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Abstract 15

Serotonin plays an influential, but computationally obscure, modulatory role in 16

many aspects of normal and dysfunctional learning and cognition. Here, we stud- 17

ied the impact of optogenetic stimulation of dorsal raphe serotonin neurons in mice 18

performing a non-stationary, reward-driven, foraging task. We report that activation 19

of serotonin neurons significantly boosted learning rates for choices following long 20

inter-trial-intervals that were driven by the recent history of reinforcement. 21

1 Introduction 22

Learning from the outcomes of past actions is crucial for effective decision-making 23

and thus ultimately for survival. In the case of important outcomes, such as rewards, 24
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ascending neuromodulatory systems have been implicated in aspects of this learning 25

due to their pervasive effects on processing and plasticity. Of these systems, per- 26

haps best understood is the involvement of phasically-fluctuating levels of dopamine 27

activity and release in signalling temporal difference [55] prediction errors for appeti- 28

tive outcomes [46, 50]. Since prediction errors are a key component of reinforcement 29

learning (RL) algorithms, signalling mismatches between outcomes and predictions, 30

this research has underpinned and inspired a large body of theory on the neural im- 31

plementation of RL. 32

From the early days of investigations into aversive processing in Aplysia [27], sero- 33

tonin (5-HT) has also been implicated in plasticity. This is broadly evident in the mam- 34

malian brain, from the restoration of the critical period for the visual system of rodents 35

occasioned by local infusion of 5-HT [58] to the impairment of particular aspects of 36

associative learning arising from 5-HT depletion in monkeys [7, 59]. Despite theoret- 37

ical suggestions for an association with aversive learning [19, 53, 13, 6, 15], direct 38

experimental tests into serotonin’s role in RL tasks have led to a complex pattern of 39

results [12, 52, 42, 45, 22, 11]. For instance, recent optogenetic studies reporting that 40

stimulating 5-HT neurons could lead to positive reinforcement [42] do not appear to 41

be consistent with other optogenetic findings, which instead suggest an involvement 42

with patience [22, 45] and even locomotion [11]. 43

Here, we study a different aspect of the involvement of 5-HT in RL. Although pre- 44

diction errors are necessary signals for learning, they are not sufficient. This is be- 45

cause there is flexibility in setting the learning rate, i.e., the amount by which an agent 46

should update a prediction based on such errors. The learning rate determines the 47

timescale (e.g. how many trials) over which reward histories are integrated to assess 48

the value of taken actions. 5-HT can readily influence learning rates through its in- 49

teraction with dopamine [21]; and indeed, there is evidence that animals adapt the 50

timescales of plasticity to the prevailing circumstances [16, 4, 47, 62, 30], and also 51

consider more than one timescale simultaneously [10, 38, 23, 31]. 5-HT could be in- 52

volved in some, but not other, timescales. It could also be associated with some, but 53

not other, of the many decision-making systems [14, 25, 9, 40] that are known to be 54

involved in RL. 55

We therefore reanalyzed experiments in which mice performed a partially self- 56

paced, dynamic foraging task for water rewards [22]. In this task, 5-HT neurons in 57

the dorsal raphe nucleus (DRN) were optogenetically-activated during reward delivery 58

in a trial-selective manner. The precise control of the timing and location of stimula- 59

tion offered the potential of studying in detail the way in which 5-HT affects reward 60

valuation and choice. We used methods of computational model comparison to ex- 61

amine these various possible influences. We first noted a substantial difference in the 62

control of actions that followed short and long intertrial intervals: only the latter were 63

influenced by extended reward histories, as expected for choices driven by conven- 64

tional RL. We then found that the learning rate associated with these (latter) choices 65

was significantly increased by 5-HT stimulation. 66
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2 Results 67

2.1 Animals showed a wide distribution of inter-trial-intervals 68

(ITIs) 69

We reanalyzed data from a dynamic foraging or probabilistic choice task in which 70

subjects faced a two-armed bandit [22]. Full experimental methods are given in that 71

publication. Briefly, the subjects were four adult transgenic mice expressing CRE re- 72

combinase under the serotonin transporter promoter (SERT-Cre) and four wild-type 73

littermates (WT) [22]. In this task (Figure 1a), mice were required to poke the cen- 74

ter port to initiate a trial. They were then free to choose between two side ports, 75

where reward was delivered probabilistically at both ports on each trial (on a concur- 76

rent variable-ratio-with-hold schedule [39]). On a subset of trials, when mice entered 77

a side port, one second of photo-stimulation was provided to DRN 5-HT neurons via 78

an implanted optical fiber (Figure 1b). ChR2-YFP expression was histologically con- 79

firmed to be localized to the DRN in SERT-Cre mice (Figure 1c) [22]. 80

Following previous experiments in macaque monkeys [54, 10, 39], the probability 81

that a reward is associated with a side port per trial was fixed in a given block of 82

trials (Left vs Right probabilities: 0.4 vs 0.1, or 0.1 vs 0.4). Once a reward had been 83

associated with a side port, the reward remained available until collection (although 84

multiple rewards did not accumulate). Photostimulation was always delivered at one 85

of the side ports in a given block (Left vs Right probabilities: 1 vs 0, or 0 vs 1). Block 86

changes occurred every 50-150 trials and were not signaled, meaning that animals 87

needed to track the history of rewards in order to maximize rewards. 88

As previously reported [22], subject’s choices tended to follow changes in reward 89

contingencies (Figure 1d), exhibiting a form of matching behavior [54, 10, 39]. A 90

deterministic form of matching behavior can maximize average rewards in this task 91

