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Repetition suppression and prediction error

Abstract
Predictive coding theories argue that recent experience establishes expectations in
the brain that generate prediction errors when violated. Prediction errors provide a
possible explanation for repetition suppression, where evoked neural activity is
attenuated across repeated presentations of the same stimulus. The predictive
coding account argues repetition suppression arises because repeated stimuli are
expected, whereas non-repeated stimuli are unexpected and thus elicit larger neural
responses. Here we employed electroencephalography in humans to test the
predictive coding account of repetition suppression by presenting sequences of
visual gratings with orientations that were expected either to repeat or change in
separate blocks of trials. We applied multivariate forward modelling to determine
how orientation selectivity was affected by repetition and prediction. Unexpected
stimuli were associated with significantly enhanced orientation selectivity, whereas
selectivity was unaffected for repeated stimuli. Our results suggest that repetition
suppression and expectation have separable effects on neural representations of

visual feature information.
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Repetition suppression and prediction error

Introduction

At any moment in time, the brain receives more sensory information than can
be responded to, creating the need for selection and efficient processing of
incoming signals. One mechanism by which the brain might reduce its information
processing load is to encode successive presentations of the same stimulus in a
more efficient form, a process known as neural adaptation (Fairhall, Lewen, Bialek,
& de Ruyter van Steveninck, 2001; Kvale & Schreiner, 2004; Smirnakis, Berry,
Warland, Bialek, & Meister, 1997). Such adaptation has been observed across
different sensory modalities and species, and has been suggested as a potential
mechanism for enhancing the coding efficiency of individual neurons and neuronal
populations (Adibi, McDonald, Clifford, & Arabzadeh, 2013; Benucci, Saleem, &
Carandini, 2013; Maravall, Petersen, Fairhall, Arabzadeh, & Diamond, 2007). A
particular form of neuronal adaptation, known as repetition suppression, is
characterised by attenuated neural responses to repeated presentations of the
same stimulus (Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016; Gross,
Schiller, Wells, & Gerstein, 1967; Keller et al., 2017; Movshon & Lennie, 1979;
Rasmussen, Schwartz, & Chase, 2017). Here we asked whether predictive coding
theory, which assumes that sensory processing is influenced by prior exposure, can
account for changes in neural representations observed with repetition suppression.

The phenomenon of repetition suppression has been widely exploited to
investigate neural representations of sensory information. Repeated exposures allow
for more efficient representation of subsequent stimuli, as manifested in improved

behavioural performance despite a significant reduction in neural activity (Henson &
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Rugg, 2003; Schacter & Buckner, 1998). Repetition suppression paradigms have
been used extensively in human neuroimaging because they are commonly
considered to be analogous to the single-cell adaptation effects observed in animal
models (see Barron, Garvert, & Behrens, 2016 for review). The exact relationship
between the effects seen in human neuroimaging studies and animal
neurophysiology has, however, yet to be fully established.

The view that repetition suppression observed in human neuroimaging
studies reflects neuronal adaptation has recently been challenged by hierarchical
predictive coding theories (Auksztulewicz & Friston, 2016; Summerfield, Trittschuh,
Monti, Mesulam, & Egner, 2008). These theories argue that the brain interprets
incoming sensory events based on what would be expected from the recent history
of exposure to such stimuli (Friston, 2005; Rao & Ballard, 1999). According to these
theories, predictions are generated within each cortical area, and are bi-directionally
propagated from higher to lower areas, including to primary sensory regions,
allowing for more efficient representation of expected stimuli. When there is a
precise expectation, incoming information can be efficiently represented by
recruiting a small pool of relevant neurons (Friston, 2005). When there is a mismatch
between an expectation and the stimulus presented, i.e., when there is a prediction
error, the stimulus is less efficiently represented and thus elicits a larger neural
response.

The majority of evidence for predictive coding comes from human
neuroimaging experiments in which the presentation of an unexpected stimulus

generates a larger response than the presentation of an expected stimulus. In
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87 studies employing electroencephalography (EEG) and magnetoencephalography

88 (MEGQ), this effect is known as the mismatch negativity (Garrido, Kilner, Stephan, &

89  Friston, 2009; Naatanen, Paavilainen, Rinne, & Alho, 2007; Wacongne et al., 2011),

90 where an unexpected stimulus evokes significantly greater negativity than an

91  expected stimulus. To date, however, no study has tested a key premise of

92 predictive coding, namely, that expected stimuli are more efficiently encoded in the

93 brain relative to unexpected stimuli, in terms of their elementary feature

94  representations. Nor has any previous investigation examined whether the

95 mismatch negativity response is associated with a change in neural tuning to

96 stimulus features such as orientation.

97 To test the hypothesis that prediction error can account for repetition

98 suppression effects, Summerfield and colleagues (2008) introduced an experimental

99 paradigm in which the identity of a face stimulus was either repeated in 80% of
100 trials (making the repetition expected) or was changed in 80% of trials (making the
101 repetition unexpected). There was greater attenuation of the BOLD response in the
102 fusiform face area when a face repetition was expected, relative to when it was
103 unexpected, suggesting that repetition suppression is reduced by unexpected
104  stimuli. This attenuation of repetition suppression by failures of expectation has also
105 been replicated using fMRI (Larsson & Smith, 2012) and M/EEG, using high-level
106  stimuli such as faces (Summerfield, Wyart, Mareike Johnen, & de Gardelle, 2011),
107 and simple stimuli such as tones (Todorovic & de Lange, 2012; Todorovic, van Ede,

108 Maris, & de Lange, 2011).
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109 A potential reconciliation of the relationship between expectation and

110 repetition suppression comes from work showing that while expectations decrease
111 the overall amount of neural activity, they can also yield sharper representations of
112  sensory stimuli (Kok, Jehee, & de Lange, 2012). This work goes beyond

113  conventional neuroimaging approaches, which typically only measure overall levels
114  of neural activity (Buckner et al., 1998; Kourtzi & Kanwisher, 2001; Tootell, Reppas,
115 Dale, & Look, 1995). Such amplitude changes could in principle be produced by one
116  or more different types of change in the underlying neural representations. For

117  instance, both sharpening, where the response to only unpredicted features is

118 suppressed, and gain reduction, where a multiplicative suppression occurs for all
119 features, could be associated with decreased population activity, even though the
120 amount of information carried by the representations will be markedly different.

121 Recently introduced multivariate pattern analytic approaches to human neuroimaging
122 - specifically forward encoding modelling — allow for the quantification of stimulus-
123  selective information contained within patterns of neural activity in human observers
124  (Brouwer & Heeger, 2009; Garcia, Srinivasan, & Serences, 2013; King, Pescetelli, &
125 Dehaene, 2016; Kok, Mostert, & de Lange, 2017; Myers et al., 2015; Salti et al.,

126  2015; Wolff, Jochim, Akyirek, & Stokes, 2017a). This approach goes beyond typical
127  multivariate pattern analyses (which normally produce only accuracy scores) by

128 quantifying neural representations evoked by sensory stimuli to reveal both the

129 accuracy and the tuning fidelity for the specific feature-dimension of interest.

