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Significance statement 

 

Visual working memory is an important aspect of higher cognition and has been subject of much 

investigation within the field of cognitive neuroscience. Over recent years, these studies have 

increasingly relied on the use of neural decoding techniques. Here, we show that neural decoding 

may be susceptible to confounds induced by stimulus-specific eye movements. Such eye 

movements during working memory have been reported before, and may in fact be a common 

phenomenon. Given the widespread use of neural decoding and the potentially contaminating 

effects of eye movements, we therefore believe that our results are of significant relevance for the 

field. 
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Abstract  

 

The study of visual working memory (VWM) has recently seen revitalization with the emergence of 

new insights and theories regarding its neural underpinnings. One crucial ingredient responsible for 

this progress is the rise of neural decoding techniques. These techniques promise to uncover the 

representational contents of neural signals, as well as the underlying code and the dynamic profile 

thereof. Here, we aimed to contribute to the field by subjecting human volunteers to a combined 

VWM/imagery task, while recording and decoding their neural signals as measured by MEG. At 

first sight, the results seem to provide evidence for a persistent, stable representation of the 

memorandum throughout the delay period. However, control analyses revealed that these findings 

can be explained by subtle, VWM-specific eye movements. As a potential remedy, we demonstrate 

the use of a functional localizer, which was specifically designed to target bottom-up sensory 

signals and as such avoids eye movements, to train the neural decoders. This analysis revealed a 

sustained representation for approximately 1 second, but no longer throughout the entire delay 

period. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous 

effects of eye movement-related confounds. 
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Introduction 

 

Visual working memory (VWM) is an essential cognitive function necessary for intelligent and 

flexible behavior. It allows an individual to retain and utilize visual information about the world for 

a short period of time, even when the original source of that information is no longer available. 

How this internal retention of information is instantiated by the central nervous system is not fully 

understood, but has been subject of thorough investigation, and the analytical tools involved have 

become increasingly sophisticated. A particularly popular analysis tool in order to non-invasively 

study the neural underpinnings of VWM in humans is multivariate pattern analysis (Haxby et al., 

2014; Grootswagers et al., 2016), or neural decoding, in conjunction with neuroimaging techniques. 

Here we demonstrate that this way of analysis can be vulnerable to confounding effects of item-

specific eye movements. 

 

Neural decoding refers to uncovering a latent variable, for instance stimulus identity, from 

multivariate patterns in neural signals such as those measured by magnetoencephalography (MEG) 

or functional magnetic resonance imaging (fMRI). This approach has been frequently applied in the 

study of VWM in order to elucidate where, when and how a memorandum is encoded in the brain. 

For instance, in a seminal paper, Harrison and Tong (2009) were able to decode the orientation of a 

memorized grating from visual cortex. More importantly, they were able to do so using a decoder 

that was trained on separate localizer blocks in which subjects passively perceived gratings. This 

shows that visual cortex was not only involved in the encoding of the memory item, but did so 

using a code similar to that of actual perception. Consistently, at about the same time, another study 

found very similar results (Serences et al., 2009). 

 

Harrison and Tong's (2009) paradigm paved the way for subsequent neural decoding studies that 

extended it in varying ways. Albers et al. (2013) and Christophel et al. (2015) investigated the 
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representational contents of neural signals while subjects mentally transformed an internal image. 

Christophel et al. (2017) and Gayet et al. (2017) asked human volunteers to remember geometrical 

shapes and Foster et al. (2016) investigated memorization of spatial location. The paradigm has also 

been ported to electrophysiological studies that use MEG or electroencephalography (EEG) (Wolff 

et al., 2015, 2017; Foster et al., 2016; King et al., 2016). Not only does this allow for investigating 

the time course of VWM encoding, the high temporal resolution also enables one to characterize the 

evolution of the underlying neural code (King and Dehaene, 2014; Grootswagers et al., 2016). 

 

The rise of multivariate decoding techniques has opened up new avenues for VWM research. This 

has led to new insights regarding how VWM is implemented in the brain. First, whereas it has long 

been known that neurons in the lateral prefrontal cortex (lPFC) are involved in working memory 

(Curtis and D’Esposito, 2003), it has been unclear how exactly these would encode the working 

memory item. Neural decoding studies (Harrison and Tong, 2009; Albers et al., 2013) have 

contributed to the notion that high-fidelity representations may be maintained in the relevant 

sensory cortex, instantiated by top-down modulation from lPFC neurons (Sreenivasan et al., 2014). 

Second, a relatively new theory posits that memoranda may not be encoded in an active form, i.e. 

neural spiking, but instead in a silent form (Stokes, 2015; Rose et al., 2016; Rademaker and 

Serences, 2017). According to this hypothesis, memorizing a stimulus establishes a stimulus-

specific hidden state throughout the delay interval, possibly via rapid short-term synaptic plasticity. 

The hidden state then modulates the neural activity generated by a neutral stimulus (e.g. response 

cue), ultimately triggering a behavioral response contingent on the originally presented item. 