[49, 43, 32, 31] because the probability of getting a reward increases on a side as the 92

other side is exploited (due to the holding of rewards). For more behaviorally realizable 93

policies, slow learning of reward contingencies has been shown to be beneficial to 94

increase the chance of obtaining rewards [31]. 95

We confirmed the results of previous analyses [22] showing that the optogenetic 96

stimulation of DRN neurons did not appear to change the average preference of the 97

side ports (Figure 1e). The animals’ preference for the side port that was associ- 98

ated with a higher water probability was not affected by the side which was photo- 99

stimulated. However, these analyses do not fully take advantage of the experimental 100

design in which photo-stimulation was delivered on a trial-by-trial basis. The latter 101

should allow us to examine whether the effect of stimulation is more prominent on a 102

specific subset of trials. 103

2.2 Fast or slow: ITI duration determined decision policy. 104

The task contained a free operant component in that the subjects were free to initiate 105

each trial. This resulted in a wide distribution of inter-trial-intervals (ITIs). It was 106

notable that some ITIs were substantially larger than others (Figure 1f). To quantify 107
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Figure 1: (a). Schematic diagram of trial events in the task. On each trial, a mouse was required
to enter the center port (Trial initiation) and then move to one of the side ports (Choice). A reward
might be delivered at the side port according to a variable-ratio-with hold-schedule. The next trial
started when the mouse entered the center port. The inter-trial-interval (ITI) is defined as the time
from when the mouse left the side port until it entered the center port to initiate the next trial. In
a given block of trials, one side port was associated with a higher reward probability per trial (0.4)
than the other (0.1); although following delivery, rewards were held (but not accumulated) until
collected. Furthermore, during a block, photo-stimulation (12.5 Hz, 5 mW for 1 s) was always
delivered as soon as the mouse entered just one of the side ports. (b). A schematic of the
optogenetic stimulation. DRN neurons were infected with viral vector AAV2/1-Dio-ChR2-EYFP. In
SERT-Cre mice, 5-HT neurons expressed ChR2-YFP (green) and could be photoactivated with
blue light that was delivered by an optical fiber implant. (c) A fluorescence image of a parasagittal
section shows localized ChR2-YFP expression (YFP = green, DAPI = blue) in the DRN. The white
bar indicates the scale of 500 mm. (d). Time course of mouse choice behavior in an example
session. The probability across trials of choosing the left port (black solid line) is overlaid with the
collected reward bias (green line) for an example mouse, SERT-13. The choice probability and the
reward bias were computed by a causal half Gaussian filter with a standard deviation of 2 trials.
For the reward bias, a stream of values 1 (a reward from Left), -1 (a reward from Right), and 0 (no
reward) was used for the estimation. The top (bottom) light blue dots indicate photo-stimulation
at Left (Right) port. (e). The probability of choosing the higher water probability side is shown
for the blocks in which the photo-stimulation was assigned to the opposite side from the higher
water probability side (Opp.), and for the blocks in which the photo-stimulation was assigned to the
same side (Same). The difference within WT mice, within SERT-Cre mice, and between WT and
SERT-Cre mice for either condition were not significant. The error bars indicate the mean ± SEM
over sessions. (f). Inter-trial-intervals (ITIs) in the same session as c. The red circle indicates trials
with long ITIs (> 7 sec). (g). The average predictive accuracy of the existing reward- and choice-
kernel model [39, 22] when fitted to all trials. This model captures a form of win-stay, lose-shift
rule. Choices following short ITIs (≤ 7 s) were well predicted by the model, while choices following
short ITIs (> 7 s) were not. The difference between short and long ITIs was significant for both
WT and SERT mice [permutation test. p < 0.001 indicated by three stars.]. Data and images from
[22]
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this effect, we separated short from long ITI trials using a threshold of 7 seconds 108

(we consider other thresholds below; values greater than 4 seconds led to equivalent 109

results). 110

Figure S1 reports the mean proportions of long ITI trials in WT and SERT-Cre 111

mice. The frequency of long ITI trials was slightly, but statistically significantly, different 112

between WT and SERT; however, this appears not to be due to stimulation itself, as 113

control analysis showed that stimulation itself did not significantly change the ITI that 114

followed (Figure S2). We also found that long ITI trials were most common in the last 115

part of each experimental session, but were also seen in earlier parts of each session 116

(Figure S3). 117

Previous studies have suggested a relationship between the duration of an ITI and 118

the nature of the subsequent choice. For example, subjects have been reported to 119

make more impulsive choices after shorter ITIs [48]. Another studies have shown that 120

perceptual decisions are more strongly influenced by more venerable prior experience 121

when working memory was disturbed during the task [1]. Here, we hypothesized that 122

choices following short ITIs might also be more strongly influenced by the most recent 123

choice outcome compared to those following long ITIs, since the outcome preceding 124

a short ITI is more likely to be kept in working memory until the time of choice. 125

To investigate this, we first exploited an existing model of the behavior on this task 126