130 Here we used multivariate forward encoding methods to test whether

131  repetition suppression and expectation have different effects on the way the brain
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132  represents visual information, in this case the orientation of grating stimuli. To

133 anticipate the results, we found that soon after stimulus onset, repetition

134  suppression had no effect on visual orientation selectivity, but violated expectations
135 were associated with a significantly increased orientation-selective response

136  through gain modulation, with no corresponding change in response fidelity. This
137 representation was transiently re-activated at around 200 ms post-stimulus onset,
138 suggesting that feedback influences initial sensory encoding of an unexpected
139  stimulus, which in turn allows for updating of the sensory prior.

140 Results

141 We used a modified version of the paradigm introduced by Summerfield and
142  colleagues (2008), replacing the face stimuli used in that study with oriented

143 Gabors. These low-level stimuli allowed us to quantify the degree of orientation
144  selectivity in EEG activity to determine how the representation of orientation is

145  affected by prediction error and repetition suppression. Each of fifteen observers
146  participated in two EEG sessions. On each trial, two Gabors were presented

147  sequentially (100 ms presentation, 600 ms stimulus onset asynchrony), and these
148  stimulus pairs either repeated or alternated in their orientation (Figure 1A, Movie 1).
149  The predictability of the repeated and alternating pairs was varied in a block-wise
150 manner to manipulate expectation. In a repeating block, the orientations of the two
151  Gabors in a pair repeated in 80% of trials, and alternated in the remaining 20%.
152  These contingencies were reversed in the alternating block (Figure 1B). The

153 orientations of successive stimuli across a block were randomized to limit any

154  accumulated effects of adaptation and prediction. As repetition suppression and
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155  expectation form orthogonal dimensions of the task, the design allowed us to
156 isolate their respective contributions to neural responses. Participants completed an
157  unrelated task of discriminating (red vs blue) rare coloured Gabors (which occurred

158 on 10% of trials).

A

100 ms 500 ms 100 ms

Repetition
Alternation

Repeating block Alternating block Target

Expected | Repeat(80% ) Alternating (80% )
Unexpected| Alternate (20% ) Repeat (20% )

159

160 Figure 1. Example stimulus displays and task design. (A) Schematic of the stimuli
161  and timing used in the experiment. Participants viewed a rapid stream of pairs of
162  Gabors and monitored for an infrequent coloured target (10% of trials). The stimulus
163  orientations varied pseudorandomly across trials between 0° and 160° (in 20°

164  steps), allowing estimation of orientation-selective information contained within

165 patterns of EEG activity. (B) The orientation of the pairs of Gabors could either

166 repeat or alternate. In one type of block, 80% of trials were orientation repeats and
167 the remaining 20% alternated (Repeating blocks); in the other type of block these
168 contingencies were reversed (Alternating blocks).

169
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170

171 Movie 1. Example of a stimulus sequence of Gabors in a typical repetition block.
172

173 Repetition suppression and prediction error affect the overall level of neural
174  activity

175 The Gabors elicited a large response over occipital-parietal areas (Figure 2A).
176  Consistent with previous work (Cui, Wang, Park, Demb, & Butts, 2016; Keller et al.,
177  2017; Rentzeperis, Nikolaev, Kiper, & Van Leeuwen, 2012; Summerfield et al., 2011;
178 Todorovic et al., 2011; Todorovic & de Lange, 2012; Tootell et al., 1998), there was
179  a significant repetition suppression effect (Repeat < Alternating), such that the

180 response to repeated stimuli was significantly reduced compared with the response
181 to alternating stimuli (Figure 2A). The repetition suppression effect was evident over
182  alarge cluster of occipital-parietal electrodes at two time intervals: an early effect
183 from 79 to 230 ms, and a later effect at 250 to 540 ms after the onset of the second
184  stimulus (cluster p < .025; Figure 2B and caption). A large cluster of frontal

185 electrodes mirrored the repetition suppression effect with a similar time course: the

186 ERP over these frontal sites had the same pattern, but was reversed in sign,
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187  suggesting it originated from the same dipole as the occipital response.

188

10


https://doi.org/10.1101/213710
http://creativecommons.org/licenses/by/4.0/

189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

bioRxiv preprint doi: https://doi.org/10.1101/213710; this version posted November 28, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Repetition suppression and prediction error

A Repetition suppression
100 - 200 (ms) 200 - 300 (ms) 300 - 400 (ms)

N
3
[0
0.35 %
Expectation 0 %
3
/ 05 %
g
<
g “ 4
P1
C —— Repeat D *
—— Alternate 0.00
0fo~ J /\vl‘/\v/\vf\v
v\v 0.15
-1
-0.30 +
> 2 1 1 1 1 1 1 1 1 1
S 02r N1

Difference (uV)

—— Expected T
- /\ —— Unexpected C %
~L L N 0.0

02+
U SPEFEPEE IS S SUFIE I B S S S R

-100 0 100 200 300 400 500 600
Time (ms)

Il Repeat minus alternate

Expected minus unexpected

Figure 2. Univariate EEG results for the effect of repetition suppression and
expectation on the second stimulus in a pair. Panels A and B show the main effects
of repetition suppression and expectation, respectively, over three post-stimulus
epochs (100-200ms, 200-300 ms, 300-400 ms) and across all electrodes. The main
effect of repetition suppression is displayed as Repeating minus Alternating trials.
The main effect of expectation is displayed as Expected minus Unexpected trials.
Circles indicate clusters of electrodes with significantly reduced activity, and
crosses indicate clusters of electrodes with significantly increased activity (alpha p
< .05, cluster p < .025, N permutations = 1500). (C) Bandpass filtered (2-40 Hz)
event-related potentials (ERPs) for the two conditions, averaged over occipital-
parietal electrodes (O1, 02, Oz, POz, PO7, PO3, PO8, PO4, P3, Pz, P2). A peak
analysis was conducted to aid comparison with previous studies. Orange shading
indicates the P1 component; green shading indicates the N1 component. (D) Peak
analysis results for P1 and N1 components. Note that the plotted values represent
differences between conditions, as indicated, rather than condition-specific evoked
responses. Asterisks indicate p <.05. Error bars indicate +1 standard error.
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206 Also consistent with previous results (Garrido et al., 2009; Summerfield et al.,
207 2011; Todorovic et al., 2011; Todorovic & de Lange, 2012), there was a significant
208 expectation effect (Expected < Unexpected). Specifically, there was a significantly
209 greater negativity for unexpected versus expected stimuli, and this effect was most
210 prominent over a cluster of occipital-parietal electrodes around 75-150 ms after
211 stimulus presentation (Figure 2C). As with the repetition suppression result

212  described above, there was an expectation effect of opposite polarity over

213 occipital-parietal electrodes. This effect was significant at an early time point post-
214  stimulus (79-130 ms), but not at later time points (320-390 ms; Figure 2D). Finally,
215 there was no interaction between repetition suppression and expectation (i.e., no
216  significant positive or negative clusters, all p > .05). Taken together, these results
217  reveal both repetition suppression and expectation effects in the neural data, which
218 were indexed separately as shown in Figure 2.