Crucially, these hidden states do not necessarily evoke activity by themselves and may therefore be 

challenging to pick up by contemporary neuroimaging techniques (Wolff et al., 2017). Third, there 

is now increasing evidence that the neural code underlying VWM items is dynamic, changing 

rapidly in the order of tens of milliseconds, rather than being stable and consistent across time 

(Stokes et al., 2013; Stokes, 2015; King et al., 2016; Spaak et al., 2017). 
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It is clear that the study of VWM has seen a proliferation with the advance of decoding methods and 

that this has resulted in novel, empirically testable theories. The aim of this study was to add to this 

growing field, by subjecting human volunteers to a combined VWM/imagery task while tracing the 

representational contents of their neural activity as measured by MEG. While the initial analysis 

seemed to provide evidence for an active and sustained representation of items in working memory, 

which was stable throughout a delay interval as long as 8 seconds, follow-up control analyses 

revealed that this effect could be well explained by stimulus-specific eye movements. These 

confounding effects may be particularly problematic for studies that employ decoding techniques, 

owing to their high sensitivity. Given the ubiquity of those techniques, the problem may be 

pervasive and may require more attention. 
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Materials & Methods 

 

Subjects 

 

Thirty-six human volunteers were recruited from the local institute’s subject pool to participate in a 

behavioral screening session. Of these, 24 (thirteen male; mean age: 26.8 year, range: 18-60) were 

selected to participate in the MEG experiment (see Experimental design and procedure). Of these 

24 selected subjects, three were excluded from MEG analysis due to poor data quality and another 

four were excluded from the analyses regarding eye movements, because the eye-tracker failed to 

track the eye reliably in those subjects. The experiment was approved by the local ethics committee 

(CMO Arnhem-Nijmegen) and conducted according to the guidelines set out by the committee. All 

participants provided written informed consent and received either monetary compensation or 

course credits. 

 

Stimuli 

 

Stimulation was visual and consisted of sinusoidal gratings with a spatial frequency of 1 cycle/°, 

80% contrast and one random phase per experimental block. The gratings were masked at an outer 

radius of 7.5° and an inner aperture radius of 0.7°, and presented on a gray background (luminance: 

186 cd/m2). Stimuli were generated and presented using MATLAB with the Psychtoolbox extension 

(Kleiner et al., 2007). 

 

Experimental design and procedure 

 

The main task was to vividly imagine and remember an oriented grating and, in some conditions, 

mentally rotate this grating over a certain angle. Each trial began with a dual cue that indicated both 
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the amount (presented above fixation) and the direction (‘>’ for clockwise and ‘<‘ for counter-

clockwise, presented below fixation) of mental rotation that was to be performed in that trial (Fig. 

1). The amount could be either 0°, 60°, 120° or 180°, in either clockwise or counter-clockwise 

direction, where 0° corresponded to a VWM task. This condition will henceforth be referred to as 

the VWM condition, and the other three conditions, which corresponded to imagery, as the mental 

rotation (MR) conditions. This cue lasted for 417 ms, after which a blank screen was shown for 

another 417 ms. A fixation dot (4 pixels diameter) was present throughout the entire trial, and 

throughout the entire block. After the blank, a grating was presented for 217 ms that could have 

either of three orientations: 15°, 75° or 135° (clockwise with respect to vertical). Next, a blank 

delay period of 8017 ms followed, during which subjects were required to keep the starting grating 

in mind and, in a subset of trials, mentally rotate it. The delay period was terminated by the 

presentation of a probe grating for 217 ms, whose orientation was slightly jittered (see Staircase 

procedure) with respect to the orientation that subjects were supposed to have in mind at that 

moment. Subjects then indicated with a button press whether the probe was oriented clockwise or 

counterclockwise relative to their internal image. The response period lasted until 2033 ms post 

probe, after which feedback was given. There were 3 trials per design cell (4 arcs of rotation and 2 

directions) per block, resulting in 24 trials per block. In addition, there were two catch trials per 

block, in which the probe grating was presented at an earlier moment in the delay interval in order 

to gauge ongoing rotation. All trials were presented in pseudorandomized order. The catch trials 

were excluded from further analysis, because subjects indicated to find them difficult and 

confusing.However, subjects indicated to find these trials difficult and confusing, and we decided to 

exclude them from analysis. In general, each experiment consisted of six experimental blocks 

(though some subjects performed 5, 7 or 8 blocks), preceded by one or more practice blocks, 

resulting in a total of 144 experimental trials for most of the participants. 
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Interleaved with the VWM/imagery blocks, there were six functional localizer blocks (Fig. 1B, C). 

In these blocks, gratings of six different orientations (15° to 165°, in steps of 30°) were presented 

for 250 ms with an inter-trial interval of 750 ms. Each block consisted of 120 trials, resulting in a 

total of 120 trials per orientation. The task was to press a button when a brief flicker of the fixation 

dot occurred. Such a flicker occurred between 8 to 12 times (randomly selected number) per block, 

at random times. Using such a task we ensured that spatial attention was drawn away from the 

gratings while stimulating subjects to maintain fixation, allowing us to record activity that only 

reflected bottom-up, sensory-specific signals (Mostert et al., 2015). 

 

Prior to the MEG session, the volunteers participated in a behavioral screening session that served 

to both train the subjects on the task as well as to assess their capability of carrying it out. Subjects 

were instructed to mentally rotate the stimulus at an angular velocity of 30 °/s by demonstrating 

examples of rotations on the screen. Moreover, during this session subjects were required to press a 

button as soon as they achieved a vivid imagination of the grating upon completion of the cued 

rotation. This provided a proxy of the speed at which they actually performed the rotation and was 

used as selection criterion for participation in the MEG session. 

 

Staircase procedure 

 

The amount of jitter of the probe grating was determined online using an adaptive staircasing 

procedure to equalize subjective task difficulty across conditions and subjects. The starting 

difference was set to 15°, and was increased by 1° following an incorrect response and decreased by 

0.5488 after two consecutive correct responses. Such a procedure has a theoretical target 

performance of approximately 80% correct (Garcı�a-Pérez, 1998). Four separate staircases were 

utilized, one for each of the VWM and MR conditions. 
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MEG recordings, eye-tracker recordings and pre-processing 

 

Neural activity was measured using a whole-head MEG system with 275 axial gradiometers 

(VSM/CTF Systems, Coquitlam, BC, Canada) situated in a magnetically shielded room. A projector 

outside the room projected via a mirror system onto the screen located in front of the subject. 

