
Bioinformatics Workflow Management With The
Wobidisco Ecosystem

Sebastien Mondet* Bulent Arman Aksoy†

Leonid Rozenberg‡ Isaac Hodes§ Jeff Hammerbacher¶

Contents
Introduction 2

State Of The Union . 2
Description of The Present Work . 3
Quick Digression: Types (and OCaml) 4
Next In This Paper . 5

Ketrew and Lower-Level Considerations 5
The Ketrew System . 5
Ketrew’s EDSL . 7
The Coclobas Backend . 8

Abstractions in Biokepi 9
The “Tools” API . 9
The Typed-Tagless Final Interpreter 9

Use Case of Epidisco and the PGV Trial 10

Related Work 11

Future Work 12
*Corresponding Author, smondet@hammerlab.org, Department of Genetics and Genomic

Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
†arman@hammerlab.org, Department of Microbiology and Immunology, Medical University

of South Carolina, Charleston, SC 29425
‡leonidr@hammerlab.org, Department of Genetics and Genomic Sciences, Icahn School of

Medicine at Mount Sinai, New York, NY 10029
§issac@hammerlab.org, Department of Genetics and Genomic Sciences, Icahn School of

Medicine at Mount Sinai, New York, NY 10029
¶jeff@hammerlab.org, Department of Microbiology and Immunology, Medical University

of South Carolina, Charleston, SC 29425

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

References 14

To conduct our computational experiments, our team developed a set of
workflow-management-related projects: Ketrew, Biokepi, and Coclobas.
The family of tools and libraries are designed with reliability and flex-
ibility as main guiding principles. We describe the components of the
software stack and explain the choices we made. Every piece of software
is free and open-source; the umbrella documentation project is available at
https://github.com/hammerlab/wobidisco.

Introduction

State Of The Union

Over the past half-century the computer and software worlds have proven to be
a complete engineering disaster. Extremely poor quality standards, mostly due
to humans overestimating their capabilities [1], has lead to the deployment of
very unsecure [2] and unreliable [3], [4] software in all sectors of industry and
academia. The biomedical research community has added to the phenomenon
by allocating very little funding and training to software development; and
moreover providing poor recognition for (comparatively) valuable efforts in the
domain. Despite some advances in the open-sourcing and community building,
like projects using proper online hosting and distribution [5], [6] with decent
licenses, and opening access to data, the situation as of 2017 is still that Bioin-
formatics tools are of extremely poor quality and prove to hurt the productivity
of the whole community.

While our projects stay within cancer immunotherapy [7], we aim here at show-
ing solutions for the bioinformatics community at large. Most, if not all, bioinfor-
matics tools presented in various papers, provide partial analysis “steps” blessed
through peer-review, and distributed as software packages. Bionformaticians
need many of those tools chained together through partially compatible [8]
and/or weakly defined file-formats [9], to bring raw data (usually from sequenc-
ing platforms) to usable biologically or medically relevant information. We call
the whole graph of computations a pipeline. Data analysts also need to be able
to easily rearrange the ordering of the steps in the pipeline, make their param-
eters vary, over many similar experiments, while keeping track of the results.

We also want to easily and safely add new tools; adapt to new versions; and
install software with as much automation as possible. While we need to assume
that anything can randomly fail for obscure reasons, and have to deal with
adverse conditions (firewalls, university VPNs, cloud hosting, etc.), we want
to optimize infrastructure usage and make reproducible research easier. Note
that being able to rerun someone else’s analysis bug-for-bug as a “black-box”
[10] is very useful but it is not yet proper reproducible research, which should

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://github.com/hammerlab/wobidisco
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

mean being able to re-implement all the tools from their mathematical descrip-
tion/specification, including bugs, imprecisions, and unexpected behaviors if
any.

These hurdles on a bioinformatician’s path to publication have lead to a huge
demand for pipeline automation tools, a.k.a “Workflow Engines.” A lot of them
are hence in use, including many whose development originates from the bioinfor-
matics community itself. We reviewed many of them, cf. Related Work (section
), and concluded that none of them came up to our expectations and that their
development setup would make it very hard for us to reach an acceptable value
by simply contributing. We found that they were not flexible enough, often
specific to a platform (e.g. Hadoop), and driven by lots of strong assumptions
(e.g. on networks, file-systems, or regarding the topology of the pipeline graphs,
etc.). Moreover, we observed very little support for fault-tolerance or guarantees
against hard-to-track mistakes. We also argue that the use of custom Domain
Specific Languages (DSLs) almost never renders enough flexibility and reliabil-
ity. Indeed, programmers think they need a very simple DSL, then they realize
they need a form of variable-definition-and-substitution, then a “conditional”
construct appears, and the list of programming-language-features keeps grow-
ing; cf. the “yet another half-baked Turing-complete language” syndrome [11],
[12].

Description of The Present Work

To conduct our own computational experiments, we started our own family of
workflow-management-related projects: Ketrew, Biokepi, and Coclobas.

• Ketrew is a general-purpose workflow engine (which has also been used
for non-bioinformatics applications); it is based on an Embedded Domain
Specific Language (EDSL), that allowed us to build properly modular
libraries of “workflow-steps.”