219 We conducted a further traditional peak analysis, to aid comparison with
220 previously published studies on the mismatch negativity (Garrido, Sahani, & Dolan,
221 2013; Naatanen et al., 2007; Saarinen, Paavilainen, Schéger, Tervaniemi, &

222 Naatanen, 1992). We bandpass filtered the ERPs (2-40 Hz) to recover the

223  stereotypic waveform (Figure 2C) and examined two classic early components — the
224 N1 and P1 - averaged across a broad grouping of occipital-parietal electrodes (O1,
225 02, Oz, POz, PO7, PO3, PO8, PO4, P3, Pz, P2). As in previous studies (Caharel,
226  d’Arripe, Ramon, Jacques, & Rossion, 2009; Dehaene et al., 2001), we defined the
227  P1 as the largest positivity between 80 and 110 ms after stimulus presentation, and

228 the N1 as the largest negativity between 90 and 130 ms after stimulus presentation.

12
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229  Arrelatively wide temporal window was used to capture inter-individual response
230 variation. As expected, for the P1 component the repeated stimulus evoked a

231  significantly smaller positivity (t(14) = 3.03, p = .009) than the alternating stimulus
232  (Figure 2D), reflecting a repetition suppression effect. There was no such effect of
233 expectation on the P1 ({(14) = 0.26, p = .80). By contrast, as predicted from previous
234  work (Garrido et al., 2013; Naatanen et al., 2007; Saarinen et al., 1992), analysis of
235 the N1 component showed that the unexpected stimulus evoked a significantly
236  greater negativity than the expected stimulus, (¢(14) = 5.75, p < .0001). The

237  repetition suppression effect was also present in the N1 (¢(14) = 2.39, p = .03), but
238 critically in the opposite direction as the expectation effect.

239 Expectations increase orientation-selective information contained within

240 patterns of EEG activity

241 We next examined the key question of whether repetition suppression and
242  expectation differentially affect neural representations of orientation information. To
243  do this, we used a forward encoding approach to reconstruct orientation-selective
244  information contained within the multivariate pattern of EEG activity distributed

245 across the scalp (Figure 3; see Methods for details). Briefly, this technique

246 transforms sensor-level responses into tuned ‘feature’ channels (Brouwer & Heeger,
247  2009; Garcia et al., 2013; Kay, Naselaris, Prenger, & Gallant, 2008; Myers et al.,
248 2015), in this case, orientation-selective features. For each trial, the presented

249  orientation was convolved with a canonical, orientation-selective tuning function
250 and regressed against the pattern of EEG activity across all sensors at each time

251  point. This created a spatial filter of the multivariate EEG activity that differentiated

13
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252  orientations (Figure 3D). These weights were then inverted to reconstruct the model,
253 and multiplied against an independent set of test trials to produce responses in the
254  modelled orientation channels. These sets of responses were then used to evaluate
255 the degree of orientation selectivity in those trials. The procedure was repeated for
256 all time points in the trial, and a cross-validated approach was used until all trials
257 had been used for both training and testing.

258 As shown in Figure 3, the forward encoding revealed a strong, orientation-
259  selective response derived from the multivariate pattern of EEG activity. This

260 orientation-tuned response was evident from ~50 to ~470 ms after stimulus onset,
261 and peaked between ~120-250 ms (Figure 3C). Examination of the regression

262  weights revealed that this response was largely driven by activity centred over

263 occipital-parietal areas (Figure 3D).

264

14
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266 Figure 3. Results of the forward encoding modelling for orientation-selectivity. (A)
267  Time-resolved orientation tuning curve across all participants and conditions in
268 response to the second Gabor in the pair. The forward encoding approach resulted
269 in atuning curve for each of the nine presented orientations. These tuning curves
270 were then centred at each presented orientation (here labelled as 0°) to combine
271 across all orientations. The orientation-selective response is contained within the
272  overall pattern of EEG; activity begins soon after stimulus onset and peaks at

273  around 250 ms before declining. (B) Population tuning curve of the stimulus

274  reconstruction across participants, averaged between 50-100 ms and 150-250 ms
275  after stimulus presentation. Each line is a fitted Gaussian response with a variable
276 offset used to quantify orientation selectivity. Error bars indicate +1 standard error
277  of the mean across participants. (C) Amplitude of the channel response over time,
278 averaged across all conditions (black line). The thick black line indicates significant
279  encoding of stimulus orientation based on a cluster-permutation test across

280 participants (cluster p < .05, N permutations = 20,000). Encoding accuracy was
281  reliable from 52 to 470 ms post-stimulus onset. The error shading (in grey) indicates
282  bootstrapped 95% confidence intervals of the mean. (D) Topographic plots of the
283 weights (averaged across the 9 orientation channels across all participants) derived
284  from forward encoding at the corresponding time points shown in panel B. (a.u. =
285  arbitrary units).
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286 To examine our central question of whether repetition suppression and

287  expectation have differential effects on neural representations of orientation, we
288 split and averaged the results of the forward encoding by trial type, and fitted these
289  with Gaussians (see Methods) to quantify orientation selectivity (Figure 4).

290 Repetition suppression did not affect the amount of orientation selectivity contained
291  within the EEG data, with similar selectivity for repeated and alternating trials. This
292 was the case even though the repeated trials had a markedly smaller EEG response
293 over occipital and parietal electrodes (see Figure 2A), where the forward encoding
294  model was maximally sensitive. This result is consistent with the ‘efficient

295 representation’ hypothesis of repetition suppression (Gotts, Chow, & Martin, 2012),
296  which argues that the overall neural response is smaller with repetition suppression
297  due to more efficient coding of stimulus information.

298

16
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Figure 4. The effect of repetition suppression and expectation on orientation
selectivity measured using forward encoding modelling. (A) Amount of orientation-
selective information (given by the amplitude of the fitted gaussian) from the EEG
signal in response to the second Gabor in a pair, shown separately for repetition
suppression (upper panel) and expectation (lower panel). The thick black line
indicates significant differences between the conditions (two-tailed cluster-
permutation, alpha p < .05, cluster alpha p < .05, N permutations = 20,000). (B)
Population tuning curves averaged over the significant time period (79 — 185 ms)
depicted in panel A. The curves, shown as fitted Gaussians, illustrate how overall
stimulus representations are affected by repetition and expectation. While there was
no difference in orientation tuning for repeated versus alternate stimuli (upper
panel), the amplitude of the orientation response increased significantly, and the
baseline decreased, for unexpected relative to expected stimuli. Error bars indicate
+1 standard error.

