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Abstract. The use of ultra-deep, next generation sequencing of circulating tumor DNA (ctDNA)
holds great promise for early detection of cancer as well as a tool for monitoring disease
progression and therapeutic responses. However, the low abundance of ctDNA in the
bloodstream coupled with technical errors introduced during library construction and
sequencing complicates mutation detection. To achieve high accuracy of variant calling via
better distinguishing low frequency ctDNA mutations from background errors, we introduce
TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that
provides a robust estimation of background noise to reduce sequencing errors. It significantly
enhances the specificity for downstream ctDNA mutation detection without sacrificing
sensitivity. Results on both simulated and real healthy subjects’ data demonstrate that the
proposed algorithm consistently outperforms a current, state of the art, position-specific error
polishing model, particularly when the sample size of healthy subjects is small. TNER is publicly
available at https://github.com/ctDNA/TNER.

1. Introduction

Cancer is a genetic disease that is driven by changes to genes controlling cellular function (Hanahan and
Weinberg, 2011). Characterizing the disease at the molecular level is essential to early detection,
personalized therapy based on tumor genomic profile, monitoring tumor progression and response to
treatment as well as identification of resistant mechanisms (Diehl, et al., 2008). This typically requires
tumor tissue biopsies to obtain samples for genotyping or other molecular analyses for solid tumors.
Biopsy procedures are usually invasive, and come with additional risk to patient’s health. In many cases,
tumor tissue biopsy is contraindicated medically and the tissue samples are often insufficient or
unsuitable for molecular profiling (Kinde, et al., 2011). In addition, cancer is a heterogeneous disease
with different subclones within the same primary tumor and between the primary tumor and metastatic
lesions. This heterogeneity in tumor can lead to variations in tumor tissue sampling through biopsy
(Venesio, et al., 2017).

Both cancer and normal cells shed DNA as a result of apoptosis and other biological processes, and
release DNA fragments into the blood stream to become cell-free DNA (cfDNA)(Jiang, et al., 2015;
Snyder, et al., 2016; Underhill, et al., 2016). cfDNA derived from tumor cells is called circulating tumor
DNA (ctDNA), and provides a real time genomic snapshot of cancer cells due to the relatively short half-
life of cfDNA (~1-2 hours)(Diehl, et al., 2008; Volik, et al., 2016). Thus ctDNA is a form of “liquid biopsy”
that provides a non-invasive alternative to tissue biopsy for cancer diagnosis and monitoring
(Bettegowda, et al., 2014; Lippman and Osborne, 2013). Moreover, ctDNA generally comes from all
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tumor lesions and is pooled in the circulatory system, therefore it can reduce sampling variation
associated with tumor heterogeneity in comparison to a single tissue biopsy (Crowley, et al., 2013).

The fraction of ctDNA in the total cfDNA in plasma, however, can be extremely low in many cancer
patients (Diehl, et al., 2008; Volik, et al., 2016). Recently established techniques such as droplet-digital
PCR (ddPCR) enable detection and quantification of low abundance ctDNA, but with limitation to cover
only a small number of known “hotspot” mutations (Openshaw, et al., 2016; Volik, et al., 2016).
Advances in DNA sequencing technology have made it possible to identify ctDNA mutations at
comparable sensitivity to ddPCR (Chen, et al., 2017; Thierry, et al., 2014) when the sequence coverage is
sufficient (>10,000x per base). One of the most significant challenges in detecting ctDNA mutations is
suppressing technical errors introduced during library preparation, PCR amplification or the sequencing
itself (Nakamura, et al., 2011). While errors arising during PCR amplification can be removed effectively
using molecular barcodes (Nakamura, et al., 2011), other technical errors are more universal and also
need to be removed before mutation calling (Kinde, et al., 2011; Kirsch and Klein, 2012). Newman et al
(Newman, et al., 2016) recently proposed a creative integrated digital error suppression (iDES) method
that includes both a molecular barcoding system to reduce PCR errors and a background polishing
model with an improved estimation of background mutation error rate (BMER) compared to the
previous computational method used in CAPP-Seq (Newman, et al., 2014). Specifically, the BMER was
mostly estimated using a model of Gaussian distribution on the mutation data from a collection of
healthy subjects (Newman, et al., 2016). As far as we know, there are very few back-ground polishing
methods designed for ctDNA detection and iDES is the only publically available state of the art method.
The polishing method used in iDES increased the percentage of error-free positions from ~90% to ~98%
(based on a 300kb panel, Fig 2b in Newman, et al., 2016). However, that means still ~6,000 positions
containing a substantial number of noisy bases that could be mis-classified, due to the relatively small
sample size (n=12) and the nature of the data (small discrete count) which made it difficult for the
Gaussian model to robustly estimate the background.