• Biokepi is our main library collecting and wrapping bioinformatics soft-
ware tools as assembly-ready pieces of Ketrew pipeline.

• Ketrew has various backend-plugins defining how to communicate with
batch scheduling systems; Coclobas is such a new backend; it allows us
to harness elastic and container-based infrastructure, such as Kubernetes
[13] clusters as provided by the Google Container Engine (GKE, [14]) or
AWS-Batch clusters provided by Amazon [15].

This modular setup allowed us to experiment with the different levels of ab-
straction for concisely expressing bioinformatics pipelines. We can see this in
our “flagship” application: Epidisco a family of pipelines for “personalized can-
cer epitope discovery and peptide vaccine prediction” used among other things
in the NCT02721043 clinical trial [16], [17]. We created the “umbrella documen-
tation project” named Wobidisco as a centralized entry-point to the family of
projects presented in this paper.

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

This work has been guided by the following general design ideas:

• We use Embedded DSLs with static, as strong as possible, type check-
ing; this gives us lot of flexibility to develop, inspect, and maintain very
complex pipelines while providing safety guarantees, proper semantics,
and always up-to-date “IDE-like” documentation. In particular, Biokepi’s
high-level pipeline EDSL (section), is based on recent research by Suzuki
et al. [18] which provides flexible and well-typed extensibility.

• Small well-defined abstractions work better than monumental piles of
spaghetti. This modularity is also important for manageable documen-
tation efforts.

• We acknowledge that we cannot handle or even envision all possible use-
cases; every (layer of) abstraction has to be extensible and “escapable” by
the users.

• We aim at stressing correctness and fault-tolerance.
• Since system-administration (or “DevOps”) are often missing or under-

staffed/underfunded; we need to make deployment in adverse conditions
as easy and flexible as possible.

• We want to maximize open/free-for-anything availability of software and
data [19].

Many of the above guide-lines lead us to use a saner-than-usual implementation
language: OCaml [20]. The above choices may not be “traditional,” we discuss
them in the following section.

Quick Digression: Types (and OCaml)

Within bioinformatics tools as with most low quality general purpose software,
we observe a lot of overestimation of programmers’ abilities to produce well
designed and carefully implemented programs. Indeed, most dismiss or misun-
derstand the importance of types, we see this through the use of popular but
unityped (as in “one type”) or unsound languages like Python, Perl, Ruby, or
C++.

Type theory is an expression of constructive logic which is, or should be, to soft-
ware engineering what calculus and physics are to civil engineering. Types are
not only a great way of thinking about (and modeling) programming problems;
types are useful logical properties describing (pieces of) a program. Checking
types is actually proving (in the mathematical sense) that the logical proper-
ties are consistent over the whole program or library. Removing type checking
(through weak or dynamic typing) is equivalent to trusting the programmer for
checking these logical properties themselves. This means trusting a homo sapi-
ens, for being consistently and carefully logical all the time; which is absurd
and very ill-advised [21]. We see expensive consequences of this irresponsible
behavior for instance when the security community exhibits exploitable software
flaws, recent findings are even brought to the attention of bioinformaticians [22]:

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

while the article suffers from sensationalism, it highlights the need to be sure
that any piece of software behaves correctly for all possible inputs, including
maliciously crafted ones. Software testing, no matter how thorough, only gives
confidence on tiny subsets of possible program executions. Of course, while the
software safety research community has made immense advances, as of 2017,
fully formalized and proved software is still out of reach for large-scale, open-
source, and under-funded software engineering. Testing remains important, but
it has to be in addition to static and “as strong as possible” typing.

Given the above considerations, actual choices for implementation were limited,
but OCaml stood out. It is equipped with a very advanced but practical type-
system [20], [23]. The system was carefully designed with speed and correctness
in mind and offers a lot of flexibility. The community includes very successful
industrial users for whom safety and security matter [24], [25], and has con-
tributed great tooling. OCaml is also more future-proof; as the next generation
of safer programming languages and tools, like Coq [26] or F* [27], are often
written and/or extract code to OCaml.

Next In This Paper

We are now going to see deeper into the proposed systems, the remaining of
this paper is organized as follows. We start at a lower-level (i.e. close to the
computing environment) with Ketrew and Coclobas, our infrastructure for work-
flow automation, in section . Then, we climb the abstraction hierarchy through
Biokepi, our library for building bioinformatics pipelines, up-to it’s EDSL based
on recent computer-science research (section). In section , we quickly present
an open-source and quite feature-rich use case: Epidisco. We finish with related
(section) and future (section) work.

Ketrew and Lower-Level Considerations

Ketrew stands for “Keep Track of Experimental Workflows,” we detail first its
low-level design and implementation, and then its pipeline-construction API.
We end this section with Coclobas which stands for “Configurable Cloudy Batch
Scheduler.”

The Ketrew System

The initial design and first versions of Ketrew had two modes of operation:
a “client-server” — default/normal — mode, and a “standalone” one. The
standalone mode has been dropped since; it was meant to allow users to quickly
setup and try running workflows by not having any server or daemon (Ketrew
itself or a database) in place, and doing everything with a single Unix process.