Examining the effect of expectation revealed a markedly different pattern of
results. As shown in Figure 4A, at 79 - 185 ms after the onset of the second
stimulus in the pair, orientation-selectivity increased significantly (p < .0001) when
the stimulus was unexpected relative to when it was expected, and this effect arose

at the earliest stages of the brain’s response to that stimulus. Moreover, the
17
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320 expectation signal contained enhanced information about the specific features of
321 the stimulus that violated the expectation, in this case the orientation of the second
322 grating. We conducted the same statistical tests on the three other parameters
323 defining the Gaussian function (namely, the width, centre orientation and baseline)
324 to determine how repetition suppression and expectation might affect other

325 properties of the neural representation. There was no reliable influence of repetition
326 suppression on any of these Gaussian parameters (all p > .32). For expectation,
327 there was a significant decrease in baseline activity over the same time period as
328 observed for the increase in amplitude (79-185 ms, p = .001), but there were no
329 significant effects for the other parameters (all ps > .30).

330 We followed up this initial analysis to ensure we did not miss any small

331 effects of repetition suppression or expectation on any aspects of stimulus

332 representation. We increased the signal-to-noise by averaging the stimulus

333 reconstruction over this early time period (79-185 ms after stimulus presentation),
334 and fitted Gaussians to each participant’s data individually (Figure 4B). This again
335 showed that the amplitude of the response was significantly ({(74) = 3.34, p = .005)
336  higher for unexpected (M = 0.67, SE = 0.06) than for expected (M = 0.41, SE = 0.03)
337 stimuli. By contrast, the width of the representations was similar for unexpected (M
338 =29.62° SE =4.72°) and expected (M = 26.72°, SE = 2.74°) stimuli, (t(14) = 0.78,
339 p = .45). There was also a small but non-significant (t(74) = 1.94, p = .06) trend for a
340 smaller baseline response (i.e., non-orientation tuned activity) in the unexpected
341 (M =-0.01, SE = 0.07) than in the expected (M = 0.13, SE = 0.02) condition. For

342 comparison, we also averaged the same time period for the repetition suppression
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343 conditions, and found similar curves for the repeated and alternating trials (all ps >
344  .18). This analysis confirms the previous result, which employed more conservative
345 nonparametric cluster-based testing.

346 It might be argued that the particular baseline period we chose for the

347 encoding analyses - namely from -100 to 0 ms before the onset of the second

348 Gabor in each pair — biased the results by incorporating a purely top-down

349 expectation template triggered by the orientation of the first Gabor (Kok et al.,

350 2017). To rule out this possibility, we performed a further forward encoding analysis
351  where we baselined the raw EEG data to the mean activity from -100 to 0 ms before
352 the first Gabor in each pair. Critically, this control analysis involved a baseline period
353 over which it was not possible to form a top-down expectation of the orientation of
354 the second Gabor based on the orientation of the first. This analysis yielded the

355 same pattern of results as the original analysis (Supplementary Figure 1), such that
356 the unexpected stimulus evoked significantly greater orientation selectivity than the
357 expected stimulus (p = .02). Also in line with the original analyses, the width of the
358 representation was not affected by expectation (p = .44), and there was no effect of
359 repetition suppression on orientation selectivity (p = .64). We can thus be confident
360 that the effect of expectation on orientation selectivity that we report here, based on
361 our forward encoding analyses, is not an artefact of the baselining procedure.

362 We also used a number of approaches to determine whether repetition

363 suppression and expectation interacted to affect orientation selectivity. First, we
364 took the difference scores between the combination of factors (e.g., expected

365 repetition minus unexpected repetition, and expected alternation minus unexpected
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366 alternation) and compared these using the same cluster-based permutation testing
367 outlined above. This analysis revealed no significant interactions between the

368 factors for any parameter (all ps > .10). Second, we found the largest orientation-
369 selectivity, defined by the amplitude of the fitted Gaussian, across the 600 ms

370 following stimulus presentation. For each participant, this resulted in a single value
371  for the four conditions. Each of these values was subjected to a two-way repeated-
372 measures ANOVA, which again revealed no significant interaction between the
373 factors (all ps > .30)

374 To further examine whether orientation-selectivity contained within the overall
375 pattern of EEG activity differed for unexpected and expected stimuli, we used

376 multivariate discriminant analysis to determine whether more traditional backward
377  decoding (Grootswagers, Wardle, & Carlson, 2017; Kamitani & Tong, 2005; King,
378 Gramfort, Schurger, Naccache, & Dehaene, 2014; Marti, King, & Dehaene, 2015)
379 produces the same pattern of results as that yielded by the forward encoding

380 approach described above. The same cross-validation procedure was used as in
381 the forward encoding analysis, but accuracy was now defined as the proportion of
382 trials labelled with the correct orientation. To facilitate comparison with the results
383 of Kok et al., (2013), we took the peak classification accuracy within a 600 ms

384  window after presentation of the second grating within each pair. This analysis
385 confirmed the results of the forward encoding: orientations shown in unexpected
386 trials were classified better than orientations shown in expected trials (F(1,14)

387 76.42, p <. 00001). Again, there was no effect of repetition on classification

388 accuracy (F(1,14) = 0.027, p = .87); nor was there a significant interaction (F(1,14) =
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2.52, p = .13). This suggests the finding is not specific to the analysis method but
rather reflects how expectation affects the representation of sensory information in
general.
020
— Expected
o 078 - — Unexpected
N
> 016 |
g
§ 014 F  6—¢
3 i
0.12 F

Repeat Alternate

Figure 5. Peak (naive Bayes) classification accuracy of the presented grating
orientation for expected and unexpected conditions. The dotted line indicates
chance performance (1/9 orientations). The error bars indicate +1 standard error of
the mean.
Expectation affects the temporal stability of stimulus representations

Next, we examined whether repetition suppression and expectation affected
dynamic, ongoing stimulus representations by using cross-temporal generalization
(King & Dehaene, 2014; King et al., 2014; Myers et al., 2015; Spaak, Watanabe,
Funahashi, & Stokes, 2017; Stokes et al., 2013). To do this, we used the same
forward encoding approach as in the previous analysis, but now the weights were
derived from one time-point on one set of trials, and then applied at every time point
in the test trials. Again, a cross-validation approach was used, with all trials serving
as both training and test. This analysis examined whether the same spatial pattern

of EEG activity that allows for orientation selectivity generalizes to other time points,

thus revealing whether the pattern of orientation-selective activity is stable or
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409 changes over time.

410 As shown in Figure 6, optimal orientation selectivity was on-axis (training
411  time equals test time) between 100 ms and 300 ms after stimulus presentation,
412  suggesting that the stimulus representation changed dynamically over time (King &
413 Dehaene, 2014). There was also significant off-axis orientation-selectivity from 100-
414 500 ms after stimulus presentation, suggesting that some aspects of the neural
415 representation of orientation were stable over time.

