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Significance statement

Visua working memory is an important aspect of higher cognition and has been subject of much
investigation within the field of cognitive neuroscience. Over recent years, these studies have
increasingly relied on the use of neural decoding techniques. Here, we show that neural decoding
may be susceptible to confounds induced by stimulus-specific eye movements. Such eye
movements during working memory have been reported before, and may in fact be a common
phenomenon. Given the widespread use of neural decoding and the potentially contaminating
effects of eye movements, we therefore believe that our results are of significant relevance for the

field.
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Abstract

The study of visual working memory (VWM) has recently seen revitalization with the emergence of
new insights and theories regarding its neural underpinnings. One crucial ingredient responsible for
this progress is the rise of neural decoding techniques. These techniques promise to uncover the
representational contents of neural signals, as well as the underlying code and the dynamic profile
thereof. Here, we aimed to contribute to the field by subjecting human volunteers to a combined
VWM /imagery task, while recording and decoding their neural signals as measured by MEG. At
first sight, the results seem to provide evidence for a persistent, stable representation of the
memorandum throughout the delay period. However, control analyses revealed that these findings
can be explained by subtle, VWM -specific eye movements. As a potential remedy, we demonstrate
the use of afunctional localizer, which was specifically designed to target bottom-up sensory
signals and as such avoids eye movements, to train the neural decoders. This analysis revealed a
sustained representation for approximately 1 second, but no longer throughout the entire delay
period. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous

effects of eye movement-related confounds.
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| ntroduction

Visua working memory (VWM) is an essential cognitive function necessary for intelligent and
flexible behavior. It allows an individual to retain and utilize visual information about the world for
ashort period of time, even when the original source of that information is no longer available.
How this internal retention of information isinstantiated by the central nervous system is not fully
understood, but has been subject of thorough investigation, and the analytical tools involved have
become increasingly sophisticated. A particularly popular analysistool in order to non-invasively
study the neural underpinnings of VWM in humans is multivariate pattern analysis (Haxby et al.,
2014; Grootswagers et al., 2016), or neural decoding, in conjunction with neuroi maging techniques.
Here we demonstrate that this way of analysis can be vulnerable to confounding effects of item-

specific eye movements.

Neural decoding refersto uncovering a latent variable, for instance stimulus identity, from
multivariate patterns in neural signals such as those measured by magnetoencephal ography (MEG)
or functional magnetic resonance imaging (fMRI). This approach has been frequently applied in the
study of VWM in order to elucidate where, when and how a memorandum is encoded in the brain.
For instance, in a seminal paper, Harrison and Tong (2009) were able to decode the orientation of a
memorized grating from visual cortex. More importantly, they were able to do so using a decoder
that was trained on separate localizer blocks in which subjects passively perceived gratings. This
shows that visual cortex was not only involved in the encoding of the memory item, but did so
using a code similar to that of actual perception. Consistently, at about the same time, another study

found very similar results (Serences et a., 2009).

Harrison and Tong's (2009) paradigm paved the way for subsequent neural decoding studies that

extended it in varying ways. Albers et al. (2013) and Christophel et al. (2015) investigated the
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representational contents of neural signals while subjects mentally transformed an internal image.
Christophel et al. (2017) and Gayet et a. (2017) asked human volunteers to remember geometrical
shapes and Foster et al. (2016) investigated memorization of spatial location. The paradigm has also
been ported to electrophysiological studies that use MEG or electroencephal ography (EEG) (Wolff
et al., 2015, 2017; Foster et a., 2016; King et al., 2016). Not only does this allow for investigating
the time course of VWM encoding, the high temporal resolution also enables one to characterize the

evolution of the underlying neural code (King and Dehaene, 2014; Grootswagers et al., 2016).

The rise of multivariate decoding techniques has opened up new avenues for VWM research. This
has led to new insights regarding how VWM isimplemented in the brain. First, whereas it has long
been known that neurons in the lateral prefrontal cortex (IPFC) are involved in working memory
(Curtisand D’ Esposito, 2003), it has been unclear how exactly these would encode the working
memory item. Neural decoding studies (Harrison and Tong, 2009; Albers et al., 2013) have
contributed to the notion that high-fidelity representations may be maintained in the relevant
sensory cortex, instantiated by top-down modulation from IPFC neurons (Sreenivasan et al., 2014).
Second, arelatively new theory posits that memoranda may not be encoded in an active form, i.e.
neural spiking, but instead in asilent form (Stokes, 2015; Rose et a., 2016; Rademaker and
Serences, 2017). According to this hypothesis, memorizing a stimulus establishes a stimulus-
specific hidden state throughout the delay interval, possibly via rapid short-term synaptic plasticity.
The hidden state then modulates the neural activity generated by a neutral stimulus (e.g. response
cue), ultimately triggering a behavioral response contingent on the originally presented item.
Crucially, these hidden states do not necessarily evoke activity by themselves and may therefore be
challenging to pick up by contemporary neuroimaging techniques (Wolff et al., 2017). Third, there
is now increasing evidence that the neural code underlying VWM items is dynamic, changing
rapidly in the order of tens of milliseconds, rather than being stable and consistent across time

(Stokes et al., 2013; Stokes, 2015; King et a., 2016; Spaak et a., 2017).
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It isclear that the study of VWM has seen a proliferation with the advance of decoding methods and
that this has resulted in novel, empirically testable theories. The aim of this study was to add to this
growing field, by subjecting human volunteers to a combined VWM/imagery task while tracing the
representational contents of their neural activity as measured by MEG. While theinitial analysis
seemed to provide evidence for an active and sustained representation of itemsin working memory,
which was stable throughout a delay interval as long as 8 seconds, follow-up control analyses
revealed that this effect could be well explained by stimulus-specific eye movements. These
confounding effects may be particularly problematic for studies that employ decoding techniques,
owing to their high sensitivity. Given the ubiquity of those techniques, the problem may be

pervasive and may require more attention.
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Materials & Methods

Subjects

Thirty-six human volunteers were recruited from the local institute’ s subject pool to participatein a
behavioral screening session. Of these, 24 (thirteen male; mean age: 26.8 year, range: 18-60) were
selected to participate in the MEG experiment (see Experimental design and procedure). Of these
24 selected subjects, three were excluded from MEG analysis due to poor data quality and another
four were excluded from the analyses regarding eye movements, because the eye-tracker failed to
track the eye reliably in those subjects. The experiment was approved by the local ethics committee
(CMO Arnhem-Nijmegen) and conducted according to the guidelines set out by the committee. All
participants provided written informed consent and received either monetary compensation or

course credits.

