

Bamford et al., IFNL4 E154

A Polymorphic Residue That Attenuates the Antiviral Potential of Interferon Lambda 4 in Hominid Lineages

Connor G. G. Bamford¹, Elihu Aranday-Cortes¹, Inès Cordeiro Filipe¹, Swathi Sukumar¹, Daniel Mair¹, Ana da Silva Filipe¹, Juan L. Mendoza², K. Christopher Garcia², Shaohua Fan³, Sarah A. Tishkoff³, John McLauchlan^{1,4}

¹MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK

²Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA

³Departments of Genetics and Biology, University of Pennsylvania, Philadelphia PA19104-6145, USA

⁴Corresponding Author/Lead Contact: John McLauchlan;

john.mclauchlan@glasgow.ac.uk

Word Count: (5664 for intro> discussion)

Abstract

As antimicrobial signalling molecules, type III or lambda interferons (IFNLs) are critical for defence against infection by diverse pathogens. Counter-intuitively, expression of one member of the family, IFNL4, is associated with decreased clearance of hepatitis C virus (HCV) in the human population; by contrast, a natural in-frame nucleotide insertion that abrogates IFNL4 production improves viral clearance. To further understand how genetic variation between and within species affects IFNL4 function, we screened a panel of extant coding variants of human IFNL4 and identified three variants that substantially affect antiviral activity (P70S, L79F and K154E). The most notable variant was K154E, which enhanced *in vitro* activity in a range of antiviral and interferon stimulated gene (ISG) assays. This more active E154 variant of IFNL4 was found only in African Congo rainforest 'Pygmy' hunter-gatherers. Remarkably, E154 was highly conserved as the ancestral residue in mammalian IFNL4s yet K154 is the dominant variant throughout evolution of the hominid genus *Homo*. Compared to chimpanzee IFNL4, the human orthologue had reduced activity due to amino acid substitution of glutamic acid with lysine at position 154. Meta-analysis of published gene expression data from humans and chimpanzees showed that this difference in activity between K154 and E154 in IFNL4 is consistent with differences in antiviral gene expression *in vivo* during HCV infection. Mechanistically, our data suggest that human-specific K154 likely affects IFNL4 activity by reducing secretion and potency. We postulate that evolution of an IFNL4 with attenuated activity in humans (K154) likely contributes to distinct host-specific responses to and outcomes of infection, such as HCV.

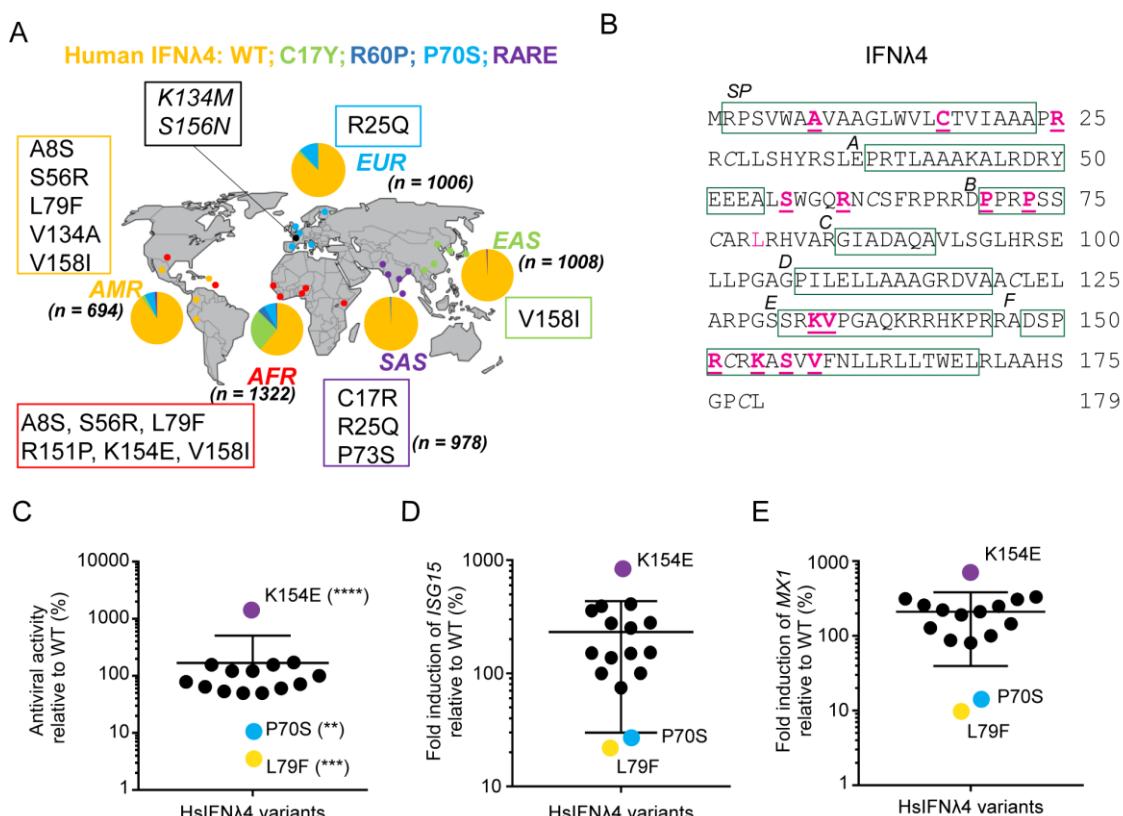
45 **Introduction**

46 Vertebrates have evolved the capacity to coordinate their antiviral defences
47 through the action of proteins called interferons (IFNs) (1), which are small secreted
48 signalling proteins produced by cells after sensing viral infection. IFNs bind to cell
49 surface receptors, commencing autocrine and paracrine signalling via the JAK-STAT
50 pathway. Through this mechanism, IFNs induce expression of hundreds of
51 'interferon-stimulated genes' (ISGs) that establish a cell-intrinsic 'antiviral state' and
52 regulate cellular immunity and inflammation (2,3). Thus, IFNs are pleiotropic in
53 activity and modulate aspects of protective immunity and pathogenesis (4).

54 Three groups of IFNs have been identified (types I – III), with the type III
55 family (termed IFNλs) being the most recently discovered (5,6). Emerging evidence
56 highlights the critical and non-redundant role that IFNλs play in protecting against
57 diverse pathogens, including viruses, such as norovirus (7), influenza virus (8) and
58 flaviviruses (9); bacteria (10); and fungi (11). While IFNλs induce nearly identical
59 genes to type I IFNs, differences in signalling kinetics and cell-type specificity
60 contribute to their specialisation (12,13). Hence, as a consequence of selective
61 expression of the IFNλ receptor 1 (IFNλR1) co-receptor on epithelial cells (13), type
62 III IFNs play a significant role in defence of 'barrier tissues', such as the gut,
63 respiratory tract and liver (reviewed in 14); the second co-receptor for IFNλ is
64 IL10-R2, which is expressed more broadly.

65 Although important for host defence, some IFNs are highly polymorphic (15).
66 In humans, a number of genetic variants in the type III IFN locus (containing IFNλs 1
67 – 4) have been identified and are associated with clinical phenotypes relating to viral
68 infection (16–18). Although many of these variants are in linkage disequilibrium, the
69 major functional variant is thought to lie in the *IFNL4* gene (19). This causative
70 variant is a single substitution/insertion mutation converting the 'ΔG' allele to a 'TT'
71 allele (rs368234815), thereby yielding a frameshift which leads to loss of active
72 human IFNλ4 (HsIFNλ4) (18). Genome-wide association studies have convincingly
73 demonstrated a seemingly counter-intuitive correlation between the *IFNL4* ΔG allele
74 and reduced clearance of hepatitis C virus (HCV) infection, i.e. individuals who
75 produce HsIFNλ4 clear HCV infection with reduced frequency in the presence or
76 absence of antiviral IFN therapy (17,18). Although IFNλ4 is highly conserved among
77 mammals, the 'pseudogenising' TT allele of HsIFNλ4 has evolved under positive
78 selection in some human populations suggesting that expression of the wild-type
79 protein likely conferred a fitness cost during recent human evolution (20). Expression
80 of IFNλ4 is tightly controlled and reduced in human as well as Gorilla cells following
81 viral infection compared to IFNλ3 (21). The mechanism underlying the contribution of
82 HsIFNλ4 to viral persistence in HCV infection is not well understood but is
83 associated with enhanced ISG induction. Moreover, a common natural variant of
84 HsIFNλ4 (P70S) (18), which has reduced signalling capacity, is also linked with
85 improved HCV clearance (22). Thus, there is a spectrum of HsIFNλ4 activity in
86 humans as a consequence of natural variation that has a significant influence on
87 chronic HCV infection.

88 Whether other human IFNL4 variants exist in addition to P70S, which affect
89 antiviral activity, has not been explored fully. In this study, we have examined human
90 genetic data to identify other possible naturally occurring IFNL4 variants and
91 performed comparative analysis with mammalian orthologues in species closely
92 related to humans. We provide evidence that the antiviral potential for the most
93 common form of IFNL4 in humans has attenuated activity due to a single amino acid
94 substitution. In addition, we propose that acquisition of the attenuating substitution
95 arose very early during human evolution but that some populations do encode a
96 more active variant. Mechanistically, our data suggest that the reduced antiviral
97 potential of human IFNL4 results from a likely defect in secretion and potency.


98

99 **Results**

100 Functional consequences of human IFNL4 non-synonymous variation

101 Firstly, we undertook genetic and functional comparisons of natural human
102 IFNL4 coding variants present in the human population. We identified 15 non-
103 synonymous HsIFNL4 variants in the 1000 Genomes Project database (23) (**Fig 1A**
104 and **Supplementary Data File 1**), including three previously described variants
105 (C17Y, P60R and P70S; >1% global frequency, classified as 'common') (18). The
106 remaining 12 variants were classified as rare (<1% global frequency). The African
107 population harboured the largest number of, as well as the most unique, variants.
108 Interestingly, three rare variants (A8S, S56R and L79F) were shared exclusively
109 between African and American populations, which may have arisen due to relatively

Fig 1

Bamford et al., IFNL4 E154

110 recent movements of people perhaps through the transatlantic slave trade.

111 Variants were located in regions of functional significance in the HsIFNλ4
112 protein (**Fig 1B and S1 Fig A-C**), such as the predicted signal peptide (amino acids
113 1-24), surrounding the single glycosylation site (N61) [both of which are required for
114 secretion of active protein], and helix F that is predicted to interact with the IFNλR1
115 receptor (variants 151–158) (24). Interestingly, the variants in helix F were clustered
116 in the N-terminal portion of the predicted helix. Based on the above predictions, we
117 hypothesised that some of these variants may have phenotypic effects on HsIFNλ4
118 function. Of note, no variants were found in helix D, which is predicted to contribute
119 to interaction with the IL-10R2 receptor, nor on the IL-10R2-interacting face of the
120 protein.

121 The functional impact of variation on HsIFNλ4 has only been assessed for the
122 common P70S variant and so we sought to screen all other variants in activity
123 assays. To determine whether variants affected HsIFNλ4 antiviral activity, they were
124 introduced independently into an expression plasmid that produced HsIFNλ4 with a
125 C-terminal ‘FLAG’ tag. Transient transfection of the expression plasmids into human
126 ‘producer’ cells (HEK-293T cells) allowed harvesting of active HsIFNλ4 in the cell
127 supernatant (referred to herein as conditioned media [CM]) thereby enabling analysis
128 of the effects of variants on HsIFNλ4 production, glycosylation, secretion and
129 potency; a similar approach has been successfully adopted previously to determine
130 the relative activities of secreted HsIFNλ3 and HsIFNλ4 as well as a HsIFNλ4 variant
131 that is not glycosylated (24). We chose to screen the function of the panel of
132 HsIFNλ4 variants on the interferon-competent hepatocyte cell line HepaRG cells
133 (25).

134 Firstly, we investigated the antiviral activity of variants by titrating them
135 against encephalomyocarditis virus (EMCV), a highly IFN-sensitive and cytopathic
136 virus used to measure IFN-mediated protection (26) (**Fig 1C and S2 Fig A**). We also
137 measured their capacity to induce two major ISGs, *MX1* and *ISG15*, by RT-qPCR
138 (**Fig 1D and E, and S2 Fig B and C**) and validated the *ISG15* mRNA data by

Fig 1. Rare non-synonymous variants of HsIFNλ4 affect antiviral activity

(A) Ancestry-based localization and frequency of human non-synonymous variants of HsIFNλ4 in African (AFR), South Asian (SAS), East Asian (EAS), European (EUR) and American (AMR) populations within the 1000 Genomes dataset. ‘n’ represents the number of alleles tested in each population. Common and rare variants are those which have frequencies of >1% and <1% respectively in the 1000 Genome data. Common variants include: wt (orange), C17Y (light green), R60P (dark blue) and P70S (cyan). Rare variants (purple) include: A8S, C17R, R25Q, S56R, P73S, L79F, K133M, V134A, R151P, K154E, S156N, and V158I. Variants K133M and S156N (black) did not have an associated ethnicity but were found in the dataset from the Netherlands (Genome of the Netherlands cohort) (69). (B) Location of non-synonymous variants in the HsIFNλ4 polypeptide (underlined pink). Regions of predicted structural significance are boxed (green), including the signal peptide (SP) and helices (A to F) (24). There is a single N-linked glycosylation site at position 61 (N61). Note that there are 2 non-synonymous changes at C17 (C17R and C17Y). Cysteine residues involved in disulphide bridge formation are italicised. See Supplementary Data File 1 for genetic identifiers for the variants described here. (C) Antiviral activity of all HsIFNλ4 natural variants in an anti-EMCV CPE assay relative to wt protein in HepaRG cells. Cells were stimulated with serial dilutions of HsIFNλ4-containing CM for 24 hrs and then infected with EMCV (MOI = 0.3 PFU/cell) for 24 hrs at which point CPE was assessed by crystal violet staining. After staining, the dilution providing ~50% protection was determined. Mean of combined data from three independent experiments (n=3) are shown. Error bars represent mean and SEM for all variants combined. Data are shown in S2 Fig A. **** = <0.0001; *** = <0.001; ** = <0.01 by one-way ANOVA compared to wt with a Dunnett’s test to correct for multiple comparisons. Controls (HsIFNλ4-TT and EGFP) are not shown but gave no protection against EMCV in the assay. Those variants with >2-fold change are highlighted with colours: purple (K154E,), cyan (P70S) and yellow (L79F). (D and E) ISG gene expression determined by RT-qPCR following stimulation of cells with HsIFNλ4 variants. Relative fold change of *ISG15* (D) and *Mx1* mRNAs (E) in HepaRG cells stimulated with CM (1:4 dilution) from plasmid-transfected cells compared to wt HsIFNλ4. Cells were stimulated for 24 hrs. Data points show mean of biological replicates (n=3) and the error bar represents mean and SEM for all variants combined. Expanded data are shown in S2 Fig B and C. Variants are coloured based on antiviral assays described in Fig 1C. Numerical data used for graph construction are available in **Supplementary Data File 4 sheet 1**.

Bamford et al., IFNL4 E154

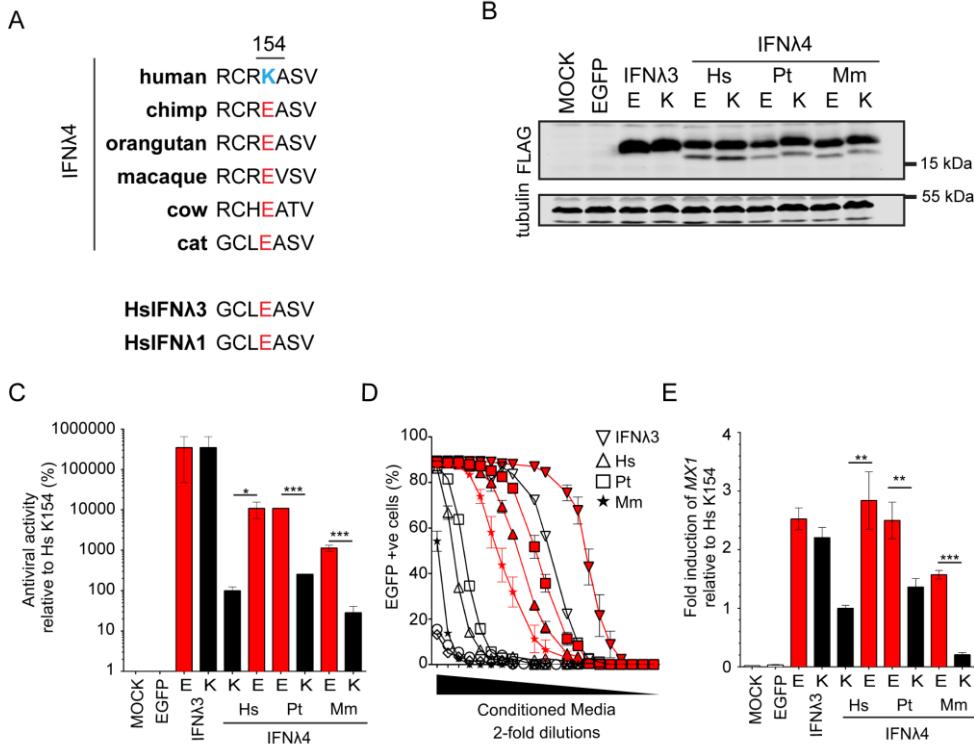
139 determining production of unconjugated ‘mono’ ISG15 and high-molecular weight
140 ISG15-conjugates (‘ISGylation’; **S2 Fig D**). We also constructed a series of negative
141 controls (plasmids expressing EGFP and the frameshift TT variant of HsIFNλ4), a
142 positive control (HsIFNλ3op) for comparative analysis to examine HsIFNλ4 activity,
143 and three HsIFNλ4 variants, which do not occur naturally but were included as they
144 could alter post-translational modification (N61A which ablates glycosylation) or
145 potential receptor interactions (F159A and L162A located in helix F), respectively
146 (27). Negative controls (EGFP or the frameshift TT variant) gave very low induction
147 of *ISG15* and *MX1* and no detectable antiviral activity in the EMCV assay whereas
148 the positive control (HsIFNλ3op) was highly active in both assays (**S2 Fig A-C**). The
149 non-natural variants N61A and F159A almost abolished activity compared to wt
150 HsIFNλ4 and HsIFNλ3op while L162A gave slightly less activity in the ISG induction
151 assay but activity was reduced to a greater extent in the EMCV assay. In a previous
152 report, ablating glycosylation at N61 substantially reduced activity of secreted
153 HsIFNλ4 in an ISG induction assay (24). Thus, our assay systems recapitulated
154 findings from previous studies with similar assays and provided a range of activities
155 to assess the impact of the natural HsIFNλ4 variants.

156 Our analyses on the natural HsIFNλ4 variants revealed that only three
157 variants (P70S, L79F and K154E) consistently and substantially modulated antiviral
158 activity and signalling compared to wt HsIFNλ4 (**Fig 1C-E**). The impact of these
159 variants was particularly pronounced in the EMCV assay that measures the dilution
160 giving 50% activity over a large range of dilutions (**Fig 1C**). Our results confirmed
161 previous observations on the lower activity of the P70S variant (22) and
162 demonstrated that the rare L79F variant had a similar phenotype. By contrast, the
163 K154E variant substantially enhanced antiviral activity and ISG induction.

164 These effects on activity for P70S, L79F and K154E did not arise from
165 differences in the levels of HsIFNλ4 intracellular production or changes to
166 glycosylation (**S3 Fig A and B**). However, variants S56R and R60P (R60P is a
167 common variant in Africa) did lead to marked reductions in the glycosylated form of
168 HsIFNλ4 as demonstrated by the mean ratio of glycosylated:non-glycosylated
169 protein (**S3 Fig**) but did not greatly alter their antiviral activity in contrast with our
170 findings with the N61A non-natural variant, which abolished both glycosylation and
171 antiviral activity of conditioned media (**S2 Fig A-C and S3 Fig A and B**). From this
172 screen, we concluded that three non-synonymous variants in HsIFNλ4 (P70S, L79F
173 and K154E), identified as either common or rare alleles in the human population,
174 affect activity of the protein.

175 Examining the global distribution of genetic variation can help understand its
176 origins, evolution and functional consequences. P70S is a common variant that is
177 found worldwide (in every population in the 1000 Genomes Database). By contrast,
178 L79F and K154E are rare and geographically restricted to West Africa/Americas, and
179 central Africa, respectively (**Fig 1A**). From further interrogation of human genome
180 datasets (28), the HsIFNλ4 K154E variant was present in two individuals from
181 different African rainforest ‘Pygmy’ hunter-gatherer populations (Baka and Bakola) in
182 Cameroon (**S4 Fig A**). The Bakola individual was homozygous for the ΔG allele,

Bamford et al., IFNL4 E154


183 indicating that the K154E variant would be encoded on one of the functional ΔG
184 HsIFN λ 4 alleles. The Baka subject was heterozygous at rs368234815 ($\Delta G/TT$) and
185 thus could produce either wt or the more active K154E form of HsIFN λ 4. Each of
186 these individuals also had additional non-synonymous HsIFN λ 4 variants (V158I and
187 R151P, Baka and Bakola individuals respectively); these variants were included in
188 our functional screen of HsIFN λ 4 variants but did not significantly alter activity (**Fig**
189 **1C-E and S2 Fig A-C**). K154E was not found in other East or Southern African
190 hunter-gatherer populations (such as Hadza and Sandawe) nor in the African San,
191 who have the oldest genetic lineages among humans (29) (**S4 Fig B**); it was also not
192 identified in Neanderthal and Denisovan lineages (denoted as 'archaic' in **S4 Fig B**).
193 However, E154 is encoded in the IFN λ 4 orthologue for the chimpanzee, *Pan*
194 *troglodytes* (Pt), our closest mammalian species. Notably, the human TT allele
195 encodes a potential K154 codon (data not shown) suggesting that the E154K
196 substitution arose in humans prior to *IFNL4* pseudogenisation. Together with the fact
197 that nearly all humans encode K154, these data suggest that the less active E154K
198 substitution emerged early during human evolution after the divergence of our last
199 common ancestor with chimpanzees.
200

201 Functional comparison of primate IFN λ 4 orthologues

202 Since a lysine residue encoded at position 154 is unique to humans compared
203 to other mammalian species (**Fig 2A**) (30), we compared wt HsIFN λ 4 and its K154E
204 variant to wt PtIFN λ 4 and an equivalent 'humanised' PtIFN λ 4 E154K mutant in both
205 the EMCV and ISG induction assays as well as a CRISPR-Cas9 cell line in which the
206 EGFP coding region had been introduced into the endogenous *ISG15* gene
207 upstream of and in-frame with the *ISG15* open reading frame (ORF) (**S5 Fig**). This
208 cell line offered advantages over other approaches since it facilitated measurement
209 of ISG induction of an endogenous gene by assessing EGFP fluorescence across a
210 range of dilutions of secreted IFN λ s (**S5 Fig B**).