Fiducial coils positioned on the nasion and in the ears allowed for online monitoring of head 

position and for correction in between blocks if necessary. Both vertical and horizontal EOG as well 

as electrocardiogram were obtained to aid in the recognition of artifacts. All signals were sampled at 

1200 Hz and analyzed offline using the FieldTrip toolbox (Oostenveld et al., 2010). The data were 

notch-filtered at 50 Hz and corresponding harmonics to remove line noise, and subsequently 

inspected in a semi-automatic manner to identify irregular artifacts. After rejection of bad segments, 

independent component analysis was used to remove components that corresponded to regular 

artifacts such as heartbeat, blinks and eye movements (although our results suggest that the removal 

of eye movement-related artifacts was imperfect, see Results and Discussion). The cleaned data 

were baseline-corrected on the interval of -200 to 0 ms, relative to stimulus onset.  

 

Gaze position and pupil dilation were continuously tracked throughout the experiment using an 

Eyelink 1000 (SR Researcher) eye-tracker. The eye-tracker was calibrated before each session and 

signals were sampled at 1200 Hz. Because we were interested in eye-movements induced by the 

experimental stimulation, we removed any slow drifts in the signal by baseline-correcting the signal 

on an interval of -200 to 0 ms relative to cue onset. 

 

Classification and decoding analyses 

 

Broadly, we conducted two lines of decoding analyses. In the first, we focused only on the blocks in 

which participants performed the combined VWM/imagery task, using 8-fold cross-validation. We 
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trained a three-class probabilistic classifier that returns the probability that a given trial belongs to 

either of the three presented grating orientations. In order to improve signal-to-noise ratio, yet retain 

the ability to draw firm conclusions regarding the timing of any decoded signal, we smoothed the 

data using a moving average with a window of 100 ms. The classifier was trained across the spatial 

dimension (i.e. using sensors as features), on trials from all conditions (i.e., all amounts and 

directions of rotation). This may seem counterproductive, because the mental contents diverge over 

the delay interval and there should therefore be no systematic relationship between the MEG data 

and the stimulus label. However, our rationale was that regardless of condition, subjects need to 

first perceive, encode and maintain the presented stimulus before they can even commence the task, 

be it VWM or MR. Thus, we expected to be able to extract the neural pattern of the presented 

stimulus during at least the physical presentation and a brief moment after that. This classifier was 

then trained and applied across all time points, resulting in a temporal generalization matrix (King 

and Dehaene, 2014). It is important to note that we trained the classifiers only using the labels of the 

presented stimulus, but sorted the data in varying ways when testing the performance. For example, 

by looking at an early training time point, but a late testing time point, we tested whether we could 

decode the orientation of the grating kept in mind near the end of the delay period, on the basis of 

the pattern evoked by the presented stimulus early in the trial. 

 

In the second line of analysis, we trained a continuous orientation decoder on the functional 

localizer and applied this to the VWM/imagery task. We subsequently related the decoded 

orientation to the true presented orientation by calculating a quantity intuitively similar to a 

correlation coefficient (see below). Here too, we extended the procedure to include all pairwise 

training and testing time points, resulting in temporal generalization matrices (King and Dehaene, 

2014). 
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The three-class classifier was based on Bishop (2006, p. 196-199). Briefly, the class-conditional 

densities were modeled as Gaussian distributions with assumed equal covariance. By means of 

Bayes’ theorem, and assuming a flat prior, this model was inverted to yield the posterior 

probabilities, given the data. Specifically, let x be a column vector with length equal to the number 

of features [number of sensors for MEG data, two for gaze position (horizontal and vertical 

location)] containing the data to be classified, then the posterior probability that the data belongs to 

class k is given by the following equations: 

P�class � � | �� � exp����
∑ exp�����

 

����� � ��
�� � ��� 

�� � ����� 

��� � � �
�
��

������ 

where mk is the mean of class k and S is the common covariance, both obtained from the training 

set. The latter was calculated as the unweighted mean of the three covariance matrices for each 

individual class, and subsequently regularized using shrinkage (Blankertz et al., 2011) with a 

regularization parameter of 0.05 for the MEG data and 0.01 for the eye-tracker analysis. 

 

The continuous orientation decoder was based on the forward-modeling approach as described in 

(Brouwer and Heeger, 2009, 2011) but adapted for improved performance (Kok et al., 2017). The 

forward model postulates that a grating with a particular orientation activates a number of 

hypothetical orientation channels, according to a characteristic tuning curve, that subsequently lead 

to the measured MEG data. We formulated a model with 24 channels spaced equally around the 

circle, whose tuning curves were governed by a Von Mises curve with a concentration parameter of 

5. Note that all circular quantities in the analyses were multiplied by two, because the formulas we 

used operate on input that is periodic over a range of 360°, but grating orientation only ranges from 

0° to 180°. Next, we inverted the forward model to obtain an inverse model. This model 
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reconstructs activity of the orientation channels, given some test data. In this step we departed from 

Brouwer and Heeger's (2009, 2011) original formulation in two aspects. First, we estimated each 

channel independently from each other, allowing us to include more channels than there are 

stimulus classes. Second, we explicitly took into account the correlational structure of the noise, 

which is a prominent characteristic of MEG data, in order to improve decoding performance 

(Blankertz et al., 2011; Mostert et al., 2015). For full implementational details, see (Kok et al., 

2017). The decoding analysis yields a vector c of length equal to number of channels (24 in our 

case) with the estimated channel activity in a test trial, for each pairwise training and testing time 

point. These channels activities were then transformed into a single orientation estimate θ by 

calculating the circular mean (Berens, 2009) across all the orientations the channels are tuned for, 

weighted by each individual activation: 

 

� � arg �� 	�exp 
����
�

� 

where the summation is over channels, µj is the orientation around which the jth channel tuning 

curve is centered, and i is the imaginary unit. These decoded orientations can then be related to the 

true orientation, across trials, as follows: 