Stimuli

Stimulation was visual and consisted of sinusoidal gratings with a spatial frequency of 1 cycle/°,
80% contrast and one random phase per experimental block. The gratings were masked at an outer
radius of 7.5° and an inner aperture radius of 0.7°, and presented on a gray background (luminance:
186 cd/m?). Stimuli were generated and presented using MATLAB with the Psychtoolbox extension

(Kleiner et a., 2007).

Experimental design and procedure

The main task was to vividly imagine and remember an oriented grating and, in some conditions,

mentally rotate this grating over a certain angle. Each trial began with adual cue that indicated both
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the amount (presented above fixation) and the direction (*> for clockwise and ‘<*' for counter-
clockwise, presented below fixation) of mental rotation that was to be performed in that trial (Fig.
1). The amount could be either 0°, 60°, 120° or 180°, in either clockwise or counter-clockwise
direction, where 0° corresponded to a VWM task. This condition will henceforth be referred to as
the VWM condition, and the other three conditions, which corresponded to imagery, as the mental
rotation (MR) conditions. This cue lasted for 417 ms, after which a blank screen was shown for
another 417 ms. A fixation dot (4 pixels diameter) was present throughout the entire trial, and
throughout the entire block. After the blank, a grating was presented for 217 ms that could have
either of three orientations: 15°, 75° or 135° (clockwise with respect to vertical). Next, a blank
delay period of 8017 ms followed, during which subjects were required to keep the starting grating
inmind and, in asubset of trials, mentally rotate it. The delay period was terminated by the
presentation of a probe grating for 217 ms, whose orientation was slightly jittered (see Staircase
procedure) with respect to the orientation that subjects were supposed to have in mind at that
moment. Subjects then indicated with a button press whether the probe was oriented clockwise or
counterclockwise relative to their internal image. The response period lasted until 2033 ms post
probe, after which feedback was given. There were 3 trials per design cell (4 arcs of rotation and 2
directions) per block, resulting in 24 trials per block. In addition, there were two catch trials per
block, in which the probe grating was presented at an earlier moment in the delay interval in order
to gauge ongoing rotation. All trials were presented in pseudorandomized order. The catch trials
were excluded from further analysis, because subjects indicated to find them difficult and
confusing.However, subjects indicated to find these trials difficult and confusing, and we decided to
exclude them from analysis. In general, each experiment consisted of six experimental blocks
(though some subjects performed 5, 7 or 8 blocks), preceded by one or more practice blocks,

resulting in atotal of 144 experimental trials for most of the participants.
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Interleaved with the VWM /imagery blocks, there were six functional localizer blocks (Fig. 1B, C).
In these blocks, gratings of six different orientations (15° to 165°, in steps of 30°) were presented
for 250 ms with an inter-trial interval of 750 ms. Each block consisted of 120 trials, resulting in a
total of 120 trials per orientation. The task was to press a button when a brief flicker of the fixation
dot occurred. Such aflicker occurred between 8 to 12 times (randomly selected number) per block,
at random times. Using such atask we ensured that spatial attention was drawn away from the
gratings while stimulating subjects to maintain fixation, allowing us to record activity that only

reflected bottom-up, sensory-specific signals (Mostert et a., 2015).

Prior to the MEG session, the volunteers participated in a behavioral screening session that served
to both train the subjects on the task as well as to assess their capability of carrying it out. Subjects
were instructed to mentally rotate the stimulus at an angular velocity of 30 °/s by demonstrating
examples of rotations on the screen. Moreover, during this session subjects were required to press a
button as soon as they achieved avivid imagination of the grating upon completion of the cued
rotation. This provided a proxy of the speed at which they actually performed the rotation and was

used as selection criterion for participation in the MEG session.

Staircase procedure

The amount of jitter of the probe grating was determined online using an adaptive staircasing
procedure to equalize subjective task difficulty across conditions and subjects. The starting
difference was set to 15°, and was increased by 1° following an incorrect response and decreased by
0.5488 after two consecutive correct responses. Such a procedure has a theoretical target
performance of approximately 80% correct (Garcia-Pérez, 1998). Four separate staircases were

utilized, one for each of the VWM and MR conditions.
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MEG recordings, eye-tracker recordings and pre-processing

Neural activity was measured using awhole-head MEG system with 275 axial gradiometers
(VSM/CTF Systems, Coquitlam, BC, Canada) situated in a magnetically shielded room. A projector
outside the room projected viaa mirror system onto the screen located in front of the subject.
Fiducial coils positioned on the nasion and in the ears allowed for online monitoring of head
position and for correction in between blocks if necessary. Both vertical and horizontal EOG as well
as electrocardiogram were obtained to aid in the recognition of artifacts. All signals were sampled at
1200 Hz and analyzed offline using the FieldTrip toolbox (Oostenveld et al., 2010). The data were
notch-filtered at 50 Hz and corresponding harmonics to remove line noise, and subsequently
inspected in a semi-automatic manner to identify irregular artifacts. After rejection of bad segments,
independent component analysis was used to remove components that corresponded to regular
artifacts such as heartbeat, blinks and eye movements (although our results suggest that the removal
of eye movement-related artifacts was imperfect, see Results and Discussion). The cleaned data

were baseline-corrected on the interva of -200 to O ms, relative to stimulus onset.

Gaze position and pupil dilation were continuously tracked throughout the experiment using an
Eyelink 1000 (SR Researcher) eye-tracker. The eye-tracker was calibrated before each session and
signals were sampled at 1200 Hz. Because we were interested in eye-movements induced by the
experimental stimulation, we removed any slow drifts in the signal by basdline-correcting the signal

on an interva of -200 to O ms relative to cue onset.

Classification and decoding analyses

Broadly, we conducted two lines of decoding analyses. In the first, we focused only on the blocks in

which participants performed the combined VWM/imagery task, using 8-fold cross-validation. We
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trained athree-class probabilistic classifier that returns the probability that a given trial belongs to
either of the three presented grating orientations. In order to improve signal-to-noise ratio, yet retain
the ability to draw firm conclusions regarding the timing of any decoded signal, we smoothed the
data using a moving average with awindow of 100 ms. The classifier was trained across the spatial
dimension (i.e. using sensors as features), on trials from all conditions (i.e., all anounts and
directions of rotation). This may seem counterproductive, because the mental contents diverge over
the delay interval and there should therefore be no systematic relationship between the MEG data
and the stimulus label. However, our rationale was that regardless of condition, subjects need to
first perceive, encode and maintain the presented stimulus before they can even commence the task,
beit VWM or MR. Thus, we expected to be able to extract the neural pattern of the presented
stimulus during at least the physical presentation and a brief moment after that. This classifier was
then trained and applied across all time points, resulting in atemporal generalization matrix (King
and Dehaene, 2014). It isimportant to note that we trained the classifiers only using the labels of the
presented stimulus, but sorted the datain varying ways when testing the performance. For example,
by looking at an early training time point, but a late testing time point, we tested whether we could
decode the orientation of the grating kept in mind near the end of the delay period, on the basis of

the pattern evoked by the presented stimulus early in the trial.