211 Although intracellular expression levels of each IFN λ 4 variant were similar,
212 (**Fig 2B**), wt PtIFN λ 4 was significantly more active than HsIFN λ 4 in each assay and
213 had approximately equivalent activity to the HsIFN λ 4 K154E variant in signalling as
214 well as antiviral assays (**Fig 2C-E**). Converting PtIFN λ 4 to encode the E154K variant
215 significantly decreased activity to levels that were similar to those for wt HsIFN λ 4
216 (encoding lysine at position 154). Extending the analysis to include rhesus macaque
217 IFN λ 4 (*Macaca mulatta*, MmIFN λ 4) gave the same pattern whereby wt MmIFN λ 4
218 with E154 had greater activity than its K154 variant. However, wt MmIFN λ 4 was less
219 active than either the human or chimpanzee IFN λ 4 with E154 indicating that other
220 genetic differences likely modified MmIFN λ 4 activity in our assays. Introducing a
221 lysine into HsIFN λ 3 had a minimal effect on its activity (**Fig 2C-E**). Overall, we
222 observed a similar ~100-fold enhancement of activity for E154 over K154 for each of
223 the IFN λ 4 orthologues in anti-EMCV activity and EGFP IFN reporter induction. Thus,
224 we conclude that wt HsIFN λ 4 has attenuated activity principally because of a single
225 amino acid change at position 154.

Fig 2

Fig 2. Human IFNL4 is less active than chimpanzee IFNL4 due to a substitution at amino acid position 154

(A) Amino acid alignment from positions 151 to 157 for selected orthologues of HsIFNL4 from different species as well as 2 human paralogues (HsIFNL1 and HsIFNL3). At position 154, HsIFNL4 encodes a lysine (K; blue) while sequences from all other species predict a glutamic acid at this site (E; red). (B) Western blot analysis of intracellular IFNL4 from different species encoding E or K at position 154 as well as equivalent E and K variants of HsIFNL3op. HEK293T cells were transfected with the relevant plasmids for 48 hrs prior to preparation of cell lysates. IFNL4 variants were detected with anti-FLAG antibody ('FLAG') and tubulin was used as a loading control. Mock- and EGFP-transfected cells were used as negative controls. (C) EMCV antiviral assay in HepaRG cells of IFNL from the different species indicated (human [Hs], chimpanzee [Pt] and macaque [Mm]) encoding an E (red bars) or K (black bars) at position 154 alongside the equivalent amino acid substitutions in HsIFNL3op. Antiviral activity is shown relative to that for HsIFNL4 in HepaRG cells. Order denotes wt then variant IFNL for each species. Data show +/- SD (n=3) and are representative of two independent experiments. *** = <0.001; * = <0.05 by unpaired, two-tailed Student's T test comparing 154E and 154K for each IFN. (D) IFN signalling reporter assay for mutant IFNL4s from different species encoding an E (red lines) or K (black lines) at position 154 alongside the equivalent amino acid substitutions in HsIFNL3op. The assay used EGFP-expressing ISG15 promotor HepaRG cells generated by CRISPR-Cas9 genome editing (HepaRG-EGFP-ISG15 cells; clone G8). HsIFNL4 = triangles; PtIFNL4 = squares; MmIFNL4 = stars; HsIFNL3 = inverted triangles. Serial two-fold dilutions of CM (1:2 to 1:2097152) were incubated with the cells for 24 hrs and EGFP-positive cells (%) were measured by flow cytometry at each dilution. Data shown are average +/- SEM of biological replicates (n=3) and are representative of two independent experiments. Comparison of all E versus K substituted forms of IFNL4 within a homologue yielded significant values (p = <0.001 by Two-way ANOVA). (E) MX1 gene expression measured by RT-qPCR for IFNL4 from different species encoding an E (red bars) or K (black bars) at position 154 alongside the equivalent amino acid substitutions in HsIFNL3op. Data represent the relative fold change of MX1 mRNA by RT-qPCR in cells stimulated with CM (dilution 1:4) for 24 hrs compared to HsIFNL4 wt. Data show average +/- SEM (n = 6) combined from two independent experiments. *** = <0.001; ** = <0.01 by unpaired, two-tailed Student's T test comparing 154E and 154K from each species. Numerical data used for graph construction available in **Supplementary Data File 4 sheet 3**.

227 Comparison of the spectrum of antiviral activity of HsIFNL4 E154 versus K154

228 To broaden analysis of the impact of a lysine residue compared to a glutamic
 229 acid at position 154 in HsIFNL4, antiviral assays were conducted with other human
 230 viruses that are less sensitive to exogenous IFN compared to EMCV, and on

Bamford et al., IFNL4 E154

231 different cell lines. Specifically, we used HCV infection in Huh7 cells as well as
232 infectious assays with influenza A virus (IAV) and Zika virus (ZIKV) in A549 cells
233 against single high dilutions of each IFN. As controls, we also included the less
234 active P70S and L79F HsIFNλ4 variants alongside HsIFNλ3op in these assays.
235 Using the HCVcc infectious system in Huh7 cells, HsIFNλ4 K154E significantly
236 decreased both viral RNA abundance compared to wt protein and exhibited a trend
237 towards a lower number of infected viral antigen (NS5A)-positive cells (**Fig 3A**, upper
238 and lower panels respectively). Furthermore, we performed assays examining HCV
239 entry (HCV pseudoparticle system [HCVpp]), viral RNA translation and RNA
240 replication (both assessed with the HCV sub-genomic replicon system). There was
241 no significant difference in the efficiency of HCVpp infection between wt HsIFNλ4
242 and any of the three variants tested in the MLV-based pseudoparticle assay (**Fig 3B**,
243 upper panel). However, we did observe a greater inhibition when the non-HCV
244 E1E2-containing PPs were used, potentially reflecting the higher efficiency of HCVpp
245 entry compared to non-glycoprotein-containing retroviral PPs that could saturate an
246 inhibitory response (**Fig 3B**, lower panel). wt HsIFNλ4 reduced HCV RNA replication
247 compared to EGFP and introducing the K154E mutation into wt HsIFNλ4 gave a
248 further significant reduction in replication. (**Fig 3C**, upper panel). However, primary
249 translation of input viral RNA was not affected by HsIFNλ addition (**Fig 3C**, lower
250 panel). Thus, HsIFNλ4 reduces HCV RNA replication and the K154E variant exerts
251 greater potency against this stage in the virus life cycle. HsIFNλ4 K154E also
252 reduced titers of IAV and ZIKV to a greater extent than wt protein in A549 cells (~10-
253 fold; **Fig 3D and E**). Although this was only statistically significant in the context of
254 IAV, a similar trend was evident with ZIKV for the K154E variant compared to wt
255 HsIFNλ4. We found that the P70S and L79F variants consistently reduced the ability
256 of wt HsIFNλ4 to protect against infection in most assays. Taken together, our data
257 further confirmed the greater antiviral activity associated with converting a lysine
258 residue at position 154 in HsIFNλ4 to a glutamic acid residue.

Fig 3

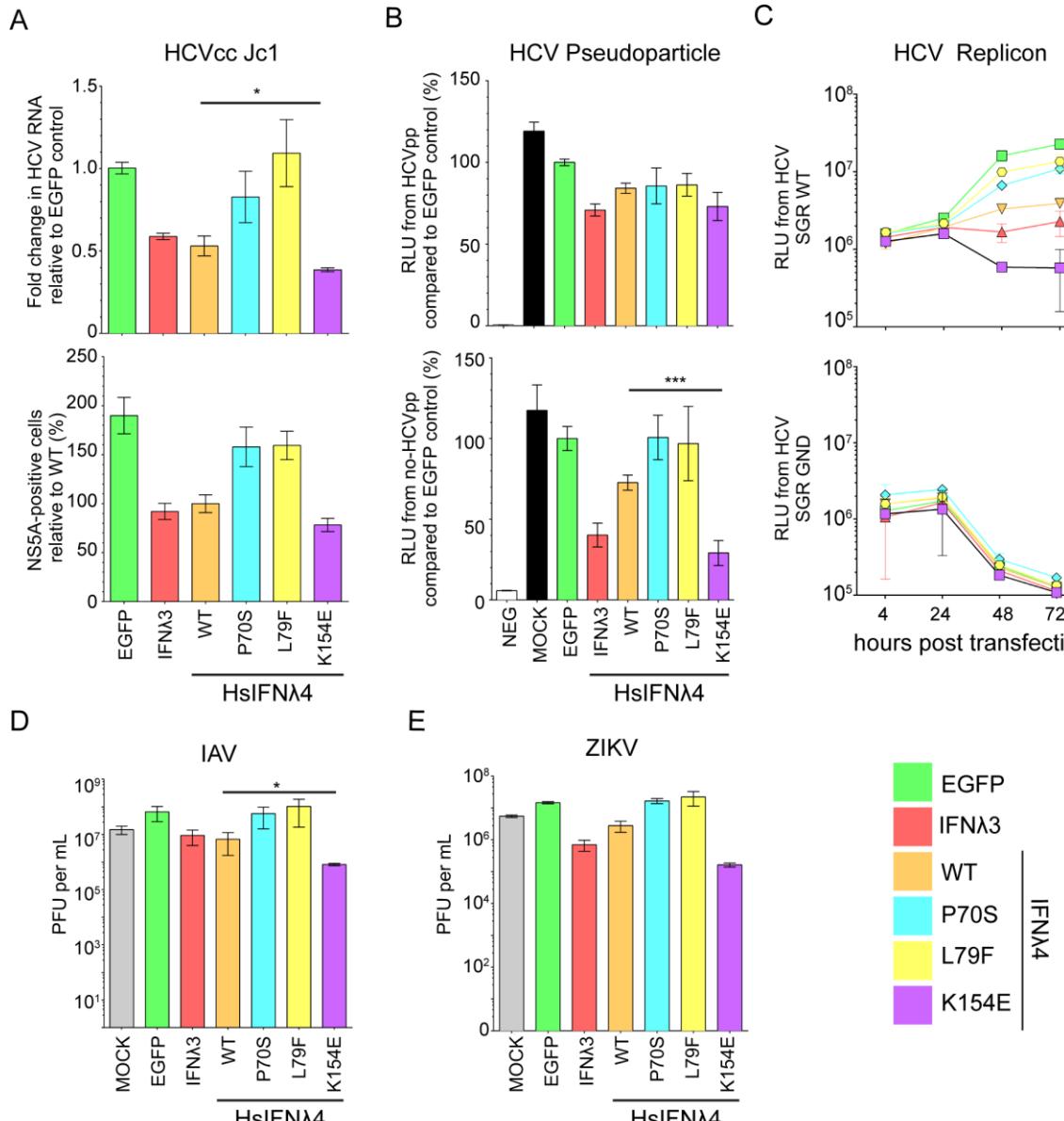
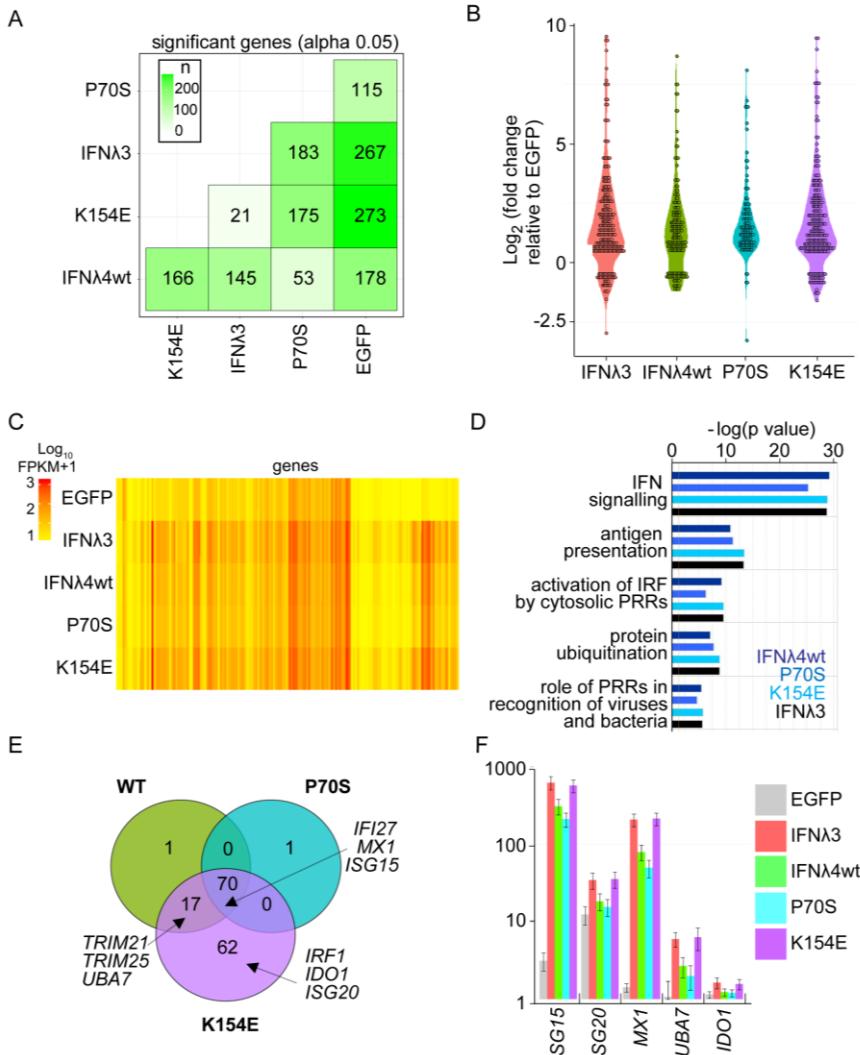


Fig 3. HsIFNλ4 K154E has greater antiviral activity compared to wt HsIFNλ4 K154


(A) Antiviral activity of HsIFNλ4 variants against HCVcc infection in Huh7 cells measured by RT-qPCR of viral RNA (upper panel) and virus antigen-positive cells (HCV NS5A protein; lower panel). HsIFNλ-containing CM (1:3) was incubated with Huh7 cells for 24 hrs before infection with HCVcc Jc1 (MOI = 0.01). HCV RNA was measured by RT-qPCR on RNA isolated at 72 hpi. Results shown are relative to infection in cells treated with EGFP CM (upper panel) or wt HsIFNλ4 (lower panel). Data show +/- SEM (n=6) combined from two independent experiments. * = <0.05 by unpaired, two-tailed Student's T test comparing wt and K154E. (B) The effect of HsIFNλ4 variants on JFH1 HCV pseudoparticle (pp) infectivity in Huh7 cells. Relative light units (RLU) in the lysate of luciferase-expressing MLV pseudoparticles following inoculation of Huh7 cells stimulated with CM (1:3), relative (%) to CM from EGFP-transfected cells. The upper panel shows data from MLV pseudoparticles containing JFH1 glycoproteins E1 and E2 while the lower panel indicates data from MLV pseudoparticles that lack E1 and E2 (MLV core particles). Luciferase activity was measured at 72 hrs after inoculation. Error bars show +/- SEM (n=6). (C) The effect of HsIFNλ4 variants on transient HCV RNA replication (upper panel) and translation (lower panel) using a subgenomic replicon assay in Huh7 cells. Huh7 cells were treated with CM (1:3) for 24 hrs before transfection with *in vitro* transcribed JFH1 HCV-SGR RNA expressing *Gaussia* luciferase; the upper and lower panels show data from wt (replication competent) and GND (non-replicative) sub-genomic replicons respectively. RLU secreted into the media was measured at 4, 24, 48 and 72 hpt. Error bars show +/- SD (n=3). Data are representative of two independent experiments. *** = <0.001 by two-way ANOVA on wt versus K154E. Comparing wt and K154E RLU at 72h by two-tailed Student's T-test gave a significant difference ** = <0.01. Antiviral activity of wt and variant HsIFNλ4 on IAV (WSN strain) (D) or ZIKV (strain PE243). (E) infection in A549 cells as determined by plaque assay of virus released from infected cells at 48 hpi for IAV or 72 hpi for ZIKV. HsIFNλ4-, HsIFNλ3- and EGFP-containing CM (1:3) was incubated with A549 cells for 24 hrs before infection with IAV strain (MOI = 0.01 PFU/cell). Supernatant was harvested and titrated on MDCK cells for IAV or Vero cells for ZIKV. Error bars show +/- SEM (n=3). * = <0.05 by unpaired, two-tailed Student's T test comparing wt and K154E. Numerical data used for graph construction available in **Supplementary Data File 4 sheet 4**.

Bamford et al., IFNL4 E154

260 Transcriptomic analysis of cells stimulated with HsIFNλ4 variants

261 The enhanced antiviral activity of HsIFNλ4 E154 against multiple viruses in
262 different cell lines suggested that this variant may differentially affect global
263 transcription of antiviral ISGs. To test this hypothesis and examine the impact of
264 HsIFNλ4 on global transcription, A549 cells were treated with wt and variant forms of
265 HsIFNλ4 that had different antiviral activities and transcriptional changes were
266 analysed by RNA-Seq at 24 hrs post stimulation (**Fig 4**). A549 cells were used
267 because they recapitulate the functional differences in HsIFNλs as observed in other
268 cell types and are widely used as a cell line model for epithelial antiviral immunity.
269 The data revealed that K154E induced the broadest profile of significantly
270 differentially-regulated genes (n=273) compared with either the wt protein (n=178) or
271 the P70S variant (n=115; **Fig 4A – C and Supplementary Data File 2**). The pattern
272 of genes induced by the positive control HsIFNλ3op and HsIFNλ4 K154E were very
273 similar (**Fig 4B and C**). From IPA pathway analysis, all HsIFNλs induced the same
274 transcriptional programmes with differences in the overall significance of these
275 pathways, most notably enhancement of the antigen presentation and protein
276 ubiquitination pathways with the K154E variant (**Fig 4D**). Many of the differentially-
277 expressed genes shared by HsIFNλ4 wt, K154E and P70S included known
278 restriction factors with antiviral activity (e.g. *IFI27*, *MX1*, *ISG15*; **Fig 4E**) although the
279 magnitude of induction was consistently greatest for HsIFNλ4 K154E (**Fig 4F**). There
280 were also several ISGs that only achieved significant induction by K154E and
281 HsIFNλ3op (e.g. *IDO1*, *IRF1* and *ISG20*; **Fig 4E and F**). We predict that the
282 apparent selectivity by IFNλ4 K154E results from the greater potency of this variant
283 compared to wt HsIFNλ4 and the P70S variant allowing genes to reach the
284 significance threshold (**Fig 4F**). Enhanced production of antiviral genes in cells
285 treated with HsIFNλ4 E154 would explain differences in antiviral activity against
286 EMCV, HCV, IAV and ZIKV.

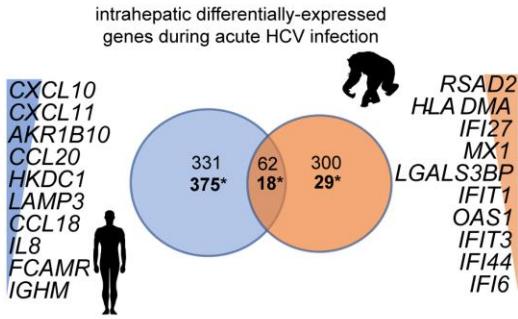
Fig 4

Fig 4. HsIFNL4 E154 induces more robust antiviral gene expression than the wt K154 variant

A549 cells were treated with CM (1:3 dilution) for 24 hours from cells transfected with plasmids expressing the different HsIFNLs and EGFP. After isolation of RNA, transcriptome analysis was carried out by RNA-Seq. (A) Total number of significantly differentially-expressed genes in each experimental condition (x-axis) relative to each other condition (y-axis). Colour shaded by differences in numbers of transcripts between sample 1 (x-axis) and sample 2 (y-axis) are shown. (B) Violin plot of all significant, differentially-expressed genes (over two-fold) (log₂ fold change for each condition compared to RNA from cells treated with EGFP). CM was obtained from cells transfected with HsIFNL3op (red); HsIFNL4 wt (green); HsIFNL4 P70S (cyan), and HsIFNL4 K154E (purple). (C) Heat map of all significantly differentially-expressed genes (over two-fold) (log₁₀ Fragments Per Kilobase of transcript per Million mapped reads (FKPM) in each experimental condition including EGFP CM-stimulated cells. Genes shown as columns and values are not normalised to negative control. (D) Pathway analysis using IPA on all significantly differentially-expressed genes (>2 fold) for each variant compared to EGFP. The top five most significantly induced pathways are shown [-log(p value)]. (E) Comparison of differentially-expressed genes (significant and at least 2-fold difference) stimulated by the HsIFNL4 variants (HsIFNL4 wt in green, HsIFNL4 P70S in cyan and HsIFNL4 K154E in purple) illustrated by a Venn diagram showing shared and unique genes. Three examples in overlapping and unique areas of the Venn diagram are highlighted. (F) Raw gene expression values (FKPM+1) for representative genes from core, shared and K154E-'specific' groups for the different treatments. Data are shown as mean +/- SD (n=3). Exemplary genes selected were: *ISG15* and *MX1* (core), *UBA7* (not significantly induced by P70S), and *ISG20* and *IDO1* (apparently specific for K154E). All transcriptomic analysis and gene lists are available in **Supplementary Data File 2**.