Repetition suppression
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417  Figure 6. Cross-temporal generalization of the forward encoding model based on
418  grating orientations for the main effects of repetition suppression (upper panels) and
419  expectation (lower panels). The maps have been thresholded (indicated by opacity)
420 to show clusters (black outlines) of significant orientation selectivity (permutation
421  testing, cluster threshold p < .05, corrected cluster statistic p < .05, 5,000

422  permutations). The difference between the conditions is shown in the right-hand
423  column (permutation testing, cluster threshold p < .05, corrected cluster statistic p <
424  .05). Opacity and outlines indicate significant differences.

425

426
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427 There was no effect of repetition suppression on temporal generalization of
428 orientation information (upper panels of Figure 6), suggesting that repetition

429  suppression did not affect the temporal stability of neural representations of

430 orientation. Examining the effect of expectation on cross-temporal generalization
431 confirmed that there was significantly more on-axis orientation selectivity when the
432  stimulus was unexpected than when it was expected (cluster p = .02). This

433 increased on-axis orientation selectivity generalized off-axis at around 300-400 ms
434  after stimulus onset (cluster p = .01), suggesting that the same representation that is
435 activated to process the expectation is reactivated later as the stimulus continues to
436 be processed. Such a signal could constitute the prior of the prediction, as this
437  should be updated on the basis of incoming sensory evidence, which in turn would
438 likely require reactivation of the unexpected stimulus.

439 Discussion

440 Our findings demonstrate that repetition suppression and expectation have
441  distinct effects on neural representations of simple visual stimuli. Repetition

442  suppression had no effect on orientation selectivity, even though the neural

443 response to repeated stimuli was significantly reduced over occipito-parietal areas.
444  Unexpected stimuli, on the other hand, showed significantly increased orientation-
445  selectivity relative to expected stimuli. This same early representation of the

446  unexpected stimulus appeared to be reactivated at 200-300 ms after the initial

447  neural response, supporting the idea that sensory expectations may be updated

448  through comparison with incoming sensory evidence. These results suggest that
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449  repetition suppression and expectation are separable and independent neural

450 computations.

451 Our work provides a significant advance in understanding how predictions
452  allow the brain to process incoming sensory information by comparing what is

453 expected with what actually occurs. How expectations affect neural responses has
454  been extensively investigated using mismatch negativity paradigms in which an

455  unexpected stimulus causes a larger neural response than an expected stimulus
456 (Bekinschtein et al., 2009; Garrido et al., 2009; Naatanen et al., 2007). Such

457  mismatch responses to an unexpected stimulus have often been attributed to the
458 generation of a prediction error that updates expectation based on a conflict

459  between sensory evidence and the prior (Garrido et al., 2009). To date, however,
460 most studies have focused exclusively on the overall magnitude of neural responses
461 to unexpected events, rather than assessing the quality of stimulus-specific

462 information potentially contained within such responses. As noted above, enhanced
463 neural activity to unexpected visual events could reflect a differential response to
464  one of a number of possible stimulus features, or simply an increase in baseline
465 activity associated with a non-selective response. By examining how expectation
466  affects the representation of an elementary feature dimension — in this case,

467  orientation — our results imply the operation of at least two distinct neural processes
468 at separate times following stimulus onset. Incoming sensory information is first
469 evaluated against the prior (which occurs early after stimulus presentation). When
470 an unexpected stimulus is detected and generates a prediction error, the

471  representation is amplified through gain enhancement. Later, around 300 ms after
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472  stimulus presentation, this same representation is reactivated to update the

473  expectation against the initially predicted representation.

474 According to predictive coding theory, expected stimuli should be more

475  efficiently represented than unpredicted stimuli largely because the reduced neural
476 response still encodes stimuli with the same fidelity (Friston, 2005). A more efficient
477  response could be due to sharpening of neuronal tuning to stimulus features, or to a
478 reduction in the gain of evoked neural responses. Our results strongly support the
479 latter interpretation. Specifically, there was no evidence that a fulfilled expectation
480 leads to a sharper representation of orientation information. Our findings might

481 imply that the brain needs to have more information about an unexpected stimulus,
482  so a correct response can be made. Our findings thus provide a novel insight into
483 how predictive coding might change neural representations of sensory information.
484 The lack of evidence for sharpening of neural tuning in the current results is
485 in contrast to the findings of a previous study (Kok et al., 2012), in which a high-level
486 prediction error led to ‘sharper’ multivariate decoding for expected versus

487  unexpected visual stimuli. In their study, Kok et al. (2012) used an auditory tone to
488 cue the orientation of a subsequent visual stimulus, and found significantly reduced
489  off-label classification accuracy for predicted than for unpredicted stimuli. They
490 concluded that predictions cause sharpening of stimulus representations. More
491 recently, using the same task combined with a forward encoding approach, Kok et
492  al. (2017) showed that response gain is increased for a predicted stimulus.

493 It is natural to ask why the results of the current study differ from those of

494 Kok and colleagues outlined above. One possible explanation lies in the different
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495 approaches used to generate expectations across the studies. Specifically, whereas
496 Kok et al. manipulated expectations by pairing an auditory cue with a visual

497  stimulus, we exploited the properties of the visual stimuli themselves (i.e., their

498 orientation) to generate expectations within blocks of trials. An intriguing possibility
499 s that predictions requiring integration of sensory events from two or more

500 modalities lead to increased gain, whereas predictions made within a single sensory
501 modality lead to decreased gain. This might in turn relate to the noted differences
502 between simple ‘local’ and higher-order ‘global’ type predictions (Bekinschtein et
503 al., 2009; King et al., 2014), which lead to distinct patterns of stimulus-selective

504 decoding. A similar discrepancy relating to the effects of attention on sensory

505 representations has been widely discussed, with some studies finding sharpening of
506 stimulus representations with attention, and others showing gain enhancement (Liu,
507 Larsson, & Carrasco, 2007; Maunsell, 2015; Maunsell & Treue, 2006; Treue &

508 Trujillo, 1999). The differences between these results may potentially have arisen
509 because the tasks relied upon different types of attention (e.g., spatial versus

510 feature-based). Future studies could determine whether this same divergence

511  occurs for prediction effects.