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

This standalone behavior exists in other workflow automation tools (it is the
default for utilities similar to make or bigger systems like Luigi [28]). We dropped
its support for various reasons, among them: i) the interactive web-based user
interface (a.k.a. “WebUI”) has proven very useful especially for beginners and
it can only be used when a server is running; ii) the operation of the standalone
mode was confusing users regardig what they can or cannot do “concurrently”
(it was based on the Sqlite 3 database which does not fully support inter-process
concurrency [29]). Instead we have insisting on making the client-server mode
as easy and flexible to setup as possible [30].

The Ketrew application is hence one simple Unix binary which contains the
service logic (called “the engine”), a web-server, a command line interface (CLI),
packed together with the Javascript code (compiled from OCaml thanks to
js_of_ocaml [31]) and the style-sheet (CSS) of the WebUI. The system can
be installed and used on any Linux system or on Mac OSX and, if needed,
everything can be done as a regular Unix user. The server-side component
is designed so that the application can be abruptly stopped or become offline
while workflows are running, and restarted seamlessly in the right “state.” The
HTTP API and the WebUI can be served over plain HTTP or with TLS (both
the classical OpenSSL library, and the safer nqsb-TLS [32] can be used). There
is also a semi-interactive text-based user interface which communicates with
the web-server using the same protocol as the WebUI; users usually prefer the
latter but the TextUI is for example useful when institutional firewalls or virtual-
private-networks (VPN) get on the way of regular web-browsing.

Usually, scientific computing clusters run a system component to abstract the
setup and monitoring of programs for regular users; this is known as a batch/job
scheduler. A workflow engine needs to interface with these systems to actually
run commands and scripts on the targeted infrastructure. Ketrew adopts a
plugin architecture for the implementation of the communication with these
system called “backends.” Any user can write new backends and load them with
the system (and if deployment of dynamically loaded modules is a problem; one
can easily create a Ketrew application binary statically linked their plugins). We
ship various backends: Platform LSF [33], PBS/Torque [34], YARN [35] (with
which we can run both Hadoop applications like Spark applications or regular
shell-based jobs), and a “daemonization” plugin capable using two methods (one
for more “standard” Unix hosts based on the nohup and setsid programs, and
one based on generated Python scripts — for Mac OSX hosts).

At a pipeline-level, the choice of backend is attached to lowest-level jobs; each
step can choose the plugin it uses. Unlike many other workflow-engines where
the backend is set at a global level, cross-infrastructure workflows are hence easy
to write and setup (e.g. replicating data from one cluster to another, or running
some steps outside of the scheduler for speed-up).

Ketrew’s engine (and its plugins) can communicate with the infrastructure di-
rectly on the current host (as simple system calls) or over SSH connections.
Indeed, users can setup password-less SSH access in order to, for instance, run

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

Ketrew on their laptop and manage workflows on one or more university clus-
ters, even when they cannot have a long-running server on their institution’s
infrastructure.

As a failed experiment, we also built with a system for users to setup so-called
“control master” reusable SSH connections from a shared Ketrew server. Even
though OpenSSH is specifically designed to make it hard for users to “script”
the client, we managed to get a prototype working: a Web interface to setup
SSH connections (working even with password-only or 2-factor authentication
schemes). We then hit multiple unexpected failures from OpenSSH, it proved
not reliable enough for heavy duty use of the system (there are hard limitations
on connection multiplexing [36]).

Ketrew’s EDSL

We provide a very flexible EDSL-based API to construct workflows. The EDSL
is provided as a simple and pure OCaml library. All the constructs of the
language are used to build an immutable graph data-structure. This helps the
users organize their (partial) workflows in a modular way and with their own
domain-specific abstractions. The resulting functions and libraries are then
nicely composable and easier to reason about.

The submission of the workflow to the server is done with one simple function
that serializes the resulting data-structure to a JSON object [37] and sends it
to the server over HTTP(S). The Ketrew engine performs a node equivalence
search before starting any jobs; this means that unless explicitly disabled, nodes
that attempt to produce the same result will be “merged.”

On a semantic level, the API of the EDSL is designed to help the user build
a graph with three kinds of edges. The nodes contain most of the information
(how to run the step, how to check whether it is already done or successful, and
much more meta-data) and the edges are either dependencies (the most common
way of constructing workflows) or mechanisms to react to success or failure of
the nodes (for instance, we can define “clean-up” workflows that are activated
when a step fails).

Workflow nodes are meant to ensure logical “conditions.” These are expressed
thanks to a (much smaller) EDSL of boolean expressions whose base terms are
checks on precise system conditions (e.g. that a given file or a file-tree structure
exists, or that a shell-command returns a given code, etc.). As we started using
the first iteration of the EDSL for larger scale pipelines, the importance of the
object(s) of these condition-expressions proved to be bigger than anticipated.
Hence, in the second (and current) major version of the EDSL, we use a type-
parameter to pass the products of the nodes around the programs in a strongly
typed way (cf. Parametric Polymorphism [38]). A “product” is then an ab-
straction of what a workflow node ensures. Using different type-parameters for

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

different kinds of workflow-nodes helps us make senseless code impossible to ex-
press; those constructs are extensible by user-code. For instance, within Biokepi,
we cannot use a node which produces Bam files in a place where we expect VCF
files; those products are defined in the library as they are bioinformatics-specific.
Differently typed nodes, can still be be packed together, e.g. as a list of depen-
dencies, thanks to existential types [39]; they become “edges” in the pipeline
graph.