To provide a more robust estimation of background noise and remove the sequencing artifacts more
effectively for panel sequencing data, we developed a novel background polishing method called TNER
(Tri-Nucleotide Error Reducer) with a Bayesian consideration to overcome the small sample size issue.
TNER is based on tri-nucleotide context data and uses a binomial distribution for the mutation error
count to estimate the background from healthy subjects. Tri-nucleotide context (TNC hereafter) are 96
distinct substitutions in specific context of tri-nucleotide, consisting of the 6 distinguishable single
nucleotide substitutions (C>A, C>G, C>T, A>C, A>G and A>T) and the 16 possible combinations of
immediately preceding and following bases. TNC has been extensively studied in cancer genetics to
construct mutation signatures as a response to carcinogens (a great summary at:
http://cancer.sanger.ac.uk/cosmic/signatures), to compare the mutational spectra of trunk and branch
mutations, or to predict the clinical implications of called mutations (Alexandrov, et al., 2013; Gerlinger,
et al., 2012; Rosenthal, et al., 2016). Given that the pattern of low frequency technical errors from next-
generation sequencing (NGS) should be similar in normal control samples and patient samples, we argue
that local sequence context could help better model noise for small sample size of healthy subjects by
leveraging information from other bases with a shared TNC. The TNER methodology proposed here, to
the best of our knowledge, is novel in this area. As an effective error reducer, TNER can be easily
integrated into an existing variant calling pipeline before the variant caller when applied to detect very
low frequency mutations in liquid biopsy samples. TNER is freely available at
https://github.com/ctDNA/TNER.
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2. Methods

2.1. NGS data for analysis

To demonstrate the performance of the error suppression model in detecting single nucleotide
variations, we analyzed targeted sequencing data of plasma cfDNA of healthy subjects using a panel of
87 cancer genes described previously (Lira et al. AACR 2017, #2749). The barcoded target-enriched DNA
library (147Kb) was sequenced on an lllumina HiSeq 4000 platform generating ultra-deep coverage with
an average coverage per base of ~12,000.

2.2. Tri-nucleotide error reduction model

The detection of ctDNA is typically achieved through detecting signature mutations associated with
tumors in cfDNA. Sequence data from cfDNA has many stereotypical errors or other background
mutation errors that are not of tumor origin (Park, et al., 2017). In order to call a mutation in ctDNA, the
distribution of the BMER needs to be characterized at each nucleotide base position to reduce the false
positive error, for example, by modeling cfDNA data on the same NGS panel from healthy subjects
(Newman, et al., 2016). The mutation rates from healthy subjects are assumed to be background
mutation noise associated with both technical and biological sources. One challenge in characterizing
the individual nucleotide BMER from healthy subjects is the relatively small cohort size. The iDES
method used 12 healthy subjects (Newman, et al., 2016); we used a comparably sized set of 14 healthy
subjects. These small sample sizes do not allow building a reliable estimate of the background error
distribution for individual nucleotides. Bayesian method with prior information can help to overcome
this limitation.

To better estimate the BMER distribution, we propose a background error model originated from a
hierarchical Bayesian method that utilizes the distribution of mutation error rate in a TNC, which
consists of the mutated nucleotide and the combinations of immediately preceding and following
nucleotides. Mutation signatures characterized by TNC have been used frequently in cancer genetics
(Alexandrov, et al., 2013; Gerlinger, et al., 2012; Yang, et al., 2015) . There are 96 distinct TNC and we
assume they are independent. For a nucleotide in TNC group i (i=1, ..., 96) at base position j (j=1,...]), the
number of background error reads X observed for a given coverage N, is assumed to follow a binomial
distribution

Xii"’BiIlOIH(Ni, Rii) (1)
with position specific mutation error rate parameter mj;. J is the total number of bases in the panel