In the second line of analysis, we trained a continuous orientation decoder on the functional
localizer and applied this to the VWM/imagery task. We subsequently related the decoded
orientation to the true presented orientation by calculating a quantity intuitively similar to a
correlation coefficient (see below). Here too, we extended the procedure to include all pairwise
training and testing time points, resulting in temporal generalization matrices (King and Dehaene,

2014).
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The three-class classifier was based on Bishop (2006, p. 196-199). Briefly, the class-conditional
densities were modeled as Gaussian distributions with assumed equal covariance. By means of
Bayes' theorem, and assuming aflat prior, this model was inverted to yield the posterior
probabilities, given the data. Specificaly, let x be acolumn vector with length equal to the number
of features [number of sensors for MEG data, two for gaze position (horizontal and vertical
location)] containing the data to be classified, then the posterior probability that the data belongs to
classk s given by the following equations:

exp(ay)
> jEXp (aj )

P(class = k | x) =
@ (X) = WX + wg
w, =S m,
Wio = - %m',ES‘lmk
where my is the mean of class k and Sis the common covariance, both obtained from the training
set. The latter was calculated as the unweighted mean of the three covariance matrices for each

individual class, and subsequently regularized using shrinkage (Blankertz et al., 2011) with a

regularization parameter of 0.05 for the MEG data and 0.01 for the eye-tracker analysis.

The continuous orientation decoder was based on the forward-modeling approach as described in
(Brouwer and Heeger, 2009, 2011) but adapted for improved performance (Kok et al., 2017). The
forward model postulates that a grating with a particular orientation activates a number of
hypothetical orientation channels, according to a characteristic tuning curve, that subsequently lead
to the measured MEG data. We formulated a model with 24 channels spaced equally around the
circle, whose tuning curves were governed by a VVon Mises curve with a concentration parameter of
5. Notethat all circular quantities in the analyses were multiplied by two, because the formulas we
used operate on input that is periodic over arange of 360°, but grating orientation only ranges from

0° to 180°. Next, we inverted the forward model to obtain an inverse model. This model
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reconstructs activity of the orientation channels, given some test data. In this step we departed from
Brouwer and Heeger's (2009, 2011) original formulation in two aspects. First, we estimated each
channel independently from each other, allowing us to include more channels than there are
stimulus classes. Second, we explicitly took into account the correlational structure of the noise,
which is a prominent characteristic of MEG data, in order to improve decoding performance
(Blankertz et al., 2011; Mostert et al., 2015). For full implementational details, see (Kok et al.,
2017). The decoding analysis yields a vector ¢ of length equal to number of channels (24 in our
case) with the estimated channel activity in atest trial, for each pairwise training and testing time
point. These channels activities were then transformed into asingle orientation estimate 6 by
calculating the circular mean (Berens, 2009) across all the orientations the channels are tuned for,

weighted by each individual activation:

6 = arg [z cjexp (i,uj)]
J

where the summation is over channels, ; is the orientation around which the jth channel tuning
curveis centered, and i is the imaginary unit. These decoded orientations can then be related to the

true orientation, across trials, as follows:

1 N
z=5 > expli(6, - 0]
k

p = |z|cos(arg(z))
where N is the number of trials and ¢ is the true orientation on trial k. The quantity p isaso known
asthetest statistic in the V-test for circular uniformity, where the orientation under the alternative
hypothesisis pre-specified (Berens, 2009). This quantity has properties that make it intuitively
similar to a correlation coefficient: it is +1 when decoded and true orientations are exactly equal, -1
when they are in perfect counter-phase and O when there is no systematic relationship or when they

are perfectly orthogonal.
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Satistical testing

All inferential statistics were performed by means of a permutation test with cluster-based multiple
comparisons correction (Maris and Oostenveld, 2007). These were applied to either whole temporal
generalization matrices, or horizontal cross-sections thereof (i.e. a fixed training window). These
matrices/cross-sections were tested against chance-level (33%) in the classification analysis, or
against zero in the continuous decoding analysis. In the first step of each permutation, clusters were
defined by adjacent points that crossed athreshold of p < 0.05 according to atwo-tailed one-sample
t-test. The t-values were summed within each cluster, but separately for positive and negative
clusters, and the largest of these were included in the permutation distributions. A cluster in the true
data was considered significant if its p-value was less than 0.05. For each test, 10,000 permutations

were conducted.

Spatial patterns and source analysis

To interpret the signals that the classifier and decoder pick up, we looked at the corresponding
spatia patterns (Haufe et al., 2014). The spatial pattern is the signal that would be measured if the
latent variable that is being decoded is varied by one unit. For both the probabilistic classifier and
the continuous orientation decoder, this comes down to the difference ERF between each category
and the average across all categories. Thisyields one spatial pattern for each class, and these were
subsequently averaged across classes, as well as across time of interest, and fed into planar

transformation and source analysis.

For source analysis, we used atemplate anatomical scan provided by FieldTrip to create avolume

conduction model based on a single shell model of the inner surface of the skull. The source model
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consisted of aregular grid spaced 0.5 cm apart that encompassed the entire brain. Leadfields were
calculated and rank-reduced to two dimensions, to accommodate the fact that MEG is blind to
tangential sources. The covariance of the data was calculated over the window of 1 to 8 s post-
stimulus and regularized using shrinkage (Blankertz et al., 2011) with a regularization parameter of
0.05. The leadfields and data covariance were then used to calculate linearly constrained minimum
variance spatia filters (LCMV, aso known as beamformers; Van Veen et a., 1997). Applying these
filters to sensor-level data yields activity estimates of atwo-dimensional dipole at each grid point.
We further reduced these estimates to a scalar value by means of the Pythagorean theorem. This
leads to a positivity bias however, that we corrected for using a permutation procedure (see
Manahovaet a., 2017, for details). The number of permutations was 10,000. The final result was
interpolated to be projected on acortical surface, and quantifies the degree to which a particular

area contributed to the performance of the classifier/decoder.
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Results