[39, 22]. This is a variant of an RL model which separately integrates reward and 127

choice history over past trials, subject to exponential decay [39]. This model captures 128

a form of win-stay, lose-shift rule [3, 61] when time constants are small. 129

We found that choices following short ITIs (ITIs < 7 s) were well-predicted by this 130

previously validated model (see Methods for details) (Figure 1g). Further, the time 131

constants of the model were indeed very short (Reward kernel: 1.4 trials for WT, 1.9 132

trials for SERT-Cre mice; Choice kernel: 1.3 trials for WT, 1.2 trials for SERT-Cre mice). 133

This suggests choices followed a form of win-stay, lose-shift rule [3, 61]. The difference 134

of the reward time constant between WT and SERT-Cre mice was significant (p < 135

0.01, permutation test) but very small (< 1 trial), while the choice time constant was 136

not. This paltry difference in reward time constant suggests a slightly smaller learning 137

rate for the SERT-Cre mice, since the learning rate is inversely proportional to the time 138

constant. 139

However, choices following long ITIs (ITIs > 7 s) were not well predicted by the 140

same model (Figure 1g), suggesting that choices following short ITIs and long ITIs 141

are qualitatively different. It also suggests that choices following long ITIs cannot be 142

accounted for by a short-term-memory-based win-stay lose-switch strategy. 143

We hypothesized that choices following long ITIs might reflect slow learning of 144

reward history over many trials [36, 31]. Indeed, by complexity-adjusted model com- 145

parison (integrated BIC) [29, 34], we found that choices following ITIs > 7 s were best 146

described by a standard RL model (Figure S4). This analysis supported our hypothe- 147

sis that choices following long ITIs are influenced by a relatively long period of reward 148

history compared to choices following short ITIs. It is also worth noting that in con- 149

trast to the short ITI model, in which memory decays rapidly every trial regardless of 150

choice, the standard RL model does not change the value of an option as long as 151

the option is not selected. This suggests that different memory mechanisms may be 152
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involved in the decisions following short and long ITIs. 153

2.3 Optogenetic stimulation of DRN 5-HT neurons increased 154

learning rate: Model-agnostic analysis. 155

Given our original hypothesis that serotonin modulates the RL learning rate, we pre- 156

dicted that optogenetic stimulation of DRN 5-HT neurons would have a stronger im- 157

pact on choices following long ITIs, since those choices appear to be more sensitive 158

to learning over long trial sequences. 159

To test this, we first conducted the model agnostic analysis described schemat- 160

ically in Figure 2a. To assess how reward history with or without photo-stimulation 161

affected choice following long ITIs, we estimated correlations between the temporal 162

evolution of the reward bias and the choice bias for trials preceded by long ITIs. We 163

did this separately for trials with and without serotonin photo-stimulation. 164

As seen in Figure 2b, we found significant correlations between reward and choice 165

bias for all conditions. Importantly, there was a significant effect of serotonin stimula- 166

tion on the magnitude of the correlation. That is, for the SERT-Cre mice the correlation 167

was larger for stimulated trials. This suggests that optogenetic stimulation of 5-HT 168

neurons modulated learning about reward history, which in turn affected choices fol- 169

lowing long ITIs. The equivalent analysis for short ITIs (Figure S10) showed that they 170

were not affected by serotonin stimulation in the same way. Indeed, a direct compar- 171

ison between short and long ITI conditions shows that the stimulation had a stronger 172

impact on choices following long ITIs than choices following short ITIs in SERT-Cre 173

mice, while there was no difference in WT mice (Figure S11). 174

In addition, in the absence of photo-stimulation, the correlation was smaller for the 175

SERT-Cre mice than the WT mice (Figure 2b). This could indicate a chronic effect 176

of stimulation [11], or a baseline effect of the genetic constructs, in addition to the 177

trial-by-trial effect. 178

2.4 Optogenetic stimulation of DRN 5-HT neurons increased 179

learning rate: Model-based analysis. 180

Our analysis so far suggests that the choices following short ITIs follow a relatively 181

simple win-stay lose-shift rule, while choices following long ITIs reflect a more grad- 182

ual learning about reward and choice histories over multiple trials. Furthermore, we 183

showed that optogenetic stimulation of 5-HT neurons influenced the impact of reward 184

history on choices following long, but not short, ITIs. 185

In order to test these findings in a more integrated way, we built a combined char- 186

acterization of choice. Figure 3a depicts a model in which there is an ITI threshold 187

(now treated as a free parameter rather than being set to 7s) arbitrating whether the 188

previously validated two-kernel model [39, 22] (i.e. short-term learning based win-stay 189

lose-switch model), or a longer-term reinforcement learning (RL) model [56] would de- 190

termine choice. The RL model allowed for two different learning rates associated with 191