512 The current work applied multivariate model-based approaches to EEG data
513 to determine how prediction and repetition suppression affect neural

514  representations of perceptual information. We chose to use EEG so we could

515 recover the temporal dynamics of these effects — something that would not be

516 possible with the BOLD signal used in fMRI — and because EEG is the most widely-

517  used tool for measuring expectation effects in human participants (see Garrido, et

26


https://doi.org/10.1101/213710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/213710; this version posted November 28, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Repetition suppression and prediction error

518 al., 2019 and Paavilainen, 2013 for review), thus facilitating comparison of our

519 findings with those of other studies. We estimated orientation-selectivity using all
520 EEG electrodes distributed across the scalp for two principal reasons. First, we

521  wanted to limit experimenter degrees of freedom (Simmons, Nelson, & Simonsohn,
522  2011) potentially introduced through the post-hoc selection of subsets of

523 electrodes. Second, given the broad spatial resolution of EEG, we reasoned that
524  activity recorded from electrodes at any given scalp location could potentially carry
525 important feature-selective information from a number of neural sources. The results
526 revealed that orientation-selective information appears largely driven by electrodes
527  over occipital-parietal regions (Figure 3D), consistent with a number of previous
528 studies that employed visual decoding of M/EEG data (Cichy, Pantazis, & Oliva,
529 2014; Cichy, Ramirez, & Pantazis, 2015; Stokes, Wolff, & Spaak, 2015). As noted
530 above, however, it is entirely possible that the effects we observed here arose from
531 sources well beyond the occipital and parietal regions, or even potentially outside
532 the visual cortical hierarchy. Limitations in the temporal and spatial resolution of
533 current human imaging methods make it impossible to pinpoint the timing and

534 location of interactions between visual areas that might reflect the cascade of

535 predictions and prediction errors involved in sensory encoding. By combining the
536 current paradigm and multivariate modelling with invasive recordings in animal

537 models - for example using calcium imaging or extracellular electrode recordings —
538 it should be possible to test some of the key claims of predictive coding theory that
539 we have examined here, but at the level of individual neurons.

540 Surprisingly few studies have used invasive recording methods to test how
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541  predictive coding affects stimulus representations at the neuronal level. One study
542 in macaques (Kaliukhovich & Vogels, 2010) used a design similar to that of

543 Summerfield and colleagues, but with high-level objects (fractals and real-world
544  objects) as stimuli. That study found that expectation did not attenuate repetition
545  suppression in either spiking activity or local field potentials within the inferior

546 temporal cortex. A later fMRI study in humans (Kovacs, Kaiser, Kaliukhovich,

547  Vidnyanszky, & Vogels, 2013) used a similar stimulus set, and also found no

548  attenuation of repetition suppression by expectation in the same cortical region. A
549 follow-up study provided a potential explanation for these findings by showing that
550 the attenuation of neural responses associated with repetition suppression are

551  found with familiar stimuli, but not with unfamiliar stimuli (Grotheer & Kovacs, 2014).
552  Viewed in this light, the stimulus sets used by Kaliukhovich and Vogels (2010) might
553 not have been sufficiently familiar to yield effects of expectation in their non-human
554  primate observers.

555 Other work has shown that context plays an important role in determining
556 the magnitude of neuronal responses to sensory events. Thus, for example,

557 (Ulanovsky, Las, & Nelken, 2003) found that rare auditory stimuli generate

558 significantly larger responses in primary auditory cortical neurons than more

559 commonly occurring stimuli. This result has been interpreted as a single-neuron
560 analogue of the mismatch negativity, but the design used in the study did not

561 control for adaptation effects, thus making it difficult to draw an unambiguous

562 comparison with the current work. In the visual domain, oddball stimuli have also

563 been found to modulate neuronal activity in rats, characterised by an enhancement
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564  of responses in the higher-order latero-intermediate area (Vinken, Vogels, & Op de
565 Beeck, 2017). Moreover, Fiser et al. (2016) found that neurons in mouse primary
566 visual cortex show a greater response when task-irrelevant visual stimuli that had
567 been presented during training were omitted, suggesting that an established

568 expectation had been violated. This result is consistent with the literature on the
569 mismatch negativity, in which the omission of an expected stimulus results in a
570 large prediction error (Garrido et al., 2009; Wacongne et al., 2011). In non-human
571 primates, neurons in the inferior temporal cortex show an enhanced response to
572 unexpected relative to expected stimuli (Kaposvari, Kumar, & Vogels, 2018), and
573 population decoding accuracy is higher for unexpected compared with expected
574  stimuli (Kumar, Kaposvari, & Vogels, 2017). Critically, however, no study has

575 simultaneously recorded neuronal activity in multiple cortical regions to determine
576  whether predictions generated in one area refine responses in a second area, as
577 postulated by predictive coding theory (Friston, 2005; Rao & Ballard, 1999). Such a
578 direct demonstration is necessary to provide a strong test of the central notion that
579 cortical areas pass signals between themselves in order to generate expectations.
580 Unlike the effects of expectation, there is a large body of electrophysiological
581  work showing that sensory adaptation influences neuronal activity (Adibi et al.,

582 2013b; Adibi, Clifford, & Arabzadeh, 2013a; Felsen et al., 2002; Kohn & Movshon,
583 2004; Patterson, Wissig, & Kohn, 2013). For instance, there is a sharpening of

584  stimulus selectivity in MT neurons following 40 s of adaptation to a drifting grating
585 (Kohn & Movshon, 2004). As we have highlighted, however, prolonged adaptation is

586 likely also associated with a significant predictio8n that the next stimulus will be the
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587 same as the previous one. Perhaps more relevant to the current results, Patterson
588 et al. (2013) found that the width of orientation tuning in V1 is only marginally

589 sharpened following brief (400 ms) periods of adaptation. Again, however, their

590 study did not control for expectation, so it is impossible to determine the role of
591 predictive coding in their observations. Our finding that repetition suppression did
592 not affect the bandwidth of orientation selectivity measured using EEG is also

593 consistent with models of orientation adaptation based on human psychophysical
594  data, which suggest that adaptation does not affect the tuning width of the adapted
595 neural populations (Clifford, 2002; 2014; Dickinson, Almeida, Bell, & Badcock, 2010;
596 Dickinson, Morgan, Tang, & Badcock, 2017; Tang, Dickinson, Visser, & Badcock,
597  2015).

598 In summary, we have shown that repetition suppression and expectation
599 differentially affect the neural representation of simple, but fundamental, sensory
600 features. Our results further highlight how the context in which a stimulus occurs,
601 not just its features, affect the way it is represented by the brain. Our findings

602 suggest encoding priority through increased gain might be given to unexpected
603 events, which in turn could potentially speed behavioural responses. This prioritized
604 representation is then re-activated at a later time period, supporting the idea that
605 feedback from higher cortical areas reactivates an initial sensory representation in
606 early cortical areas.

607
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608 Method

609 Participants

610 A group of 15 healthy adult volunteers (9 females, median age = 20.5 yr,
611 range = 18 to 37 yr) participated in exchange for partial course credit or financial
612 reimbursement (AUD$20/hr). We based our sample size on work that investigated
613 the interaction between repetition suppression and prediction error (Summerfield et
614 al., 2008), and that used forward encoding modelling to investigate orientation

615  selectivity using MEG with a comparable number of trials as the current study

616 (Myers et al., 2015). Each person provided written informed consent prior to

617 participation, and had normal or corrected-to-normal vision. The study was

618 approved by The University of Queensland Human Research Ethics Committee and
619 was in accordance with the Declaration of Helsinki.