288 Comparison of human and chimpanzee intrahepatic gene expression during HCV
 289 infection

290 Direct *in vivo* validation of our transcriptomic findings alone on the enhanced
 291 activity of the K154E variant would require liver biopsy samples from either HCV-


Bamford et al., IFNL4 E154

292 infected Pygmies or chimpanzees combined with equivalent samples from infected
293 humans encoding wt HsIFNλ4. This was not possible since such tissue samples are
294 not available from the Pygmy population infected with HCV and biopsies from
295 acutely infected individuals are exceptionally rare. Moreover, chimpanzees are no
296 longer used for experimental studies for ethical reasons. Therefore, we compared
297 lists of reported differentially-expressed genes during acute HCV infection in humans
298 and chimpanzees from the available literature. In the case of humans, there is only
299 one report that analyses the transcriptional response in acute infection (31). For
300 chimpanzees, gene expression analysis is available from four independent studies
301 (32–35) which include longitudinal data from serial biopsies. Therefore, all of the
302 data was collated and we focused our comparisons on periods when human and
303 chimpanzee biopsies were taken across the same time period after initial HCV
304 infection (between 8 and 20 weeks post infection).

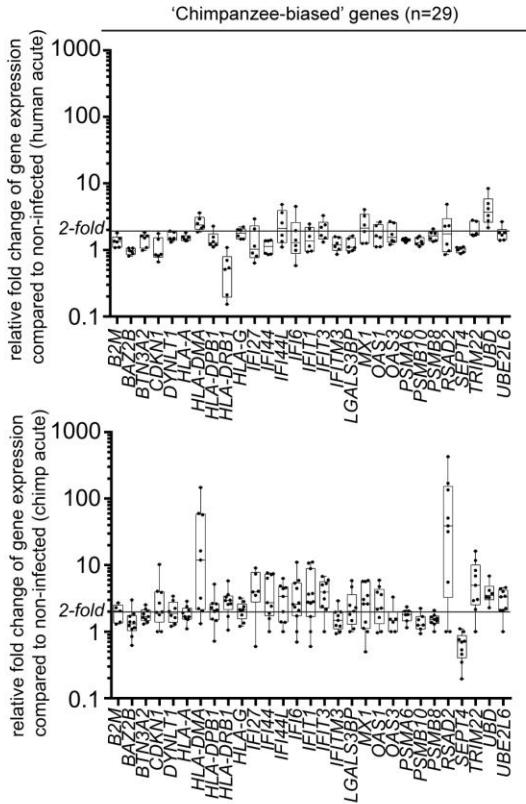

Bamford et al., IFNL4 E154

Fig 5

A

B

C

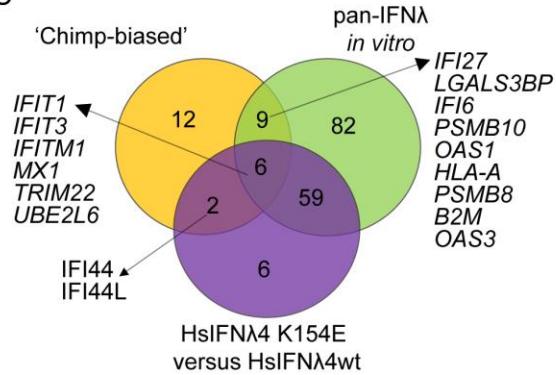


Fig 5. Chimpanzees induce greater levels of antiviral ISG expression during HCV infection *in vivo*

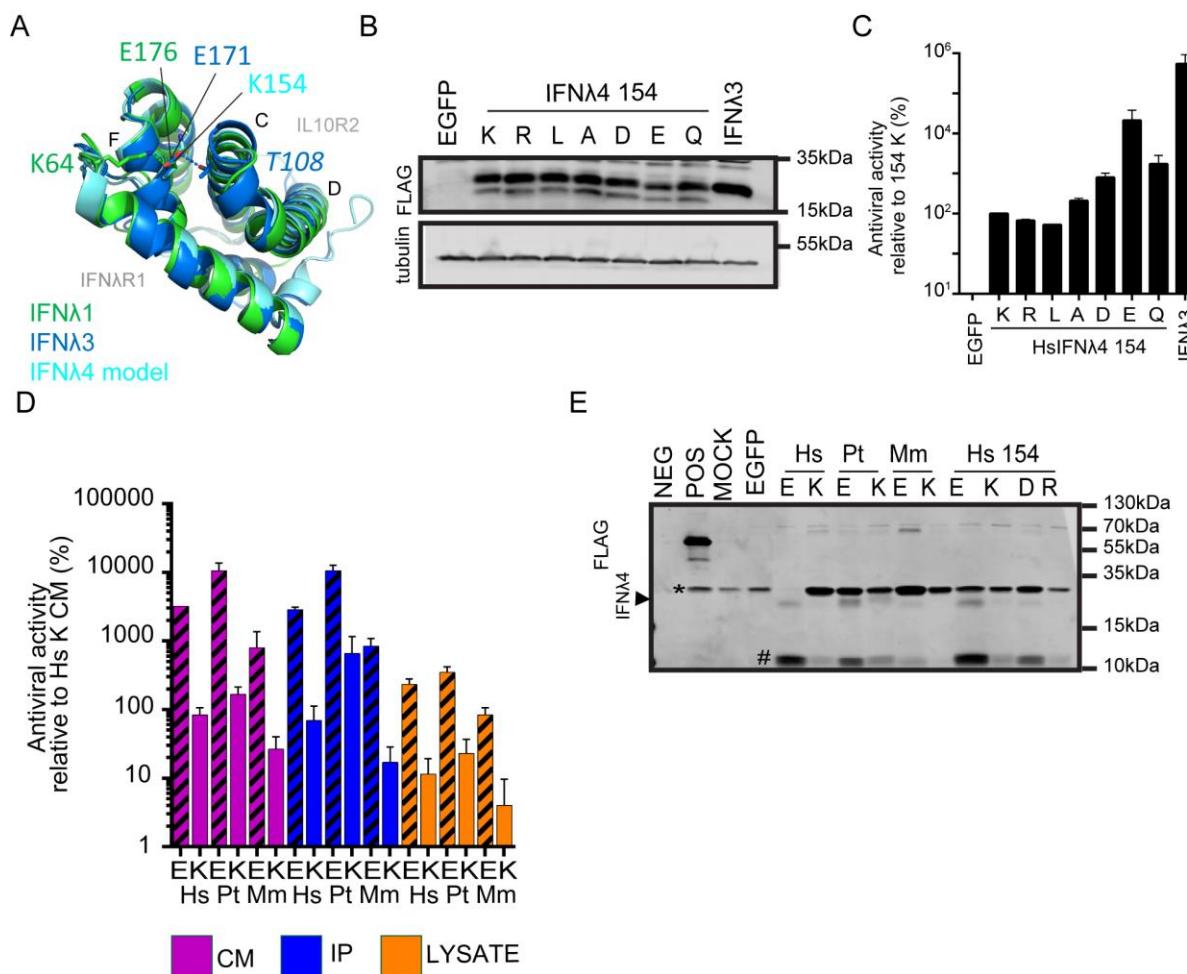
(A) Numbers of shared and unique differentially-expressed genes in liver biopsies from HCV-infected humans (blue) and experimentally-infected chimpanzees (orange) during the acute phase of infection represented as a Venn diagram (also see Supplementary Data File 1). Gene expression during a time period of between 8 and 20 weeks was used where comparable published data for both species exists. The top ten species-specific, differentially-expressed genes are shown ranked by levels of expression. Two sets of values for each comparison are shown; above shows the total differentially-expressed genes from at least one study while * highlights the value relating to the 'core' chimpanzee analysis that considered only the genes differentially-expressed in at least two studies of chimpanzee acute HCV infection. (B) Fold change of expression compared to controls (two uninfected individuals) for the 29 chimp-biased genes in humans (upper) and chimpanzees (lower) shown as box plot and whiskers. Data are shown as box and whiskers to indicate median and range. Each value is illustrated by a black circle. The chimpanzee values represent an average of all fold changes for each chimpanzee over the time period. (C) Venn diagram analysis comparing the 29 chimpanzee-biased genes to the RNA-Seq data for all IFNs (GFP versus IFN) and for HsIFNA4 K154E versus wt specifically. Illustrative gene names are shown as examples. All data are available in **Supplementary Data File 2**.

305

306 Comparative gene expression analysis revealed distinct host responses in
 307 humans and chimpanzees as well as overlapping differentially-regulated genes (**Fig**
 308 **5A and Supplementary Data File 3**). In chimpanzees, the transcriptional profile
 309 contained significantly expressed genes that were type I/III IFN-regulated ISGs
 310 known to restrict HCV infection (*RSAD2*, *IFI27* and *IFIT1*) (2), as well as genes
 311 involved in antigen presentation and adaptive immunity (*HLA-DMA* and *PSMA6*).
 312 These genes were not significantly differentially expressed in humans, whose
 313 response was mainly directed towards up-regulation of pro-inflammatory genes (for
 314 example, *CXCL10*, *CCL18* and *CCL5*) and metabolism genes (*AKR1B10* and
 315 *HKDC1*) (**Fig 5A and Supplementary Data File 3**). This was consistent with
 316 previous characterisation of the human acute response to HCV infection that failed to

Bamford et al., IFNL4 E154

317 detect a major type I/III IFN signature but predominantly found a type II or IFN-
318 gamma-mediated response (31). From the available longitudinal data, the
319 'chimpanzee-biased' differentially-expressed genes were induced early in infection
320 and remained significantly up-regulated during the acute phase following an early
321 peak after infection (**S6 Fig A and B**). Differences were also reflected in pathway
322 analysis in terms of the most significant pathways and their overall levels of
323 significance (**Supplementary Data File 3**). For example, the 'chemokine-mediated
324 signalling pathway' was upregulated in humans but not chimpanzees whereas the T
325 cell receptor signalling pathway which was modulated in chimpanzees was not
326 significantly altered in humans. Inspection of the raw data from humans indicated
327 that many apparently 'chimp-biased genes' were expressed but did not reach
328 significance in the original study. These genes were typically induced at a lower level
329 in the human group when compared to averaged values for chimp studies across the
330 similar time period (**Fig 5B**). Furthermore, there was a greater induction of antiviral
331 ISGs in chimpanzees during chronic infection in comparison to humans although to a
332 less pronounced effect (**S6 Fig C**).


333 From examining the *in vivo* biopsy data, we identified a group of 29
334 chimpanzee-biased genes in liver biopsies that were up-regulated during acute
335 infection to a greater extent compared to humans. Comparing this set of genes to
336 those from the RNA-Seq transcriptomic data obtained *in vitro* (**Fig 4**) showed that the
337 majority (17/29 genes) of the chimpanzee-biased genes were induced by HsIFNλ4
338 stimulation, with approximately half (8 genes) of those being significantly up-
339 regulated to a great extent with K154E compared to wt, including *MX1*, *IFITM1*,
340 *IFIT1*, *IFIT3*, *TRIM22* and *IFI44L* (**Fig 5C**). Thus, there are similarities between our *in*
341 *vitro* analysis and published *in vivo* studies that would correlate with differences in
342 IFNλ4 activity between humans and chimpanzees.

343
344 Mechanism of action for the enhanced activity of the HsIFNλ4 E154 variant
345

Bamford et al., IFNL4 E154

Having established the greater antiviral potential for the E154 IFNL4 variant and its apparent evolutionary relevance, we set out to determine the possible basis for its enhanced activity. No crystal structure for HsIFNL4 is available but a homology model based on comparison with the IFNL3 structure has been reported (24). We expanded this predicted model based on both of the IFNL1 and IFNL3 crystal structures to explore the possible impact of K154E, P70S and L79F on IFNL4 function (**Fig 6A and S8 Fig**; (36,37)). As has been previously described, the sequences in helix F, which binds to IFNLR1, are relatively well conserved (18,24). The position equivalent to amino acid 154 in IFNL4 is a glutamic acid in both IFNL1 and IFNL3 (amino acid position 176 in IFNL1 and 171 in IFNL3) and its side chain faces inward towards the opposing IL10R2-binding helices C and D (**Fig 6A**). The free carboxyl group of glutamic acid forms non-covalent intramolecular interactions with two non-linear segments on IFNL1 and 3 (IFNL1 residue K64, and in IFNL3 K67 and T108). In IFNL4, these E154-interacting positions are not conserved compared to IFNL1/3 although homologous positions do exist with biochemically similar residues (IFNL4 R60, and R98 that lies just upstream of the residue homologous to IFNL3 T108).

Fig 6

Bamford et al., IFNL4 E154

363 To test whether the biochemical properties of glutamic acid at position 154
364 contribute to IFNL4 activity, a panel of variants was constructed with biochemically
365 distinct amino acids (R154, L154, A154, D154 and Q154). Firstly, intracellular
366 expression of each variant at position 154 was approximately equivalent (**Fig 6B**). In
367 signalling assays, the order of activity was E>Q/D>A>L>K>R (**S7 Fig A**). We found a
368 similar pattern in the EMCV antiviral assays except that L154 had the least activity
369 (**Fig 6C**). We interpret these findings to conclude that E154 is biochemically the most
370 favoured residue at this position with regards to antiviral potential, and that
371 substitution of E154 to lysine results in the lowest potency for IFNL4 activity.
372 Interestingly, both Q154 and D154 had 'intermediate' activity compared to E154 and
373 K154, suggesting that side chain length and negative charge are important to
374 maximise the activity of IFNL4.

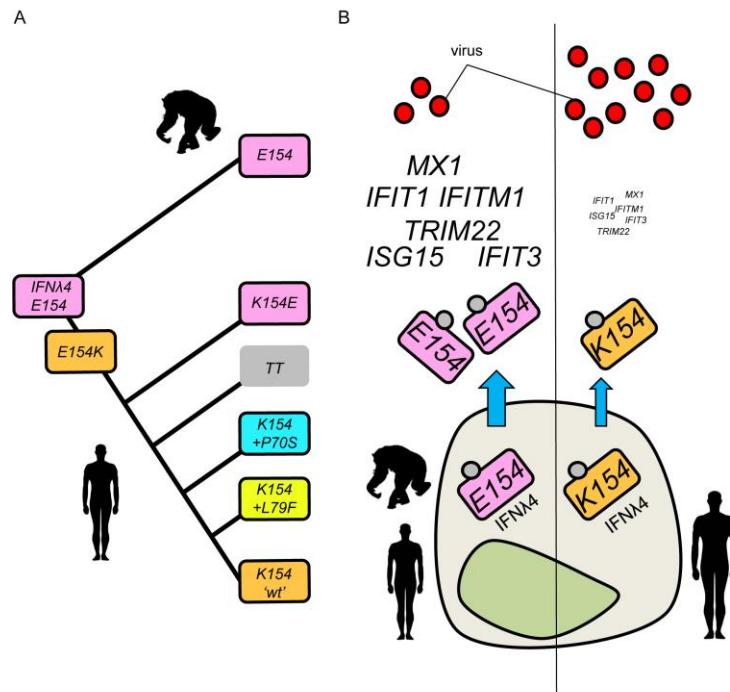
375 In a final series of experiments aimed at giving further insight into the mechanism of action of IFNL4 K154E, we compared the relative activities and
376 abundance of different IFNL4 variants in cell lysates (i.e. intracellular protein) and
377 supernatants (i.e. extracellular protein). As wt HsIFNL4 is poorly secreted into the
378 supernatant from transfected cells in the absence of enrichment (24,38) IFNL4 in CM
379 was immunoprecipitated using an anti-FLAG antibody. In antiviral assays, the activity
380 of human, chimpanzee and macaque E154 variants from cell supernatants, IP
381 fractions and lysates was greater than the corresponding K154 variants in
382 agreement with our earlier results (**Fig 6D and Fig 2C-E**). Moreover, the D154 and
383 R154 variants yielded patterns for cell lysates, cell supernatants and
384 immunoprecipitated IFNL4 protein such that D154 had intermediate activity between
385 E154 and K154 while R154 had approximately equivalent activity to K154 (**S6 Fig**
386 **B**). Thus, each variant displayed a similar pattern of activity irrespective of the
387 source of IFNL4. From Western blot analysis, the E154 and K154 variants for each
388 individual species were detected at similar levels in cell lysates (**S6 Fig E**). The
389 HsIFNL4 D154 and R154 variants were expressed to slightly higher and lower levels
390 respectively compared to E154 and K154 from humans. Paradoxically, we did not
391 find the same pattern in IFNL4 abundance for immunoprecipitated protein. Thus, we
392 were able to detect greater amounts of the E154 variants for human, chimpanzee
393

Fig 6. Mechanism of action of the IFNL4 K154E variant

(A) Modelled structure of HsIFNL4 showing position 154 at a central location in the molecule with reference to receptor subunit-binding interfaces (IFNAR1 and IL10R2). Overlapping crystal structures for HsIFNA1 (green) and HsIFNA3 (dark blue) are overlaid together with a homology model for HsIFNL4 (light blue). In the overlapping structures, the homologous positions for HsIFNL4 E154 (E176, IFNA1; E171, IFNA3) make intramolecular non-covalent interactions with two distinct regions within IFNL. (B) Detection of intracellular IFNL4 154 mutants (K, R, L, A, D, E and Q) by Western blot analysis of lysates from plasmid-transfected producer HEK293T cells. The IFNL4 variants were detected with an anti-FLAG antibody. Tubulin was used as a loading control. (C) Antiviral activity of HsIFNL4 IFNL4 154 mutants (K, R, L, A, D, E and Q) in an anti-EMCV CPE assay relative to CM from wt HsIFNL4 (K154 variant) in HepaRG cells. Data show mean +/- SEM combined from three independent experiments. (D) Antiviral activity of IFNL4 found in CM, intracellular lysate and immunoprecipitated CM from the different species indicated (human [Hs], chimpanzee [Pt] and macaque [Mm]) encoding an E or K at position 154 in an anti-EMCV CPE assay relative to CM from wt HsIFNL4 in HepaRG cells. Data show mean +/- SEM from two independent experiments. (E) Detection of extracellular IFNL4 from different species as well as select mutants at position 154 (E, K, D and R) by Western blot analysis of samples of FLAG-tag immunoprecipitated CM (1 ml) from plasmid-transfected producer HEK293T cells. A BAP-FLAG fusion protein was used an immunoprecipitation control (POS). The IFNL4 variants were detected with an anti-FLAG antibody. A FLAG-positive lower molecular weight product, which is potentially a degradation product is highlighted with a #. An upper band running near to the IFN is shown (*) which is likely antibody fragments from the immunoprecipitation reaction. Blot is representative of three independent experiments. Numerical data used for graph construction is available in **Supplementary Data File 4 sheet 5**.

Bamford et al., IFNL4 E154

394 and macaque IFNL4 compared to their K154 variants (**Fig 6E**). It was not possible to
395 reliably detect macaque K154 or human R154 variants. HsIFNL4 D154 had levels
396 intermediate between the E154 and K154 variants. Quantitatively, the relative
397 abundance of IFNL4 E154 and K154 variants in cell lysates for any species differed
398 by 1.3 fold yet the approximate fold increase in antiviral activities were significantly
399 greater and on average 16-fold. For the secreted IFNL4 variants, we found that not
400 only was there a higher abundance of E154 to K154 protein (9-fold), but activity was
401 41-fold higher for E154 than K154 variants, which results in a significant 3 to 4-fold
402 rise in antiviral activity not explained by protein abundance. With the exception of
403 macaque K154, the FLAG antibody detected a putative breakdown product of about
404 11kDa in each of the samples, which we presume arose from cleavage by an
405 unknown intracellular protease as it was also detected in cell lysates. The amount of
406 this lower molecular weight product follows the same pattern as the full-length
407 protein in that there is more with E154 than K154 thus cleavage does not explain
408 differences in antiviral activity. Therefore, we conclude that glutamic acid at position
409 154 promotes greater antiviral potential by enhancing both IFNL4 secretion from the
410 cell and – to a lesser extent - its intrinsic potency.


411

412 Discussion

413 In this study we have identified further functional variants of human and non-
414 human IFNL4 that expand the spectrum of its activity. By comparing IFNL4 from
415 different species we demonstrate that the genus *Homo* evolved an IFNL4 gene with
416 attenuated activity (prior to the TT allele), and that the vast majority of extant humans
417 carry an IFNL4 variant with lower antiviral potential due to a mutation of a single
418 highly-conserved amino acid residue (E154K). Human African hunter-gatherer
419 Pygmies and chimpanzees encode a more active IFNL4 (E154). We speculate that
420 position 154 in IFNL4 plays a key role in intramolecular interactions that may
421 facilitate stabilisation of the protein thereby influencing its signalling potential and
422 antiviral activity (**S9 Fig**).

Bamford et al., IFNL4 E154

S9 Fig

S9 Fig. Evolution and functional impact of variation at position 154 of IFNL4

(A) Inferred evolution of position 154 in humans and chimpanzees. The last common ancestor of humans and chimpanzees encoded the highly-conserved glutamic acid (E) at position 154 (purple). E154 was retained in chimpanzees but sequentially modified in the genus *Homo*, which includes humans. *Homo* IFNA4 was first modified by substitution of E154 to lysine (K) (orange) and subsequent emergence of the frameshift TT allele (grey) or by the introduction of other substitutions (P70S [blue] or L79F [yellow]). IFNA4 in humans with only the E154K change remains in the population and is considered wild-type ('wt'). (B) Impact of E and K encoded at position 154 in IFNL4 on antiviral activity. Both IFNL4 E154 (purple) and K154 (orange) are produced and glycosylated (grey circle) to similar levels inside the cell but IFNL4 E154 is secreted more efficiently compared to IFNL4 K154 (highlighted by blue arrows). Moreover, IFNL4 E154 is also more potent than IFNL4 K154. Subsequently, IFNL4 E154 induces more robust interferon stimulated gene (ISG) expression (for example: ISG15, IFIT1, MX1) in target cells, leading to greater antiviral activity.