The Coclobas Backend

In practice, our team has run Ketrew workflows first on a Plaform LSF cluster,
and then on a YARN-based Hadoop cluster, until moving to Google Cloud’s
infrastructure. We consider relevant and interesting to report on this experience.

We first were guided by the goal of utilizing the infrastructure as fast as possible.
Hence we wanted to quickly set-up/update/destroy familiar PBS/Torque [34]
clusters with shared file-systems. As we tried and were disapointed with the
reliability of existing solutions (e.g. Elasticluster [40]), we decided to use Ketrew
workflows for the task (process often known as “dogfooding,” i.e. using our own
product to stress-test it). The resulting project was called Stratocumulus [41];
configurable workflows which could set up shared computing infrastructure on
the Google Compute Engine.

The above project got us and our users to very quickly get started leveraging the
infrastructure but it was not cost efficient. Indeed, building “classical” comput-
ing clusters on cloud infrastructure most often means keeping compute nodes up
and running even when there is no work to do. Manual update or destruction
from users when they are done cannot always be counted on; for instance, we
observe that when a workflow finishes on Friday night, users will not collect
their results and clean-up their resources until Monday morning. This lead us
to investigate ways of using auto-scaling capabilities provided by some Google
Cloud components: we created a new job scheduler, Coclobas, accepting jobs
over HTTP and scheduling them on elastic Kubernetes [13] clusters (as deployed
by the Google Container Engine — GKE). Later, the project was extended to
schedule container-based jobs within AWS-Batch and on local Docker installa-
tions. Note, that while the main client is the Ketrew plugin, one can submit jobs
to Coclobas without Ketrew. Coclobas also takes care of working around vari-
ous idiosyncrasies of Kubernetes: it keeps track of the logs (which Kubernetes
can easily loose), and, it throttles submissions and retires after failures to limit
the impact of overloading of the Kubernetes server. The API also simplifies
like the use of the “secrets” feature to pass custom information to containers
(e.g. a script to run), or the setup of arbitrary NFS mounts. Coclobas can use
an existing server or manage a fresh one using the Google Cloud client.

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

Abstractions in Biokepi

Ketrew and Coclobas are also used for workloads not related to bioinformatics
(like system administration [41], building documentation, etc.) but the main
strength of Ketrew’s API is being an embedded DSL in a powerful language
like OCaml. This allows users to build modular abstractions that fit their
application domain using proper software engineering. Our abstractions for
bioinformatics, i.e. the Biokepi library, are detailed in this section.

Bioinformatics workflows in Biokepi are organized in two layers: the lower-level
layer consists in a catalog of bioinformatics tools wrapped as Ketrew workflow
nodes. The second layer is the higher-level Pipeline_edsl module; it is an
embedded language to write workflows very concisely with help from precise
types.

The “Tools” API

At this lower-level, we use already proper types to give stronger semantics to
the tools’ parameters, and add constraints and invariants. We have for instance
abstractions of FASTQ [42] single-end or paired-end sets of files, or Bams [8]
recording their reference genome their sorting status (coordinate, read name,
etc.). We also use these modules to encode our slowly acquired knowledge
about the idiosyncrasies of biomedical software. Having a proper programming
language also simplifies the implementation of decently complex performance
improvements like automatically generating “scatter-gather” parallelizations of
some computations or replacing partial of workflows with “chained” shell pipes.

The workflow nodes are designed to be able to make everything “restartable” and
leverage Ketrew’s semantics to share intermediate results as much as possible.
All of this is built around the “Machine” abstraction, a module defining the
computing infrastructure and environment (bioinformatics software and data)
to simplify the implementation of very portable and configurable workflows.
This environment can take care of most software installations, but it is easily
configurable; for example one can leverage software already present on the user’s
infrastructure. Similarly one uses the abstraction to configure the access to
“reference-data,” by default through downloads from public sources.

The Typed-Tagless Final Interpreter

The second layer is the higher-level Pipeline_edsl module; it is an embedded
language to write workflows very concisely with help from precise types. The
EDSL hides out workflow steps that we consider “boilerplate” (like indexing and
sorting Bam files, preprocessing reference genomes, locally installing software,
etc.).

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

The first version of the EDSL that we implemented was based on a general-
ized algebraic data type (or GADTs, [43]). The module (that we maintain for
backwards compatibility for now) proved very practical for end users as long
as they did not want to extend the language without modifying Biokepi itself.
Moreover the GADT-based implementation lacked modularity and could have
grown to proportions difficult to maintain. Therefore we decided to rewrite this
component to be based on recent research on typed tagless-final interpreters [18],
[44]. While being slightly more complicated to approach the new implementa-
tion provides extensibility while being well-typed. Examples of extensions are
detailed in section .