(147k). With a large N (>1,000 typically) and a small ©(<1%), X can also be modeled as a Poisson
distribution

Xji~Pois(N; * m;;)
(2)

with rate parameter N; = ;5. We will focus on the binomial model here.
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The BMER at position j can be estimated using the average mutation error rate of the jth base
position from the 14 healthy subjects, Ti;;. This position specific parameter will be poorly estimated with
the small sample size. To improve the estimate of 1t (for simplicity we drop the subscription for now), we
propose a Bayesian framework and assume that « follows a beta distribution within a TNC

mi~Beta(a,p) (3)

The use of beta prior is primarily due to its conjugation to binomial distribution and also due to its
goodness of fit to the data (see discussion). For convenience, we re-parameterize the beta distribution
using its mean as a parameter.

m~Beta(p,v), withp = ﬁa andv=a+f 4

The prior parameters of the beta distribution can be estimated based on the BMER distribution of
nucleotides in a TNC using method of moments (Bowman and Shenton, 1998). The mean parameter p
can be estimated by the average mutation error rate (fi) of nucleotides in the TNC. The v parameter can

be estimated using [i and the sample variance of BMER within the TNC. For a position with x mutation
count out of n total reads, the posterior distribution of the BMER at this position will be a

Beta(a + x, p + n — x) with a mean parameter

a+X
= - = 1- /n 5
oy W+ (L—w)x (5)

where w=(o+f)/(a+B+n).
Therefore, the posterior mean of the position specific BMER for position j with TNC i can be
estimated with a shrinkage estimator, that is, a weighted average of the TNC level mutation error rate

(i) and the position specific rate T;;
i = wiifl + (1 — wi )T (6)

The weight w; can be derived in closed form under beta-binomial distribution and estimated using
method of moments (Colews, 2013). We found the analytic Bayesian weight worked well for vast
majority of the positions except for a small number of (<1%) positions where the estimated position
specific error rate Tijis large. In those positions the shrinkage towards a smaller [f; tends to
underestimate the true background mutation error. Therefore we adopted a modified weight that
balances the relative size of the TNC error rate and the position specific error rate

(7)

This weight function provides less shrinkage when the position specific mutation error rate is high - a
property that helps retain the position specific background when it is much higher than the tri-
nucleotide level background. Although this simple weight does not reflect the impact of sample size, a
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larger sample size helps provide a better estimate of ;. Due to this modification in weight, TNER
adopted a more heuristic approach than a full Bayesian method.

Once we have an estimate of the BMER T;; using eq. (6), the threshold for mutation detection can be

defined based on the upper posterior credible interval bound of m;;. At o level, the upper 1-0/2
Clopper-Pearson interval bound for a binomial proportion is

B =p(1- g:Njﬁu + 1, N; (1 —15)) (8)

where f() is the quantile function of beta distribution; 7;; is the posterior estimate of mutation error
rate in Eq (6) and N; is the average total reads for this position from healthy subjects. If the observed
mutation error rate at position j with TNC i is lower than B;;, those variants mapped to the TNC will be
classified as background noise and polished using the reference allele, and otherwise the variants will
not be polished (possibly true mutations). In the Bayesian model, multiple comparison is not a major
concern as the prior distribution allows pooling information between positions and avoids false positive
call when variation is low (Gelman, et al., 2012). In our analysis, the false positive calls are very rare
when applying the method to the healthy subjects (see Results). Similar beta-binomial model has been
used in other studies (Gerstung, et al., 2014; He, et al., 2015; Martincorena, et al., 2015). However, none
of them used the model to estimate the BMER distribution with TNC, nor did they apply to ctDNA NGS
data.

3. Results

We first evaluated the TNER model on the healthy subject data using the leave-one-out method. We
built the background model using data from 13 healthy subjects and predicted the mutation in the
leave-out subject. Similar to Newman et al (Newman, et al., 2016), we counted the number of error free
positions, defined as those positions with exclusively reference allele reads after error suppression, for
each of the 14 healthy subjects at all 147k nucleotide positions, and compared the different error
suppression methods, including background polishing from iDES and the TNER method (Figure 1). For
TNER we used a=0.01, although the results were similar for a=0.05. We also calculated the panel-wide
error rate which is defined as the number of non-reference allele reads (frequency<5%, to exclude SNPs)
divided by the total reads. TNER method has the highest error-free positions and lowest panel-wide
error rate, demonstrates its superior specificity in reducing false positive error.
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Figure 1. Error free position (%) and panel-wide error rate of the 14 healthy subjects’ data (sample labels on x-axis)
from the leave-one-out analysis with different methods. Raw = raw data, Barcoding Only = Barcoding error
reduction only.

