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Abstract	

Spatio-temporal	cortical	activity	patterns	relative	to	both	peripheral	input	and	local	network	

activity	carry	information	about	stimulus	identity	and	context.	GABAergic	interneurons	are	reported	to	

regulate	spiking	at	millisecond	precision	in	response	to	sensory	stimulation	and	during	gamma	

oscillations;	their	role	in	regulating	spike	timing	during	induced	network	bursts	is	unclear.	We	

investigated	this	issue	in	murine	auditory	thalamo-cortical	(TC)	brain	slices,	in	which	TC	afferents	

induced	network	bursts	similar	to	previous	reports	in	vivo.	Spike	timing	relative	to	TC	afferent	

stimulation	during	bursts	was	poor	in	pyramidal	cells	and	SOM+	interneurons.	It	was	more	precise	in	

PV+	interneurons,	consistent	with	their	reported	contribution	to	spiking	precision	in	pyramidal	cells.		

Optogenetic	suppression	of	PV+	cells	unexpectedly	improved	afferent-locked	spike	timing	in	pyramidal	

cells.	In	contrast,	our	evidence	suggests	that	PV+	cells	do	regulate	the	spatio-temporal	spike	pattern	of	

pyramidal	cells	during	network	bursts,	whose	organization	is	suited	to	ensemble	coding	of	stimulus	

information.	Simulations	showed	that	suppressing	PV+	cells	reduces	the	capacity	of	pyramidal	cell	

networks	to	produce	discriminable	spike	patterns.	By	dissociating	temporal	precision	with	respect	to	a	

stimulus	versus	internal	cortical	activity,	we	identified	a	novel	role	for	GABAergic	cells	in	regulating	

information	processing	in	cortical	networks.		
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Introduction	

The	timing	of	action	potentials	in	cortical	pyramidal	cells	often	contains	information	about	

current	and	remembered	sensory	experiences	(Abeles	et	al.	1994;	Kayser	et	al.	2009;	Lisman	2005;	

Nadasdy	et	al.	1999;	Optican	and	Richmond	1987;	Shmiel	et	al.	2005;	Victor	2000;	Wang	et	al.	2008).	

Spikes	times	in	these	codes	may	be	referenced	relative	to	temporal	features	of	a	stimulus,	relative	to	an	

ongoing	cortical	oscillation,	relative	to	other	cells	in	a	local	ensemble,	or	a	combination	thereof.	

GABAergic	interneurons	play	a	role	in	regulating	spike	timing	in	pyramidal	cells	at	the	single	cell	level	

(Cobb	et	al.	1995;	Pouille	and	Scanziani	2001)	and	at	the	level	of	homogeneous	interneuronal	networks	

(Whittington	et	al.	1995).	It	is	unclear,	however,	how	these	observations	translate	to	the	diverse	

populations	of	cells	that	comprise	even	local	cortical	networks,	i.e.	the	cortical	microcircuit.	

Four	related	issues	contribute	to	this	uncertainty.	First,	diverse	groups	of	inhibitory	cells	

regulate	activity	not	only	of	pyramidal	cells	but	also	of	each	other.	Thus,	activation	of	excitatory	

afferents	could	produce	net	feedforward	inhibition	as	at	the	single	cell	level	(Pouille	and	Scanziani	

2001),	or	net	disinhibition,	by	activation	of	GABAergic	interneurons	that	target	other	inhibitory	cells	(Pi	

et	al.	2013;	Zhang	et	al.	2016).	For	example,	complex	interactions	between	recurrent	excitation	and	

inhibition	in	local	networks	sharpen	tuning	in	auditory	cortex	(Kato	et	al.	2017).	Second,	inhibitory	

influences	on	individual	cells	can	differ	from	influences	on	an	interconnected	network	due	to	non-

linearities	present	in	the	network	(Seybold	et	al.	2015).	Divisive	inhibitory	influences	can	become	

subtractive	at	the	network	level,	and	vice-versa.	Third,	excitatory	inputs	to	the	column,	e.g.	TC	afferents,	

activate	large	numbers	of	cells	simultaneously,	triggering	activity	patterns	that	go	beyond	those	

observed	in	single	cell	recordings	(Krause	et	al.	2014;	MacLean	et	al.	2005).	For	example,	although	

pyramidal	cells	in	supragranular	and	infragranular	layers	both	receive	direct	inputs	from	thalamus	

(Constantinople	and	Bruno	2013;	Krause	et	al.	2014),	differences	in	local	excitatory	and	inhibitory	

connectivity	and	in	integrative	and	firing	properties	position	these	two	populations	of	pyramidal	cells	to	
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play	fundamentally	different	roles	in	signal	coding	and	intrinsic	cortical	dynamics	(Barth	and	Poulet	

2012;	Neske	2016;	Sakata	and	Harris	2009).		

Finally,	activity	within	the	cortical	column	is	not	a	superposition	of	independent	spike	trains,	but	

rather	is	highly	correlated.	Emerging	evidence	suggests	that	cortical	information	is	conveyed	via	spatio-

temporal	patterns	of	spiking	occurring	within	the	context	of	coordinated	network	activity	rather	than	by	

stochastic	firing	of	individual	cells	(Abeles	et	al.	1993;	Castejon	and	Nunez	2016;	Luczak	et	al.	2015;	

Yuste	2015).	Coordinated	spiking	indicative	of	bursts	or	packets	of	network	activity	with	intervening	

periods	of	silence	(ON/OFF	periods;	UP/DOWN	states;	synchronized	state)	was	first	described	in	cortex	

of	sleeping	and	anesthetized	animals	(Neske	2016;	Steriade	et	al.	1993).	Arousal,	especially	in	the	form	

of	locomotion	or	active	sensation	(e.g.	whisking),	is	accompanied	by	a	transition	to	the	desynchronized	

state,	corresponding	to	an	extended	ON	period	(McGinley	et	al.	2015;	Poulet	and	Petersen	2008;	