The pipelines written using Biokepi’s high-level EDSL can be compiled to vari-
ous backends. Of course the main compilation target are Ketrew worklow nodes
(using the lower-level modules of Biokepi), but we can also generate high-level
graph descriptions (i.e. at the level of bioinformatic-tools/semantics) using the
“dot” language from the Graphviz project (cf. example in figure 2). There is
also a compiler to JSON files allowing implementation-independent traceability
(and potential reproducibility) of the workflows (human-and-computer-readable
exact descriptions of the whole pipeline). Biokepi still allows to “break” the
abstraction barrier and write workflows with lower-level functions manipulating
Ketrew workflow-nodes through extensions of the EDSL and users can write
their own compilers/interpreters.

Because of our main application domain, the tools avaialable in Biokepi are for
now mostly focused on cancer genomic pipelines but we welcome contributions
from any sub-field of bioinformatics. The following section presents Epidisco a
configurable pipeline based on Biokepi’s EDSL.

Use Case of Epidisco and the PGV Trial

In the context of our participation in a Personalized Genomic Vaccine clinical
trial (NCT02721043 [16]), we have developed Epidisco, a family of pipelines
for selecting vaccine peptides targeting cancer mutations. Epidisco is a Biokepi
pipeline that produces ranked peptides from the outputs of the sequencer (by
default FASTQ data, but we can also start from BAMs and realign them auto-
matically); it is designed to run with an arbitrary number of normal, tumor, and
tumor-RNA samples, plus optional HLA-typing information (if not provided the
pipeline computes it) [16], [17], see figure 1. The pipeline produces an HTML
report that we can serve to our collaborators together with the results.

Epidisco fully utilizes the flexibility provided by the Biokepi EDSL. We extend it
with custom constructs that are specific to the particular application (like the
“saving” of intermediate results or construction of the final report web-page).
The big and growing amount of options that can modify the pipeline enables
us to maintain a “production” pipeline while allowing various experimentations;

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

the high-level EDSL makes the code still reasonably readable and easy to under-
stand. Moreover using proper software engineering at the pipeline-level makes
perilous changes much easier; for instance, one can see that the logic used to
experiment-on and implement the fix in the pull-request #119 [45] would have
been much harder to express in a custom workflow DSL or with a weak pro-
gramming language.

Related Work

The literature and the open-source world contain many workflow engines and
computational pipeline tools. Some of them are biology-specific specific and
some are more generic. Before starting working on this family of projects we
reviewed and tried a few (including commercial software, although inadmissible
for security and long-term dependence reasons). None were fully satisfying
although we borrowed ideas and lessons from many of them. Note that Spjuth
et al. previously published a biased but relatively thorough review paper on the
matter [46].

Given the diversity of the analyses and of the software environments, most work-
flow management tools that aim at specializing (in bioinformatics or other) end
up not being flexible enough and having to implement many edges cases one by
one. A good example is the famous Galaxy [47], which is quite inflexible while
being very thorough has required many human-years of effort to be implemented
and by the time we tested still didn’t present the reliability and flexibility that a
small fast-paced team requires. QuickNGS [48] is actually a LIMS (Laboratory
Information Management System) that happens to implement a simple work-
flow engine to run a predefined set of tools; this can be useful for core facilities
that follow the same overall functioning. ExScalibur [49] is a set of automated
pipelines for whole exome data analysis, that is implemented in the custom DSL
“BigDataScript” with very little abstraction power. COSMOS [50] at least uses
an EDSL, within Python, but its model restricted to map-reduce-like workloads
(direct acyclic graphs of shell commands producing files). Azkaban [51] is a
heavy-weight workflow manager used for “several years at LinkedIn.” Its design
is specialized for quick-running Hadoop pipelines although extensible through
Java plugins; workflows are defined very awkwardly as key-value configuration
files. Still extremely specialized, Makeflow [52] is actually a set of tools which
provide abstractions for particular computational patterns (e.g. “Map-Reduce”
is such a kind of abstraction). GXP Make [53] (based on “GXP Shell” [54]) is
a fun (ab)use of GNU-make as it provides a shell mksh that intercepts make’s
calls to run distributed workflows. Biomake [55] is another extension of the ven-
erable make tool by making it more programmable thanks a Prolog execution
engine. Swift [56] is a C-styled custom, hence limited, language used for en-
coding Makefile-like dependency graphs which can be run on various platforms.
Taverna [57], now an Apache Incubator project, attempt to be a “Graphical

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

Programming Environment” to define workflows and share them through My-
Experiment.org project.

Other tools, have embraced the “Embedded Domain Specific Language” band-
wagon but most often fell short on the reliability and expressivity aspects. For
instance, BPipe [58] while claiming no need for programming experience, is
also an awkward EDSL within Groovy, an unacceptable Python-like language
for the Java Virtual Machine. Snakemake [59], Ruffus [60], and Luigi [28], are
Python EDSLs, the latest being most advanced one, while quite Hadoop-centric.
Similarly, Pwrake [61] is an extension of Rake (Ruby EDSL-ish build system)
to run “builds” in parallel. Queue (part of the GATK [62]) on the other hand
is a Scala-based library; the extreme object-orientation brings the verbosity of
Java while not trying to improve on the type safety.

Future Work

Like a almost any open-source family of projects, more future work can be
envisioned than humanly achievable.