� � 1
� � exp����� � ��� 

�

�

 

! � |�|cos�arg���� 

where N is the number of trials and φk is the true orientation on trial k. The quantity ρ is also known 

as the test statistic in the V-test for circular uniformity, where the orientation under the alternative 

hypothesis is pre-specified (Berens, 2009). This quantity has properties that make it intuitively 

similar to a correlation coefficient: it is +1 when decoded and true orientations are exactly equal, -1 

when they are in perfect counter-phase and 0 when there is no systematic relationship or when they 

are perfectly orthogonal. 
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Statistical testing 

 

All inferential statistics were performed by means of a permutation test with cluster-based multiple 

comparisons correction (Maris and Oostenveld, 2007). These were applied to either whole temporal 

generalization matrices, or horizontal cross-sections thereof (i.e. a fixed training window). These 

matrices/cross-sections were tested against chance-level (33%) in the classification analysis, or 

against zero in the continuous decoding analysis. In the first step of each permutation, clusters were 

defined by adjacent points that crossed a threshold of p < 0.05 according to a two-tailed one-sample 

t-test. The t-values were summed within each cluster, but separately for positive and negative 

clusters, and the largest of these were included in the permutation distributions. A cluster in the true 

data was considered significant if its p-value was less than 0.05. For each test, 10,000 permutations 

were conducted. 

 

Spatial patterns and source analysis 

 

To interpret the signals that the classifier and decoder pick up, we looked at the corresponding 

spatial patterns (Haufe et al., 2014). The spatial pattern is the signal that would be measured if the 

latent variable that is being decoded is varied by one unit. For both the probabilistic classifier and 

the continuous orientation decoder, this comes down to the difference ERF between each category 

and the average across all categories. This yields one spatial pattern for each class, and these were 

subsequently averaged across classes, as well as across time of interest, and fed into planar 

transformation and source analysis. 

 

For source analysis, we used a template anatomical scan provided by FieldTrip to create a volume 

conduction model based on a single shell model of the inner surface of the skull. The source model 
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consisted of a regular grid spaced 0.5 cm apart that encompassed the entire brain. Leadfields were 

calculated and rank-reduced to two dimensions, to accommodate the fact that MEG is blind to 

tangential sources. The covariance of the data was calculated over the window of 1 to 8 s post-

stimulus and regularized using shrinkage (Blankertz et al., 2011) with a regularization parameter of 

0.05. The leadfields and data covariance were then used to calculate linearly constrained minimum 

variance spatial filters (LCMV, also known as beamformers; Van Veen et al., 1997). Applying these 

filters to sensor-level data yields activity estimates of a two-dimensional dipole at each grid point. 

We further reduced these estimates to a scalar value by means of the Pythagorean theorem. This 

leads to a positivity bias however, that we corrected for using a permutation procedure (see 

Manahova et al., 2017, for details). The number of permutations was 10,000. The final result was 

interpolated to be projected on a cortical surface, and quantifies the degree to which a particular 

area contributed to the performance of the classifier/decoder. 
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Results 

 

Human volunteers performed a combined VWM/imagery task (Fig. 1A), in which they were 

presented with an oriented grating (15°, 75° or 135°) that they either kept vividly in mind during the 

delay interval, or mentally rotated for a certain number of degrees. The amount and direction of 

rotation were randomized across trials and were indicated at the start of each trial. Subjects were 

trained in a separate behavioral screening session to perform the mental rotation at a fixed angular 

velocity, in order to facilitate comparison between conditions as well as across subjects. When the 

rotation was completed, the subject was instructed to keep the final image in mind for the remainder 

of the delay interval. After the delay interval, a probe grating was presented, whose orientation was 

slightly jittered with respect to the orientation the subjects were supposed to have in mind at the end 

of the interval. The task was to indicate whether the probe was oriented clockwise or counter-

clockwise with respect to the grating help in mind. The amount of jitter was adapted online using a 

staircase procedure, separately for each of the four conditions, in order to equalize subjective 

difficulty. 

 

Behavioral results 

 

Subjects were selected in a behavioral screening session to ensure that only subjects capable of 

doing the task would participate in the MEG session. In the MEG session, the average accuracies 

for the four condition ranged from 68-72%, confirming that subjects were able to do the task, as 

well as that the staircase procedure was successful. The average final jitter estimate from the 

staircase procedure for the 0°, 60°, 120° and 180° conditions were as follows (standard error of the 

mean in parentheses): 3.1° (0.54°), 11.0° (1.23°), 13.4° (1.65°) and 6.5° (1.38°), respectively. With 

the exception of the 180° condition, the rising trend in these values shows that subjects found the 

task more difficult when the amount of rotation was larger. The relatively low value for the 180° 
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condition however indicates that this condition was relatively easy. It suggests that subjects either 

did not perform the half-circle rotation at all, despite being explicitly told to do so, or that they also 

memorized the starting orientation and used this in their judgment. 

 

Sustained decoding of VWM items from MEG signals 

 

In order to assess the representational contents of the neural signals while the subjects were engaged 

in VWM/imagery, we constructed a three-class probabilistic classifier that yields the posterior 

probabilities that any given data belong to the either of three presented orientations. That is, the 

classifier was trained according to the labels of the presented stimulus. Furthermore, we applied 

temporal generalization to investigate the dynamics of the neural pattern (King and Dehaene, 2014). 

The classifier was trained on trials from all conditions (i.e., all amounts and directions of rotation) 

pooled together to obtain maximum sensitivity (see Methods for rationale). To verify that we could 

decode stimulus identity, we applied the classifier to the same (pooled) data using cross-validation, 

and found successful decoding during a period of up to approximately 2.5 seconds after stimulus 

onset (Fig. 2-1). The stimulus itself was presented for only 250 ms and therefore the later part of 

this period necessarily indicates an endogenous representation, presumably stemming from active 

mental instantiation by the subject. 

