 
required to explain hepatocyte attributes 
(e.g., metabolic clearance) in vivo is lost 
and/or added during hepatocyte isolation 
and culture.   (C) The processes illustrated 
in B alter hepatocyte phenotype, creating 
an in vivo-in vitro disconnect.  An 
extrapolation or prediction based on an 
altered phenotype is inaccurate or fails to 
meet requirements.  (D) Arrows on each 
side indicate multi-attribute similarities: 
each virtual system independently builds 
credibility through cumulative 
achievement of qualitative and quantitative 
referent system validation targets.  Top – 
Differences in phenomena measured 
during Virtual Hepatocyte Culture 
experiments and corresponding 
measurements of phenomena recorded 
during Virtual Mouse experiments are 
entirely explainable: there is no in vivo-in 
vitro disconnect.  Bottom – Mechanism 
differences enabling the virtual translation 
in the top illustration can stand as a 
concrete, scientifically challengeable 
theory explaining the disconnect in C.  
That model mechanism-based theory 
provides the framework to develop more 
reliable interpretations of in vitro 
observations, which then may be used to 
improve extrapolations.   
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Figure 2.  Mouse and Culture Analogs. (A) A Monte Carlo variant of Mouse Analog comprises a nested 
set of all indicated components.  Graph structure (flow paths) and dimensions of Sinusoid Segments 
within each variant are Monte Carlo-specified.  One experiment uses 12 Mouse Analog variants.  (B) A 
Culture Analog variant comprises Media Space and an SS space.  All Mouse Lobule SSs are first 
simplified and then placed in SS space.  A simplified SS retains its Hepatocyte Space and Blood-Cell 
Interface, which is remapped as the Cell-Media Interface.  Hepatocyte configurations within Mouse and 
Culture Analogs are identical.  Mobile objects enter and exit spaces stochastically.  In Culture, they move 
between Media and Cell-Media Interface, and between Cell-Media Interface and Hepatocytes.   
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Figure 3.  Intra-Hepatocyte events in 
Mouse and Culture Analogs.  (A) Listed 
under Hepatocyte are the events and 
activities described in the text.  Each event 
can occur within each Hepatocyte each 
simulation cycle, as detailed in [Smith et 
al., 2016].  Each event executes 
independently in a pseudo-random order.  
All events are stochastic.  Right (Left) side 
check marks identify events that are (are 
not) subject to Zonation.  When Necrosis is 
triggered, it becomes measurable (maps to 
cells that stain positive for necrosis) in the 
future after some parameter-specified 
number of simulation cycle.  (B) The five 
graphs show how these events depend on 
location.  PVE = value at Portal Vein 
entrance; CVE = value at Central Vein 
exit.  First and last graph: probability of 
event occurrence.  Second and third graph: 
relative metabolite fraction.  Fourth graph: 
value of GSH Depletion threshold. 
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Figure 4.  Dose-Response curves for Mouse and Culture Analogs.  Dose range: 6,000–500,000 APAP 
objects per variant.  Experiments were conducted separately by two coauthors using different local 
computers and cloud virtual machines and with different sets of random number seeds.  Figures. 5 and 6 
present measurements of intra-Hepatocyte phenomena at the three indicated Doses.   
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Figure 5.  Selected phenomena in Mouse and Culture Analogs.  Each row displays temporal profiles for 
relevant phenomenon measured each second during Mouse and Culture experiments at the three Doses 
indicated in Fig. 4.  The software configuration values for each aHPC are the same for Mouse and 
Culture.  The range of y-axis values increases with increasing Dose.  Values for amount/100 aHPCs are 
100-point centered moving averages.  The actual per second values between 10 and 30 minutes are 
plotted in blue to illustrate within-experiment variance.  Relative variance for smaller-Dose experiments 
is larger because there are fewer objects and fewer events.  The corresponding variance is not evident in 
cumulative values; however, a repeat experiment would not generate the exact same cumulative value 
profile.  Largest Dose: 500,000 APAP per execution; 12 executions/experiment. 
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Figure 6.  Hepatocyte-level attributes in Mouse and Culture Analogs by Zone.  The data are from the 
same experiments as in Fig. 5.  Except for Necrosis Trigger events (see text), measurements are plotted 
for aHPCs in each SS Zone (e.g., in Zone 3, 2 or 1) for Mouse.  For Culture, Zone refers to the location of 
those aHPCs within the Lobule before they were “isolated” (e.g., from Zone 1, 2 or 3) and reconfigured 
(Fig. 2B) into Culture Analog.  By measuring average values per SS, we can compare how similarly 
configured aHPCs in Mouse and Culture contexts behave during exposure to APAP.  Cumulative number 
of Trigger events: PC = Pericentral (location is < 10 grid spaces from Central Vein exit); MZ = Midzonal 
(10 < location is < 20 grid spaces from Central Vein exit); and PP = Periportal (20 < location is < 30 grid 
spaces from Central Vein exit).  The range of y-axis values increases with increasing Dose.  Values for 
amount/100 aHPCS and average Trigger event locations are 100-point centered moving averages.   
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