423

424

425 Implications of the E154K substitution for IFNL4 426 evolution

427 Our analysis suggests that the *Homo* IFNL4
428 orthologue acquired the E154K substitution,
429 yielding a less active protein, after the genetic
430 divergence of the hominid *Homo* and *Pan* ancestral
431 lineages (estimated to be at most 6 million years
432 ago in Africa (39)) but before human/Neanderthal
433 divergence (~370,000 years ago, (40)). Subsequently, the *IFNL4* gene acquired two
434 further variants, the P70S and TT alleles that are now common in the human
435 population (18). Acquisition of each of these alleles either further reduced (P70S) or
436 abolished (TT) IFNL4 activity. Other rare variants have arisen in humans with little
437 impact on HsIFNL4 antiviral potential based on our *in vitro* assays, except for
438 variants L79F and K154E, which lower and increase activity respectively. To us, the
439 most intriguing of these variants is K154E, which was found only in rainforest
440 'Pygmy' hunter-gatherers from west central Africa (28). Since this variant was not
441 present in the genetic data for San and Archaic Neanderthal and Denisovan human
442 lineages, we speculate that Pygmy populations likely reacquired K154E following
443 divergence of chimpanzees and humans. However, with the ever-increasing
444 availability of genetic data from ancient and extant human populations, it may be
445 possible to identify other populations carrying the E154 variant.

446 The factors responsible for divergent functional evolution of the *IFNL4* gene
447 within and between species are not known. It has been demonstrated that loss of

Bamford et al., IFNL4 E154

448 *IFNL4* has evolved under positive selection in some human populations thus we
449 speculate that differences in exposure to certain pathogenic microbes has driven
450 evolution of the E154 variant. On the one hand, type III IFN signalling enhances
451 disease and impedes bacterial clearance in mouse models of bacterial pneumonia
452 (41). This suggests that IFNλ4 with a lower activity could be beneficial during non-
453 viral infections although a link between *IFNL4* genotype and bacterial infection in
454 humans has not yet been made. Conversely, we postulate that the presence of more
455 active IFNλ4 exemplified by E154 in Pygmies and chimpanzees may be linked to
456 increased exposure to zoonotic viral infections in the Congo rainforest, such as
457 pathogenic Filovirus infections (42).

458

459 The impact of IFNλ4 functional differences on virus infection

460 For decades, experimental studies in chimpanzees have provided unique
461 insight into HCV infection (43) but they do not present with identical clinical
462 outcomes as human subjects. For example, chimpanzees have been reported to
463 clear HCV infection more efficiently than humans (44), rarely develop hepatic
464 diseases similar to humans (45), and are refractory to IFN α therapy (46). Moreover,
465 HCV evolves more slowly in infected chimpanzees, possibly due to a stronger
466 immune pressure that reduces replication compared to humans (47). In humans,
467 *IFNL4* genetic variants are associated with, and thought to regulate, each of these
468 characteristics (18,48,49). Although a myriad of factors could explain these
469 phenotypic differences, including differences in antagonism of the immune response
470 by HCV, we propose that the greater antiviral activity of PtIFNλ4 compared to
471 HsIFNλ4 contributes to the distinct responses to HCV infection in the two species.

472 Acute HCV infection in human cells *in vitro* and chimpanzees *in vivo*
473 selectively stimulates type III over type I IFNs, which are effective at signalling in
474 hepatocytes (50,51). Notably, there is no apparent type I/III IFN gene expression
475 signature in liver biopsies from humans with acute HCV infection (31). Differences in
476 IFN signalling during HCV infection have been postulated to explain the ability to
477 control HCV infection in cell culture or following IFN-based therapy in humans
478 (52,53). Our comparative meta-analysis of the available literature revealed enhanced
479 expression of ISGs with anti-HCV activity as well as genes involved in antigen
480 presentation and T cell mediated immunity in chimpanzees compared to humans.
481 Thus, enhanced expression of ISGs in chimpanzee liver due to higher IFNλ4 activity
482 could lead to greater control of viral infection by both inducing antiviral inhibitors and
483 by coordinating a more effective adaptive T cell response, which is critical for
484 clearance and pathogenesis during HCV infection (54).

485 We would predict that the response to HCV infection in chimpanzees may be
486 similar in Pygmies with the K154E variant. A recent study in Pygmies from
487 Cameroon, including the Baka and Bakola groups, showed low seroprevalence of
488 0.6% and no evidence of chronic HCV infection (55). Interestingly, infection in non-
489 Pygmy groups in Cameroon has a seroprevalence of ~17% (56). One explanation for
490 this difference could be higher IFNλ4 activity in populations with the K154E variant,
491 which may enhance HCV clearance.

Bamford et al., IFNL4 E154

492

493 How might IFNL4 E154K reduce antiviral activity?

494 In our study of three primate orthologues, glutamic acid at position 154 in
495 IFNL4 provided greater antiviral activity and enhanced its ability to induce antiviral
496 gene expression. A functional comparison of human and chimpanzee IFNL4
497 orthologues has been explored previously but no significant differences in signalling
498 activity were observed (30). There are substantial differences in the methodologies
499 used in our study and that of Paquin *et al.*, which could explain our ability to detect
500 divergent activity, for example size of tag attached to IFNL4 and dose of protein used
501 in assays.

502 Our observed functional differences between E154 and K154 did not correlate
503 with levels of intracellular accumulation or glycosylation. However, we did find that
504 the more active E154 variants for human, chimpanzee and macaque IFNL4 were
505 detected at higher levels in the immunoprecipitated fractions from cell supernatant
506 (CM) compared to the K154 variants; the D154 and R154 variants also were
507 detected at a lower level than E154. Interestingly, wt HsIFNL4 with K154 is not
508 secreted efficiently compared to wt HsIFNA3 (24,38). This was not due to differences
509 in the signal peptide of HsIFNL4 or HsIFNA3 but HsIFNL4 secretion could be ablated
510 if the single N-linked glycosylation site was mutated (24). Our data suggest that
511 position 154 could further regulate IFNL4 secretion. Aside from the changes in
512 secretion we find evidence that IFNL4s with E154 are more potent than those with
513 K154 when correcting for the difference in amounts of protein. This increase in
514 potency for E154 was detected in both IP protein and lysates. Moreover, we
515 observed that the difference between E and K is greater in the CM or IP fractions
516 than the cell lysate. The reason for this discrepancy could be explained by a number
517 of factors that are outside of the scope of this study. Based on our modelling of the
518 IFNL4 structure and further mutational analysis, glutamic acid is apparently the
519 optimal residue at position 154.

520 At the biochemical level, glutamic acid has the capacity to form electrostatic
521 bonds with charged residues in the IFNL4 protein and moreover it possesses a side
522 chain which could contribute greater flexibility for such interactions. Notably,
523 replacing glutamic acid with either aspartic acid or glutamine gave higher IFNL4
524 activity than either non-polar or positively-charged residues. These potential E154-
525 mediated interactions occur in the region of the protein devoid of cysteine-bonds
526 likely making the interaction between helix F (IFNL4R1-binding) and the loop
527 connecting helices C and D (IL-10-R2-binding) particularly flexible. The putative
528 greater structural stability facilitated by E154 may inherently increase the structural
529 integrity of IFNL4 making this variant more competent for secretion and more potent
530 in signalling through the IFNL4R1-IL10R2 surface receptor complex. Increased
531 binding to IFN receptor complexes has been shown to enhance signalling by type I
532 IFNs (57,58). Further biophysical studies using highly-purified recombinant protein
533 measuring affinity and avidity of HsIFNL4 wt and K154E for each receptor molecule
534 (as in 27,37) combined with studies on the mechanism of IFNL4 release will help
535 address these hypotheses.

Bamford et al., IFNL4 E154

536 To conclude, our study further supports a significant and non-redundant role
537 for IFNL4 in controlling the host response to viral infections yet one whose activity
538 has been repeatedly attenuated during human evolution, commencing with E154K,
539 with the exception of particular African hunter-gatherer groups. Taken together, this
540 provides the foundation for more detailed investigation into the mechanism of action
541 of IFNL4 and its overall contribution to host immunity in regulating pathogen
542 infection.

543

544 **AUTHOR CONTRIBUTIONS**

545 CGGB, EAC and JMcL designed the experiments. CGGB, EAC, ICF, SS and
546 DM conducted the experiments. CGGB, EAC, SS, AdSF, JLM, KCG, SF and ST
547 provided and analyzed data. CGGB and JMcL composed the manuscript. All authors
548 critically reviewed the manuscript.

549

550 **ACKNOWLEDGEMENTS**

551 We are grateful to: Chris Boutell, Richard Elliott and Alain Kohl for IAV, EMCV
552 and ZIKV respectively; Takaji Wakita, Ralf Bartenschlager and Arvind Patel for HCV
553 reagents; Sam Wilson and Carol McWilliam Leitch for critically reading the
554 manuscript. SF and ST were supported by NIH grants 1R01DK104339-0 and
555 1R01GM113657-01. This work was funded by the UK Medical Research Council
556 (MC_UU_12014/1).

557 **Materials and Methods**

558 **IFNL gene sequence analysis**

559 All available human *IFNL4* genetic variation along with associated frequency
560 and ethnicity data for the human population were collected from the 1000
561 Genomes database available at the time of study (June 2016) (23)
562 (<http://browser.1000genomes.org/index.html>). The reference sequence for the
563 human genome contains the frameshift 'TT' allele and so potential effects of variants
564 on the HsIFNλ4 predicted amino acid sequence were identified manually following
565 correction for the frameshift mutation (TT to ΔG). The effect of all single nucleotide
566 polymorphisms (SNPs) on the open reading frame (ORF) was thus assessed and re-
567 annotated as synonymous or non-synonymous changes resulting in the selection of
568 coding variants reported here. Inspection of whole genome sequence data from
569 African hunter-gatherers was carried out using previously published datasets (28).
570 We remapped the raw reads of six San individuals (four Jul'hoan and two †Khomani
571 San) in the Simon Genomic Diversity Project (29) to the human reference genome
572 (hg19) and conducted variant calling using the haplotype caller module in GATK
573 (v3). Two Jul'hoan individuals were heterozygous at rs368234815 (TT/ΔG genotype,
574 **Supplementary Data File 2**). The genotypes of rs368234815 in Neanderthal and
575 Denisovan were extracted from VCF files that were downloaded from
576 http://cdna.eva.mpg.de/denisova/VCF/hg19_1000g/ and
577 <http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/VCF/>. Neanderthal and
578 Denisovan genetic data contained only ΔG alleles (Supplementary Data File 2).
579 Amino acid sequences for mammalian IFNλ genes were obtained from NCBI
580 following protein BLAST of the wt HsIFNλ4 polypeptide sequence. Multiple
581 alignments of IFNλ amino acid sequences were performed by MUSCLE using
582 MEGA7. Accession numbers of specific IFNλs used in the experimental section of
583 this study were as follows: HsIFNλ1: Q8IU54; HsIFNλ3, Q8IZI9.2; and for IFNλ4:
584 *Homo sapiens* AFQ38559.1; *Pan troglodytes* AFY99109.1; *Macaca mulatta*
585 XP_014979310.1; *Pongo abelii* (orangutan) XP_009230852.1, *Bos taurus* (cow)
586 XP_005219183.1, *Felis catus* (cat) XP_011288250.1.

587

588 **Structural modelling**

589 The homology model of the HsIFNλ4 structure used in **Fig 6 and S8 Fig** was
590 generated using the RaptorX online server (<http://raptorg.uchicago.edu>). The
591 resultant HsIFNλ4 structural model was then structurally aligned with both HsIFNλ1
592 (PDB 3OG6) (36) and HsIFNλ3 (PDB 5T5W) (37). Visualization, structural
593 alignments, and figures were generated in Pymol (The PyMOL Molecular Graphics
594 System, Version 1.8).

595

596 **Recombinant DNA manipulation and generation of IFNλ expression plasmids**

597 DNA sequences encoding the ORFs of HsIFNλ4, PtIFNλ4 and MmIFNλ4
598 (based on accession numbers above) were synthesized commercially with a
599 carboxy-terminal DYKDDDDK/FLAG tag using GeneStrings or Gene
600 Synthesis technology (GeneArt). As a positive control for functional assays, the

Bamford et al., IFNL4 E154

601 HsIFNλ3 ORF was codon optimised (human) to ensure robust expression and
602 antiviral activity, and is termed 'HsIFNλ3op'. All IFNλ4 coding region sequences were
603 retained as the original nucleotide sequence without optimisation. Synthesized DNA
604 was cloned into the pCI mammalian expression vectors (Promega) using standard
605 molecular biology techniques. At each cloning step, the complete ORF was
606 sequenced to ensure no spurious mutations had occurred during plasmid generation
607 and manipulation. Single amino acid changes were incorporated using standard site-
608 directed mutagenesis protocols (QuickChange site-directed mutagenesis kit
609 [Agilent], or using overlapping oligonucleotides and Phusion PCR).

610

611 Cell lines

612 A549 (human lung adenocarcinoma), Huh7 (human hepatoma), HEK293T
613 (human embryonic kidney), U2OS (human osteosarcoma), Vero (African Green
614 Monkey kidney) and MDCK (Madin-Darby canine kidney) cells were grown in DMEM
615 growth media supplemented with 10% FBS and 1% penicillin-streptomycin. Non-
616 differentiated human hepatic progenitor HepaRG cells and genome-edited
617 derivatives were cultured in William's E medium supplemented with 10% of FBS, 1%
618 penicillin-streptomycin, hydrocortisone hemisuccinate (50 µM) and human insulin (4
619 µg/mL). All cells were grown at 37°C with 5% CO₂. Cell lines were routinely tested
620 for mycoplasma and no contamination was detected.

621

622 Plasmid transfection and production of functional IFNλ

623 Plasmid DNA generated from bacterial cultures (GeneJET plasmid midiprep
624 kit, ThermoScientific) was introduced into cells by lipid-based transfection using
625 Lipofectamine 2000 or Lipofectamine 3000 (ThermoFisher) following manufacturer's
626 instructions. To produce IFN-containing conditioned media (CM) or measure protein
627 production, HEK293T 'producer' cells were grown to near-confluence in 12 (~4 x 10⁵
628 cells per well) or 6-well (~1.2 x 10⁶ cells per well) plates and transfected
629 with plasmids (2 µg) in OptiMEM (1-2 ml) overnight. At approximately 16 hours (hrs)
630 post transfection (hpt), OptiMEM was removed and replaced with complete growth
631 media (1-2 ml). CM containing the extracellular IFNλs was harvested at 48 hpt and
632 stored at -20°C before use. Although antiviral activity was observed at 16 hpt, we
633 chose 48 hpt to harvest CM to ensure robust production and secretion of each IFNλ.
634 Intracellular IFNλs also were harvested from transfected cells at 48 hpt. CM was
635 removed and replaced with fresh DMEM 10% FCS (2 ml) and then frozen at -70°C.
636 To prepare cell lysates with IFNλ activity, plates were thawed and the cell monolayer
637 was scraped into the media and clarified by centrifugation (5 minutes [mins] x 300 g)
638 before use. CM or lysates were diluted in the respective growth medium for each cell
639 line before functional testing as described in the text. Two-fold serial dilutions of CM
640 were used in titration of anti-EMCV activity and ability to induce EGFP in an IFN-
641 reporter cell line. Single CM dilutions of 1:4 (HepaRG and A549) or 1:3 (Huh7) were
642 chosen based on initial experiments for gene expression and non-EMCV antiviral
643 activity measurements to allow measurement of both high and low activity variants.

644

Bamford et al., IFNL4 E154

645 FLAG-immunoprecipitation

646 Immunoprecipitation of extracellular FLAG-tagged IFNL4 present in the
647 supernatant of transfected cells was carried out using an anti-FLAG M2 antibody-
648 bound gel as described by the manufacturer's guidelines (Sigma Aldrich).
649 Immunoprecipitated IFNs were used in activity assays and for Western blot analysis.
650 Briefly, resin with anti-FLAG antibody (40 µl) and supernatants (1 ml) were thawed
651 on ice. Beads were washed repeatedly in ice cold buffer before being incubated with
652 IFNs in CM for 2 hrs at 4°C while rocking. Bead-bound IFN was pelleted by
653 centrifugation, washed and eluted with FLAG peptide (100 µl). Positive and negative
654 controls were 'BAP-FLAG' and buffer only, respectively. Centrifugation conditions
655 were 8,200 x g for 30 sec at 4°C. One quarter (25 µl) of total immunoprecipitated
656 protein was loaded onto gels for Western blot analysis.

657

658 Relative quantification of RNA by reverse transcriptase-quantitative polymerase
659 chain reaction (RT-qPCR)

660 Total cellular RNA was isolated by column-based guanidine thiocyanate
661 extraction using RNeasy Plus Mini Kit (genomic DNA removal 'plus' kit, Qiagen)
662 according to the supplier's protocol. cDNA was synthesised by reverse transcribing
663 RNA (1 µg) using random primers and the AccuScript High Fidelity Reverse
664 Transcriptase kit (Agilent Technologies); the recommended protocol was followed.
665 Relative expression of mRNA was quantified by qPCR (7500 Real-Time PCR
666 System, Applied Biosystems) of amplified cDNA. Probes for *ISG15* (Hs01921425),
667 *Mx1* (Hs00895608) and the control *GAPDH* (402869) were used with TaqMan Fast
668 Universal PCR Master Mix (Applied Biosystems). The results were normalised to
669 *GAPDH* and presented in $2^{-\Delta\Delta Ct}$ values relative to controls as described in the
670 text. HCV genomic RNA was quantified by RT-qPCR as described previously (59).

671

672 Global transcriptomic measurements and pathway analysis

673 IFN-competent cells (A549) were stimulated with IFN CM (1:4 dilution) in 6-
674 well plates ($\sim 1.2 \times 10^6$ cells) for 24 hrs and global gene expression was assessed by
675 RNA-Seq, using three biological replicates per condition. Sample RNA concentration
676 was measured with a Qubit Fluorometer (Life Technologies) and RNA integrity (RIN)
677 was determined using an Agilent 4200 TapeStation. All samples had a RIN value of
678 9 or above. 1.5 µg of total RNA from each sample was prepared for sequencing
679 using an Illumina TruSeq Stranded mRNA HT kit according to the manufacturer's
680 instructions. Briefly, polyadenylated RNA molecules were captured, followed by
681 fragmentation. RNA fragments were reverse transcribed and converted to dsDNA,
682 end-repaired, A-tailed, ligated to indexed adaptors and amplified by PCR. Libraries
683 were pooled in equimolar concentrations and sequenced in an Illumina NextSeq 500
684 sequencer using a high output cartridge, generating approximately 25 million reads
685 per sample, with a read length of 75 bp. 96.3% of the reads had a Q score of 30 or
686 above. Data was de-multiplexed and fastq files were generated on a bio-linux server
687 using bcl2fastq version v2.16. RNA-Seq analysis was performed using the Tuxedo
688 protocol (60). Briefly, reads from 3 replicates per condition were aligned and

Bamford et al., IFNL4 E154

689 junctions mapped against the human reference transcriptome hg38 using Tophat2
690 with the default settings except library type. Transcriptome assembly was performed
691 using Cufflinks supplying annotations from the reference genome hg38 and the
692 differential gene expression was calculated using Cuffdiff. Differential gene
693 expression was considered significant when the observed fold change was ≥ 2.0 and
694 FDR/q-value was < 0.05 between comparisons. Pathway analysis was carried out
695 using Ingenuity Pathway Analysis [IPA] (Ingenuity Systems, Redwood City, CA,
696 USA).

697

698 Western blot analysis

699 Cell growth media was removed and monolayers were rinsed once with
700 approximately 0.5 ml PBS before lysis using RIPA buffer (ThermoFisher)
701 containing protease inhibitor cocktail (1x Halt Protease inhibitor cocktail,
702 ThermoFisher, or cComplete™, Mini, EDTA-free Protease Inhibitor Cocktail, Sigma
703 Aldrich) for 10 mins at 4°C before being frozen at -20°C overnight. Lysates were
704 collected into a 1.5 ml sample tube and clarified by centrifugation (12,000 x g for 15
705 mins). Samples (10 μ l) from the soluble fraction were heated to 90°C for 10 mins
706 with 100 mM dithiothreitol (DTT)-containing reducing lane marker at 90°C for 10
707 mins. Samples were run on home-made 12% SDS-PAGE gels alongside molecular
708 weight markers (Pierce Lane marker, ThermoFisher) before wet-transfer to
709 nitrocellulose membrane. Membranes were blocked using a solution of 50% PBS
710 and 50% FBS for 1 hr at room temperature and then incubated overnight at 4°C with
711 primary antibodies in 50% PBS, 50% FBS and 0.1% TWEEN
712 20. Secondary antibodies were incubated in 50% PBS, 50% FBS and 0.1% TWEEN
713 20 for 1 hr at room temperature. Membranes were washed four times (5 mins each)
714 following each antibody incubation with PBS containing 0.1% TWEEN 20. After the
715 4th wash following incubation with the secondary antibody, the membrane was
716 washed once more in PBS (5 mins) and kept in ddH₂O until imaging. Primary
717 antibodies to the FLAG tag (1:1000) (rabbit, lot. 064M4757V, LiCor) and α -
718 tubulin (1:10000) (mouse, lot. GR252006-1, LiCor) were used along with infra-red
719 secondary antibodies (LI-COR) to anti-rabbit (donkey [1:10,000], 926-68073) and
720 anti-mouse (donkey [1:10,000], C50422-05) to allow protein visualisation. Pre-
721 stained, Pageruler Plus marker was used to determine molecular weights
722 (ThermoFisher). Membranes were visualised using the LI-COR system on an
723 Odyssey CLX and the relative expression level of proteins determined using LI-COR
724 software (Image Studio).