the prediction error on a given trial (Figure 3b): αStim (for stimulated trials) and αNo-Stim 192
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Figure 2: (a). Schematic diagram of model-agnostic analysis. The correlation between the choices
following long ITIs (window = 5 trials) and the reward bias (window = 10 trials) was estimated us-
ing adjacent sliding windows. The reward bias was estimated on trials only with (top) or without
(bottom) photo-stimulation. The windows were shifted one trial at a time. The greyed-out trials
are the ones that are ignored for the assessments. Note that, due to the task design in which
photo-stimulation is associated with only one side (Left or Right) in a given block, in some moving
windows reward bias had to be computed from one side only. Thus we assigned +1 (respectively
−1) to a reward from Left (Right) and no-reward from Right (Left) when we computed reward bias.
We aware that this is not a perfect measure for reward bias; but we still expect finite correlations
since reward rates from the Left choice and the Right choice are on average negatively correlated
by the task design in a given block (reward probability: 0.1 vs 0.4). The correlation was estimated
separately for each mouse. (b). Model-agnostic analysis suggests that the impact of reward his-
tory on choices following long ITIs was modulated by optogenetic stimulation. The x-axis indicates
if the reward bias was computed over trials with or without photo-stimulations. The stars indicate
how significantly the correlation is different from zero, or the correlations are different from each
other, tested by a permutation test, where estimated reward bias was permuted within or between
conditions. Three stars indicates p < 0.001. The error bars indicate the mean ± SEM of data.
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Figure 3: Photostimulation increased the learning rate of SERT-Cre mice. (a) Schematics of the
computational model. There are two separate decision making systems: a fast system generating
a form of “ win-stay, lose-switch”, and a slow system following reinforcement learning (RL). After
short ITIs (TITI < TThreshold), choice is generated by the fast system following win-stay, lose-
switch. After long ITIs (TITI > TThreshold), choice is generated by the slow RL system. The ITI
threshold TThreshold is a free parameter that is fitted to data. (b) The RL system is assumed to
learn the value of choice on all trials, including those with short ITIs for whose choices it was not
responsible. The learning rate of the RL system is allowed to be modulated by photo-stimulation.
When photo-stimulation is (respectively, is not) delivered, choice value is updated at the rate of
αStim (αno-Stim). (C) Photostimulation increased the learning rate of SERT-Cre mice. The estimated
learning rates for the WT (left), SERT-Cre (center), SERT-Cre mice (right) with shuffled stimula-
tions are shown. The difference between αStim and αno-Stim in WT mice, between αStim in WT
mice and αStim in SERT-Cre mice, between αStim αno-Stim in SERT-Cre mice with shuffled stimu-
lation conditions, and between αStim in SERT-Cre mice and αStim in SERT-Cre mice with shuffled
stimulation conditions were not significant. The difference between αStim and αno-Stim in SERT-Cre
mice, and between αno-Stim in WT and αno-Stim in SERT-Cre mice were significant (permutation test,
p < 0.001). The difference between αno-Stim in SERT-Cre mice and αno-Stim in SERT-Cre mice with
shuffled stimulations was also significant (permutation test, p < 0.01). (d) Generative test of the
model. The analysis of Figure 2d was applied to data generated by the model. The correlations
were all significantly differently from zero, while the difference between photo-stimulation and no
photo-stimulation conditions between WT and SERT-Cre mice was also significant.
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(for non-stimulated ones). We found that this model fits the data more proficiently than 193

a number of variants (see the Methods section for details) embodying a range of dif- 194

ferent potential effects of optogenetic stimulation: including acting as a direct reward 195

itself; as a multiplicative boost to any real reward; or causing a change in the learning 196

and/or forgetting rates (Figure S8). 197

This model also fits choices better than a model that learns and forgets outcome 198

history according to wall-clock time (measured in seconds) rather than according to 199

the number of trials. To do this we simply adapted the previously validated two-kernel 200

model that integrates choice and reward history over trials [39, 22] such that the in- 201

fluence of historical events is determined by how many seconds ago they happened, 202

using the factual timing of the experiments. Model comparison using WT mice favored 203

the account of Figure 3a (∆ iBIC = 218). Introducing two time constants to the reward 204

integration kernel did not change this conclusion. 205

In the best fitting model (Figure 3a), we found that optogenetic stimulation in- 206

creased the learning rate in SERT-Cre mice, but not in WT mice (Figure3c). Consis- 207

tent with the previous analyses, we also found that the time constants for the choice 208

kernel and the reward kernel for choices following short ITIs were very short for both 209

WT and SERT-Cre mice (Figure S5), and that the ITI thresholds were not significantly 210

different between WT and SERT-Cre mice (Figure S6). In addition, we replicated the 211

same results using a model with a fixed (= 7 sec) ITI threshold (Figure S7). 212

As a control analysis, we fitted the model to SERT-Cre data with randomly re- 213

assigned stimulation trials. Shuffling the trials abolished the effect of photo-stimulation 214

on the learning rate (Figure 3c). 215

Although the learning rate on stimulation trials in SERT-Cre mice was significantly 216

greater than that on non-stimulated trials, it was not significantly different from the 217

learning rate in WT mice (Figure 3c). ), as already hinted by the model-agnostic 218

analysis (Figure2b). 219

As hinted at by the model-agnostic analysis in Figure2b, the learning rate on no- 220

stimulation trials was significantly smaller than that on stimulation trials in SERT-Cre 221

mice. 222

Finally, we performed a generative test of the model to assess its ability to capture 223

key aspects of the data. To do this, we simulated our model 100 times using each 224

collection of parameters fit to each session of each subject, and analyzed generated 225

data using the model agnostic procedures adopted for the original data (shown in 226

Figure2b). As for the real data, the simulated data also showed a significant corre- 227

lation between reward history and the choice-after-long-ITIs, and a significant differ- 228

ence between photo-stimulation and no photo-stimulation conditions between WT and 229