Human volunteers performed a combined VWM/imagery task (Fig. 1A), in which they were
presented with an oriented grating (15°, 75° or 135°) that they either kept vividly in mind during the
delay interval, or mentally rotated for a certain number of degrees. The amount and direction of
rotation were randomized across trials and were indicated at the start of each trial. Subjects were
trained in a separate behavioral screening session to perform the mental rotation at afixed angular
velocity, in order to facilitate comparison between conditions as well as across subjects. When the
rotation was completed, the subject was instructed to keep the final image in mind for the remainder
of the delay interval. After the delay interval, a probe grating was presented, whose orientation was
slightly jittered with respect to the orientation the subjects were supposed to have in mind at the end
of theinterval. The task was to indicate whether the probe was oriented clockwise or counter-
clockwise with respect to the grating help in mind. The amount of jitter was adapted online using a
staircase procedure, separately for each of the four conditions, in order to equalize subjective

difficulty.

Behavioral results

Subjects were selected in abehavioral screening session to ensure that only subjects capable of
doing the task would participate in the MEG session. In the MEG session, the average accuracies
for the four condition ranged from 68-72%, confirming that subjects were able to do the task, as
well as that the staircase procedure was successful. The average final jitter estimate from the
staircase procedure for the 0°, 60°, 120° and 180° conditions were as follows (standard error of the
mean in parentheses): 3.1° (0.54°), 11.0° (1.23°), 13.4° (1.65°) and 6.5° (1.38°), respectively. With
the exception of the 180° condition, the rising trend in these values shows that subjects found the

task more difficult when the amount of rotation was larger. The relatively low value for the 180°
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condition however indicates that this condition was relatively easy. It suggests that subjects either
did not perform the half-circle rotation at all, despite being explicitly told to do so, or that they also

memorized the starting orientation and used thisin their judgment.

Sustained decoding of VWM items from MEG signals

In order to assess the representational contents of the neural signals while the subjects were engaged
in VWM/imagery, we constructed a three-class probabilistic classifier that yields the posterior
probabilities that any given data belong to the either of three presented orientations. That is, the
classifier was trained according to the labels of the presented stimulus. Furthermore, we applied
temporal generalization to investigate the dynamics of the neural pattern (King and Dehaene, 2014).
The classifier wastrained on trials from all conditions (i.e., all amounts and directions of rotation)
pooled together to obtain maximum sensitivity (see Methods for rational€). To verify that we could
decode stimulus identity, we applied the classifier to the same (pooled) data using cross-validation,
and found successful decoding during a period of up to approximately 2.5 seconds after stimulus
onset (Fig. 2-1). The stimulus itself was presented for only 250 ms and therefore the later part of
this period necessarily indicates an endogenous representation, presumably stemming from active

mental instantiation by the subject.

Next we looked at the decoding performance in the VWM condition alone, using the classifier
trained on all conditions as described above. We found that the identity of the memory item could
be decoded during the entire delay interval, using classifiers obtained from a training window of
approximately 0.5-1.5 s (Fig. 2A). The performance stayed above chance-level (33.3%) at astable
level of ~37% throughout the entire interval (Fig. 2B). In contrast, no such sustained generalization
was observed for classifiers trained at approximately 0-0.5 s. In other words, the maintenance of the

memory item is described by the same neural code as employed in the presumed mental
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reinstantiation of the stimulus shortly after its presentation, but not by the neural code evoked by the

initial presentation of the stimulus.

Contrary to previously used paradigms, where two stimuli were displayed at the beginning of atrial
and a retro-cue signaled the item that was to be remembered (e.g. Harrison and Tong, 2009; Albers
et al., 2013; Christophel et a., 2015, 2017), in the present experiment we only showed one
stimulus. It is therefore possible that our sustained decoding performance isthe result of alonger
lasting stimulus-driven effect (e.g. stimulus aftereffect), rather than a manifestation of VWM.
However, if this were true, then we should find asimilar effect in the three MR conditions. If, on
the other hand, the classifiers picked up theitem held in mind, then the probability that atrial is
assigned to the same class as the presented stimulus should drop over time, as the subject rotates the
mentally imagined grating away from the starting orientation. Our results demonstrate that the latter
isindeed the case (Fig. 2B). Whereas the probability that the data belong to the same class as the
presented stimulus stays steadily above chance in the VWM condition, it drops to (below) chance-
level in the 60° and 120° conditions. In the 180° condition, the probability initially falls to chance
as well, but reemerges later as a rising, though non-significant trend. Thisis to be expected, because
the final orientation that the subjects should have in mind in the 180° condition isidentical to the

orientation of the presented stimulus at the start of atrial.

In order to facilitate interpretation of these results, we inspected the classifier’s corresponding
sensor topography (Fig. 2C) and source localization (Fig. 2D), averaged over the training time
period of 0.5-1.5 s. These indicate that both occipital and prefrontal sources contribute to the

classifier’s performance.

In the MR conditions, it is not only of interest whether the representation of theinitially presented

stimulus fades (as the subject mentally rotates it), but also whether the intermediate (for the 120°
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and 180° conditions) and final orientations can be decoded from the neural signals. We found some
indication that the final orientation - but not the intermediate ones (Fig. 2-2B) - indeed emerges

halfway through the delay period, but this effect was not statistically significant (Fig. 2-2A).

Gaze position tracks VAWM contents

Asacontrol analysis, we examined the position of subject’s gaze, and in particular whether there
was a systematic relationship with the identity of the mental image. It is awell-documented
phenomenon that eye movements occur spontaneously during visual imagery in a manner
systematically related to the mental image (Brandt and Stark, 1997; Spivey and Geng, 2001; Laeng
and Teodorescu, 2002; Laeng et a., 2014; Bone et al., 2017). Although in our experiment the
volunteers were instructed to fixate, systematic eye movements in working memory tasks have been
observed before (Foster et a., 2016) and we therefore also investigated this possibility given that
even minute, involuntary eye-moments could have serious consequences for the interpretation of

our results described above (see Discussion).