725

726 Generation and use of IFN reporter cell lines

727 An IFN reporter HepaRG cell line was generated to measure IFN activity by
728 introducing the EGFP ORF fused to the ISG15 ORF separated by ribosome skipping
729 sites by CRISPR-Cas9 genome editing. We chose to introduce EGFP in-frame to the
730 N-terminus of the *ISG15* ORF since it is a robustly-induced ISG. We also introduced
731 the blasticidin resistance gene (BSD) for selection purposes. BSD, EGFP and ISG15
732 were separated using ribosome skipping 2A sequences (P2A and T2A). Transgene

Bamford et al., IFNL4 E154

733 DNA was flanked by homology arms with reference to the predicted target site.
734 Homology donor plasmids for CRISPR-Cas9 knock-in were generated through a
735 series of overlapping PCR amplifications using Phusion DNA polymerase followed
736 by sub-cloning into pJET plasmid. Plasmids for CRISPR-Cas9 genome editing (wt
737 SpCas9) were generated using established protocols (61) in order to create plasmids
738 that would direct genome editing at the 5' terminus of the HsISG15 ORF (exon 2).
739 pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from Feng Zhang (Addgene plasmid
740 # 62988). All sequences are available by request. HepaRG cells grown in 6 well
741 dishes were co-transfected with CRISPR-Cas9 editing plasmids targeting the
742 beginning of the ISG15 ORF in exon 2 (exon 1 contains only the ATG of the ORF),
743 and homology donor plasmids described above (1 µg each) using Lipofectamine
744 2000 and the protocol described above. Transfected cells were selected using
745 puromycin (Life Technologies) (1 µg/ml) and blastocidin (Invivogen) (10 µg/ml) until
746 non-transfected cells were no longer viable. Selected cells were cloned by single cell
747 dilution, expanded and tested for EGFP induction following IFN stimulation.
748 Positioning of the introduced transgene was assessed by PCR amplification on
749 isolated genomic DNA from individual clones (data not shown). Primers were
750 designed to include one primer internal to the transgene and another external to the
751 transgene and found in the target loci (sequences available on request). For use as
752 an effective IFN reporter cell line, cells had to demonstrate robust induction of EGFP
753 expression following stimulation with IFN and evidence of specific introduction of the
754 transgene. This study uses clone 'G8' of HepaRG.EGFP-BSD-ISG15 cells. We have
755 not tested whether there is a single transgene integration site or multiple ones nor
756 confirmed that the EGFP produced following stimulation by IFNs results from the
757 expression of the specifically-introduced transgene rather than off-target integration,
758 which is theoretically possible. We do not predict this would affect the cells' ability to
759 act as a reporter cell line. For use in IFN reporter assays, stimulated cells (in 96 well
760 plates stimulated for 24 hrs; ~5 x 10⁴ cells per well) were washed, trypsinised and
761 fixed in formalin (1% in PBS) at room temperature for 10 mins in the dark before
762 being transferred to a round-bottomed plate and stored at 4°C in the dark until
763 measurement of EGFP fluorescence. Non-stimulated cells were used as negative
764 controls and the change in % EGFP-positive cells was assessed by flow cytometry
765 using a Guava easyCyte HT (Merck Millipore). For fluorescence microscopy, EGFP
766 induction was measured by indirect immunofluorescence of stimulated cells that
767 were fixed and permeabilised on coverslips prior to antibody binding. An EGFP
768 primary antibody (1:1000, rabbit ab290 Abcam) was used followed by a fluorescent
769 anti-secondary antibody (1:500, Goat anti Rabbit Alexa-Fluor, Thermo Fisher,
770 568nm). Samples were counter-stained using DAPI and visualised with a confocal
771 laser-scanning microscope (Zeiss LSM 710) under identical conditions.
772

773 Production of virus stocks for antiviral assays

774 Antiviral activity of IFNλs was determined using encephalomyocarditis virus
775 (EMCV), influenza A virus (IAV; A/WSN/1933(H1N1)), Zika virus (ZIKV; Brazilian
776 strain PE243)(62) and HCV (HCVcc chimeric clone Jc1) (63). EMCV was grown on

Bamford et al., IFNL4 E154

777 Vero cells followed by titration on U2OS cells by plaque assay. IAV stocks were
778 generated on MDCK cells and titrated by plaque assay on MDCK cells with protease
779 (TPCK-treated trypsin, Sigma Aldrich). ZIKV was titrated on Vero cells by plaque
780 assay. For all plaque assays, cells were grown in 12 or 6-well plates to ~90%
781 confluence before inoculation with serial 10-fold dilutions of virus stocks in serum-
782 free Optimem. Inoculum remained on the cells for 2 hrs before removal and the
783 monolayers were rinsed with PBS (1x) and semi-solid Avicell overlay (Sigma Aldrich)
784 was added. For EMCV and IAV, 1.2% Avicell was used, diluted in 1x DMEM 10%
785 FCS, 1% penicillin-streptomycin. For IAV titration, TPCK-treated trypsin was added
786 (1 µg/ml). For ZIKV plaque assay, 2x MEM was used instead of 1x DMEM. HCVcc
787 Jc1 was generated as described previously by electroporation of *in vitro* transcribed
788 viral RNA into Huh7 cells and harvested at 72 hrs post electroporation. After filtration
789 of the supernatant, HCVcc Jc1 stocks were titrated by TCID₅₀ on Huh7 cells and
790 stored at 4°C before use. HCVcc Jc1 TCID₅₀ assays were performed using anti-
791 NS5A antibody (64). Infected cells at 72 hrs post infection were fixed
792 and permeabilised with ice-cold methanol. Cells were rinsed in PBS, blocked with
793 3% FCS in PBS at room temperature and incubated overnight with mouse
794 monoclonal anti-NS5A antibody (9E10) at 4°C. After removal of the antisera, cells
795 were rinsed 3 times with PBS containing 0.1% TWEEN 20, and then incubated in the
796 dark at room temperature for 1 hr with secondary antibody [Alexa-fluor 488nm anti-
797 mouse (donkey)]. Cells were finally washed with PBS containing 0.1% TWEEN 20
798 and NS5A-expressing cells were visualized with a fluorescent microscope.

799

800 Antiviral assays

801 Cells stimulated with IFNλs were infected with viruses at the following
802 multiplicities of infection (MOI): EMCV (MOI = 0.3; added directly to the media); IAV
803 (MOI = 0.01); ZIKV (MOI = 0.01); HCVcc (MOI = 0.05). For IAV, ZIKV and HCVcc,
804 the inoculum was incubated with cells for at 2 (IAV/ZIKV) or 3 hrs (HCVcc) in 0.5–1.0
805 ml serum-free Opti-MEM/DMEM at 37°C before removal. Cells were rinsed with PBS
806 and then incubated with fresh growth media for the allotted time (24 hrs for EMCV,
807 48 hrs for IAV and 72 hrs for ZIKV and HCVcc). At the times stated for individual
808 experiments, infected-cell supernatants were harvested and infectivity was titrated by
809 plaque assay. IAV, ZIKV and HCVcc antiviral assays were all carried out in 12 well
810 plates except for measurement of HCVcc infectivity by indirect immunofluorescence,
811 which was measured in a 96 well plate. In the case of EMCV, a cytopathic effect
812 (CPE) protection assay was employed to assess infectivity (26). Here, HepaRG cells
813 were plated in a 96-well plates (~5 x 10⁴ cells per well) and, when confluent, were
814 incubated with two-fold serial dilutions of CM or lysate for 24 hrs before the addition
815 of EMCV. At 24 hrs post infection with EMCV, media was removed, cell monolayers
816 were rinsed in PBS and stained using crystal violet (1% in 20% ethanol in H₂O) for 10
817 mins. Crystal violet stain was then removed and stained plates were washed in
818 water. The dilution of ~50% inhibition of EMCV-induced CPE was marked visually
819 and the difference determined relative to wt HsIFNλ4.

Bamford et al., IFNL4 E154

820 Luciferase-expressing MLV pseudoparticles containing the E1 and E2
821 glycoproteins from JFH1 HCV strain were generated as described (65) along with
822 their corresponding JFH1 E1-E2 deficient controls (particles generated only with
823 MLV core) and used to challenge IFNλ-stimulated Huh7 cells. Huh7 cells grown in
824 96-well plates overnight (seeded at 4×10^3 cells per well) were stimulated with IFNλs
825 for 24 hrs and transduced with HCVpp. 72 hrs later, cell lysates were harvested and
826 luciferase activity was measured (Luciferase assay system, Promega) on a plate
827 reading luminometer.

828 For HCV RNA replication assays, RNA was transcribed *in vitro* from a sub-
829 genomic replicon (HCV-SGR) expressing GLuc (wild-type and non-replicating GND)
830 (66). *In vitro* transcribed RNA (200 ng) was transfected using PEI (1:1) into
831 monolayers of Huh7 cells in 96-well plates overnight (seeded at 4×10^3 cells per
832 well) that had been stimulated with IFNλs (24 hrs). At the specified time points, total
833 supernatants (containing the secreted GLuc) from treated Huh7 cells were collected
834 and replaced with fresh growth media. 20μl (~10% of total volume) was used to
835 measure luciferase activity and mixed with GLuc substrate (1x) (50 μl) and
836 luminescence (as relative light units, RLUs) was determined using a luminometer
837 (Promega GloMax). Pierce *Gaussia* Luciferase Flash Assay Kit (ThermoFisher) was
838 used and the manufacturer's instructions were followed.

839

840 Comparison of human and chimpanzee intrahepatic gene expression during acute
841 HCV infection

842 Previously published datasets of intrahepatic differentially-expressed genes
843 from liver biopsies were used to compare human and chimpanzee transcriptomic
844 responses to early HCV infection. At first, we used reported lists of differentially-
845 expressed genes between humans and chimpanzees but further validated
846 observations with raw data from human studies. Studies focusing on acute HCV
847 infection (0 to 26 weeks) in humans and chimpanzees were acquired through
848 manual literature search using Pubmed and gene lists were compiled. For
849 chimpanzees, data was acquired from 4 studies (32–35) and one report was
850 employed for human data (31). The study by Dill *et al.* comprised single biopsy
851 samples from each of six individuals, while *in toto* the chimpanzee studies combined
852 data from ten animals with multiple, serial biopsies. All studies were carried out using
853 similar Affymetrix microarray platforms except Nanda *et al.* who used IMAGE clone
854 deposited arrays. Although similar microarrays measured different numbers of genes
855 we focused on 'core' shared genes from chimpanzee studies. Humans were infected
856 with HCV genotype (gt)1 (n=2), gt3 (n=3) and gt4 (n=1) while chimpanzees were
857 experimentally infected with HCV gt1a (n=6), gt1b (n=3) and gt2a (n=1). The human
858 dataset included individuals with IL28B rs12979860 genotypes T/T, C/T and C/C but
859 no association between IL28B genotype and gene expression was noted (31). Gene
860 names and fold-changes were manually converted to a single format (fold change
861 rather than log2 fold change for example) to allow comparative analysis. Human
862 biopsies were taken between two and five months after presumed infection following
863 known needle-stick exposure, and serial chimpanzee biopsies were taken at different

Bamford et al., IFNL4 E154

864 time points from between one week and one year after HCV infection. For
865 comparative purposes, differentially-expressed genes in chimpanzees were included
866 if they were detected during a time period overlapping with the human data. We
867 identified a 'core' set of chimpanzee differentially-expressed genes (independently
868 characterized in at least two studies) and compared them to the single human
869 transcriptome study data at equivalent time points (between 8 and 20 weeks post-
870 infection). This approach generated a set of core chimpanzee genes (genes found
871 differentially-expressed in at least 2 studies, >2 fold change compared to controls
872 and during the time frame compared to humans) for comparison with the human
873 data. This is reflected in the ten-fold higher numbers of differentially-regulated genes
874 found in the one human study compared to the 'core' (reduced) set assembled from
875 four chimpanzee studies. To validate these findings, we used three studies of
876 chronic infection for which data were available (53,67,68), two from humans
877 employing RNA-Seq and one from chimpanzees using microarray measurement.
878 Gene lists were extracted and a core human list was produced and compared to that
879 from chimpanzees. For shared genes, the fold change values were compared for
880 humans and chimpanzees. The ratio of chimpanzee induction to human induction
881 was calculated.

882 These gene sets were compared to determine their degree of species-
883 specificity or species-similarity using Venn diagram analysis
884 (<http://bioinfogp.cnb.csic.es/tools/venny/>). The gene lists for humans and core genes
885 for chimpanzees are shown in the Supplementary Data File 1. For the chimpanzee-
886 biased genes, mean expression values were determined at each time point from
887 individual animals.

888

889 Statistical analysis

890 For non-transcriptomic analysis (transcriptomic analysis is outlined
891 above), Graphpad Prism was used for statistical testing, which included Students' T
892 test and ANOVA and post-hoc tests (Dunnett's test) where appropriate as described
893 in figure legends. ****, p=<0.0001; ***, p=<0.001; **, p=<0.01; *, p=<0.05, are used
894 throughout to denote statistical significance.

895

896

897

Bamford et al., IFNL4 E154

898

Figure Legends

899

Fig 1. Rare non-synonymous variants of HsIFNL4 affect antiviral activity

900

(A) Ancestry-based localization and frequency of human non-synonymous variants of HsIFNL4 in African (AFR), South Asian (SAS), East Asian (EAS), European (EUR) and American (AMR) populations within the 1000 Genomes dataset. 'n' represents the number of alleles tested in each population. Common and rare variants are those which have frequencies of >1% and <1% respectively in the 1000 Genome data. Common variants include: wt (orange), C17Y (light green), R60P (dark blue) and P70S (cyan). Rare variants (purple) include: A8S, C17R, R25Q, S56R, P73S, L79F, K133M, V134A, R151P, K154E, S156N, and V158I. Variants K133M and S156N (black) did not have an associated ethnicity but were found in the dataset from the Netherlands (Genome of the Netherlands cohort) (69). (B) Location of non-synonymous variants in the HsIFNL4 polypeptide (underlined pink). Regions of predicted structural significance are boxed (green), including the signal peptide (SP) and helices (A to F) (24). There is a single N-linked glycosylation site at position 61 (N61). Note that there are 2 non-synonymous changes at C17 (C17R and C17Y). Cysteine residues involved in disulphide bridge formation are italicised. See Supplementary Data File 1 for genetic identifiers for the variants described here. (C) Antiviral activity of all HsIFNL4 natural variants in an anti-EMCV CPE assay relative to wt protein in HepaRG cells. Cells were stimulated with serial dilutions of HsIFNL4-containing CM for 24 hrs and then infected with EMCV (MOI = 0.3 PFU/cell) for 24 hrs at which point CPE was assessed by crystal violet staining. After staining, the dilution providing ~50% protection was determined. Mean of combined data from three independent experiments (n=3) are shown. Error bars represent mean and SEM for all variants combined. Data are shown in S2 Fig A. **** = <0.0001; *** = <0.001; ** = <0.01 by one-way ANOVA compared to wt with a Dunnett's test to correct for multiple comparisons. Controls (HsIFNL4-TT and EGFP) are not shown but gave no protection against EMCV in the assay. Those variants with >2-fold change are highlighted with colours: purple (K154E,), cyan (P70S) and yellow (L79F). (D and E) ISG gene expression determined by RT-qPCR following stimulation of cells with HsIFNL4 variants. Relative fold change of ISG15 (D) and Mx1 mRNAs (E) in HepaRG cells stimulated with CM (1:4 dilution) from plasmid-transfected cells compared to wt HsIFNL4. Cells were stimulated for 24 hrs. Data points show mean of biological replicates (n=3) and the error bar represents mean and SEM for all variants combined. Expanded data are shown in S2 Fig B and C. Variants are coloured based on antiviral assays described in Fig 1C. Numerical data used for graph construction are available in **Supplementary Data File 4 sheet 1**.

920

921

Fig 2. Human IFNL4 is less active than chimpanzee IFNL4 due to a substitution at amino acid position 154

922

923 (A) Amino acid alignment from positions 151 to 157 for selected orthologues of HsIFNL4 from different species as well as 2 human paralogues (HsIFNL1 and HsIFNL3). At position 154, HsIFNL4 encodes 924 a lysine (K; blue) while sequences from all other species predict a glutamic acid at this site (E; red). 925 (B) Western blot analysis of intracellular IFNL4 from different species encoding E or K at position 154 926 as well as equivalent E and K variants of HsIFNL3op. HEK293T cells were transfected with the 927 relevant plasmids for 48 hrs prior to preparation of cell lysates. IFNL4 variants were detected with 928 anti-FLAG antibody ('FLAG') and tubulin was used as a loading control. Mock- and EGFP-transfected 929 cells were used as negative controls. (C) EMCV antiviral assay in HepaRG cells of IFNL from the 930 different species indicated (human [Hs], chimpanzee [Pt] and macaque [Mm]) encoding an E (red 931 bars) or K (black bars) at position 154 alongside the equivalent amino acid substitutions in 932 HsIFNL3op. Antiviral activity is shown relative to that for HsIFNL4 in HepaRG cells. Order denotes wt 933 then variant IFNL for each species. Data show +/- SD (n=3) and are representative of two 934 independent experiments. *** = <0.001; * = <0.05 by unpaired, two-tailed Student's T test comparing 935 154E and 154K for each IFN. (D) IFN signalling reporter assay for mutant IFNL4s from different 936 species encoding an E (red lines) or K (black lines) at position 154 alongside the equivalent amino 937 acid substitutions in HsIFNL3op. The assay used EGFP-expressing ISG15 promotor HepaRG cells 938 generated by CRISPR-Cas9 genome editing (HepaRG-EGFP-ISG15 cells; clone G8). HsIFNL4 = 939 triangles; PtIFNL4 = squares; MmIFNL4 = stars; HsIFNL3 = inverted triangles. Serial two-fold dilutions 940 of CM (1:2 to 1:2097152) were incubated with the cells for 24 hrs and EGFP-positive cells (%) were 941 measured by flow cytometry at each dilution. Data shown are average +/- SEM of biological replicates 942 (n=3) and are representative of two independent experiments. Comparison of all E versus K 943 substituted forms of IFNL4 within a homologue yielded significant values (p = <0.001 by Two-way 944 ANOVA). (E) MX1 gene expression measured by RT-qPCR for IFNL4 from different species encoding 945 an E (red bars) or K (black bars) at position 154 alongside the equivalent amino acid substitutions in 946 HsIFNL3op. Data represent the relative fold change of MX1 mRNA by RT-qPCR in cells stimulated 947 with CM (dilution 1:4) for 24 hrs compared to HsIFNL4 wt. Data show average +/- SEM (n = 6) 948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

Bamford et al., IFNL4 E154

958 combined from two independent experiments. *** = <0.001; ** = <0.01 by unpaired, two-tailed
959 Student's T test comparing 154E and 154K from each species. Numerical data used for graph
960 construction available in **Supplementary Data File 4 sheet 3**.

961
962 Fig 3. HsIFNλ4 K154E has greater antiviral activity compared to wt HsIFNλ4 K154
963 (A) Antiviral activity of HsIFNλ4 variants against HCVcc infection in Huh7 cells measured by RT-
964 qPCR of viral RNA (upper panel) and virus antigen-positive cells (HCV NS5A protein; lower panel).
965 HsIFNλ-containing CM (1:3) was incubated with Huh7 cells for 24 hrs before infection with HCVcc Jc1
966 (MOI = 0.01). HCV RNA was measured by RT-qPCR on RNA isolated at 72 hpi. Results shown are
967 relative to infection in cells treated with EGFP CM (upper panel) or wt HsIFNλ4 (lower panel). Data
968 show +/- SEM (n=6) combined from two independent experiments. * = <0.05 by unpaired, two-tailed
969 Student's T test comparing wt and K154E. (B) The effect of HsIFNλ4 variants on JFH1 HCV
970 pseudoparticle (pp) infectivity in Huh7 cells. Relative light units (RLU) in the lysate of luciferase-
971 expressing MLV pseudoparticles following inoculation of Huh7 cells stimulated with CM (1:3), relative
972 (%) to CM from EGFP-transfected cells. The upper panel shows data from MLV pseudoparticles
973 containing JFH1 glycoproteins E1 and E2 while the lower panel indicates data from MLV
974 pseudoparticles that lack E1 and E2 (MLV core particles). Luciferase activity was measured at 72 hrs
975 after inoculation. Error bars show +/- SEM (n=6). (C) The effect of HsIFNλ4 variants on transient HCV
976 RNA replication (upper panel) and translation (lower panel) using a subgenomic replicon assay in
977 Huh7 cells. Huh7 cells were treated with CM (1:3) for 24 hrs before transfection with *in vitro*
978 transcribed JFH1 HCV-SGR RNA expressing *Gaussia* luciferase; the upper and lower panels show
979 data from wt (replication competent) and GND (non-replicative) sub-genomic replicons respectively.
980 RLU secreted into the media was measured at 4, 24, 48 and 72 hpt. Error bars show +/- SD (n=3).
981 Data are representative of two independent experiments. *** = <0.001 by two-way ANOVA on wt
982 versus K154E. Comparing wt and K154E RLU at 72h by two-tailed Student's T-test gave a significant
983 difference ** = <0.01. Antiviral activity of wt and variant HsIFNλ4 on IAV (WSN strain) (D) or ZIKV
984 (strain PE243). (E) infection in A549 cells as determined by plaque assay of virus released from
985 infected cells at 48 hpi for IAV or 72 hpi for ZIKV. HsIFNλ4-, HsIFNλ3- and EGFP-containing CM (1:3)
986 was incubated with A549 cells for 24 hrs before infection with IAV strain (MOI = 0.01 PFU/cell).
987 Supernatant was harvested and titrated on MDCK cells for IAV or Vero cells for ZIKV. Error bars show
988 +/- SEM (n=3). * = <0.05 by unpaired, two-tailed Student's T test comparing wt and K154E. Numerical
989 data used for graph construction available in **Supplementary Data File 4 sheet 4**.