One the lower-level aspects we are actively working on extending the catalog of
backends that Ketrew can utilize: after the Google Container Engine and the
“Local Docker” setup, we are now improving support for Amazon AWS.

For the workflow engine itself, after a few recent performance and scalability
improvements, the main point we want to improve is now theWebUI. We want to
make it extremely easy to build custom “job submission interfaces” from a high-
level and embed them in Ketrew’s WebUI. Multi-scale graphical visualization of
large workflow graphs is also both a very appealing feature and an interesting,
surprisingly “open,” problem to work on.

Ketrew’s API for writing workflows has proved to be very practical and scalable
but the actual shells commands run by workflow-nodes are still mostly untyped
strings, the module provides a few higher-level constructs but we want more
“typed programming” abilities. This is why we have been developing Genspio
[63], a typed EDSL to generate POSIX shells scripts; we avoid the shell’s “es-
caping hell” and provide a more composable API. Genspio has been recently
released, and stress-tested in a systems-administration context; the next step
being its integration into Ketrew.

At the level of Biokepi, in addition to the expansion of the “tool catalog,” it may
be interesting to add more formal information into the types of the constructs of
the EDSL (e.g. whole genome or exome, species, RNA/DNA). Of course, we also
want to explore, at any level of the system, the progressive introduction of more
precise and stronger formal guarantees through dependently typed approaches
[26].

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

http://www.myexperiment.org/
http://www.myexperiment.org/
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

Figure 1: The PGV/Epidisco Pipeline. High-level diagram of the pipeline
that we currently have running in production.

Figure 2: Biokepi-EDSL Example Pipeline. Excerpt from the Graphviz-
based rendering of a pipeline which uses Biokepi’s EDSL.

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

References

[1] C. Hoare, J. Misra, G. T. Leavens, and N. Shankar, “The verified software
initiative: A manifesto,” ACM Comput. Surv., vol. 41, no. 4, pp. 22:1–22:8,
Oct. 2009.

[2] “The common vulnerabilities and exposures project.” http://cve.mitre.org/,
2016.

[3] N. G. Leveson and C. S. Turner, “An investigation of the therac-25 accidents,”
Computer, vol. 26, no. 7, pp. 18–41, Jul. 1993.

[4] M. Zhivich and R. K. Cunningham, “The real cost of software errors,” IEEE
Security & Privacy, vol. 7, no. undefined, pp. 87–90, 2009.

[5] “Project ypriverol/github-paper, issue #129.” https://github.com/
ypriverol/github-paper/issues/129, 2016.

[6] “Project genenetwork/guix-bioinformatics.” https://github.com/
genenetwork/guix-bioinformatics, 2016.

[7] “Hammerlab work description.” http://www.hammerlab.org/, 2016.

[8] “SAMBAM format informal specification.” https://samtools.github.io/
hts-specs/, 2016.

[9] “Wikipedia: Variant call format.” https://en.wikipedia.org/wiki/Variant_
Call_Format, 2016.

[10] B. Chapman, “Improving reproducibility and installation of genomic anal-
ysis pipelines with docker.” https://archive.is/OLXFw, 2014.

[11] A. Zwinkau, “Accidentally turing-complete.” http://beza1e1.tuxen.de/
articles/accidentally_turing_complete.html, 2016.

[12] “Surprisingly turing-complete.” https://www.gwern.net/Turing-complete,
2016.

[13] “Wikipedia: Kubernetes.” https://en.wikipedia.org/wiki/Kubernetes,
2016.

[14] “The google container engine.” https://cloud.google.com/container-engine/,
2016.

[15] “AWS batch.” https://aws.amazon.com/batch/, 2017.

[16] N. Bhardwaj, “Trial nCT02721043: Safety and immunogenicity of personal-
ized genomic vaccine to treat solid tumors.” https://clinicaltrials.gov/ct2/show/
NCT02721043, 2016.

[17] A. Rubinsteyn, J. Kodysh, I. Hodes, S. Mondet, B. A. Aksoy, J. P. Finnigan,
N. Bhardwaj, and J. Hammerbacher, “Computational pipeline for the pGV-001

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

http://cve.mitre.org/
https://github.com/ypriverol/github-paper/issues/129
https://github.com/ypriverol/github-paper/issues/129
https://github.com/genenetwork/guix-bioinformatics
https://github.com/genenetwork/guix-bioinformatics
http://www.hammerlab.org/
https://samtools.github.io/hts-specs/
https://samtools.github.io/hts-specs/
https://en.wikipedia.org/wiki/Variant_Call_Format
https://en.wikipedia.org/wiki/Variant_Call_Format
https://archive.is/OLXFw
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://www.gwern.net/Turing-complete
https://en.wikipedia.org/wiki/Kubernetes
https://cloud.google.com/container-engine/
https://aws.amazon.com/batch/
https://clinicaltrials.gov/ct2/show/NCT02721043
https://clinicaltrials.gov/ct2/show/NCT02721043
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

neoantigen vaccine trial,” bioRxiv, 2017.

[18] K. Suzuki, O. Kiselyov, and Y. Kameyama, “Finally, safely-extensible and
efficient language-integrated query,” in Proceedings of the 2016 aCM sIGPLAN
workshop on partial evaluation and program manipulation, 2016, pp. 37–48.