 

Next we looked at the decoding performance in the VWM condition alone, using the classifier 

trained on all conditions as described above. We found that the identity of the memory item could 

be decoded during the entire delay interval, using classifiers obtained from a training window of 

approximately 0.5-1.5 s (Fig. 2A). The performance stayed above chance-level (33.3%) at a stable 

level of ~37% throughout the entire interval (Fig. 2B). In contrast, no such sustained generalization 

was observed for classifiers trained at approximately 0-0.5 s. In other words, the maintenance of the 

memory item is described by the same neural code as employed in the presumed mental 
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reinstantiation of the stimulus shortly after its presentation, but not by the neural code evoked by the 

initial presentation of the stimulus.  

 

Contrary to previously used paradigms, where two stimuli were displayed at the beginning of a trial 

and a retro-cue signaled the item that was to be remembered (e.g. Harrison and Tong, 2009; Albers 

et al., 2013; Christophel et al., 2015,  2017), in the present experiment we only showed one 

stimulus. It is therefore possible that our sustained decoding performance is the result of a longer 

lasting stimulus-driven effect (e.g. stimulus aftereffect), rather than a manifestation of VWM. 

However, if this were true, then we should find a similar effect in the three MR conditions. If, on 

the other hand, the classifiers picked up the item held in mind, then the probability that a trial is 

assigned to the same class as the presented stimulus should drop over time, as the subject rotates the 

mentally imagined grating away from the starting orientation. Our results demonstrate that the latter 

is indeed the case (Fig. 2B). Whereas the probability that the data belong to the same class as the 

presented stimulus stays steadily above chance in the VWM condition, it drops to (below) chance-

level in the 60° and 120° conditions. In the 180° condition, the probability initially falls to chance 

as well, but reemerges later as a rising, though non-significant trend. This is to be expected, because 

the final orientation that the subjects should have in mind in the 180° condition is identical to the 

orientation of the presented stimulus at the start of a trial. 

 

In order to facilitate interpretation of these results, we inspected the classifier’s corresponding 

sensor topography (Fig. 2C) and source localization (Fig. 2D), averaged over the training time 

period of 0.5-1.5 s. These indicate that both occipital and prefrontal sources contribute to the 

classifier’s performance. 

 

In the MR conditions, it is not only of interest whether the representation of the initially presented 

stimulus fades (as the subject mentally rotates it), but also whether the intermediate (for the 120° 
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and 180° conditions) and final orientations can be decoded from the neural signals. We found some 

indication that the final orientation - but not the intermediate ones (Fig. 2-2B) - indeed emerges 

halfway through the delay period, but this effect was not statistically significant (Fig. 2-2A). 

 

Gaze position tracks VWM contents 

 

As a control analysis, we examined the position of subject’s gaze, and in particular whether there 

was a systematic relationship with the identity of the mental image. It is a well-documented 

phenomenon that eye movements occur spontaneously during visual imagery in a manner 

systematically related to the mental image (Brandt and Stark, 1997; Spivey and Geng, 2001; Laeng 

and Teodorescu, 2002; Laeng et al., 2014; Bone et al., 2017). Although in our experiment the 

volunteers were instructed to fixate, systematic eye movements in working memory tasks have been 

observed before (Foster et al., 2016) and we therefore also investigated this possibility given that 

even minute, involuntary eye-moments could have serious consequences for the interpretation of 

our results described above (see Discussion). 

 

We performed the same analysis as described in the previous section, but now used the gaze 

position (horizontal and vertical dimensions) as measured by the eye-tracker, instead of the MEG 

data, as features for the classifier. First, when looking at all trials collapsed across conditions, we 

found above-chance decoding for stimulus identity in a time period of approximately 0.5-3.5 s post-

stimulus that was marginally significant (Fig. 3-1). Then, when looking at the decoded signal within 

the VWM condition only, we found a sustained pattern, similar to the MEG decoding results (Fig. 

3A), though again only marginally significant. This suggests that upon perceiving and encoding the 

stimulus, subjects move their eyes in a way systematically related to the identity of the stimulus, 

and keep that gaze position stable throughout the entire delay period. 
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Again, we found this sustained pattern to be specific to the VWM condition, because the probability 

that the data belongs to the same class as the presented stimulus drops over time in the three MR 

conditions (Fig. 3B). As explained above, this indicates that the sustained above-chance 

classification in the VWM condition cannot be explained solely by the stimulus itself, but must also 

reflect the mental image to at least some degree. In fact, in this analysis we even found evidence 

that the gaze moves towards a position consistent with the orientation of the presented grating plus 

or minus 60° (depending on the cued direction of rotation) in the MR conditions, but not any further 

(Fig. 3-2A,B). In short, there was a systematic relationship between gaze position and stimulus 

orientation, after which the gaze position tracked the orientation kept in mind during the delay 

period, but only for a maximum of approximately ±60° relative to starting orientation. 

 

Fig. 3C displays the grand average, as well as individual average gaze positions during 0.5-1.5 s 

after stimulus onset, separately for each of the three stimulus conditions, collapsed across VWM 

and MR conditions. Although there is large variability among subjects in the magnitude of the eye 

movements, a general trend can be discerned where subjects position their gaze along the 

orientation axis of the grating. The mean disparity in visual angle with respect to pre-trial fixation 

was 0.23°, which is in the same order of magnitude as reported previously (Foster et al., 2016), 

though for some subjects it was as large as 1.5°. 

 

These findings raise the concern that the sustained decoding of VWM items from MEG signals are 

the result of stimulus-related eye confounds (see Discussion for possible underlying mechanisms). 

In order to counter this possibility and assess whether the mental image is genuinely encoded in the 

neural signals, we made use of a functional localizer in a between-task generalization procedure. 