620 Experimental setup

621 The experiment was conducted inside a dimly illuminated room with the
622 participants seated in a comfortable chair. The stimuli were displayed on a 22-inch
623 LED monitor (resolution 1920 x 1080 pixels, refresh rate 120 Hz) using the

624 PsychToolbox presentation software (Brainard, 1997; Pelli, 1997) for MATLAB

625 (v7.3). Viewing distance was maintained at 45 cm using a chinrest, meaning the
626 screen subtended 61.18° x 36.87° (each pixel 2.4’ x 2.4’).

627 Visual task

628 The stimuli were Gabors (diameter: 5°, spatial frequency: 2 ¢/°, 100%

629 contrast) presented centrally in pairs for 100 ms, separated by 500 ms (600 ms

630 stimulus onset asynchrony) with a variable (650 to 750 ms) inter-stimulus interval
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631  between trials. Across the trials, the orientations of the Gabors were evenly spaced
632 between 0° and 160° (in 20° steps) so we could reconstruct orientation selectivity
633 contained within the EEG response using forward encoding modelling. The

634 relationship of the orientations of the pairs Gabors was also used to construct the
635 different repetition suppression and prediction conditions. The orientation presented
636 in the second Gabor in the pair could either repeat or alternate with respect to the
637  orientation of the first Gabor. In the alternation trials, the orientation of the first

638 Gabor was drawn randomly, without replacement, from an even distribution of

639 orientations that was different to the orientation of the second Gabor. To vary the
640 degree of prediction, in half of the blocks 80% of the trials had repeated

641 orientations and 20% of the trials had alternating orientations, whereas in the other
642 half of the blocks these contingencies were reversed. This design allowed us to
643 separately examine the effects of repetition suppression and prediction because of
644  the orthogonal nature of the blocked design. The blocks of 135 trials (~3 mins)

645 switched between the expectation of a repeating or alternating pattern, with the
646  starting condition counterbalanced across participants.

647 The participants’ task was to monitor the visual streams for rare, faintly

648 coloured (red or green) Gabors and to discriminate the colour as quickly and

649 accurately as possible. Any trial with a coloured target was excluded from analysis.
650 The orientation match between the pairs was made to be consistent with the

651 dominant contingency (i.e., repeated or alternating) within that block. Pilot testing
652 was used prior to the main experiment to set the task at approximately threshold, to

653 ensure that participants focused exclusively on the colour-discrimination task rather
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654  than the orientation contingencies associated with prediction and repetition. Only
655 one participant reported being aware of the changing stimulus contingencies across
656 the blocks when asked at the end of the experiment, and excluding this

657 participant’s data had no effect on the key results reported here. Self-paced breaks
658 were provided between each of the 20 blocks within a session, at which time

659 feedback was provided on performance in the preceding block. Each participant
660 completed two sessions of 2700 trials each (5400 trials in total), with each session
661 lasting around 70 mins of experimental time and 45 mins of EEG setup.

662 EEG acquisition and pre-processing

663 Continuous EEG data were recorded using a BioSemi Active Two system
664 (BioSemi, Amsterdam, Netherlands). The signal was digitised at 1024 Hz sampling
665 rate with a 24-bit A/D conversion. The 64 active scalp Ag/AgCl electrodes were
666 arranged according to the international standard 10-20 system for electrode

667 placement (Oostenveld & Praamstra, 2001) using a nylon head cap. As per BioSemi
668 system design, the common mode sense and driven right leg electrodes served as
669 the ground, and all scalp electrodes were referenced to the common mode sense
670  during recording.

671 Offline EEG pre-processing was performed using EEGLAB in accordance
672  with best practice procedures (Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins,

673 2015; Keil et al., 2014). The data were initially down-sampled to 256 Hz and

674  subjected to a 0.5 Hz high-pass filter to remove slow baseline drifts. Electrical line
675 noise was removed using clean_line.m, and clean_rawdata.m in EEGLAB (Delorme

676 & Makeig, 2004) was used to remove bad channels (identified using Artifact
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677  Subspace Reconstruction), which were then interpolated from the neighbouring
678 electrodes. Data were then re-referenced to the common average before being
679 epoched into segments around each stimulus pair (-0.5 s to 1.25 s from the first
680 stimulus in the pair). Systematic artefacts from eye blinks, movements and muscle
681  activity were identified using semi-automated procedures in the SASICA toolbox
682 (Chaumon, Bishop, & Busch, 2015) and regressed out of the signal. After this stage,
683 any trial with a peak voltage exceeding +100 uV was excluded from the analysis.
684 The data were then baseline corrected to the mean EEG activity from -100 to 0 ms
685 before the presentation of the second Gabor in the pair. Critically, the orientations
686 of the first and second gratings were precisely balanced across the conditions to
687 avoid any systematic bias in orientation information being carried forward by the
688 first grating within each pair. Specifically, for every unexpected stimulus presented
689 in the second grating there was an equal number of every other orientation that was
690 expected to be presented. As the analysis we employed used a regression-based
691 approach, any carry over of orientation-selective information from the first to the
692 second grating therefore could not systematically bias the results.

693 Experimental Design

694 We used a modified version of a factorial design that has previously been
695 used to separately examine the effects of repetition suppression and prediction
696 error (Kaliukhovich & Vogels, 2010; Kovéacs et al., 2013; Summerfield et al., 2008;
697 2011; Todorovic et al., 2011; Todorovic & de Lange, 2012). By comparing the two
698 repeat conditions with the two alternating conditions, we could examine repetition

699 suppression while controlling for different levels of expectation. Conversely, by
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700 comparing across the expected and unexpected trials, we could examine prediction
701 error while controlling for repetition suppression.

702 The relationship between the pairs of orientations for the different

703 expectation conditions was based on the original study (Summerfield et al., 2008),
704  and on other studies (Kaliukhovich & Vogels, 2010; Kovacs et al., 2013) that

705 examined the interaction between repetition suppression and expectation. In the
706 repeating condition, the orientation of the second Gabor is expected to be the same
707 as the orientation of the first, whereas in the alternating condition the orientation of
708 the second Gabor is expected to be different from that of the first. This relationship
709 between the expected orientations of the stimuli in the alternating condition is

710  slightly different to another modification of the paradigm which employed a more
711 limited range of stimuli (Todorovic et al., 2011; Todorovic & de Lange, 2012).

712 Specifically, the paradigm introduced by Todorovic and colleagues used two or

713  three auditory tones of different frequencies. In the alternating condition, the

714 expectation is that one tone will follow another (i.e. 1000 Hz and then 1032 Hz), then
715 this is violated when a 1000 Hz tone is repeated. In this paradigm, an exact

716  frequency is expected in the alternating condition, a design feature that differs from
717  the paradigm used in the current work where there is no specific expectation of the
718  orientation of the second Gabor based on the orientation of the first in the

719  alternating condition. Instead the expectation in the alternating condition is that the
720 orientation will change, and this can be violated by repeating the orientation. In this
721  sense, there is no specific expectation about the second orientation in the

722  alternating condition. Instead, the rule is about alternating or repeating the first
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723  orientation. We did not implement the Todorovic et al. paradigm because the

724  combinatorial explosion of stimulus conditions needed to measure orientation

725  selectivity (such that every orientation is predicted by another orientation). Future
726  work could investigate how this subtle change in paradigm design affects the

727  encoding of stimulus information.