SERT-Cre mice (Figure 3d). 230

Our analysis has so far focused on the impact of reward history over a relatively 231

short timescale (< 50 trials) compared to the length of a whole experimental ses- 232

sion (> 100 trials). Since animals can also learn reward histories over much longer 233

timescales [10, 31], and 5-HT neurons have shown to encode reward rates over multi- 234

ple timescales [8], it is possible that the optogenetic stimulation of DRN neurons might 235

have had effects over hundreds of trials. To examine this, we conducted a simple cor- 236

relation analysis by dividing each session into five quintiles (containing equal numbers 237
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of trials), as in Fig. S3 and asked how the choices following long ITIs in the last quin- 238

tile (the only one with substantial numbers of long ITI choices) were correlated with 239

the reward history stretched over all numbers of preceding quintiles (e.g. only the fifth, 240

the fourth and the fifth, etc.). For reward history, we used the probabilities determined 241

by the experimenters rather than those observed by the subjects, to avoid any bias 242

that is independent of the reward history (such as choice history). 243

Choices following long ITIs were indeed significantly influenced by long run reward 244

history spanning over the entire experimental session (Figure S9). The data from the 245

generative test also confirms this correlation (Figure S9), albeit to a lesser degree, 246

perhaps because the model only involves a single time constant and may thus have 247

an inflated learning (and thus forgetting) rate relative to these long gaps. Furthermore, 248

although the data shows that these effects were stronger in SERT-Cre mice than in 249

WT mice (2-way ANOVA; p = 0.0016, F = 11.98), we did not see this in our generative 250

test results. Thus longer time constants (slower learning) that are present [10, 30, 31] 251

may also be affected by genotype or actual optogenetic stimulation. 252

3 Discussion 253

There have been many suggestions for the roles that serotonin might play in decision- 254

making and choice. These include ideas about influences over motor behavior [35], 255

punishment [18, 19, 51], opponency with dopamine [21, 13, 6], satiation [57], discount- 256

ing [20] patience [45, 22] and even aspects of reward [42, 8, 44]. Here, we report an 257

additional effect: serotonin stimulation can increase the rate at which animals learn 258

from choice outcomes in dynamic environments. 259

A standard learning rule in RL has two distinct components. The first is the re- 260

ward prediction error (RPE), which quantifies the difference between the actual and 261

predicted value of outcomes. The phasic activity [46] of midbrain dopamine neurons 262

and the local concentration of dopamine [26, 37] in target regions follow this pattern. 263

The second component is the learning rate, which determines how much change is 264

actually engendered by the prediction error. From a normative perspective, learning 265

rates are determined by the degree of uncertainty [16] – influenced by factors such 266

as initial ignorance and the volatility of the environment, since we should only learn 267

when there is something that we do not know. There is experimental evidence that 268

this is indeed the case [24, 48, 4, 47]. While it has been suggested that the neuro- 269

modulators norepinephrine (NE) and acetylcholine (ACh) may influence learning rates 270

[62, 2], our findings suggest that 5-HT DRN neurons also play a critical role. The in- 271

teraction between 5-HT and dopamine could potentially be implicated in this effect, as 272

various serotonin receptor types can increase the release of dopamine [17], which, if 273

operating at an appropriate timescale, could boost the effective learning rate. 274

It is notable that the effect of altered learning rates was only apparent on trials 275

following long than short ITIs. The former choices also hewed to a different strategy 276

than the latter. Short ITIs appeared to lead to decisions closer to win-stay, lose-shift, 277

meaning that subjects weighed barely more than the outcome of the most recent trial 278

in their decision. The shift between strategies might correspond to a difference be- 279
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tween a policy based on working memory [9] for very recent events (a few seconds) 280

vs. a plasticity-based mechanism like that assumed by standard incremental RL for 281

incorporating events over longer periods. Note, though, that the boundaries between 282

working memory and RL are becoming somewhat blurred [5]. It has been suggested 283

that memory based methods contribute to model-based control, by contrast with in- 284

cremental model-free RL [41, 14, 40, 5]; but this remains to be pinned down exper- 285

imentally. Note that a similar effect has been also observed in perceptual decision 286

making. In one example, longer-lasting prior experience was more influential when 287

working memory was disturbed during the task [1]. 288

The distribution of short and long ITI trials suggests that they might reflect the 289

animal’s motivational state as being high and low, respectively. Long ITI choices were 290

most frequent in the last quintile of each experimental session, where animals were 291

likely to be sated. That they also occurred in the beginning of experimental sessions 292

might suggest that the subjects were not fully engaged in the task at the start, perhaps 293

hoping to get out from the experimental chamber. A more systematic analysis of 294

behavior during long ITIs would be required to uncover the nature of those events. 295

The fact that only a subset of trials was apparently affected by the stimulation is 296

arguably a cautionary tale for the interpretation of optogenetics experiments. What 297

looked like a null effect [22] had to be elucidated through computational modeling. 298

Equally, for the short ITI trials, what seemed like behavior controlled by conventional 299

RL, might come from a different computational strategy (and potentially neural sub- 300

strate) altogether [9]. This could prompt a reexamination of previous data (as shown 301

by [5]). Further caution might be prompted by the observation that the learning rate in 302

the SERT-Cre mice in the absence of stimulation was actually significantly lower than 303

that of the WT mice in the absence of stimulation, rising to a similar magnitude as the 304