 

Decoding sensory-specific signals using a functional localizer 
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Besides the combined VWM/imagery task, subjects also performed a functional localizer task in 

interleaved blocks (Fig. 1B,C). In this task, subjects were continuously presented with gratings 

while they performed a challenging detection task at fixation in order to draw the subject’s attention 

away from the gratings. This task ensured that activity patterns mainly reflected automatic sensory 

processing of the stimuli and, in addition, discouraged eye movements in response to the stimuli. 

We used these data for between-task generalization (King and Dehaene, 2014), whereby we trained 

a continuous orientation decoder on the functional localizer and subsequently applied it to the data 

from the VWM/imagery task. The chief advantage of this method is that it ensures that the decoder 

is sensitive to sensory signals only, and not to higher-level top-down processes involved in mentally 

manipulating an image. It thus allows us to track sensory-specific activation throughout the delay 

period (Mostert et al., 2015). Cross-validation within the functional localizer confirmed that we 

were indeed able to reliably decode orientation-specific information from activity evoked by 

passively perceived gratings (Fig. 4-1). Moreover, we were not able to decode grating orientation 

on the basis of gaze position, verifying that the data from the functional localizer were not 

contaminated by stimulus-specific eye movements (Fig. 4-2). 

 

In the VWM condition, the decoders trained on the functional localizer data could reliably decode 

the orientation of the presented stimulus (Fig. 4A). Moreover, for a training time of approximately 

90-120 ms, we could decode the stimulus for a prolonged time, lasting over 1 s after stimulus onset. 

Interestingly, this training time point coincides with the time at which peak performance is obtained 

within the localizer itself (Fig. 4-1). Comparing the decoding trace within this training time window 

with the three MR conditions, it can be seen that grating orientation can be decoded in all four 

conditions for a sustained period of approximately 500 ms (Fig. 4B). Furthermore, it is noteworthy 

that decoding performance in the VWM condition remains above baseline throughout large portions 

of the interval, although this was not significant. 
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We inspected the spatial pattern (Fig. 4C) and corresponding source topography (Fig. 4D) for the 

decoders, averaged across training time 90-120 ms. These highlight primarily occipital regions as 

contributing to the decoder’s performance, consistent with our premise that the functional localizer 

primarily induced bottom-up sensory signals, especially during this early time interval (Mostert et 

al., 2015).  

 

In summary, our findings suggest that the stable, persistent representation found in our within-task 

MEG decoding result may well be attributed to stimulus-specific eye movements. In contrast, no 

clear evidence was found for such a long-lasting representation when training the decoder on the 

functional localizer. Given that the localizer was not contaminated by stimulus-specific eye 

movements, these results thus provide a more reliable picture of the sensory representations during 

the delay interval. 
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Discussion 

 

Visual working memory, and especially its implementation in the brain, is an intensely studied topic 

that has recently undergone innovations in the form of new theories (Sreenivasan et al., 2014; 

Stokes, 2015; Rose et al., 2016; Rademaker and Serences, 2017). These theories revolve around 

three central issues: whether the identity of the memory items is encoded in parietal and prefrontal 

cortex or in sensory cortex; whether the items are encoded by means of persistent activity or in 

hidden, activity-silent states and whether the neural code is dynamic or static. At first sight, our 

results seem to provide evidence for a stable signal, possibly involving both occipital and prefrontal 

cortex, which showed persistent encoding of stimulus information throughout the delay period. 

However, control analysis revealed that very similar results could be obtained by considering gaze 

position only. This indicates that our MEG results are likely confounded by stimulus-specific eye 

movements, which jeopardizes the ability to draw firm conclusions about the neural underpinnings 

of VWM. 

 

There are a least three possible mechanisms via which stimulus-specific eye movements may 

confound our results. First, eye movements are known to cause stereotypical artifacts in MEG 

recordings. Due to the positively charged cornea and negatively charged retina, the eyeball acts as a 

dipole that is picked up by the MEG sensors. The spatial pattern that the dipole evokes is directly 

related to its rotation, or in other words, to the position of the subject’s gaze (Plöchl et al., 2012). 

Thus, if the subject moves their eyes in response to the grating in a manner related to the orientation 

of that grating, then this will induce a specific pattern in the MEG signals, which in turn is directly 

related to the grating orientation. A decoding analysis applied to these signals is then likely to pick 

up the patterns evoked by the eyeball dipoles, confounding potential orientation-related information 

stemming from genuine neural sources. In fact, our source analysis hints at this scenario (Fig. 2D), 

as the contributions from presumed prefrontal sources closely resemble an ocular source. 
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Second, if the eyes move, then the projection falling on the retina will also change, even when 

external visual stimulation remains identical. Thus, if gaze position is systematically modulated by 

the image that is perceived or kept in mind, then so is the visual information transmitted to the 

visual cortex. For example, if a vertical grating is presented and kept in VWM, then the subject may 

subtly move her or his gaze upward. Correspondingly, the fixation dot is now slightly below 

fixation, thus leading to visual cortex activity that is directly related to the retinotopic position of 

the fixation dot. Our decoding analysis may thus actually decode the position of the fixation dot, 

rather than grating orientation, potentially leading to an incorrect conclusion. Source analysis would 

in this scenario also point to occipital sources, similarly to what we found (Fig. 2D). Note that this 

mechanism is not specifically dependent on the presence of a fixation dot. A systematic difference 

in eye position will also lead to changes in the retinotopic position of, for instance, the presentation 

display or the optically visible part of the MEG helmet. 

  

Third, if gaze position covaries with the mental image, then decoding of the mental image will also 

reveal areas that encode eye gaze position, such as oculomotor regions in parietal and prefrontal 

cortex. 