We performed the same analysis as described in the previous section, but now used the gaze
position (horizontal and vertical dimensions) as measured by the eye-tracker, instead of the MEG
data, as features for the classifier. First, when looking at all trials collapsed across conditions, we
found above-chance decoding for stimulus identity in atime period of approximately 0.5-3.5 s post-
stimulus that was marginally significant (Fig. 3-1). Then, when looking at the decoded signal within
the VWM condition only, we found a sustained pattern, similar to the MEG decoding results (Fig.
3A), though again only marginally significant. This suggests that upon perceiving and encoding the
stimulus, subjects move their eyesin away systematically related to the identity of the stimulus,

and keep that gaze position stable throughout the entire delay period.
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Again, we found this sustained pattern to be specific to the VWM condition, because the probability
that the data belongs to the same class as the presented stimulus drops over timein the three MR
conditions (Fig. 3B). As explained above, thisindicates that the sustained above-chance
classification in the VWM condition cannot be explained solely by the stimulus itself, but must also
reflect the mental image to at least some degree. In fact, in this analysis we even found evidence
that the gaze moves towards a position consistent with the orientation of the presented grating plus
or minus 60° (depending on the cued direction of rotation) in the MR conditions, but not any further
(Fig. 3-2A,B). In short, there was a systematic relationship between gaze position and stimulus
orientation, after which the gaze position tracked the orientation kept in mind during the delay

period, but only for a maximum of approximately +60° relative to starting orientation.

Fig. 3C displays the grand average, as well asindividual average gaze positions during 0.5-1.5s
after stimulus onset, separately for each of the three stimulus conditions, collapsed across VWM
and MR conditions. Although thereis large variability among subjects in the magnitude of the eye
movements, a general trend can be discerned where subjects position their gaze along the
orientation axis of the grating. The mean disparity in visual angle with respect to pre-trial fixation
was 0.23°, which isin the same order of magnitude as reported previously (Foster et al., 2016),

though for some subjects it was aslarge as 1.5°.

These findings raise the concern that the sustained decoding of VWM items from MEG signals are
the result of stimulus-related eye confounds (see Discussion for possible underlying mechanisms).
In order to counter this possibility and assess whether the mental image is genuinely encoded in the

neural signals, we made use of afunctional localizer in a between-task generalization procedure.

Decoding sensory-specific signals using a functional localizer
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Besides the combined VWM/imagery task, subjects aso performed afunctional localizer task in
interleaved blocks (Fig. 1B,C). In this task, subjects were continuously presented with gratings
while they performed a challenging detection task at fixation in order to draw the subject’s attention
away from the gratings. This task ensured that activity patterns mainly reflected automatic sensory
processing of the stimuli and, in addition, discouraged eye movements in response to the stimuli.
We used these data for between-task generalization (King and Dehaene, 2014), whereby we trained
a continuous orientation decoder on the functional localizer and subsequently applied it to the data
from the VWM/imagery task. The chief advantage of this method is that it ensures that the decoder
is sensitive to sensory signals only, and not to higher-level top-down processes involved in mentally
mani pulating an image. It thus allows us to track sensory-specific activation throughout the delay
period (Mostert et al., 2015). Cross-validation within the functional localizer confirmed that we
were indeed able to reliably decode orientation-specific information from activity evoked by
passively perceived gratings (Fig. 4-1). Moreover, we were not able to decode grating orientation
on the basis of gaze position, verifying that the data from the functional localizer were not

contaminated by stimulus-specific eye movements (Fig. 4-2).

In the VWM condition, the decoders trained on the functional localizer data could reliably decode
the orientation of the presented stimulus (Fig. 4A). Moreover, for a training time of approximately
90-120 ms, we could decode the stimulus for a prolonged time, lasting over 1 s after stimulus onset.
Interestingly, this training time point coincides with the time at which peak performance is obtained
within the localizer itself (Fig. 4-1). Comparing the decoding trace within this training time window
with the three MR conditions, it can be seen that grating orientation can be decoded in all four
conditions for a sustained period of approximately 500 ms (Fig. 4B). Furthermore, it is noteworthy
that decoding performance in the VWM condition remains above baseline throughout large portions

of theinterval, although this was not significant.
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We inspected the spatial pattern (Fig. 4C) and corresponding source topography (Fig. 4D) for the
decoders, averaged across training time 90-120 ms. These highlight primarily occipital regions as
contributing to the decoder’ s performance, consistent with our premise that the functional localizer
primarily induced bottom-up sensory signals, especially during this early time interval (Mostert et

a., 2015).

In summary, our findings suggest that the stable, persistent representation found in our within-task
MEG decoding result may well be attributed to stimulus-specific eye movements. In contrast, no
clear evidence was found for such along-lasting representation when training the decoder on the
functional localizer. Given that the localizer was not contaminated by stimulus-specific eye
movements, these results thus provide a more reliable picture of the sensory representations during

the delay interval.
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Discussion

Visua working memory, and especialy its implementation in the brain, is an intensely studied topic
that has recently undergone innovationsin the form of new theories (Sreenivasan et al., 2014,
Stokes, 2015; Rose et al., 2016; Rademaker and Serences, 2017). These theories revolve around
three central issues: whether the identity of the memory itemsis encoded in parietal and prefrontal
cortex or in sensory cortex; whether the items are encoded by means of persistent activity or in
hidden, activity-silent states and whether the neural code is dynamic or static. At first sight, our
results seem to provide evidence for a stable signal, possibly involving both occipital and prefrontal
cortex, which showed persistent encoding of stimulus information throughout the delay period.
However, control analysis revealed that very similar results could be obtained by considering gaze
position only. Thisindicates that our MEG results are likely confounded by stimulus-specific eye
movements, which jeopardizes the ability to draw firm conclusions about the neural underpinnings

of VWM.

There are aleast three possible mechanisms via which stimulus-specific eye movements may
confound our results. First, eye movements are known to cause stereotypical artifactsin MEG
recordings. Due to the positively charged cornea and negatively charged retina, the eyeball acts asa
dipole that is picked up by the MEG sensors. The spatial pattern that the dipole evokes is directly
related to its rotation, or in other words, to the position of the subject’s gaze (Plochl et al., 2012).
Thus, if the subject moves their eyes in response to the grating in a manner related to the orientation
of that grating, then this will induce a specific pattern in the MEG signals, which in turn is directly
related to the grating orientation. A decoding analysis applied to these signalsisthen likely to pick
up the patterns evoked by the eyeball dipoles, confounding potential orientation-related information
stemming from genuine neural sources. In fact, our source analysis hints at this scenario (Fig. 2D),

as the contributions from presumed prefrontal sources closely resemble an ocular source.
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Second, if the eyes move, then the projection falling on the retina will also change, even when
external visual stimulation remainsidentical. Thus, if gaze position is systematically modulated by
the image that is perceived or kept in mind, then so is the visual information transmitted to the
visual cortex. For example, if avertical grating is presented and kept in VWM, then the subject may
subtly move her or his gaze upward. Correspondingly, the fixation dot is now slightly below
fixation, thus leading to visual cortex activity that is directly related to the retinotopic position of
the fixation dot. Our decoding analysis may thus actually decode the position of the fixation dot,
rather than grating orientation, potentially leading to an incorrect conclusion. Source analysis would
in this scenario also point to occipital sources, similarly to what we found (Fig. 2D). Note that this
mechanism is not specifically dependent on the presence of afixation dot. A systematic difference
in eye position will also lead to changesin the retinotopic position of, for instance, the presentation

display or the optically visible part of the MEG helmet.