Fig 4. HsIFNλ4 E154 induces more robust antiviral gene expression than the wt K154 variant

990
991 A549 cells were treated with CM (1:3 dilution) for 24 hours from cells transfected with plasmids
992 expressing the different HsIFNλs and EGFP. After isolation of RNA, transcriptome analysis was
993 carried out by RNA-Seq. (A) Total number of significantly differentially-expressed genes in each
994 experimental condition (x-axis) relative to each other condition (y-axis). Colour shaded by differences
995 in numbers of transcripts between sample 1 (x-axis) and sample 2 (y-axis) are shown. (B) Violin plot
996 of all significant, differentially-expressed genes (over two-fold) (log2 fold change for each condition
997 compared to RNA from cells treated with EGFP). CM was obtained from cells transfected with
998 HsIFNλ3op (red); HsIFNλ4 wt (green); HsIFNλ4 P70S (cyan), and HsIFNλ4 K154E (purple). (C) Heat
999 map of all significantly differentially-expressed genes (over two-fold) (log10 Fragments Per Kilobase
1000 of transcript per Million mapped reads (FKPM) in each experimental condition including EGFP CM-
1001 stimulated cells. Genes shown as columns and values are not normalised to negative control. (D)
1002 Pathway analysis using IPA on all significantly differentially-expressed genes (>2 fold) for each
1003 variant compared to EGFP. The top five most significantly induced pathways are shown [-log(p
1004 value)]. (E) Comparison of differentially-expressed genes (significant and at least 2-fold difference)
1005 stimulated by the HsIFNλ4 variants (HsIFNλ4 wt in green, HsIFNλ4 P70S in cyan and HsIFNλ4
1006 K154E in purple) illustrated by a Venn diagram showing shared and unique genes. Three examples in
1007 overlapping and unique areas of the Venn diagram are highlighted. (F) Raw gene expression values
1008 (FKPM+1) for representative genes from core, shared and K154E-'specific' groups for the different
1009 treatments. Data are shown as mean +/- SD (n=3). Exemplary genes selected were: *ISG15* and *MX1*
1010 (core), *UBA7* (not significantly induced by P70S), and *ISG20* and *IDO1* (apparently specific for
1011 K154E). All transcriptomic analysis and gene lists are available in **Supplementary Data File 2**.

Fig 5. Chimpanzees induce greater levels of antiviral ISG expression during HCV infection *in vivo*

1012
1013 (A) Numbers of shared and unique differentially-expressed genes in liver biopsies from HCV-infected
1014 humans (blue) and experimentally-infected chimpanzees (orange) during the acute phase of infection
1015 represented as a Venn diagram (also see Supplementary Data File 1). Gene expression during a time
1016
1017

Bamford et al., IFNL4 E154

1018 period of between 8 and 20 weeks was used where comparable published data for both species
1019 exists. The top ten species-'specific', differentially-expressed genes are shown ranked by levels of
1020 expression. Two sets of values for each comparison are shown; above shows the total differentially-
1021 expressed genes from at least one study while * highlights the value relating to the 'core' chimpanzee
1022 analysis that considered only the genes differentially-expressed in at least two studies of chimpanzee
1023 acute HCV infection. (B) Fold change of expression compared to controls (two uninfected individuals)
1024 for the 29 'chimp-biased' genes in humans (upper) and chimpanzees (lower) shown as box plot and
1025 whiskers. Data are shown as box and whiskers to indicate median and range. Each value is illustrated
1026 by a black circle. The chimpanzee values represent an average of all fold changes for each
1027 chimpanzee over the time period. (C) Venn diagram analysis comparing the 29 chimpanzee-biased
1028 genes to the RNA-Seq data for all IFNs (GFP versus IFN) and for HsIFNL4 K154E versus wt
1029 specifically. Illustrative gene names are shown as examples. All data are available in **Supplementary**
1030 **Data File 2.**

Fig 6. Mechanism of action of the IFNL4 K154E variant

1031 (A) Modelled structure of HsIFNL4 showing position 154 at a central location in the molecule with
1032 reference to receptor subunit-binding interfaces (IFNAR1 and IL10R2). Overlapping crystal structures
1033 for HsIFNL1 (green) and HsIFNL3 (dark blue) are overlaid together with a homology model for
1034 HsIFNL4 (light blue). In the overlapping structures, the homologous positions for HsIFNL4 E154
1035 (E176, IFNL1; E171, IFNL3) make intramolecular non-covalent interactions with two distinct regions
1036 within IFNL. (B) Detection of intracellular IFNL4 154 mutants (K, R, L, A, D, E and Q) by Western blot
1037 analysis of lysates from plasmid-transfected producer HEK293T cells. The IFNL4 variants were
1038 detected with an anti-FLAG antibody. Tubulin was used as a loading control. (C) Antiviral activity of
1039 HsIFNL4 IFNL4 154 mutants (K, R, L, A, D, E and Q) in an anti-EMCV CPE assay relative to CM from
1040 wt HsIFNL4 (K154 variant) in HepaRG cells. Data show mean +/- SEM combined from three
1041 independent experiments. (D) Antiviral activity of IFNL4 found in CM, intracellular lysate and
1042 immunoprecipitated CM from the different species indicated (human [Hs], chimpanzee [Pt] and
1043 macaque [Mm]) encoding an E or K at position 154 in an anti-EMCV CPE assay relative to CM from
1044 wt HsIFNL4 in HepaRG cells. Data show mean +/- SEM from two independent experiments. (E)
1045 Detection of extracellular IFNL4 from different species as well as select mutants at position 154 (E, K,
1046 D and R) by Western blot analysis of samples of FLAG-tag immunoprecipitated CM (1 ml) from
1047 plasmid-transfected producer HEK293T cells. A BAP-FLAG fusion protein was used as
1048 immunoprecipitation control (POS). The IFNL4 variants were detected with an anti-FLAG antibody. A
1049 FLAG-positive lower molecular weight product, which is potentially a degradation product is
1050 highlighted with a #. An upper band running near to the IFN is shown (*) which is likely antibody
1051 fragments from the immunoprecipitation reaction. Blot is representative of three independent
1052 experiments. Numerical data used for graph construction is available in **Supplementary Data File 4**
1053 **sheet 5.**

S1 Fig. Non-synonymous variants of HsIFNL4 are located in regions of functional significance

1054 (A) Schematic location of non-synonymous variants in the HsIFNL4 polypeptide (N- to C- terminus)
1055 (above schematic in pink). Regions of predicted structural significance are underlined, including the
1056 signal peptide (SP), single N-linked glycosylation site (N-glyc, arrowed), helices (A to F) and
1057 disulphide bonds (C-C). Note that there are 2 non-synonymous changes at C17 (C17R and C17Y).
1058 Helices involved in receptor interactions (IL10R2 and IFNAR1) are highlighted. (B and C) Location of
1059 non-synonymous variants on a homology model of HsIFNL4 (side chains in colour) from two
1060 perspectives. Model was generated using the SWISS-MODEL online software. Helices are labelled A
1061 to F. Positions are coloured based on spatial clustering in the primary amino acid sequence.

S2 Fig. Rare non-synonymous variants of HsIFNL4 affect antiviral activity

1062 For data shown in panels A-D, all naturally-occurring variants of HsIFNL4 were tested in antiviral and
1063 ISG induction assays. Experimental conditions included a series of controls including HsIFNL3op
1064 (positive control), EGFP and the HsIFNL4 TT variant (negative controls) as well as non-natural
1065 variants of HsIFNL4 (N61A, F159A, L162A). N61A abrogates glycosylation of HsIFNL4 while F159A
1066 and L162A are predicted to reduce interaction with the IFNAR1 receptor subunit and hence lower
1067 activity based on previous studies (27). Panels show data from the following assays: (A) Antiviral
1068 activity in an anti-EMCV CPE assay in HepaRG cells. Cells were stimulated with serial dilutions of
1069 HsIFNL4-containing CM for 24 hrs and then infected with EMCV (MOI = 0.3 PFU/cell) for 24 hrs at
1070 which point CPE was assessed by crystal violet staining. After staining, the dilution providing ~50%
1071 protection was determined. Data are shown as mean +/- SD of three independent experiments. (B)

Bamford et al., IFNL4 E154

1078 and C) ISG gene expression determined by RT-qPCR following stimulation of cells with HsIFNλ4
1079 variants. Relative fold change of *ISG15* mRNA (B) or *Mx1* (C) in HepaRG cells stimulated with CM
1080 (1:4 dilution) from plasmid-transfected cells compared to wt HsIFNλ4. Cells were stimulated for 24
1081 hrs. Error bar represent mean +/- SD (n=3). (D) Western blot analysis of unconjugated and high
1082 molecular weight conjugated-forms of ISG15 ('ISGylation') from lysates harvested from HepaRG cells
1083 stimulated with CM (1:4) for 24 hrs. Numerical data used for graph construction available in
1084 **Supplementary Data File 4 sheet 1.**

1085
1086 **S3 Fig. Relative expression of glycosylated and non-glycosylated forms of HsIFNλ4 variants**
1087 For data in panels A and B, expression and glycosylation of all naturally-occurring variants of
1088 HsIFNλ4 were examined. Experiments included a series of controls including HsIFNλ3op (contains no
1089 glycosylation sites), EGFP and the HsIFNλ4 TT variant (negative controls) as well as non-natural
1090 variants of HsIFNλ4 (N61A, F159A, L162A). N61A is predicted to abrogate glycosylation of HsIFNλ4.
1091 Panel A shows a representative Western blot for the production and glycosylation of HsIFNλ4 variants
1092 of lysates from plasmid-transfected producer HEK293T cells as detected with an anti-FLAG ('FLAG')
1093 primary antibody. Tubulin was used as a loading control. A non-specific band in the EGFP-transfected
1094 extract is shown (*). Panel B shows the quantification of intracellular glycosylated (green) and non-
1095 glycosylated (blue) HsIFNλ4 variants by Western blot analysis of lysates from plasmid-transfected
1096 producer HEK293T cells. Ratio of glycosylated to non-glycosylated is shown above the graph. Two-
1097 fold differences from wild-type are highlighted in bold. Data shown are mean +/- SEM combined from
1098 three independent experiments. Numerical data used for graph construction available in
1099 **Supplementary Data File 4 sheet 2.**

1100
1101 **S4 Fig. Presence of HsIFNλ4 K154E variant in Pygmies and evolution of HsIFNλ4 variants in human**
1102 **populations**

1103 (A) Geographical location and frequency of HsIFNλ4 K154E in African hunter-gatherer alleles
1104 (Pygmy, n = 5 individuals, Sandawe (S) n = 5 individuals and Hadza (H) n = 5 individuals). Two
1105 Pygmy individuals within two tribes (Baka and Bakola) were found to encode the HsIFNλ4 K154E
1106 variant. The proportion of ΔG (red) and TT (blue) *IFNL4* alleles are also shown in pie-charts. (B)
1107 Presence of HsIFNλ4 E154 (purple) versus HsIFNλ4 K154 (green) on a cladogram of human and
1108 chimpanzee evolution. Archaic human (Neanderthal and Denisovan) as well as other basal human
1109 populations (San, Sandawe and Hadza) only encode HsIFNλ4 K154. Earliest detection of the
1110 HsIFNλ4 TT frameshift and activity-reducing HsIFNλ4 P70S and HsIFNλ4 L79F variants are shown.
1111 All analysis can be found in **Supplementary Data File 1.**

1112
1113 **S5 Fig. Generation of a reporter HepaRG cell line expressing EGFP in the ISG15 promoter region**

1114 (A) Strategy for CRISPR-Cas9 genome editing combined with homologous recombination insertion of
1115 DNA sequences to produce an EGFP-expressing ISG15 promotor cell line. The strategy enables the
1116 insertion of a cassette in-frame with the ISG15 ORF that encodes blasticidin resistance (BSD) and
1117 EGFP genes followed by *ISG15*, separated by '2A' ribosomal skipping sequences. Target gDNA and
1118 CRISPR-Cas9 cut sites are shown on the upper cartoon. Binding sites of primers for genotyping are
1119 highlighted (+) and (-) in the resulting modified gDNA. Cell lines used for reporters were validated by
1120 PCR analysis (data not shown). (B) Induction of EGFP expression (green immunofluorescence) in the
1121 G8 cell clone with or without treatment with PolyI:C (1.0 µg/ml for 24 hrs). Poly(I:C) stimulates the
1122 Toll-like receptor TLR3, which induces ISG15 expression. Cells were fixed in formalin, permeabilised
1123 and stained for indirect immunofluorescence with an anti-EGFP primary antibody before addition of a
1124 secondary antibody. DAPI was used as a counter stain for cell nuclei.

1125
1126 **S6 Fig. Comparative induction of hepatic transcripts during acute HCV infection in chimpanzees and**
1127 **humans**

1128 (A) Expression of 'chimpanzee-biased' differentially-expressed genes (n = 29) up to more than 50
1129 weeks post infection. Chimpanzee-biased genes are shown as a combined mean (filled orange line)
1130 and range (dotted orange lines) of fold-change from all studies where any gene of the 29 genes was
1131 available over at most 1 year after initial infection. (B) Expression of differentially-expressed human
1132 and chimpanzee genes during 8 to 20 weeks post infection. Chimpanzee-biased genes are shown as
1133 a combined mean (filled orange line) and range (dotted orange lines) of fold-change from all 29
1134 genes. The mean and range of gene expression for the human genes (blue filled and dotted lines
1135 respectively) equivalent to the chimpanzee-biased genes are shown. These data for chimpanzees are
1136 combined from different serial samples from different animals while human data is taken from a single
1137 biopsy from patients with an inferred time post infection. (C) Shared gene expression (overlapping 44

Bamford et al., IFNL4 E154

1138 genes as shown in Venn diagram) during chronic infection in humans and chimpanzees as illustrated
1139 by a ratio of fold change in expression for humans and chimpanzees. Species biased genes (>2 fold
1140 enriched in either species) are listed to the side. All data are available in **Supplementary Data File 3**.
1141

S7 Fig. Mechanistic insight into variant E154

1142 (A) Dilutions for inducing ~50% EGFP positive cells for HsIFNL4 IFNL4 154 mutants (R, L, A, D, E
1143 and Q) using an EGFP-ISG15 reporter cell line assay relative to CM for HsIFNL4 K154 (%). Data
1144 show mean +/- SEM from three experiments. (B) Antiviral activity of HsIFNL4 isolated from CM
1145 (purple), intracellular lysate (blue) and immunoprecipitated CM (orange) for variants encoding E, K, R
1146 or D at position 154 in an anti-EMCV CPE assay relative to CM for wt HsIFNL4 (K154 variant) in
1147 HepaRG cells. (C) Detection of intracellular IFNL4 from different species as well as select mutants at
1148 position 154 (E, K, D and R) by Western blot analysis of lysates from plasmid-transfected producer
1149 HEK293T cells. The IFNL4 variants were detected with an anti-FLAG antibody. Tubulin was used as a
1150 loading control. These samples were taken from the same experiment as in **Fig 6E**. A lower molecular
1151 weight product detected by the anti-FLAG antibody, which is potentially a degradation product, is
1152 highlighted with a '#'. (D) Alternative images from repeats of detection of extracellular IFNL4 from
1153 different species by Western blot analysis of samples of FLAG-tag immunoprecipitated CM (1 ml)
1154 from plasmid-transfected producer HEK293T cells. A BAP-FLAG fusion protein was used an
1155 immunoprecipitation control (POS). IFNL4 variants were detected with an anti-FLAG antibody. A lower
1156 molecular weight product detected by the anti-FLAG antibody, which is potentially a degradation
1157 product, is highlighted with a '#'. An upper band running near to the IFNL4 species is shown (*) which
1158 is likely antibody fragments from the immunoprecipitation reaction. (E) Ratio of E154 to K154 for
1159 antiviral activity (all) or protein amounts (IP or LYS) of IFNL4 found in CM, intracellular lysate and
1160 immunoprecipitated CM; where possible, data from the different species is combined. Data show
1161 median +/- minimum and maximum (n=6-8). Numerical data used for graph construction available in
1162 **Supplementary Data File 4 sheet 6**.
1163

1164

S8 Fig. Structural modelling of P70 and L79 in HsIFNL4

1165 Modelled structures of HsIFNL4 (light blue) are overlaid on the crystal structures for HsIFNL1 (green)
1166 and HsIFNL3 (dark blue). Panels A and B show respectively positions P70 and L79 in HsIFNL4 and
1167 their homologous positions in HsIFNL1 and HsIFNL3 with reference to receptor subunit-binding
1168 interfaces (IFNLR1 and IL10R2 in grey). (A) P70 is found in a flexible proline-rich loop/helix facing the
1169 IFNLR1 receptor although no direct interactions between this region or receptor have been
1170 demonstrated. P70S might prevent required folding of the protein domain. (B) L79F is likely to disrupt
1171 packaging of the helices. Both P70 and L79 are highly conserved between IFNL4 orthologues and
1172 paralogues (data not shown).
1173

1174

S9 Fig. Evolution and functional impact of variation at position 154 of IFNL4

1175 (A) Inferred evolution of position 154 in humans and chimpanzees. The last common ancestor of
1176 humans and chimpanzees encoded the highly-conserved glutamic acid (E) at position 154 (purple).
1177 E154 was retained in chimpanzees but sequentially modified in the genus *Homo*, which includes
1178 humans. *Homo* IFNL4 was first modified by substitution of E154 to lysine (K) (orange) and
1179 subsequent emergence of the frameshift TT allele (grey) or by the introduction of other substitutions
1180 (P70S [blue] or L79F [yellow]). IFNL4 in humans with only the E154K change remains in the
1181 population and is considered wild-type ('wt'). (B) Impact of E and K encoded at position 154 in IFNL4
1182 on antiviral activity. Both IFNL4 E154 (purple) and K154 (orange) are produced and glycosylated
1183 (grey circle) to similar levels inside the cell but IFNL4 E154 is secreted more efficiently compared to
1184 IFNL4 K154 (highlighted by blue arrows). Moreover, IFNL4 E154 is also more potent
1185 than IFNL4 K154. Subsequently, IFNL4 E154 induces more robust interferon stimulated gene (ISG)
1186 expression (for example: *ISG15*, *IFIT1*, *MX1*) in target cells, leading to greater antiviral activity.
1187

1188

1189

Bamford et al., IFNL4 E154

1190 REFERENCES

- 1191 1. Randall RE, Goodbourn S. Interferons and viruses : an interplay between induction , signalling, antiviral responses and virus countermeasures. *J Gen Virol.* 2008;1–47.
- 1192 2. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. *Nature.* 2011 472(7344):481–5.
- 1193 3. Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I 1194 interferon responses. *PLOS Biol.* 2017;15(12):e2004086.
- 1195 4. Schoggins JW. Interferon-stimulated genes: roles in viral pathogenesis. *Curr Opin Virol.* 2014 1200 6C:40–6.
- 1201 5. Kotenko S V., Gallagher G, Baurin V V., Lewis-Antes A, Shen M, Shah NK, et al. IFN-λs 1202 mediate antiviral protection through a distinct class II cytokine receptor complex. *Nat Immunol.* 1203 2003 4(1):69–77.
- 1204 6. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, et al. IL-28, 1205 IL-29 and their class II cytokine receptor IL-28R. *Nat Immunol.* 2003 4(1):63–8.
- 1206 7. Nice TJ, Baldrige MT, McCune BT, Norman JM, Lazear HM, Artyomov M, et al. Interferon-λ 1207 cures persistent murine norovirus infection in the absence of adaptive immunity. *Science.* 1208 2015 347(6219):269–73.
- 1209 8. Galani IE, Triantafyllia V, Eleminiadou E-E, Koltsida O, Stavropoulos A, Manioudaki M, et al. 1210 Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus 1211 Infection without Compromising Host Fitness. *Immunity.* 2017 46(5):875–890.e6. 9.
- 1212 9. Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, et al. Interferon-λ restricts 1213 West Nile virus neuroinvasion by tightening the blood-brain barrier. *Sci Transl Med.* 2015 1214 7(284):284ra59-284ra59.
- 1215 10. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular 1216 pathogens activate type III interferon expression from peroxisomes. *Nat Immunol.* 2014 15(8).
- 1217 11. Espinosa V, Dutta O, McElrath C, Du P, Chang Y-J, Cicciarelli B, et al. Type III interferon is a 1218 critical regulator of innate antifungal immunity. *Sci Immunol.* 2017 2(16):eaan5357.
- 1219 12. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko S V., Macdonald MR, et al. 1220 Interferons α and λ Inhibit Hepatitis C Virus Replication With Distinct Signal Transduction and 1221 Gene Regulation Kinetics. *Gastroenterology.* 2006 131(6):1887–98.
- 1222 13. Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a 1223 tissue-dependent fashion and primarily acts on epithelial cells in vivo. *PLoS Pathog.* 2008 1224 4(3):e1000017.
- 1225 14. Lazear HM, Nice TJ, Diamond MS. Interferon-λ: Immune Functions at Barrier Surfaces and 1226 Beyond. *Immunity.* 2015 43(1):15–28.
- 1227 15. Manry J, Laval G, Patin E, Fornarino S, Itan Y, Fumagalli M, et al. Evolutionary genetic 1228 dissection of human interferons. *J Exp Med.* 2011. 208(13):2747–59.
- 1229 16. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'hUigin C, et al. Genetic variation in IL28B and 1230 spontaneous clearance of hepatitis C virus. *Nature.* 2009 461(7265):798–801.
- 1231 17. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna K V., Urban TJ, et al. Genetic variation in 1232 IL28B predicts hepatitis C treatment-induced viral clearance. *Nature.* 2009 461(7262):399–1233 401.
- 1234 18. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A 1235 variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with 1236 impaired clearance of hepatitis C virus. *Nat Genet.* 2013 45(2):164–71.
- 1237 19. O'Brien TR, Pfeiffer RM, Paquin A, Lang Kuhs KA, Chen S, Bonkovsky HL, et al. Comparison 1238 of functional variants in IFNL4 and IFNL3 for association with HCV clearance. *J Hepatol.* 2015 1239 63(5):1103–10.
- 1240 20. Key FM, Peter B, Dennis MY, Huerta-Sánchez E, Tang W, Prokunina-Olsson L, et al. 1241 Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive

Bamford et al., IFNL4 E154

1242 Pseudogenization of Interferon Lambda 4 (IFNL4). *PLoS Genet.* 2014 10(10):e1004681.

1243 21. Hong M, Schwerk J, Lim C, Kell A, Jarret A, Pangallo J, et al. Interferon lambda 4 expression
1244 is suppressed by the host during viral infection. *J Exp Med.* 2016 213(12):2539–52.