To test the sensitivity of the method, we used data from three healthy subjects that were not part of
the background cohort. One subject had 10 unique private SNPs that were not shared by any of the
healthy subjects. We did an in-silico experiment to dilute this subject’s data with the other two health
subjects in a 1:250:250 ratio and assume heterozygosity so we have an expected allele frequency of
0.1% for the 10 private SNPs. We found both iDES and TNER (a=0.01) were able to detect all the 10 SNPs
in this experiment.

To compare the performance of the position specific background polishing method and the TNER
method more rigorously, we evaluated their sensitivity and specificity at various detection thresholds
using simulation studies (see the schematic in Supplementary Figure 1). The simulation used the average
position specific mutation error rate from the 14 healthy subjects as the BMER which is a matrix of 147k
rows and four columns. Each column is a nucleotide that the reference base can mutate to, including the
reference nucleotide which is zero. We randomly selected 1,000 bases (rows) out of the 147k total, and
then at each of the selected base a simulated allele frequency (simulated signal) was added to the
existing BMER of a selected non-reference nucleotide (column). Specifically, for each of the 1,000
positions, there are three possible non-reference nucleotides it can mutate to. We chose the nucleotide
with the largest BMER value as the selected nucleotide to add the simulated signal. If the BMER are all
zeros at this position, we used the first non-reference letter (A-C-T-G) as the selected nucleotide to add
signal. This updated BMER matrix is the same as the original matrix except that 1,000 rows have a signal
added to a selected column; with the updated BMER matrix we simulated the read counts with a total
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coverage of 10,000 per position using a binomial and a normal distribution. For a normal distribution,
we simulated the allele fractions with the updated BMER as mean and the square root of the BMER
divided by 100 as standard deviation. The read counts are calculated by multiplying the simulated allele
fractions with the total coverage of 10000 (round to whole number). The simulated counts were further
split into forward and reverse strand with a random forward to reverse strand ratio centered around 1.
The TNER method and the position specific Gaussian models from the iDES were then separately applied
to the simulated data. As the true positives and true negatives are known, sensitivity and specificity
were calculated under various detection thresholds (o values). Receiver operating characteristic (ROC)
curves in Figure 2 compare the two methods under different scenarios. The TNER method performed
better than the position specific Gaussian model in all cases — data simulated under different
distributions and different mutation rate (MR) as shown by ROC curves. The simulated mutation signal
0.075% and 0.1% were chosen because they are close to the limit of detection for the methods when
per base coverage is around 10,000x. Larger signals will be too easy to detect by either methods and
smaller signals will be lower than the detection limit and difficult to be detected by any methods.
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Figure 2. ROC curves for position specific Gaussian model (PSGM) (black) and TNER (red) methods in simulated
cfDNA data. Two mutation rates (MR) were simulated: 0.075% (solid line) and 0.1% (dashed line) with a total

coverage of 10000 at each position.

One of the advantages of the TNER method is that it uses information from other positions with the
same TNC through a Bayesian consideration and thus stabilizes parameter estimates of the BMER.
Therefore we would expect TNER performs better than position specific error models when the available
sample size for healthy subjects becomes small. To evaluate the effect of healthy subject sample size on
the performance of mutation detection methods, we used half the available healthy subjects (n=7) as
our background mutation estimate and compared the results from both position specific Gaussian
model and TNER in the simulation studies. As expected, we found that the smaller sample size of healthy
subjects did not substantially reduce the performance of TNER, but greatly reduced the performance of
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the position specific Gaussian method (Figure 3), comparing to other methods. This clearly illustrates the
robustness of the TNER method when the number of healthy subjects is small. In fact we found TNER
can work even with 1-3 healthy subjects without sacrificing too much in performance.
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Figure 3. ROC curves of the position specific Gaussian model (PSGM) (black) and the TNER (red) methods with
different input numbers of healthy subjects: n=7 (dashed line) and n=14 (solid line). Mutation rate used is 0.075%.