WTs, with stimulation. This may be due to chronic effects of optogenetic stimulation 305

of DRN neurons, as suggested in recent experiments [11], or due to baseline effects 306

of the genetic constructs. 307

The learning rates that we found even for the slow system are a little too fast to 308

capture fully the long term correlation that can be found in the data. This is apparent 309

in our additional analysis showing the correlation between the reward bias in the 1st 310

quintile of the trials and the choice bias in the 5th quintile of the same session (Fig- 311

ure S12), also the correlation between the reward bias in the 5th quintile of the trials 312

and the choice bias in the 1st quintile in the succeeding experimental session (Figure 313

S13). The former is surprising, since it spans a large number of trials; the latter be- 314

cause it usually spans more than a day. This could suggest that learning in fact took 315

place over a wide range of timescales, and the time constant that we found by our 316

model-fitting reflects a weighted average of those multiple time constants [30, 31]. It 317

would be interesting to study how the duration of ITI, or the level of engagement in 318

the task, can change the weight or relative contribution of those distinctive time con- 319

stants. It is plausible that the two decision strategies that we considered here are just 320

an approximation to a wider collection of strategies that operate over a wider range 321

of distinctive timescales. It would then be interesting to ask why serotonin stimulation 322

preferentially affected slower components. Further questions include whether sero- 323

tonin’s effects would be better captured as an influence on the relative weighting of 324
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different timescales [31] rather than the changes in time constants themselves that 325

we assumed in the model fitting. 326

Finally, one of the main reasons to be interested in serotonin is the prominent role 327

that drugs affecting this neuromodulator play in treating psychiatric disorders. While 328

our results add substantial complexity to this landscape, they also offer the prospect 329

of richer and more finely targeted manipulations, given greater understanding. 330
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Methods 337

M.1 Inter-trial-interval (ITI) 338

We defined the inter-trial-interval (ITI) as the time from when the mouse left one of the 339

side ports until it entered the center port to initiate the next trial. Occasionally, animals 340

re-visited the side port long after their first visit on the same trial (less than 5 per ent 341

of all trials). These redundant pokes were ignored. 342

M.2 Computational models for decision making 343

M.2.1 Reward and choice kernel model [39, 22] 344

Previous studies have shown that animal’s choice behavior in a dynamic foraging task
without the change-over-delay constraint [28] can be well-described by a linear two-
kernel model (e.g. [39, 22]). In this model, the probability PLt of choosing Left on trial
t is determined by a linear combination of values computed from reward and choice
history, given by

PLt =
1

1 + e−(aLt −aRt +bLt −bRt +δ)
, (1)

where aLt (aRt ) is the value computed from a reward kernel for Left (Right), bLt (bRt ) is
the value computed from a choice kernel for Left (Right), and δ is the bias. Assuming
simple exponential kernels [39, 54, 10], the reward values are updated on every trial
as:

aLt+1 = (1− χ) aLt + ρrL (2)

aRt+1 = (1− χ) aRt + ρRR (3)

where aLt (aRt ) is the reward value for Left (Right) choice on trial t, χ is the temporal
forgetting rate of the kernel, ρ is the initial height of the kernel, and rL = 1 ( rR = 1) if
a reward is obtained from Left (Right) on trial t, or 0 otherwise. Since these equations
can also be written as:

aLt+1 = aLt + χ
(
ρ/χrL − aLt

)
(4)

aRt+1 = aRt + χ
(
ρ/χrR − aRt

)
(5)

this kernel is equivalent to a forgetful Q-learning rule [60, 9] with a learning rate χ and 345

reward sensitivity ρ/χ. 346

The value for choice is also updated as

bLt+1 = (1− ν) bLt + ηCL (6)

bRt+1 = (1− ν) bRt + ηCR (7)

where bLt (bRt ) is the choice value for Left (Right) choice on trial t, ν is the temporal 347

forgetting rate of the kernel, η is the initial height of the kernel, and CL = 1 ( CR = 1) 348
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if Left (Right) is chosen on trial t while 0 otherwise. We note that the initial height 349

of the choice kernel, η, is normally negative [39, 22], meaning that the choice kernel 350

normally captures a tendency towards alternation. Such tendencies are common in 351

tasks with reward schedules like those in the current task if a penalty for alternation is 352

not imposed (change over delay) [28]. 353

We assumed that the update takes place on every trial, even those associated with 354

long ITIs. 355

M.2.2 Main model 356

We constructed a model that describes choices on all trials. Since we found that the 357

characteristics of decision strategies changed according to the ITIs, we simply as- 358

sumed a two-agent model, where agent 1 (fast system) makes decisions on the trials 359

following short ITIs (ITI ≤ TThreshold ), while agent 2 (slow system) makes deci- 360

sions on the trials following long ITIs (ITI > TThreshold ). We allowed the threshold 361

TThreshold to be a free parameter that is determined by data. We also tested the 362

fixed value TThreshold = 7 seconds based on our preliminary analyses and found 363

results consistent with the variable ITI-threshold model (Fig. S7). 364

The fast system generates decisions based on the two-kernel model described in
M.2.1. The slow system performs simple Q-learning. Specifically, the probability PLt
of choosing Left on trial t after a long ITI > TThreshold is given by