Third, if gaze position covaries with the mental image, then decoding of the mental image will also
reveal areas that encode eye gaze position, such as oculomotor regionsin parietal and prefrontal

cortex.

Our findings raise the question of why there were task-induced eye movements that were directly
related to the grating kept in VWM. In fact, there is a considerable mass of literature that describes
the role of eye movements in mental imagery. It has been found that subjects tend to make similar
eye movements during imagery as during perception of the same stimulus (Brandt and Stark, 1997;
Laeng and Teodorescu, 2002; Laeng et al., 2014). Already proposed by Donald Hebb (Hebb, 1968),
it is now thought that eye movements serve to guide the mental reconstruction of an imagined
stimulus, possibly by dwelling on salient parts of the image (Spivey and Geng, 2001; Laeng et al.,

2014). Moreover, the specificity of the eye movementsis also related to neural reactivation (Bone et
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al., 2017) and recall accuracy (Laeng and Teodorescu, 2002; Laeng et al., 2014; Bone et al., 2017).
Our findings are in accordance with these studies. Subjects’ gaze was positioned along the
orientation axis of the grating - that is, the visual location within the stimulus that provided the
highest information regarding its orientation, and is thus exactly what one would expect given that
the task was to make a fine-grained orientation comparison with a probe grating. Importantly
however, subjects were explicitly instructed to maintain fixation throughout the entire trial. We

nevertheless observed that not all subjects adhered to this requirement, albeit involuntarily.

Despite these problems associated with the systematic eye movementsin our experiment, it is still
possible that our decoding results do in reality stem from genuine orientation information encoded
in true neural sources. In fact, we used independent component analysisin our pre-processing
pipeline to (presumably) remove eye-movement artifacts. However, it would be very difficult, if not
impossible, to convincingly establish that no artifacts remain and, considering the similarities
between the decoding results from the MEG data (Fig. 2A,B) and the gaze position (Fig. 3A,B), we

feel any attempts at this would be unwarranted.

Given the potential pervasiveness of systematic eye movementsin VWM /imagery tasks, and the
demonstrated susceptibility of our anaysis methods to these confounds, one wonders whether other
studies may have been similarly affected. Clearly, the first mechanism described above involving
the eyeball dipole would only affect electrophysiological measurements like

el ectroencephal ography and MEG, and has indeed been a concern in practice (Foster et al., 2016).
The second mechanism however, whereby stimulus identity is confounded with the retinal position
of visual input, would also affect other neuroimaging techniques such as fMRI. This confound
could be particularly difficult to recognize, because it would also affect occipital sources. Moreover,
because eye movements during imagery have been found to be positively related to performance

(Laeng and Teodorescu, 2002), this could potentially explain correlations between VWM decoding
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and behavioral performance (Wolff et al., 2017). The third mechanism, whereby one directly
decodes gaze position from motor areas, could be a problem especially for fMRI which, thanks to
its high spatial resolution, might be well able to decode such subtle neural signals. This concern
may be especially relevant for studies that investigate the role of areas involved in eye movements
or planning thereof, such as frontal eye fields or superior precentral sulcus, in the maintenance of

working memory items (Jerde et al., 2012; Ester et al., 2015; Christophel et al., 2017)

This leaves the question of how to deal with eye movements in VWM/imagery tasks. Naturally, itis
important to record eye movements during the experiment, for instance using an eye-tracker or
electrooculogram (EOG). One can then test for any systematic relationship and, if found, investigate
whether it could confound the main results. In our case, for example, decoding of gaze position
leads to strikingly similar results as those obtained from the MEG data. Foster et al. (2016) on the
other hand found that decoding performance of working memory items decreased throughout the
trial, whereas the deviation in gaze position increased, suggesting that eye confounds cannot explain
the main findings. Anoth er approach might be to design the experimental task in such away that
eye movements are less likely. For example, by presenting gratings laterally (e.g. Pratte and Tong,
2014; Ester et a., 2015; Wolff et al., 2017), and assuming that VWM items are stored in a
retinotopically specific manner (Pratte and Tong, 2014), the involuntary tendency to move one's
eyes subtly along the remembered grating's orientation axis may become less strong, because those
gratings are located distantly from the gaze's initial location (i.e. central fixation). Finally, a
powerful approach could be to adopt a separate functional localizer, which allows specific decoding
of functionally defined representations such as bottom-up, sensory-specific signals (Harrison and
Tong, 2009; Serences et al., 2009; Albers et al., 2013; Mostert et al., 2015). If the localizer is well
designed and not systematically contaminated by eye movements, then eye movements in the main

task cannot have a systematic effect on the decoded signal, thus effectively filtering them out.
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Using such afunctional localizer, we indeed obtained M EG decoding results that were very
dissimilar from those obtained on the basis of gaze position. We no longer found persistent
activation of an orientati on-specific representation throughout the entire delay period. Nevertheless,
the sensory pattern did remain above baseline for a period of approximately 1 second, whichis
relatively long considering that the stimulus was presented for only 250 ms. One explanation is that
the stimulus was relevant for the task. Previous work has shown that task relevance may keep the
sensory representation online for a prolonged period even after the stimulus is no longer on the

screen (Mostert et al., 2015).

In summary, we demonstrate a case where decoding analyses in a VWM/imagery task are heavily
confounded by systematic eye movements. Given the high potential benefit of decoding analyses
and its widespread use in the study of working memory and mental imagery, we argue that this
problem may be more pervasive than is commonly appreciated. We conclude that eye movement
confounds should be taken seriously in both the design as well as the analysis phase of future

studies.


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

References

Albers AM, Kok P, Toni |, Dijkerman HC, de Lange FP (2013) Shared Representations for

Working Memory and Mental Imagery in Early Visual Cortex. Curr Biol 23:1427-1431.