[19] “Apache license 2.0.” http://apache.org/licenses/LICENSE-2.0, 2016.

[20] X. Leroy, “A modular module system,” J. Funct. Program., vol. 10, no. 3,
pp. 269–303, May 2000.

[21] K. Fisher, “High assurance cyber military systems proposers’ day presen-
tation (dARPA).” http://www.cyber.umd.edu/sites/default/files/documents/
symposium/fisher-HACMS-MD.pdf, 2013.

[22] “Scientists hack a computer using dNA.” MIT Technology Review https://
www.technologyreview.com/s/608596/scientists-hack-a-computer-using-dna/,
2017.

[23] J. Garrigue, “Code reuse through polymorphic variants,” in In workshop
on foundations of software engineering, 2000.

[24] Y. Minsky, “OCaml for the masses,” Queue, vol. 9, no. 9, pp. 44:40–44:49,
Sep. 2011.

[25] “Companies using oCaml.” https://ocaml.org/learn/companies.html, 2016.

[26] A. Coq, The coq proof assistant reference manual. INRIA, 2015.

[27] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S.
Zanella-Béguelin, “Dependent types and multi-monadic effects in F*,” in 43nd
aCM sIGPLAN-sIGACT symposium on principles of programming languages
(pOPL), 2016, pp. 256–270.

[28] “Luigi.”.

[29] “Sqlite fAQ: ‘Can multiple applications or multiple instances of the same
application access a single database file at the same time?”’ https://sqlite.org/
faq.html#q5, 2016.

[30] “Wobidisco tutorial: Running on a single machine.” https://github.com/
hammerlab/wobidisco/blob/master/doc/running-local.md, 2017.

[31] J. Vouillon and V. Balat, “From bytecode to javaScript: The js_of_ocaml
compiler,” Software: Practice and Experience, vol. 44, no. 8, pp. 951–972,
2014.

[32] D. Kaloper-Meršinjak, H. Mehnert, A. Madhavapeddy, and P. Sewell, “Not-
quite-so-broken tLS: Lessons in re-engineering a security protocol specification
and implementation,” in Proceedings of the 24th uSENIX conference on security

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

http://apache.org/licenses/LICENSE-2.0
http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf
http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf
https://www.technologyreview.com/s/608596/scientists-hack-a-computer-using-dna/
https://www.technologyreview.com/s/608596/scientists-hack-a-computer-using-dna/
https://ocaml.org/learn/companies.html
https://sqlite.org/faq.html#q5
https://sqlite.org/faq.html#q5
https://github.com/hammerlab/wobidisco/blob/master/doc/running-local.md
https://github.com/hammerlab/wobidisco/blob/master/doc/running-local.md
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

symposium, 2015, pp. 223–238.

[33] “Wikipedia: Platform lSF.” https://en.wikipedia.org/wiki/Platform_LSF,
2016.

[34] “Wikipedia: Portable batch system.” https://en.wikipedia.org/wiki/
Portable_Batch_System, 2016.

[35] “Apache hadoop yARN.” https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html, 2016.

[36] “OpenSSH cookbook: Multiplexing.” https://en.wikibooks.org/wiki/
OpenSSH/Cookbook/Multiplexing, 2017.

[37] “The JavaScript Object Notation (JSON) Data Interchange Format.” RFC
7159; RFC Editor, Mar-2014.

[38] “Wikipedia: Parametric polymorphism.” https://en.wikipedia.org/wiki/
Parametric_polymorphism, 2016.

[39] J. Garrigue and J. L. Normand, “Adding gADTs to oCaml: A direct ap-
proach.” ML Workshop, Tokyo, 2011.

[40] “The elasticluster project.” http://gc3-uzh-ch.github.io/elasticluster/,
2016.

[41] “Github project hammerlab/stratocumulus.” https://github.com/
hammerlab/stratocumulus, 2016.

[42] “Wikipedia: FASTQ format.” https://en.wikipedia.org/wiki/FASTQ_
format, 2016.

[43] H. Xi, C. Chen, and G. Chen, “Guarded recursive datatype constructors,”
in Proceedings of the 30th aCM sIGPLAN-sIGACT symposium on principles of
programming languages, 2003, pp. 224–235.

[44] O. Kiselyov, “Typed tagless final interpreters,” in Generic and indexed
programming: International spring school, sSGIP 2010, oxford, uK, march 22-
26, 2010, revised lectures, J. Gibbons, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 130–174.

[45] “PR #119: Filter spliced reads for indel-realignment.” https://github.com/
hammerlab/epidisco/pull/119, 2016.

[46] O. Spjuth, E. Bongcam-Rudloff, G. C. Hernández, L. Forer, M. Giovacchini,
R. V. Guimera, A. Kallio, E. Korpelainen, M. M. Kańduła, M. Krachunov, D. P.
Kreil, O. Kulev, P. P. Łabaj, S. Lampa, L. Pireddu, S. Schönherr, A. Siretskiy,
and D. Vassilev, “Experiences with workflows for automating data-intensive
bioinformatics.” Biology direct, vol. 10, no. 1, p. 43, Jan. 2015.