PLt =
1

1 + e−(vLt −vRt +κ)/T
(8)

where vLt (vRt ) is the value for Left (Right), κ is the bias term, and T is the decision 365

noise. 366

The agent updates values for chosen action according to the Rescorla-Wagner
rule, but at different learning rates for photo-stimulation (αStim) and no-stimulation
(αNo-Stim) trials. For example, if Left was chosen and photo-stimulation was applied,
the value of Left choice is updated as

vLt+1 = vLt + αStim
(
rL − vLt

)
. (9)

If no stimulation was applied, on the other hand,

vLt+1 = vLt + αNo-Stim
(
rL − vLt

)
. (10)

By comparison with equation 5, we can see this as a non-forgetful Q-learner, but with 367

a slightly more convenient parameterization for the reward sensitivity. For a model 368

comparison purpose, we also fitted a forgetful Q-learner model with optogenetically 369

modulated learning rates, in which the updates given by Equations 9 and 10 take 370

place for the values of both choices every trial. 371

Both systems updates values every trial regardless of the preceding ITIs, but the 372

decision was made by one of them depending on the most recent ITI, where the 373

threshold TThreshold was also a free parameter. Figure 3 shows the results of this 374

full model. 375
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M.2.3 Other models 376

In order to explore other possibilities for optogenetic stimulation effects, we constructed 377

three other models. 378

Asymmetric learning rate model 379

We allowed the model to have different learning rates for reward and no-reward
trials when photo-stimulation was applied. Specifically, we modified Equation 9 of the
main model as

vLt+1 = vLt + α+
Stim

(
rL − vLt

)
(11)

if rL = 1, and

vLt+1 = vLt + α−
Stim

(
rL − vLt

)
(12)

if rL = 0. The same is applied for the Right choice. 380

Multiplicative value model 381

Here we assumed that photo-stimulation changed the sensitivity of reward. Specif-
ically, we modified the learning rules of slow system as

vLt+1 = vLt + α
(
GStim × rL − vLt

)
. (13)

if photo-stimulation is applied, otherwise

vLt+1 = vLt + α
(
rL − vLt

)
. (14)

Additive value model 382

Here we assumed that photo-stimulation carried a independent rewarding value.
Specifically, we modified the learning rules of slow system as

vLt+1 = vLt + α
(
GStim + rL − vLt

)
, (15)

if photo-stimulation is applied, otherwise

vLt+1 = vLt + α
(
rL − vLt

)
. (16)

The same is applied for the Right choice. 383

M.3 Model fitting 384

In order to determine the distribution of model parameters h, we conducted a hier-
archical Bayesian, random effects analysis [29, 34, 33] for each subject. In this, the
(suitably transformed) parameters hi of experimental session i are treated as a ran-
dom sample from a Gaussian distribution with means and variance θθθ = {µµµθ,ΣΣΣθ}.

The prior distribution θθθ can be set as the maximum likelihood estimate:

θθθML ≈ argmaxθθθ {p (D|θθθ)} (17)

= argmaxθθθ

{
N∏
i=1

∫
dhi p (Di|hi) p (hi|θθθ)

}
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We optimized θθθ using an approximate Expectation-Maximization procedure. For the
E-step of the k-th iteration, a Laplace approximation gives us

mk
i ≈ argmaxh

{
p (Di|h) p

(
h|θθθk−1

)}
(18)

p
(
hki |Di

)
≈ N

(
mk
i ,ΣΣΣ

k
i

)
, (19)

where N
(
mk
i ,ΣΣΣ

k
i

)
is the Normal distribution with the mean mk

i and the covariance ΣΣΣk
i

that is obtained from the inverse Hessian around mk
i . For the M step:

µµµk+1
θ =

1

N

N∑
i=1

mk
i (20)

ΣΣΣk+1
θ =

1

N

N∑
i=1

(
mk
im

kT
i + ΣΣΣk

i

)
−µµµk+1

θ µµµk+1T
θ . (21)

For simplicity, we assumed that the covariance Σk
θ had zero off-diagonal terms, as- 385

suming that the effects were independent. 386

Model comparison 387

We compared models according to their integrated Bayes Information Criterion (iBIC) 388

scores [29, 34, 33]. We analysed model log likelihood log p(D|M): 389

log p (D|M) =

∫
dθp (D|θ) p (θ|M) (22)

≈ −1

2
iBIC = log p

(
D|θML

)
− 1

2
|M | log |D|, (23)

where iBIC is the integrated Baysian Information Criterion, |M | is the number of fitted 390

prior parameters and |D| is the number of data points (total number of choice made 391

by all subjects). Here, log p
(
D|θML

)
can be computed by integrating out individual 392

parameters: 393

log p
(
D|θML

)
=
∑
i

log

∫
dhp (Di|h) p

(
h|θML

)
(24)

≈
∑
i

log
1

K

K∑
j=1

p
(
Di|hj

)
, (25)

where we approximated the integral as the average over K samples hj ’s generated 394

from the prior p
(
h|θML

)
. 395
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Model’s average predictive accuracy 396

We defined the model’s average predictive accuracy as the arithmetic mean of the 397

likelihood per trial, using each session’s MAP parameter estimate. That is, 398

p
(
Di|hMAP

i

)
=

∑Ntrial
t=1 p

(
dti|hMAP

i

)
Ntrial

, (26)

where Ntrial is the number of the trial, dti is the datapoint on trial t in session i. 399