1245 22. Terczyńska-Dyla E, Bibert S, Duong FHT, Krol I, Jørgensen S, Collinet E, et al. Reduced
1246 IFNλ4 activity is associated with improved HCV clearance and reduced expression of
1247 interferon-stimulated genes. *Nat Commun.* 2014 5:5699.

1248 23. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global
1249 reference for human genetic variation. *Nature.* 2015 526(7571):68–74.

1250 24. Hamming OJ, Terczyńska-Dyla E, Vieyres G, Dijkman R, Jørgensen SE, Akhtar H, et al.
1251 Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and
1252 coronaviruses. *EMBO J.* 2013 32(23):3055–65.

1253 25. Luangsay S, Ait-Goughoulte M, Michelet M, Floriot O, Bonnin M, Gruffaz M, et al. Expression
1254 and functionality of Toll- and RIG-like receptors in HepaRG cells. *J Hepatol.* 2015 63(5):1077–
1255 85.

1256 26. Mohamed M, McLees A, Elliott RM. Viruses in the Anopheles A, Anopheles B, and Tete
1257 serogroups in the Orthobunyavirus genus (family Bunyaviridae) do not encode an NSs protein.
1258 *J Virol.* 2009 83(15):7612–8.

1259 27. Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR, Hartmann R. Interferon-λ Is
1260 Functionally an Interferon but Structurally Related to the Interleukin-10 Family. *J Biol Chem.*
1261 2009 284(31):20869–75.

1262 28. Lachance J, Vernot B, Elbers CC, Ferwerda B, Froment A, Bodo J-M, et al. Evolutionary
1263 History and Adaptation from High-Coverage Whole-Genome Sequences of Diverse African
1264 Hunter-Gatherers. *Cell.* 2012 150(3):457–69.

1265 29. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons Genome
1266 Diversity Project: 300 genomes from 142 diverse populations. *Nature.* 2016 538(7624):201–6.

1267 30. Paquin A, Onabajo OO, Tang W, Prokunina-Olsson L. Comparative Functional Analysis of 12
1268 Mammalian IFN-λ4 Orthologs. *J Interf Cytokine Res.* 2016 36(1):30–6.

1269 31. Dill MT, Makowska Z, Duong FHT, Merkofer F, Filipowicz M, Baumert TF, et al. Interferon-
1270 y-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
1271 *Gastroenterology.* 2012 143(3):777–786.e6.

1272 32. Nanda S, Havert MB, Calderón GM, Thomson M, Jacobson C, Kastner D, et al. Hepatic
1273 Transcriptome Analysis of Hepatitis C Virus Infection in Chimpanzees Defines Unique Gene
1274 Expression Patterns Associated with Viral Clearance. *PLoS One.* 2008 3(10):e3442.

1275 33. Bigger CB, Brasky KM, Lanford RE. DNA Microarray Analysis of Chimpanzee Liver during
1276 Acute Resolving Hepatitis C Virus Infection. *J Virol.* 2001 75(15):7059–66.

1277 34. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al. Genomic analysis of
1278 the host response to hepatitis C virus infection. *Proc Natl Acad Sci.* 2002 99(24):15669–74.

1279 35. Yu C, Boon D, McDonald SL, Myers TG, Tomioka K, Nguyen H, et al. Pathogenesis of
1280 Hepatitis E Virus and Hepatitis C Virus in Chimpanzees: Similarities and Differences. *J Virol.*
1281 2010 84(21):11264–78.

1282 36. Miknis ZJ, Magracheva E, Li W, Zdanov A, Kotenko S V., Wlodawer A. Crystal Structure of
1283 Human Interferon-λ1 in Complex with Its High-Affinity Receptor Interferon-λR1. *J Mol Biol.*
1284 2010 404(4):650–64.

1285 37. Mendoza JL, Schneider WM, Hoffmann H-H, Vercauteren K, Jude KM, Xiong A, et al. The
1286 IFN-λ-IFN-λR1-IL-10Rβ. Complex Reveals Structural Features Underlying Type III IFN
1287 Functional Plasticity. *Immunity* 2017 46(3):379–92.

1288 38. Lu Y-F, Goldstein DB, Urban TJ, Bradrick SS. Interferon-λ4 is a cell-autonomous type III
1289 interferon associated with pre-treatment hepatitis C virus burden. *Virology.* 2015 476:334–40.

1290 39. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D. Genetic evidence for complex
1291 speciation of humans and chimpanzees. *Nature.* 2006 441(7097):1103–8.

1292 40. Green RE, Krause J, Briggs A. W, Maricic T, Stenzel U, Kircher M, et al. A Draft Sequence of
1293 the Neandertal Genome. *Science.* 2010 328(5979):710–22.

Bamford et al., IFNL4 E154

1294 41. Cohen TS, Prince AS. Bacterial Pathogens Activate a Common Inflammatory Pathway through
1295 IFNλ Regulation of PDCD4. *PLoS Pathog.* 2013 9(10):e1003682.

1296 42. Mulangu S, Borchert M, Paweska J, Tshomba A, Afounde A, Kulidri A, et al. High prevalence
1297 of IgG antibodies to Ebola virus in the Efé pygmy population in the Watsa region, Democratic
1298 Republic of the Congo. *BMC Infect Dis.* 2016 Dec 10 16(1):263.

1299 43. Bukh J. A critical role for the chimpanzee model in the study of hepatitis C. *Hepatology.* 2004
1300 39(6):1469–75.

1301 44. Bassett SE, Brasky KM, Lanford RE. Analysis of hepatitis C virus-inoculated chimpanzees
1302 reveals unexpected clinical profiles. *J Virol.* 1998 72(4):2589–99.

1303 45. Walker CM. Comparative features of hepatitis C virus infection in humans and chimpanzees.
1304 Springer Semin Immunopathol. 1997 19(1):85–98.

1305 46. Lanford RE, Guerra B, Bigger CB, Lee H, Chavez D, Brasky KM. Lack of response to
1306 exogenous interferon- α in the liver of chimpanzees chronically infected with hepatitis C virus.
1307 *Hepatology.* 2007;46(4):999–1008.

1308 47. Ray SC, Mao Q, Lanford RE, Bassett S, Laeyendecker O, Wang YM, et al. Hypervariable
1309 region 1 sequence stability during hepatitis C virus replication in chimpanzees. *J Virol.* 2000
1310 74(7):3058–66.

1311 48. Eslam M, Hashem AM, Leung R, Romero-Gomez M, Berg T, Dore GJ, et al. Interferon-λ
1312 rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. *Nat
1313 Commun.* 2015 6:6422.

1314 49. Ansari MA, Pedergnana V, L C Ip C, Magri A, Von Delft A, Bonsall D, et al. Genome-to-
1315 genome analysis highlights the effect of the human innate and adaptive immune systems on
1316 the hepatitis C virus. *Nat Genet.* 2017 49(5):666–73.

1317 50. Thomas E, Gonzalez VD, Li Q, Modi AA, Chen W, Noureddin M, et al. HCV Infection Induces
1318 a Unique Hepatic Innate Immune Response Associated With Robust Production of Type III
1319 Interferons. *Gastroenterology.* 2012 142(4):978–88.

1320 51. Park H, Serti E, Eke O, Muchmore B, Prokunina-Olsson L, Capone S, et al. IL-29 is the
1321 dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection.
1322 *Hepatology.* 2012 56(6):2060–70.

1323 52. Sheahan T, Imanaka N, Marukian S, Dorner M, Liu P, Ploss A, et al. Interferon Lambda Alleles
1324 Predict Innate Antiviral Immune Responses and Hepatitis C Virus Permissiveness. *Cell Host
1325 Microbe.* 2014 15(2):190–202.

1326 53. Boldanova T, Suslov A, Heim MH, Necsulea A. Transcriptional response to hepatitis C virus
1327 infection and interferon-alpha treatment in the human liver. *EMBO Mol Med.* 2017 9(6):816–
1328 34.

1329 54. Thimme R, Bukh J, Spangenberg HC, Wieland S, Pemberton J, Steiger C, et al. Viral and
1330 immunological determinants of hepatitis C virus clearance, persistence, and disease. *Proc Natl
1331 Acad Sci.* 2002 99(24):15661–8.

1332 55. Fouopouapouognigni Y, Sadeuh Mba SA, a Betsem EB, Rousset D, Froment A, Gessain A, et
1333 al. Hepatitis B and C Virus Infections in the Three Pygmy Groups in Cameroon. *J Clin
1334 Microbiol.* 2011 49(2):737–40.

1335 56. Njouom R, Pasquier C, Ayouba A, Gessain A, Froment A, Mfoupouendoun J, et al. High rate
1336 of hepatitis C virus infection and predominance of genotype 4 among elderly inhabitants of a
1337 remote village of the rain forest of South Cameroon. *J Med Virol.* 2003 71(2):219–25.

1338 57. Piehler J, Roisman LC, Schreiber G. New Structural and Functional Aspects of the Type I
1339 Interferon-Receptor Interaction Revealed by Comprehensive Mutational Analysis of the
1340 Binding Interface. *J Biol Chem.* 2000 275(51):40425–33.

1341 58. Piehler J, Thomas C, Garcia KC, Schreiber G. Structural and dynamic determinants of type I
1342 interferon receptor assembly and their functional interpretation. *Immunol Rev.* 2012
1343 250(1):317–34.

1344 59. Jones DM, Domingues P, Targett-Adams P, McLauchlan J. Comparison of U2OS and Huh-7
1345 cells for identifying host factors that affect hepatitis C virus RNA replication. *J Gen Virol.* 2010

Bamford et al., IFNL4 E154

1346 91(9):2238–48.

1347 60. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and
1348 transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat Protoc.*
1349 2012 7(3):562–78.

1350 61. Ran FA, Hsu PD, Wright J, Agarwala V, Scott D a, Zhang F. Genome engineering using the
1351 CRISPR-Cas9 system. *Nat Protoc.* 2013 8(11):2281–308.

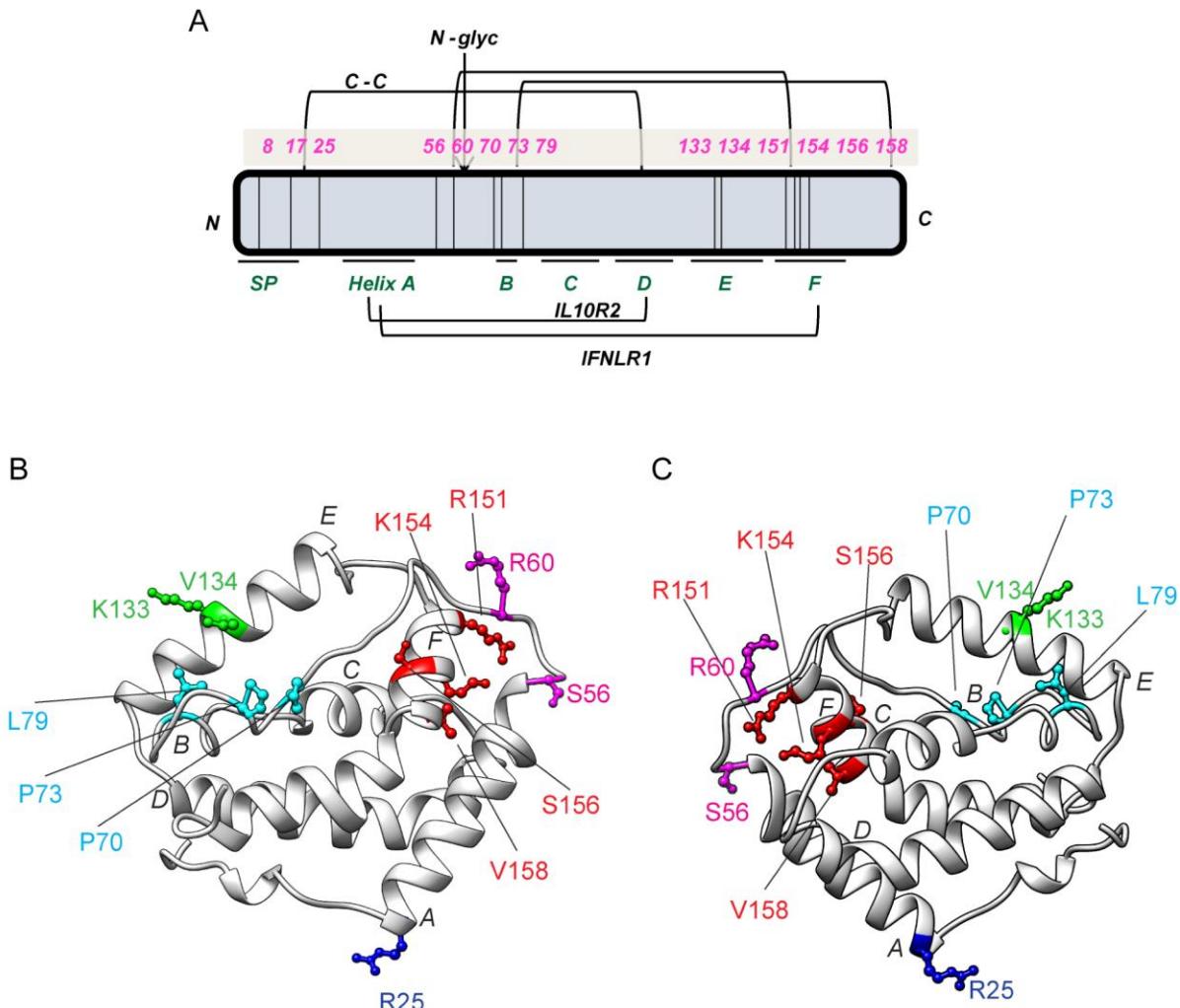
1352 62. Donald CL, Brennan B, Cumberworth SL, Rezelj V V., Clark JJ, Cordeiro MT, et al. Full
1353 Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil..
1354 *PLoS Negl Trop Dis.* 2016 10(10):e0005048.

1355 63. Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann E, et al.
1356 Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C
1357 virus chimeras. *Proc Natl Acad Sci.* 2006 103(19):7408–13.

1358 64. Lindenbach BD, Evans MJ, Syder AJ, Wölk B, Tellinghuisen TL, Liu CC, et al. Complete
1359 replication of hepatitis C virus in cell culture. *Science.* 2005 309(5734):623–6.

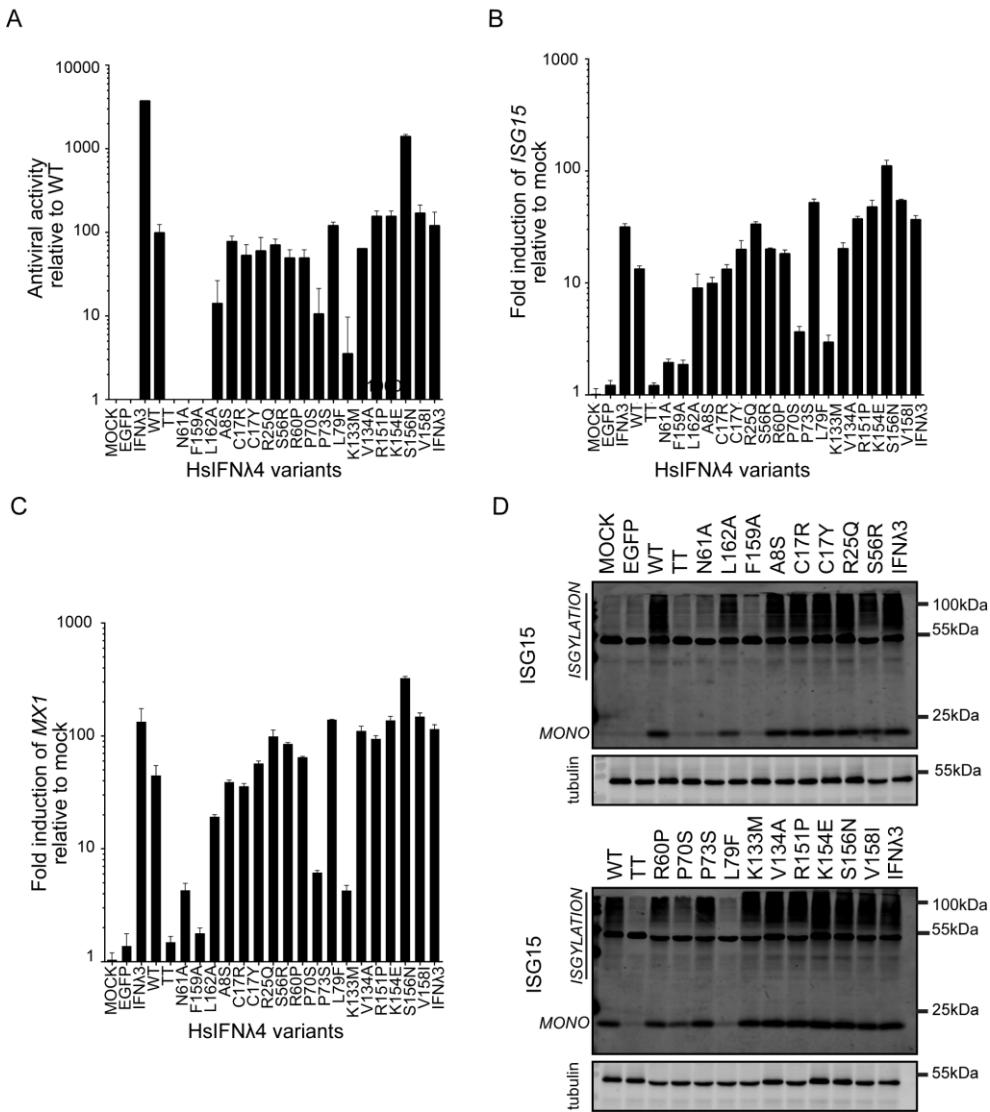
1360 65. Cowton VM, Angus AGN, Cole SJ, Markopoulou CK, Owsianka A, Dunlop JI, et al. Role of
1361 Conserved E2 Residue W420 in Receptor Binding and Hepatitis C Virus Infection. *J Virol.*
1362 2016 90(16):7456–68.

1363 66. Domingues P, Bamford CGG, Boutell C, McLauchlan J. Inhibition of hepatitis C virus RNA
1364 replication by ISG15 does not require its conjugation to protein substrates by the HERC5 E3
1365 ligase. *J Gen Virol.* 2015 96(11).


1366 67. Bigger C, Guerra B, Brasky K. Intrahepatic gene expression during chronic hepatitis C virus
1367 infection in chimpanzees. *J Virol.* 2004 78(24):13779–92.

1368 68. Robinson MW, Aranday-Cortes E, Gatherer D, Swann R, Liefhebber JMP, Filipe ADS, et al.
1369 Viral genotype correlates with distinct liver gene transcription signatures in chronic hepatitis C
1370 virus infection. *Liver Int.* 2015 35(10):2256-64.

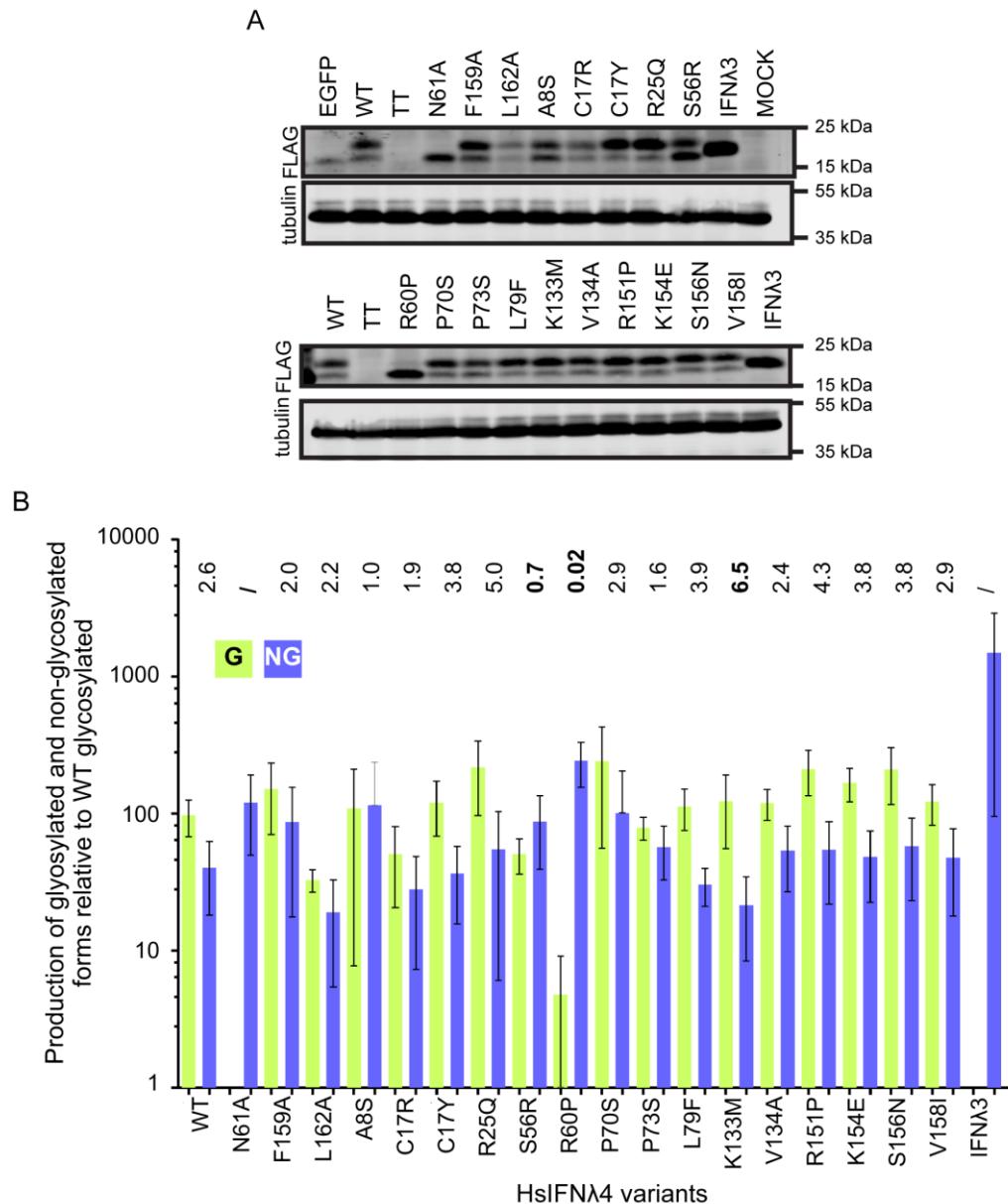
1371 69. Francioli LC, Menelaou A, Pulit SL, van Dijk F, Palamara PF, Elbers CC, et al. Whole-genome
1372 sequence variation, population structure and demographic history of the Dutch population. *Nat
1373 Genet.* 2014 46(8):818–25.