728 Forward encoding modelling

729 We used a forward encoding approach to estimate the amount of orientation-
730 selective information contained in the EEG data at each time point of the trial. This
731  approach differs from standard decoding approaches by modelling each presented
732  orientation as a continuous variable of a set of tuned orientation-selective channels.
733 The forward-encoding technique has been successfully used to reconstruct colour
734  (Brouwer & Heeger, 2009), spatial (Sprague & Serences, 2013) and orientation

735  (Ester, Sutterer, Serences, & Awh, 2016) selectivity in fMRI data. More recently the
736 same approach has been applied to EEG and MEG data, which have inherently
737  better temporal resolution than fMRI (Garcia et al., 2013; Kok et al., 2017; Myers et
738 al., 2015; Wolff, Jochim, Akytrek, & Stokes, 2017b).

739 We applied forward encoding modelling to determine how repetition

740  suppression and prediction error affected orientation selectivity. To do this, the

741  second orientation (Figure 7A) in the Gabor pair in each trial was used to construct a
742  regression matrix, with separate regressors for the 9 orientations used across the
743  experiment. This regression matrix was convolved with a set of basis functions (half
744  cosines raised to the 8" power (Figure 7C), which allowed complete and unbiased

745  coverage of orientation space) to allow us to pool similar information patterns
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746  across nearby orientations (Brouwer & Heeger, 2009). We used this tuned

747  regression matrix to estimate time-resolved orientation selectivity contained within
748  the EEG activity in a 16 ms sliding window, in 4 ms steps (Figure 8B; Myers et al.,
749 2015). To avoid overfitting, we used a leave-one-out cross-validation procedure

750  where the regression weights were estimated for a training set and applied to an

751 independent test set (Figure 8D). All trial types (including target trials) were used in
752  training and test sets. This was done by solving the linear equation:

753 Bi= WC; (1)
754  Where B, (64 sensors x N training trials) is the electrode data for the training set, C4
755 (9 channels x N training trials) is the tuned channel response across the training

756 trials, and W is the weight matrix for the sensors we want to estimate (64 sensors x
757 9 channels). W can be estimated using least square regression to solve equation (2):
758 W = (Cs Ci")" Ci" By )
759 The channel response in the test set C. (9 channels x N test trials) was estimated
760 using the weights in (2) and applied to activity in B, (64 sensors x N test trials).

761 CP=WW)Ww'B? (©))
762  We repeated this process by holding one trial out as test, and training on the

763 remaining trials until all trials had been used in test and training. The procedure was
764  repeated for each trial within the trial epoch. We then shifted all trials to a common
765  orientation, meaning that 0° corresponded to the orientation presented on each trial.
766  The reconstructed channel activations were separated into the four conditions, and

767  averaged over trials. These responses were then smoothed with a Gaussian kernel
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768 with a 16 ms window, and fitted with a Gaussian function (4) using non-linear least
769  square regression to quantify the amount of orientation selective activity.
770 GO) = Aexp(- =) + ¢ )
771 Where A is the amplitude representing the amount of orientation selective activity,

772 is the orientation the function is centred on (in degrees), is the width (degrees) and

773 Cis a constant used to account for non-orientation selective baseline shifts.
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775  Figure 7. A schematic of the forward-encoding approach applied to EEG activity.
776  (A) Participants viewed individual gratings at fixation, each with a specific

777 orientation. (B) Neural activity evoked by each grating was measured over the entire
778 scalp. (C) Evoked neural responses were convolved with canonical orientation-
779  selective functions (grey lines in C) to determine coefficients for the different

780 orientations (coloured dots and lines, which match the colours of the outlined

781  gratings in A). These coefficients were then used to generate a regression matrix.
782 (D) General linear modelling was used on a subset of training trials to generate
783  weights for each channel. These weights were inverted and simultaneously applied
784  to an independent test set of data to recover orientation selectivity in the EEG

785  activity. As EEG activity has high temporal resolution, we can apply the procedure
786  to many epochs following stimulus presentation to determine the temporal

787  dynamics of orientation processing (see Figure 3).

788

789  Multivariate pattern analysis
790 We conducted a multivariate pattern analysis to build upon the initial forward
791  encoding results which showed that unexpected stimuli elicit greater orientation

792  selectivity than expected stimuli. This analysis used the same data as the forward
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798 encoding analysis. We used the classify function from Matlab 2017a with the

794  ‘diaglinear’ option to implement a Naive Bayes classifier. For each time point, we
795  used the same cross-validation procedure as the forward encoding modelling with
796 the same averaging procedure to select train and test sets of data. The classifier
797  was given the orientations of the training data and predicted the orientation of the
798 test data. A trial was labelled correct if the presented orientation was produced. To
799 facilitate comparison of the results with those of (Kok et al., 2012), we found the
800 peak classification accuracy for each participant in the 600 ms following stimulus
801 presentation. The same wide time window was used across conditions to

802 accommodate large inter-individual differences in peak classification without

803 biasing the results toward one particular condition.

804  Statistical testing

805 A non-parametric sign permutation test was used to determine the null

806 distribution for testing (Wolff, Jochim, Akylrek, & Stokes, 2017b). This method

807 makes no assumptions about the underlying shape of the null distribution. This was
808 done by randomly flipping the sign of the data for the participants with equal

809 probability. Fifty thousand (50,000) permutations were used for the time-series data,
810 whereas only 5000 were used for the temporal generalization plots because of the
811  significantly greater computational demands.

812 Cluster-based non-parametric correction (50,000 permutations for timeseries
813 and 5,000 for temporal generalization) was used to account for multiple

814  comparisons, and determined whether there were statistical differences between

815 the contrasting conditions. Paired-samples t-tests were used to follow up the
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816 analysis in Figure 4 within a specified time window, and no correction was applied.
817 A two-way repeated measures ANOVA (implemented using GraphPad Prism 7.0c,
818 La Jolla California, USA) was used to analyse the multivariate pattern analysis

819  results shown in Figure 5.
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828 Supplementary Figure 1. The effect of a different baseline period (-100 to 0 ms
829 Dbefore onset of the first Gabor) on orientation selectivity for the two main conditions.
830 Population tuning curves averaged over the significant time period (79 — 150 ms)
831 shown in Figure 4A. The curves, shown as fitted Gaussians, illustrate how overall
832  stimulus representations are affected by repetition and expectation. While there was
833 no difference in orientation tuning for repeated versus alternate stimuli (left panel),
834 the amplitude of the orientation response increased significantly, and the baseline
835 decreased, for unexpected relative to expected stimuli (right panel). Error bars

836 indicate +1 standard error.

837
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