In our generative simulations, we used the same reward/photo-stimulation sched- 400

ule as the actual data. 401
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Figure S1: The distribution of ITIs. The proportions of short (≤ 7 sec) ITI trials and long (> 7 sec)
ITI trials were significantly different for both WT (left) and SERT-Cre (right) mice. The difference
between WT and SERT-Cre mice was also significant, though the optogenetic stimulation itself
did not change the subsequent ITIs (see Figure S2). The error bars indicate the mean ± SEM of
sessions.
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Figure S2: Probability that the ITI is longer than 7 sec, following a photo-, or no photo-, stimulation.
Stimulation does not significantly increase the chance of creating a long ITI event.
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Figure S3: The fractions of long ITI trials in quintiles (containing equal numbers) of trials within
sessions for wild-type (left; grey) and SERT (right; blue) mice. The error bars indicate the mean
± SEM. The difference between the first and the second quintile (p < 0.001, permutation test),
between the third and the fourth quintile (p < 0.01, permutation test), between the fourth and
the fifth quintile (p < 0.001, permutation test), between the first and the fifth quintile (p < 0.001,
permutation test) are significant within WT and SERT-Cre mice, respectively.
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Figure S4: Model comparison for choices following long ITIs, based on integrated Bayesian Infor-
mation Criterion (iBIC). Q-learning model outperforms the other models. The previously validated
model, Reward + Choice kernel model (top), performs poorly for choices following long ITIs.
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Figure S5: Estimated choice kernel and reward kernel for the fast system in the full model. The
mean± standard deviation of estimated kernels of all traces are shown for WT (left) and SERT-Cre
(right) mice. The time constants are the mean of the estimates, not the re-fit of the mean trace.
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Figure S6: Estimated threshold for the full model. The mean ± SEM of estimated kernels are
shown for WT (left) and SERT-Cre (right) mice.
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Figure S7: [Fixed-threshold model]. Photo stimulation increased the learning rate in SERT-Cre
mice. The difference between the WT mice and SERT-Cre mice was significant (permutation
test, p < 0.001). The simple Q-learning model was assumed to learn values on all trials but was
responsible for decisions on trials following long ITIs (> 7 sec).
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Figure S8: Model comparison for different optogenetic stimulation effects in SERT-Cre mice, based
on integrated Bayesian Information Criterion (iBIC). Our model with a modulated learning rate
(bottom) outperformed models with asymmetrically modulated learning rate (top), multiplicatively
modulated reward value (2nd row), and additively modulated reward value (3rd row).
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Figure S9: Choices following long ITIs were predicted by reward history over many trials. The
correlation between the choices following long ITIs in the last part of each session (5th quintile)
and the reward bias estimated in different quintiles. On the x-axis, ‘1-5’ indicates the overall reward
bias computed in the total of the 1st, 2nd, 3rd, 4th and 5th quintiles, while ’5’ means the bias from
the 5-th quintile only. The top left (top right) shows the results of WT (SERT-Cre) mice, while the
bottom left (bottom right) shows the results of model’s generated data for WT (SERT-Cre) mice.
The stars indicate how significantly the correlation is different from zero, tested by a permutation
test. The test statistic was constructed by the mean of the correlation coefficients of four animals
at each quintile condition, where the correlation coefficient was computed by randomly permuted
data in each condition in each animal. One star indicates p < 0.05; two stars indicates p < 0.01,
while three stars indicates p < 0.001. The error bars indicate the mean ± SEM of data.
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Figure S10: The impact of reward history on choices following short ITIs did not show effects of
optogenetic stimulation. The x-axis indicates if the reward bias was computed over trials with or
without photo-stimulations. Due to the experimental bias of stimulation and reward probability, the
correlation appears to be larger when stimulation is on for both groups; however, the difference
between WT and SERT-Cre was not significant. The error bars indicate the mean ± SEM of
sessions.
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Figure S11: The impact of reward history on choice was more strongly seen in choices following
long ITIs than ones following short ITIs in SERT-Cre mice, while it was not the case in WT mice.
The x-axis indicates if the correlation was computed for choices following short or long ITIs. The
y axis indicates the ratio of the correlation between reward bias and choice bias computed over
trials with photo-stimulations to the correlation computed over trials without photo-stimulations.
The difference between the short and the long ITI conditions in SERT-Cre mice was significant
(permutation test; p < 0.05), while the difference in WT mice was not significant. The error bars
indicate the mean ± SEM of data.
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Figure S12: Choices following long ITIs in the fifth quintile were correlated with reward bias in the
first quintile in the same session. The star indicate how significantly the correlation is different from
zero, tested by a permutation test. The test statistic was constructed by the mean of the correlation
coefficients of four animals, where the correlation coefficient was computed by randomly permuted
data in each animal. One star indicates p < 0.05. The error bars indicate the mean ± SEM of
data.
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Figure S13: Choices following long ITIs in the first quintile were correlated with reward bias in
the fifth quintile in the previous session. The star indicate how significantly the correlation is
different from zero, tested by a permutation test. The test statistic was constructed by the mean
of the correlation coefficients of four animals, where the correlation coefficient was computed by
randomly permuted data in each animal. One star indicates p < 0.05. The error bars indicate the
mean ± SEM of data.
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