[47] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent computational

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://en.wikipedia.org/wiki/Platform_LSF
https://en.wikipedia.org/wiki/Portable_Batch_System
https://en.wikipedia.org/wiki/Portable_Batch_System
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing
https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing
https://en.wikipedia.org/wiki/Parametric_polymorphism
https://en.wikipedia.org/wiki/Parametric_polymorphism
http://gc3-uzh-ch.github.io/elasticluster/
https://github.com/hammerlab/stratocumulus
https://github.com/hammerlab/stratocumulus
https://en.wikipedia.org/wiki/FASTQ_format
https://en.wikipedia.org/wiki/FASTQ_format
https://github.com/hammerlab/epidisco/pull/119
https://github.com/hammerlab/epidisco/pull/119
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

research in the life sciences.” Genome biology, vol. 11, no. 8, p. R86, Jan. 2010.

[48] P. Wagle, M. Nikolić, and P. Frommolt, “QuickNGS elevates Next-
Generation Sequencing data analysis to a new level of automation.” BMC
genomics, vol. 16, no. 1, p. 487, Jan. 2015.

[49] R. Bao, K. Hernandez, L. Huang, W. Kang, E. Bartom, K. Onel, S. Volchen-
boum, and J. Andrade, “ExScalibur: A HighBao, R., Hernandez, K., Huang, L.,
Kang, W., Bartom, E., Onel, K., … Andrade, J. (2015). ExScalibur: A High-
Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mu-
tation Identification. PloS One, 10(8), e0135800. Retrieve,” PloS one, vol. 10,
no. 8, p. e0135800, Jan. 2015.

[50] E. Gafni, L. J. Luquette, A. K. Lancaster, J. B. Hawkins, J.-Y. Jung,
Y. Souilmi, D. P. Wall, and P. J. Tonellato, “COSMOS: Python library for
massively parallel workflows.” Bioinformatics (Oxford, England), vol. 30, no.
20, pp. 2956–8, Oct. 2014.

[51] “Azkaban workflow manager.”.

[52] L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd, and D. Thain, “Harness-
ing parallelism in multicore clusters with the All-Pairs, Wavefront, and Makeflow
abstractions,” Cluster Computing, vol. 13, no. 3, pp. 243–256, Apr. 2010.

[53] K. Taura, T. Matsuzaki, M. Miwa, Y. Kamoshida, D. Yokoyama, N. Dun,
T. Shibata, C. S. Jun, and J. Tsujii, “Design and implementation of GXP make
— A workflow system based on make,” Future Generation Computer Systems,
vol. 29, no. 2, pp. 662–672, Feb. 2013.

[54] K. Taura, “GXP : An Interactive Shell for the Grid Environment,” in
Innovative architecture for future generation high-performance processors and
systems (iWIA’04), pp. 59–67.

[55] “Project evoldoers/biomake.” https://github.com/evoldoers/biomake,
2016.

[56] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster,
“Swift: A language for distributed parallel scripting,” Parallel Computing, vol.
37, no. 9, pp. 633–652, Sep. 2011.

[57] W. Tan, I. Foster, and R. Madduri, “Combining the Power of Taverna
and caGrid: Scientific Workflows that Enable Web-Scale Collaboration,” IEEE
Internet Computing, vol. 12, no. 6, pp. 61–68, Nov. 2008.

[58] S. P. Sadedin, B. Pope, and A. Oshlack, “Bpipe: a tool for running and
managing bioinformatics pipelines.” Bioinformatics (Oxford, England), vol. 28,
no. 11, pp. 1525–6, Jun. 2012.

[59] J. Köster and S. Rahmann, “Snakemake–a scalable bioinformatics workflow
engine.” Bioinformatics (Oxford, England), vol. 28, no. 19, pp. 2520–2, Oct.

17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://github.com/evoldoers/biomake
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

2012.

[60] L. Goodstadt, “Ruffus: a lightweight Python library for computational
pipelines,” Bioinformatics, vol. 26, no. 21, pp. 2778–2779, Sep. 2010.

[61] M. Tanaka and O. Tatebe, “Pwrake,” in Proceedings of the 19th aCM
international symposium on high performance distributed computing - hPDC
’10, 2010, p. 356.

[62] G. A. Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A.
Levy‐Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K.
V. Garimella, D. Altshuler, S. Gabriel, and M. A. DePristo, Current Protocols
in Bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002, pp.
11.10.1–11.10.33.

[63] “Github project hammerlab/genspio.” https://github.com/hammerlab/
genspio, 2016.

18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/213884doi: bioRxiv preprint

https://github.com/hammerlab/genspio
https://github.com/hammerlab/genspio
https://doi.org/10.1101/213884
http://creativecommons.org/licenses/by/4.0/

	Introduction
	State Of The Union
	Description of The Present Work
	Quick Digression: Types (and OCaml)
	Next In This Paper

	Ketrew and Lower-Level Considerations
	The Ketrew System
	Ketrew's EDSL
	The Coclobas Backend

	Abstractions in Biokepi
	The Tools API
	The Typed-Tagless Final Interpreter

	Use Case of Epidisco and the PGV Trial
	Related Work
	Future Work
	References