 

Our findings raise the question of why there were task-induced eye movements that were directly 

related to the grating kept in VWM. In fact, there is a considerable mass of literature that describes 

the role of eye movements in mental imagery. It has been found that subjects tend to make similar 

eye movements during imagery as during perception of the same stimulus (Brandt and Stark, 1997; 

Laeng and Teodorescu, 2002; Laeng et al., 2014). Already proposed by Donald Hebb (Hebb, 1968), 

it is now thought that eye movements serve to guide the mental reconstruction of an imagined 

stimulus, possibly by dwelling on salient parts of the image (Spivey and Geng, 2001; Laeng et al., 

2014). Moreover, the specificity of the eye movements is also related to neural reactivation (Bone et 
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al., 2017) and recall accuracy (Laeng and Teodorescu, 2002; Laeng et al., 2014; Bone et al., 2017). 

Our findings are in accordance with these studies. Subjects’ gaze was positioned along the 

orientation axis of the grating - that is, the visual location within the stimulus that provided the 

highest information regarding its orientation, and is thus exactly what one would expect given that 

the task was to make a fine-grained orientation comparison with a probe grating. Importantly 

however, subjects were explicitly instructed to maintain fixation throughout the entire trial. We 

nevertheless observed that not all subjects adhered to this requirement, albeit involuntarily. 

 

Despite these problems associated with the systematic eye movements in our experiment, it is still 

possible that our decoding results do in reality stem from genuine orientation information encoded 

in true neural sources. In fact, we used independent component analysis in our pre-processing 

pipeline to (presumably) remove eye-movement artifacts. However, it would be very difficult, if not 

impossible, to convincingly establish that no artifacts remain and, considering the similarities 

between the decoding results from the MEG data (Fig. 2A,B) and the gaze position (Fig. 3A,B), we 

feel any attempts at this would be unwarranted. 

 

Given the potential pervasiveness of systematic eye movements in VWM/imagery tasks, and the 

demonstrated susceptibility of our analysis methods to these confounds, one wonders whether other 

studies may have been similarly affected. Clearly, the first mechanism described above involving 

the eyeball dipole would only affect electrophysiological measurements like 

electroencephalography and MEG, and has indeed been a concern in practice (Foster et al., 2016). 

The second mechanism however, whereby stimulus identity is confounded with the retinal position 

of visual input, would also affect other neuroimaging techniques such as fMRI. This confound 

could be particularly difficult to recognize, because it would also affect occipital sources. Moreover, 

because eye movements during imagery have been found to be positively related to performance 

(Laeng and Teodorescu, 2002), this could potentially explain correlations between VWM decoding 
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and behavioral performance (Wolff et al., 2017). The third mechanism, whereby one directly 

decodes gaze position from motor areas, could be a problem especially for fMRI which, thanks to 

its high spatial resolution, might be well able to decode such subtle neural signals. This concern 

may be especially relevant for studies that investigate the role of areas involved in eye movements 

or planning thereof, such as frontal eye fields or superior precentral sulcus, in the maintenance of 

working memory items (Jerde et al., 2012; Ester et al., 2015; Christophel et al., 2017) 

 

This leaves the question of how to deal with eye movements in VWM/imagery tasks. Naturally, it is 

important to record eye movements during the experiment, for instance using an eye-tracker or 

electrooculogram (EOG). One can then test for any systematic relationship and, if found, investigate 

whether it could confound the main results. In our case, for example, decoding of gaze position 

leads to strikingly similar results as those obtained from the MEG data. Foster et al. (2016) on the 

other hand found that decoding performance of working memory items decreased throughout the 

trial, whereas the deviation in gaze position increased, suggesting that eye confounds cannot explain 

the main findings. Anoth er approach might be to design the experimental task in such a way that 

eye movements are less likely. For example, by presenting gratings laterally (e.g. Pratte and Tong, 

2014; Ester et al., 2015; Wolff et al., 2017), and assuming that VWM items are stored in a 

retinotopically specific manner (Pratte and Tong, 2014), the involuntary tendency to move one's 

eyes subtly along the remembered grating's orientation axis may become less strong, because those 

gratings are located distantly from the gaze's initial location (i.e. central fixation). Finally, a 

powerful approach could be to adopt a separate functional localizer, which allows specific decoding 

of functionally defined representations such as bottom-up, sensory-specific signals (Harrison and 

Tong, 2009; Serences et al., 2009; Albers et al., 2013; Mostert et al., 2015). If the localizer is well 

designed and not systematically contaminated by eye movements, then eye movements in the main 

task cannot have a systematic effect on the decoded signal, thus effectively filtering them out. 
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Using such a functional localizer, we indeed obtained MEG decoding results that were very 

dissimilar from those obtained on the basis of gaze position. We no longer found persistent 

activation of an orientation-specific representation throughout the entire delay period. Nevertheless, 

the sensory pattern did remain above baseline for a period of approximately 1 second, which is 

relatively long considering that the stimulus was presented for only 250 ms. One explanation is that 

the stimulus was relevant for the task. Previous work has shown that task relevance may keep the 

sensory representation online for a prolonged period even after the stimulus is no longer on the 

screen (Mostert et al., 2015).  

 

In summary, we demonstrate a case where decoding analyses in a VWM/imagery task are heavily 

confounded by systematic eye movements. Given the high potential benefit of decoding analyses 

and its widespread use in the study of working memory and mental imagery, we argue that this 

problem may be more pervasive than is commonly appreciated. We conclude that eye movement 

confounds should be taken seriously in both the design as well as the analysis phase of future 

studies. 
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Legends 

 

Figure 1: Experimental paradigm. (A) In the combined VWM/imagery blocks, subjects were 

instructed to vividly imagine a grating and to either keep that in mind (VWM condition) or rotate it 

mentally over a cued number of degrees (MR condition). (B) In the functional localizer block, 

oriented gratings were continuously presented while the subject's attention was drawn to a task at 

fixation. (C) The VWM/imagery and localizer blocks were performed in alternating order. 