Berens P (2009) CircStat: A MATLAB Toolbox for Circular Statistics. J Stat Softw Vol 1 Issue 10

2009 Available at: https://www.jstatsoft.org/v031/i10.

Bishop CM (2006) Pattern recognition and machine learning. springer.

Blankertz B, Lemm S, Treder M, Haufe S, Miller K-R (2011) Single-trial analysis and

classification of ERP components — A tutorial. Neurolmage 56:814-825.

Bone MB, St-Laurent M, Dang C, McQuiggan DA, Ryan JD, Buchsbaum BR (2017) Eye-

movement reinstatement and neural reactivation during mental imagery. bioRxiv:107953.

Brandt SA, Stark LW (1997) Spontaneous Eye M ovements During Visual Imagery Reflect the

Content of the Visual Scene. J Cogn Neurosci 9:27-38.

Brouwer GJ, Heeger DJ (2009) Decoding and Reconstructing Color from Responses in Human

Visual Cortex. J Neurosci 29:13992—-14003.

Brouwer GJ, Heeger DJ (2011) Cross-orientation suppression in human visual cortex. J

Neurophysiol 106:2108-2119.

Christophel TB, Allefeld C, Endisch C, Haynes J-D (2017) View-Independent Working Memory
Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human

Brain. Cereb Cortex:1-16.

Christophel TB, Cichy RM, Hebart MN, Haynes J-D (2015) Parietal and early visual cortices

encode working memory content across mental transformations. Neurolmage 106:198-206.


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Curtis CE, D’ Esposito M (2003) Persistent activity in the prefrontal cortex during working memory.

Trends Cogn Sci 7:415-423.

Ester EF, Sprague TC, Serences JT (2015) Parietal and Frontal Cortex Encode Stimulus-Specific

M nemonic Representations during Visual Working Memory. Neuron 87:893-905.

Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E (2016) The topography of al pha-band

activity tracks the content of spatial working memory. J Neurophysiol 115:168-177.

Garcia-Pérez MA (1998) Forced-choice staircases with fixed step sizes: asymptotic and small-

sample properties. Vision Res 38:1861-1881.

Gayet S, Guggenmos M, Christophel TB, Haynes J-D, Paffen CLE, Stigchel SV der, Sterzer P
(2017) Visual working memory enhances the neural response to matching visual input. J

Neurosci:3418-16.

Grootswagers T, Wardle SG, Carlson TA (2016) Decoding Dynamic Brain Patterns from Evoked
Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series

Neuroimaging Data. J Cogn Neurosci 29:677—697.

Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early

visual areas. Nature 458:632—635.

Haufe S, Meinecke F, Gorgen K, Dahne S, Haynes J-D, Blankertz B, Bief3mann F (2014) On the
interpretation of weight vectors of linear models in multivariate neuroimaging. Neurolmage

87:96-110.

Haxby JV, Connolly AC, Guntupalli JS (2014) Decoding Neural Representational Spaces Using

Multivariate Pattern Analysis. Annu Rev Neurosci 37:435-456.


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Hebb DO (1968) Concerning Imagery. In: Images, Perception, and Knowledge, pp 139-153 The
University of Western Ontario Series in Philosophy of Science. Springer, Dordrecht.
Available at: https:/link.springer.com/chapter/10.1007/978-94-010-1193-8 7 [Accessed

July 19, 2017].

Jerde TA, Merriam EP, Riggall AC, Hedges JH, Curtis CE (2012) Prioritized Maps of Space in

Human Frontoparietal Cortex. J Neurosci 32:17382—17390.

King J-R, Dehaene S (2014) Characterizing the dynamics of mental representations: the temporal

generalization method. Trends Cogn Sci 18:203-210.

King J-R, Pescetelli N, Dehaene S (2016) Brain Mechanisms Underlying the Brief Maintenance of

Seen and Unseen Sensory Information. Neuron 92:1122-1134.

Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C, others (2007) What’'s new in

Psychtoolbox-3. Perception 36:1.

Kok P, Mostert P, Lange FP de (2017) Prior expectations induce prestimulus sensory templates.

Proc Natl Acad Sci:201705652.

Laeng B, Bloem IM, D’ Ascenzo S, Tommasi L (2014) Scrutinizing visual images: The role of gaze

in mental imagery and memory. Cognition 131:263-283.

Laeng B, Teodorescu D-S (2002) Eye scanpaths during visual imagery reenact those of perception

of the same visua scene. Cogn Sci 26:207-231.

Manahova ME, Mostert P, Kok P, Schoffelen J-M, Lange FP de (2017) Stimulus familiarity and

expectation jointly modulate neural activity in the visual ventral stream. bioRxiv:192518.

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci

Methods 164:177-190.


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Mostert P, Kok P, de Lange FP (2015) Dissociating sensory from decision processes in human

perceptual decision making. Sci Rep 5:18253.

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2010) FieldTrip: Open Source Software for
Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell

Neurosci 2011:e156869.

Plochl M, Ossandon JP, Konig P (2012) Combining EEG and eye tracking: identification,
characterization, and correction of eye movement artifacts in el ectroencephal ographic data.
Front Hum Neurosci 6 Available at:

http://www.ncbi.nlm.nih.gov/pmc/articles/PM C3466435/.

Pratte MS, Tong F (2014) Spatial specificity of working memory representationsin the early visual

cortex. JVis 14:22-22.

Rademaker RL, Serences JT (2017) Pinging the brain to reveal hidden memories. Nat Neurosci

20:767-769.

Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR (2016)
Reactivation of latent working memories with transcranial magnetic stimulation. Science

354:1136-1139.

Serences JT, Ester EF, Vogel EK, Awh E (2009) Stimulus-Specific Delay Activity in Human

Primary Visual Cortex. Psychol Sci 20:207-214.

Spaak E, Watanabe K, Funahashi S, Stokes MG (2017) Stable and Dynamic Coding for Working

Memory in Primate Prefrontal Cortex. J Neurosci 37:6503—-6516.

Spivey MJ, Geng JJ (2001) Oculomotor mechanisms activated by imagery and memory: Eye

movements to absent objects. Psychol Res 65:235-241.


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Sreenivasan KK, Curtis CE, D’ Esposito M (2014) Revisiting the role of persistent neural activity

during working memory. Trends Cogn Sci 18:82-89.

Stokes MG (2015) “Activity-silent” working memory in prefrontal cortex: adynamic coding

framework. Trends Cogn Sci 19:394-405.

Stokes MG, Kusunoki M, SigalaN, Nili H, Gaffan D, Duncan J (2013) Dynamic Coding for

Cognitive Control in Prefrontal Cortex. Neuron 78:364—375.