4. Discussion

In this study, we proposed TNER, a novel background polishing method for removing sequencing
artifacts in panel sequencing data for liquid biopsy samples. The TNER method estimates background
mutation errors from healthy subjects using a beta-binomial model to hierarchically incorporate both
the tri-nucleotide level error rate and position specific error rate. The additional information from tri-
nucleotide level data helps stabilize the estimate of background errors and proves to be more robust
than the Gaussian based, position specific model used in iDES (Newman, et al., 2016), especially when
the number of healthy subjects is small. Results on both simulated and real healthy subjects’ data
demonstrated better performance of TNER than iDES in error reduction indicated by substantially more
error-free positions and lower panel-wide error rate. TNER’s superior specificity in reducing false
positive error can greatly benefit the down-streaming variant calling using general variant callers such as
VarScan (Koboldt, et al., 2012) or MuTect (do Valle, et al., 2016).

We could have used dinucleotide context or more complicated local sequence context such as
pentanucleotide (2 flanking nucleotides on each side) or heptanucleotide (3 flanking nucleotides on each
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side). The larger local sequence context may provide better model fit to the mutation error rate
(Aggarwala and Voight, 2016), but the increasing model complexity with pentanucleotide (1,536 unique
contexts) and heptanucleotide (24,576 unique contexts) becomes impractical for a targeted panel, like
the one tested here with a total of 147k bases. The Bayesian prior parameter will not be well estimated
due to small number of bases within each context. TNC provided a better fit than dinucleotide (Chen, et
al., 2016) but not too complicated than the larger local sequence context (Aggarwala and Voight, 2016),
so is a more balanced approach for a common NGS targeted panel.

One of the assumptions for analyzing NGS data by TNER is that individual nucleotides within a TNC
share a more similar mutation error rate than those between TNC. We looked at the average mutation
error rate from healthy subjects at the TNC level and compared the intra-TNC variability and the inter-
TNC variability. About 94% of TNC have intra-TNC variability smaller than the inter-TNC variability. Figure
4 displays an example of three TNC, all with C to T substitution, showing very different distribution. The
dashed lines are fit of beta distribution using the parameter estimates calculated by the method of
moments. In general, beta distribution fits the intra-TNC error rate very well.
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Figure 4. Examples of mutation error rate distribution of TNC with C-T substitution. Solid lines are the probability
density of average position specific error rate within a TNC. The dashed lines are corresponding fit of a beta
distribution using estimated parameters from the data.

In genomic data analysis, when the sample size is small, it is common to analyze data for individual
genes using information from other genes. This is implemented in the limma method (Smyth, 2004) for
microarray data analysis and the DESeq method (Anders and Huber, 2010) for RNAseq data analysis. In
our approach, we take advantage of the large number of bases shared in the same nucleotide context
and use these data to model the individual base mutation error rate. We found the TNER method
improves the imprecise estimate of background associated with small sample size at individual base
level.

Sequence data are read counts that are best described by distribution from discrete data families,
such as Poisson distribution or binomial distribution, particularly when the read count is low and
mutation frequency is very low such as in ctDNA data. We found that the Poisson distribution fit the
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count data well in general. A more sophisticated distributions taking over-dispersion into consideration
and the zero-inflated nature of ctDNA data may further improve the method.

Currently, ctDNA is rapidly becoming established as an important tool to supplement conventional
biopsies for cancer early detection, molecular characterization and monitoring of tumor dynamics. TNER
method provides a novel approach to effectively reduce background noise in panel sequencing data for
more accurate mutation detection in ctDNA.
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Supplementary Figure 1:

Simulation schematic

Random sample Add signal to Generate

T k bases . the k bases th+(\‘ Random Obs X

T T, T X
Average BMER from Random select X=rbinom(N, ;)
14 healthy subjects. k=1000 bases X=N*rnorm(m;, sqrt(m)/100)

Supplementary Figure 1: This illustrates how the simulated BMER (background mutation error rate) data
were generated in one of four possible changes of a reference nucleotide.
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