 

Figure 2: MEG classification results, cross-validation within VWM/imagery task. (A) 

Temporal generalization matrix of classification performance in the VWM condition. The color 

scale denotes the average posterior probability that the data belong to the same class as the 

presented stimulus. The black outline demarcates a significant cluster (p = 0.006). (B) Classification 

performance averaged over the training time window of 0.5-1.5 s, separately for the VWM and the 

three MR conditions. Note that the 0° condition corresponds directly to the matrix in (A). The two 

vertical dashed lines indicate stimulus and probe onset. Shaded areas indicate the standard error of 

the mean (SEM). Significant clusters are indicated by the horizontal bars in the lower part of the 

figure. (C) Planar gradiometer and (D) source topography of areas that contribute to the classifier. 

 

Figure 2-1: MEG classification performance within the VWM/imagery task, pooled across 

VWM and MR conditions. Temporal generalization matrix of the average posterior probability 

that the data belong to the same class as the presented stimulus. The black outline corresponds to a 

significant cluster (p = 0.007). 

 

Figure 2-2: Complete MEG classification results. Analogously to Fig. 2, the classifier was 

trained on the time window of 0.5-1.5 s post stimulus onset, and according to the labels of the 

presented stimulus. (A) Average posterior probability that the data belong to the class of the target 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/215509doi: bioRxiv preprint 

https://doi.org/10.1101/215509
http://creativecommons.org/licenses/by-nc/4.0/


 

 

orientation, that is, the orientation that the subjects were supposed to have in mind at the end of the 

delay period. For both the 0° and the 180° conditions, the target orientation was the same as the 

presented stimulus. For the 60° and 120° conditions however, the target and presented stimulus 

were different, hence the below-chance probabilities at the beginning of the delay period. (B) The 

average posterior probabilities that the data belong to either of three classes: the same orientation as 

the presented stimulus, the orientation of the presented stimulus ±60° or the orientation of the 

presented stimulus ±120°, plotted separately for the four VWM/MR conditions. The plus/minus-

sign is due to the mental rotation being performed either clockwise or counter-clockwise. This 

figure gives insight into whether the representations of any intermediate orientations become active 

during mental rotation, which is particularly relevant for the 120° and 180° conditions. For instance, 

in the 180° counter-clockwise condition, the subject would start with a mental image with the same 

orientation as the presented stimulus, then pass through respectively -60° and -120°, ultimately to 

reach the target of -180° (i.e. 0°). If the neural representations of all these orientations become 

active in sequence, one would first expect a peak in posterior probability that the data belong to the 

same class as the stimulus (gray line, bottom figure), then a peak in the probability of belonging to 

the presented stimulus -60° (blue line), then for -120° (orange line) and finally again for 0° (gray 

line). Note that (A) and (B), as well as Fig. 2 all depict the same data, but visualized in different 

manners. Shaded areas denote the SEM and significant clusters are depicted by the thick horizontal 

lines at the bottom of the panels. 

 

Figure 3: Gaze position classification results. (A) Same as in Fig. 2A, except the classification 

was performed on gaze position as measured by an eye-tracker, rather than on MEG data. The gray 

outline demarcates a near-significant cluster (p = 0.069). (B) Same as in Fig. 2B, except the analysis 

was performed on gaze position. (C) Average gaze position during 0.5-1.5 s after stimulus onset, 

separately per stimulus orientation. Each transparent dot corresponds to an individual subject. The 
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crosses are the grand averages, where the vertical and horizontal arms denote the SEM. The three 

colored lines depict the orientation of the three stimuli. 

 

Figure 3-1: Gaze position classification performance within the VWM/imagery task, pooled 

across VWM and MR conditions. Similar to Supplementary Fig. 1, except the classifier is trained 

and tested on gaze position rather than MEG data. Gray outline indicates a near-significant cluster 

(p = 0.068). 

 

Figure 3-2: Complete gaze position classification results, visualized in a variety of ways. This 

figure is analogous to Supplementary Fig. 2, except the classifier is trained and tested on gaze 

position rather than on MEG data. 

 

Figure 4: MEG decoding results, generalized from localizer to VWM/imagery task. (A) 

Temporal generalization matrix of orientation decoding performance, for which the decoder was 

trained on all time points in the functional localizer and tested across all time points in the 

VWM/imagery task. The color scale reflects the correspondence between true and decoded 

orientation. The black outline shows a significant cluster (p = 0.04). Note that the x- and y-axis in 

the figure are differently scaled for optimal visualization. (B) Decoding performance over time in 

the VWM/imagery task, averaged over decoders trained in the window of 0.09-0.12 s in the 

localizer, separately for the VWM and three MR conditions. Shaded areas denote the SEM and 

significant clusters are indicated by the horizontal bars. (C) Planar gradiometer and (D) source 

topography of areas that contribute to the decoder. 
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Figure 4-1: MEG decoding performance within the functional localizer. The time axis 

represents matched training and testing time-points. Shaded areas denote the SEM, and the 

horizontal line demarcates a significant cluster (p = ±0). 

 

Figure 4-2: Gaze position classification performance within the functional localizer, using 

cross-validation. (A) The time axis represents matched training and testing time-points. No 

significant above-chance classification was found. Note that although there appears to be a rise in 

performance after approximately 500 ms, this only reached a value of 0.1675 at its peak (t = 0.51 s), 

which is very little above chance (0.1667 for six classes). Shaded areas denote SEM. (B) Average 

gaze position at 0.51 s after stimulus onset, separately per stimulus orientation. Each transparent dot 

corresponds to an individual participant. The crosses are the grand averages, where the vertical and 

horizontal arms denote the SEM. The six colored lines depict the orientation of the six stimuli. 
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