Van Veen BD, van Drongelen W, Y uchtman M, Suzuki A (1997) Localization of brain electrical
activity vialinearly constrained minimum variance spatial filtering. |EEE Trans Biomed

Eng 44:867-880.

Wolff MJ, Ding J, Myers NE, Stokes MG (2015) Revealing hidden states in visual working

memory using electroencephalography. Front Syst Neurosci:123.

Wolff MJ, Jochim J, Akyurek EG, Stokes MG (2017) Dynamic hidden states underlying working-
memory-guided behavior. Nat Neurosci advance online publication Available at:
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4546.html [Accessed May 10,

2017].


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

L egends

Figure 1: Experimental paradigm. (A) In the combined VWM/imagery blocks, subjects were
instructed to vividly imagine a grating and to either keep that in mind (VWM condition) or rotate it
mentally over a cued number of degrees (MR condition). (B) In the functional localizer block,
oriented gratings were continuously presented while the subject's attention was drawn to atask at

fixation. (C) The VWM/imagery and localizer blocks were performed in alternating order.

Figure2: MEG classification results, cross-validation within VWM /imagery task. (A)
Temporal generalization matrix of classification performance in the VWM condition. The color
scale denotes the average posterior probability that the data belong to the same class as the
presented stimulus. The black outline demarcates a significant cluster (p = 0.006). (B) Classification
performance averaged over the training time window of 0.5-1.5 s, separately for the VWM and the
three MR conditions. Note that the 0° condition corresponds directly to the matrix in (A). The two
vertical dashed lines indicate stimulus and probe onset. Shaded areas indicate the standard error of
the mean (SEM). Significant clusters are indicated by the horizontal bars in the lower part of the

figure. (C) Planar gradiometer and (D) source topography of areas that contribute to the classifier.

Figure 2-1: MEG classification perfor mance within the VWM /imagery task, pooled acr oss
VWM and MR conditions. Tempora generalization matrix of the average posterior probability
that the data belong to the same class as the presented stimulus. The black outline corresponds to a

significant cluster (p = 0.007).

Figure 2-2: Complete MEG classification results. Analogously to Fig. 2, the classifier was
trained on the time window of 0.5-1.5 s post stimulus onset, and according to the labels of the

presented stimulus. (A) Average posterior probability that the data belong to the class of the target
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orientation, that is, the orientation that the subjects were supposed to have in mind at the end of the
delay period. For both the 0° and the 180° conditions, the target orientation was the same as the
presented stimulus. For the 60° and 120° conditions however, the target and presented stimulus
were different, hence the below-chance probabilities at the beginning of the delay period. (B) The
average posterior probabilities that the data belong to either of three classes: the same orientation as
the presented stimulus, the orientation of the presented stimulus +60° or the orientation of the
presented stimulus £120°, plotted separately for the four VWM/MR conditions. The plus/minus-
sign is due to the mental rotation being performed either clockwise or counter-clockwise. This
figure givesinsight into whether the representations of any intermediate orientations become active
during mental rotation, which is particularly relevant for the 120° and 180° conditions. For instance,
in the 180° counter-clockwise condition, the subject would start with a mental image with the same
orientation as the presented stimulus, then pass through respectively -60° and -120°, ultimately to
reach the target of -180° (i.e. 0°). If the neural representations of all these orientations become
active in sequence, one would first expect a peak in posterior probability that the data belong to the
same class as the stimulus (gray line, bottom figure), then a peak in the probability of belonging to
the presented stimulus -60° (blue line), then for -120° (orange line) and finally again for 0° (gray
line). Note that (A) and (B), as well as Fig. 2 all depict the same data, but visualized in different
manners. Shaded areas denote the SEM and significant clusters are depicted by the thick horizontal

lines at the bottom of the panels.

Figure 3: Gaze position classification results. (A) Same asin Fig. 2A, except the classification
was performed on gaze position as measured by an eye-tracker, rather than on MEG data. The gray
outline demarcates a near-significant cluster (p = 0.069). (B) Same asin Fig. 2B, except the analysis
was performed on gaze position. (C) Average gaze position during 0.5-1.5 s after stimulus onset,

separately per stimulus orientation. Each transparent dot corresponds to an individual subject. The
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crosses are the grand averages, where the vertical and horizontal arms denote the SEM. The three

colored lines depict the orientation of the three stimuli.

Figure 3-1: Gaze position classification performance within the VWM /imagery task, pooled
across VWM and MR conditions. Similar to Supplementary Fig. 1, except the classifier istrained
and tested on gaze position rather than MEG data. Gray outline indicates a near-significant cluster

(p = 0.068).

Figure 3-2: Complete gaze position classification results, visualized in a variety of ways. This
figure is analogous to Supplementary Fig. 2, except the classifier is trained and tested on gaze

position rather than on MEG data.

Figure 4: MEG decoding results, generalized from localizer to VWM /imagery task. (A)
Temporal generalization matrix of orientation decoding performance, for which the decoder was
trained on all time points in the functional localizer and tested across al time pointsin the
VWM /imagery task. The color scale reflects the correspondence between true and decoded
orientation. The black outline shows a significant cluster (p = 0.04). Note that the x- and y-axisin
the figure are differently scaled for optimal visualization. (B) Decoding performance over timein
the VWM/imagery task, averaged over decoders trained in the window of 0.09-0.12 sin the
localizer, separately for the VWM and three MR conditions. Shaded areas denote the SEM and
significant clusters are indicated by the horizontal bars. (C) Planar gradiometer and (D) source

topography of areas that contribute to the decoder.


https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/215509; this version posted November 20, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Figure4-1: MEG decoding performancewithin the functional localizer. The time axis
represents matched training and testing time-points. Shaded areas denote the SEM, and the

horizontal line demarcates a significant cluster (p = +0).

Figure 4-2: Gaze position classification performance within the functional localizer, using
cross-validation. (A) The time axis represents matched training and testing time-points. No
significant above-chance classification was found. Note that although there appearsto be arisein
performance after approximately 500 ms, this only reached a value of 0.1675 at itspeak (t = 0.51 s),
which is very little above chance (0.1667 for six classes). Shaded areas denote SEM. (B) Average
gaze position at 0.51 s after stimulus onset, separately per stimulus orientation. Each transparent dot
corresponds to an individual participant. The crosses are the grand averages, where the vertical and

horizontal arms denote the SEM. The six colored lines depict the orientation of the six stimuli.
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