1374

S1 Fig

S1 Fig. Non-synonymous variants of HsIFNλ4 are located in regions of functional significance

(A) Schematic location of non-synonymous variants in the HsIFNλ4 polypeptide (N- to C- terminus) (above schematic in pink). Regions of predicted structural significance are underlined, including the signal peptide (SP), single N-linked glycosylation site (N-glyc, arrowed), helices (A to F) and disulphide bonds (C-C). Note that there are 2 non-synonymous changes at C17 (C17R and C17Y). Helices involved in receptor interactions (IL10R2 and IFNL4) are highlighted. (B and C) Location of non-synonymous variants on a homology model of HsIFNλ4 (side chains in colour) from two perspectives. Model was generated using the SWISS-MODEL online software. Helices are labelled A to F. Positions are coloured based on spatial clustering in the primary amino acid sequence.

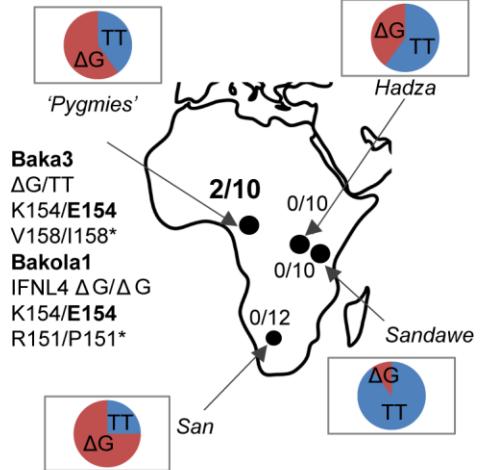


S2 Fig. Rare non-synonymous variants of HsIFNL4 affect antiviral activity

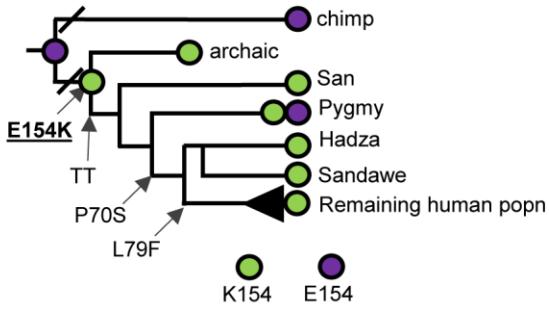
For data shown in panels A-D, all naturally-occurring variants of HsIFNL4 were tested in antiviral and ISG induction assays. Experimental conditions included a series of controls including HsIFNL3op (positive control), EGFP and the HsIFNL4 TT variant (negative controls) as well as non-natural variants of HsIFNL4 (N61A, F159A, L162A). N61A abrogates glycosylation of HsIFNL4 while F159A and L162A are predicted to reduce interaction with the IFNAR1 receptor subunit and hence lower activity based on previous studies (27). Panels show data from the following assays: (A) Antiviral activity in an anti-EMCV CPE assay in HepaRG cells. Cells were stimulated with serial dilutions of HsIFNL4-containing CM for 24 hrs and then infected with EMCV (MOI = 0.3 PFU/cell) for 24 hrs at which point CPE was assessed by crystal violet staining. After staining, the dilution providing ~50% protection was determined. Data are shown as mean +/- SD of three independent experiments. (B and C) ISG gene expression determined by RT-qPCR following stimulation of cells with HsIFNL4 variants. Relative fold change of *ISG15* mRNA (B) or *Mx1* (C) in HepaRG cells stimulated with CM (1:4 dilution) from plasmid-transfected cells compared to wt HsIFNL4. Cells were stimulated for 24 hrs. Error bar represent mean +/- SD (n=3). (D) Western blot analysis of unconjugated and high molecular weight conjugated-forms of ISG15 ('ISGylation') from lysates harvested from HepaRG cells stimulated with CM (1:4) for 24 hrs. Numerical data used for graph construction available in **Supplementary Data File 4 sheet 1**.

Bamford et al., IFNL4 E154

S3 Fig


S3 Fig. Relative expression of glycosylated and non-glycosylated forms of HsIFNL4 variants

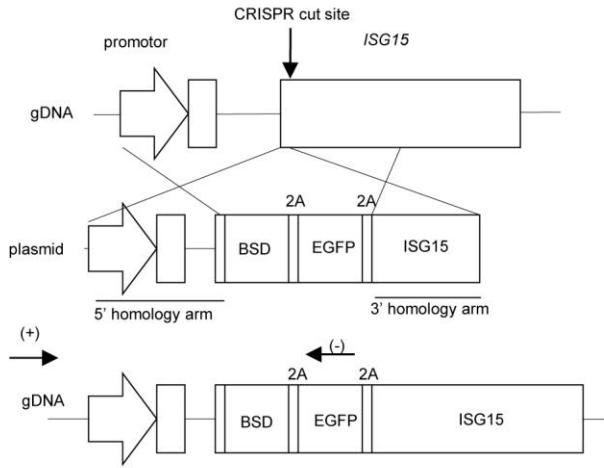
For data in panels A and B, expression and glycosylation of all naturally-occurring variants of HsIFNL4 were examined. Experiments included a series of controls including HsIFNA3op (contains no glycosylation sites), EGFP and the HsIFNL4 TT variant (negative controls) as well as non-natural variants of HsIFNL4 (N61A, F159A, L162A). N61A is predicted to abrogate glycosylation of HsIFNL4. Panel A shows a representative Western blot for the production and glycosylation of HsIFNL4 variants of lysates from plasmid-transfected producer HEK293T cells as detected with an anti-FLAG ('FLAG') primary antibody. Tubulin was used as a loading control. A non-specific band in the EGFP-transfected extract is shown (*). Panel B shows the quantification of intracellular glycosylated (green) and non-glycosylated (blue) HsIFNL4 variants by Western blot analysis of lysates from plasmid-transfected producer HEK293T cells. Ratio of glycosylated to non-glycosylated is shown above the graph. Two-fold differences from wild-type are highlighted in bold. Data shown are mean +/- SEM combined from three independent experiments. Numerical data used for graph construction available in Supplementary Data File 4 sheet 2.


Bamford et al., IFNL4 E154

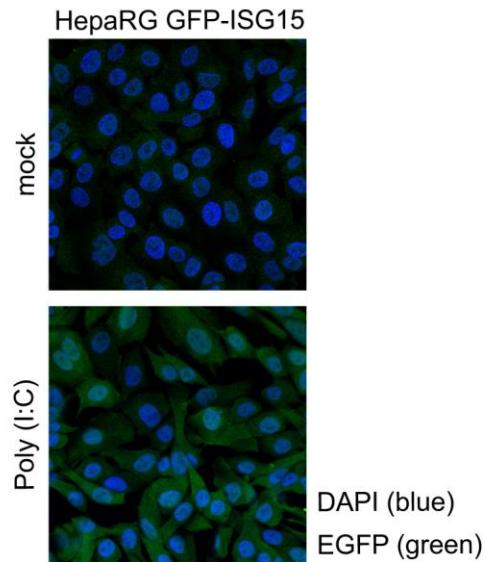
S4 Fig

A

B


S4 Fig. Presence of HsIFNλ4 K154E variant in Pygmies and evolution of HsIFNλ4 variants in human populations

(A) Geographical location and frequency of HsIFNλ4 K154E in African hunter-gatherer alleles (Pygmy, n = 5 individuals, Sandawe (S) n = 5 individuals and Hadza (H) n = 5 individuals). Two Pygmy individuals within two tribes (Baka and Bakola) were found to encode the HsIFNλ4 K154E variant. The proportion of ΔG (red) and TT (blue) *IFNL4* alleles are also shown in pie-charts. (B) Presence of HsIFNλ4 E154 (purple) versus HsIFNλ4 K154 (green) on a cladogram of human and chimpanzee evolution. Archaic human (Neanderthal and Denisovan) as well as other basal human populations (San, Sandawe and Hadza) only encode HsIFNλ4 K154. Earliest detection of the HsIFNλ4 TT frameshift and activity-reducing HsIFNλ4 P70S and HsIFNλ4 L79F variants are shown. All analysis can be found in **Supplementary Data File 1**.

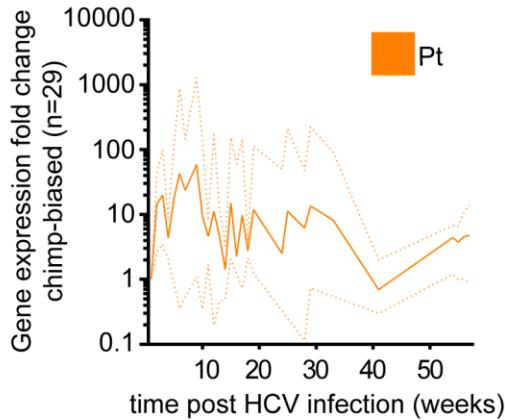

Bamford et al., IFNL4 E154

S5 Fig

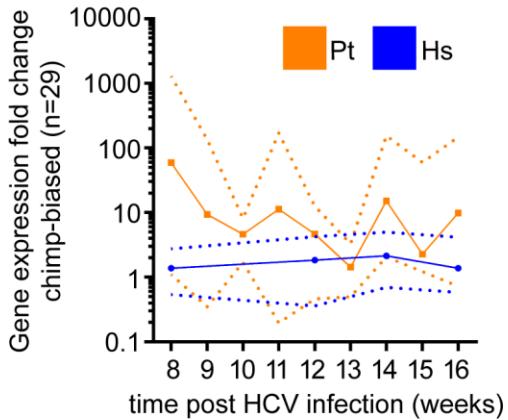
A

B

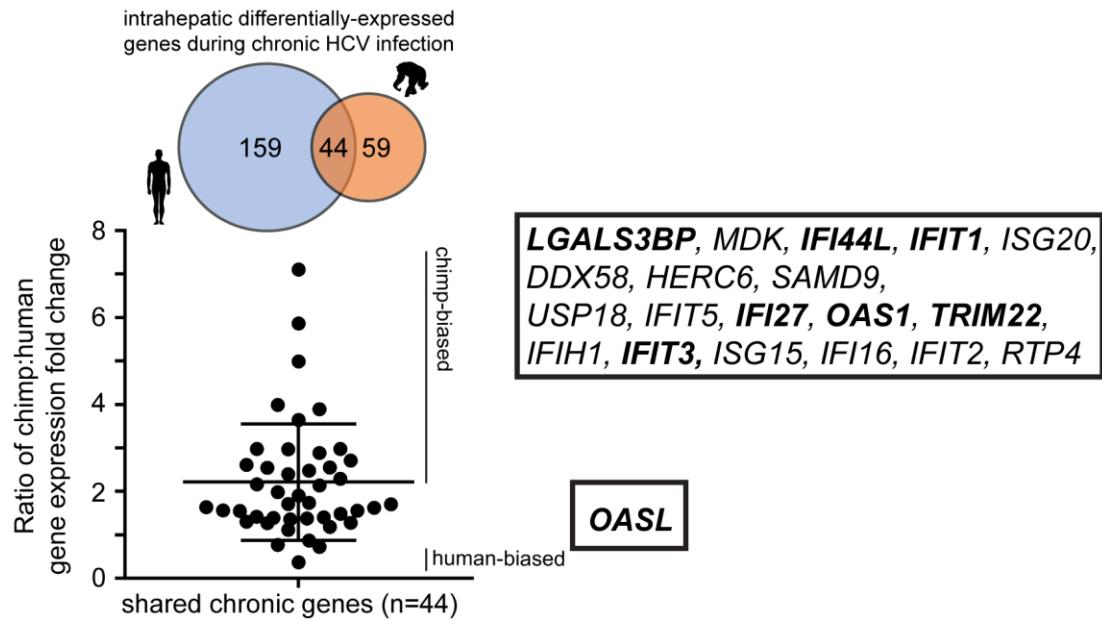
1379


S5 Fig. Generation of a reporter HepaRG cell line expressing EGFP in the *ISG15* promoter region

(A) Strategy for CRISPR-Cas9 genome editing combined with homologous recombination insertion of DNA sequences to produce an EGFP-expressing *ISG15* promoter cell line. The strategy enables the insertion of a cassette in-frame with the *ISG15* ORF that encodes blasticidin resistance (BSD) and EGFP genes followed by '2A' ribosomal skipping sequences. Target gDNA and CRISPR-Cas9 cut sites are shown on the upper cartoon. Binding sites of primers for genotyping are highlighted (+) and (-) in the resulting modified gDNA. Cell lines used for reporters were validated by PCR analysis (data not shown). (B) Induction of EGFP expression (green immunofluorescence) in the G8 cell clone with or without treatment with Poly(I:C) (1.0 µg/ml for 24 hrs). Poly(I:C) stimulates the Toll-like receptor TLR3, which induces *ISG15* expression. Cells were fixed in formalin, permeabilised and stained for indirect immunofluorescence with an anti-EGFP primary antibody before addition of a secondary antibody. DAPI was used as a counter stain for cell nuclei.


Bamford et al., IFNL4 E154

S6 Fig

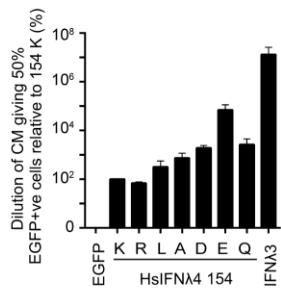

A

B

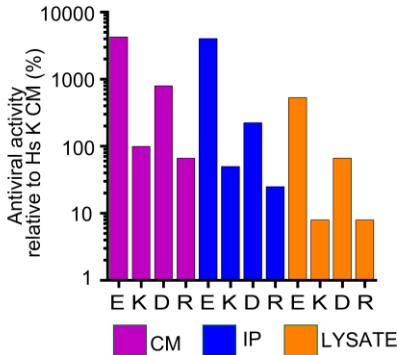
C

1380

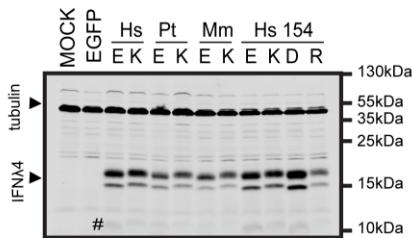
S6 Fig. Comparative induction of hepatic transcripts during acute HCV infection in chimpanzees and humans

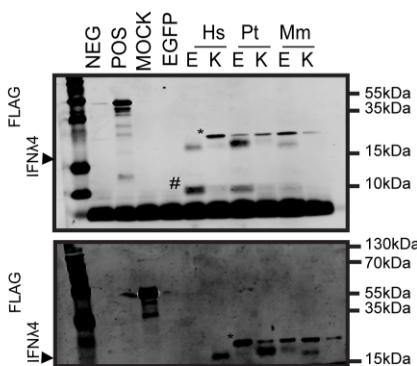

(A) Expression of 'chimpanzee-biased' differentially-expressed genes ($n = 29$) up to more than 50 weeks post infection. Chimpanzee-biased genes are shown as a combined mean (filled orange line) and range (dotted orange lines) of fold-change from all studies where any gene of the 29 genes was available over at most 1 year after initial infection. (B) Expression of differentially-expressed human and chimpanzee genes during 8 to 20 weeks post infection. Chimpanzee-biased genes are shown as a combined mean (filled orange line) and range (dotted orange lines) of fold-change from all 29 genes. The mean and range of gene expression for the human genes (blue filled and dotted lines respectively) equivalent to the chimpanzee-biased genes are shown. These data for chimpanzees are combined from different serial samples from different animals while human data is taken from a single biopsy from patients with an inferred time post infection. (C) Shared gene expression (overlapping 44 genes as shown in Venn diagram) during chronic infection in humans and chimpanzees as illustrated by a ratio of fold change in expression for humans and chimpanzees. Species biased genes (>2 fold enriched in either species) are listed to the side. All data are available in **Supplementary Data File 3**.

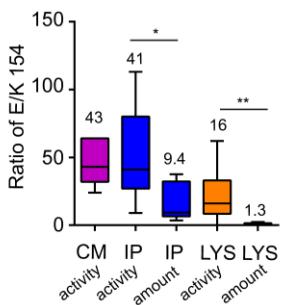
Bamford et al., IFNL4 E154


S7 Fig

1381

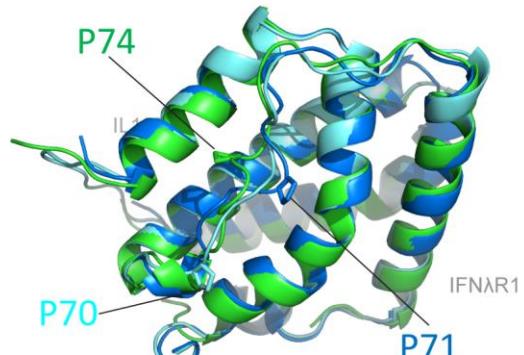

A


B

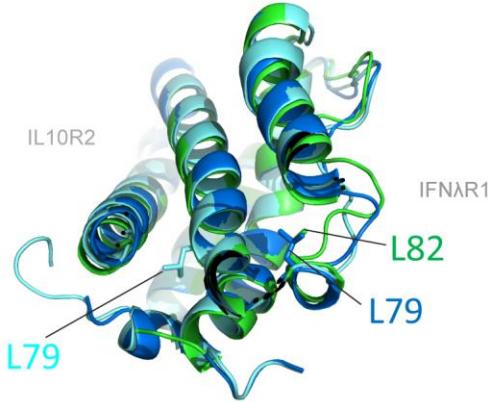

C

D

E



S7 Fig. Mechanistic insight into variant E154


(A) Dilutions for inducing ~50% EGFP positive cells for HsIFNL4 IFNL4 154 mutants (R, L, A, D, E and Q) using an EGFP-ISG15 reporter cell line assay relative to CM for HsIFNL4 K154 (%). Data show mean +/- SEM from three experiments. (B) Antiviral activity of HsIFNL4 isolated from CM (purple), intracellular lysate (blue) and immunoprecipitated CM (orange) for variants encoding E, K, R or D at position 154 in an anti-EMCV CPE assay relative to CM for wt HsIFNL4 (K154 variant) in HepaRG cells. (C) Detection of intracellular IFNL4 from different species as well as select mutants at position 154 (E, K, D and R) by Western blot analysis of lysates from plasmid-transfected producer HEK293T cells. The IFNL4 variants were detected with an anti-FLAG antibody. Tubulin was used as a loading control. These samples were taken from the same experiment as in **Fig 6E**. A lower molecular weight product detected by the anti-FLAG antibody, which is potentially a degradation product, is highlighted with a '#'. (D) Alternative images from repeats of detection of extracellular IFNL4 from different species by Western blot analysis of samples of FLAG-tag immunoprecipitated CM (1 ml) from plasmid-transfected producer HEK293T cells. A BAP-FLAG fusion protein was used as an immunoprecipitation control (POS). IFNL4 variants were detected with an anti-FLAG antibody. A lower molecular weight product detected by the anti-FLAG antibody, which is potentially a degradation product, is highlighted with a '#'. An upper band running near to the IFNL4 species is shown (*) which is likely antibody fragments from the immunoprecipitation reaction. (E) Ratio of E154 to K154 for antiviral activity (all) or protein amounts (IP or LYS) of IFNL4 found in CM, intracellular lysate and immunoprecipitated CM; where possible, data from the different species is combined. Data show median +/- minimum and maximum (n=6-8). Numerical data used for graph construction available in **Supplementary Data File 4 sheet 6**.

S8 Fig

A

B

IFNL1
IFNL3
IFNL4 model

S8 Fig. Structural modelling of P70 and L79 in HsIFNL4

1382

Modelled structures of HsIFNL4 (light blue) are overlaid on the crystal structures for HsIFNL1 (green) and HsIFNL3 (dark blue). Panels A and B show respectively positions P70 and L79 in HsIFNL4 and their homologous positions in HsIFNL1 and HsIFNL3 with reference to receptor subunit-binding interfaces (IFNAR1 and IL10R2 in grey). (A) P70 is found in a flexible proline-rich loop/helix facing the IFNAR1 receptor although no direct interactions between this region or receptor have been demonstrated. P70S might prevent required folding of the protein domain. (B) L79F is likely to disrupt packaging of the helices. Both P70 and L79 are highly conserved between IFNL4 orthologues and paralogues (data not shown).