Schneider	et	al.	2014;	Zhou	et	al.	2014).	Evidence	suggests	that	the	synchronized	and	desynchronized	

states	represent	points	along	a	continuum	(Curto	et	al.	2009;	McGinley	et	al.	2015),	and	that	the	spatio-

temporal	patterns	of	spiking	(‘packets’)	observed	during	bursts	in	the	synchronized	state	are	preserved	

even	during	extended	ON	periods	(Luczak	et	al.	2013).	However,	although	the	desynchronized	state	is	

associated	with	behavioral	arousal,	sensitivity	is	optimal	when	the	network	is	otherwise	quiescent,	

either	in	brief	DOWN	states	or	extended	hyperpolarization	(Curto	et	al.	2009;	McGinley	et	al.	2015).	

Elevated	firing	rates	when	stimuli	occur	during	optimal	network	states	(Curto	et	al.	2009;	Lakatos	et	al.	

2005;	McGinley	et	al.	2015)	have	been	interpreted	in	terms	of	elevated	burst	probability	when	the	

network	is	in	a	DOWN	state	(Luczak	et	al.	2013).		

Packets	occur	spontaneously	in	addition	to	being	induced	by	afferent	input,	indicating	that	they	

can	be	powered	by	intracortical	network	dynamics.	The	importance	of	intracortical	network	

mechanisms	is	evidenced	by	the	resemblance	between	spontaneous	bursts	and	activity	triggered	by	

sensory	stimuli	(Carrillo-Reid	et	al.	2015;	Luczak	et	al.	2009;	2013;	Miller	et	al.	2014;	Sakata	and	Harris	
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2009).	GABAergic	cells	play	critical	roles	in	regulating	ongoing	cortical	network	activity	(Neske	and	

Connors	2016),	allowing	its	limited	expression	while	preventing	hyperexcitability	(Destexhe	2010;	

Destexhe	et	al.	2003;	Sanchez-Vives	et	al.	2010).	Within	this	regulatory	framework,	what	role	do	

GABAergic	cells	play	in	constraining	spike	timing?		

Multiple	classes	of	cortical	GABAergic	cells	have	been	identified	in	recent	years,	facilitating	study	

of	their	roles	in	cortical	processing	(Tremblay	et	al.	2016).	We	focused	on	two	of	these	classes,	cells	

expressing	parvalbumin	(PV+),	i.e.	fast-spiking	cells	that	target	somata	and	proximal	processes	of	

pyramidal	cells	(Hu	et	al.	2014;	Kawaguchi	and	Kubota	1998;	Kubota	et	al.	2011),	and	cells	expressing	

somatostatin	(SOM+)	that	target	distal	dendrites	of	pyramidal	cells	(Kubota	2014;	Markram	et	al.	2004).	

PV+	and	SOM+	cells	play	distinct	roles	in	regulating	ascending	and	descending	information	streams	in	

cortex.	PV+	cells	are	strongly	activated	by	TC	afferents	and	constrain	spike	timing	in	pyramidal	cells	via	

rapid	feedforward	inhibition.	SOM+	cells	are	postulated	to	modulate	responses	in	distal	dendrites	to	

feedback	excitation	(Gentet	et	al.	2012).	PV+	cells	can	limit	spike	output	to	narrow	temporal	windows	by	

truncating	EPSPs	that	would	otherwise	last	for	several	milliseconds	(Cruikshank	et	al.	2007;	Gabernet	et	

al.	2005;	Pouille	and	Scanziani	2001).	The	same	mechanism	allows	PV+	cells	to	control	network	

synchrony	and	oscillatory	behavior	(Buzsáki	and	Wang	2012;	Cardin	et	al.	2009;	Sohal	et	al.	2009).	Their	

strong	activation	during	bursts	in	brain	slices	(Fanselow	and	Connors	2010;	Neske	et	al.	2015;	Tahvildari	

et	al.	2012)	suggests	an	important	role	in	regulating	intrinsic	network	activity.	Here,	we	tested	directly	

the	role	of	SOM+	and	PV+	cells	in	regulating	network	activity,	and	spike	timing	of	pyramidal	cells,	using	

targeted	recordings	and	optogenetics	in	auditory	TC	slices.	
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Materials	and	Methods	

Mice	and	surgical	procedures	

All	procedures	were	approved	by	the	University	of	Wisconsin-Madison	Animal	Care	and	Use	

Committee	and	conform	to	American	Physiological	Society/National	Institutes	of	Health	guidelines.	Mice	

were	obtained	directly	or	bred	from	stock	(The	Jackson	Laboratory,	Bar	Harbor,	ME).	To	identify	specific	

types	of	interneurons,	heterozygous	SOM-tdTomato	and	PV-tdTomato	mice	were	bred	from	

homozygous	Cre-dependent	tdTomato	(Stock	007914,	Ai14)	male	and	SOM-Cre	(Stock	013044,	SOM-

IRES-Cre)	or	PV-Cre	(Stock	008069,	PVcre)	female	mice.	Untargeted	patch	clamp	recordings	were	also	

made	from	B6CBAF1/J	mice	(F1	hybrid	of	C57/B6	and	CBA/J	mice;	The	Jackson	Laboratory).	Some	of	the	

Cre-expressing	animals	were	used	for	optogenetic	activation/suppression	experiments.	In	early	

experiments,	this	was	accomplished	via	stereotaxic	injection	of	adeno-associated	virus	expressing	Cre-

dependent	halorhodopsin-YFP	(AAV5/EF1α-DIO-eNpHR3.0-eYFP,	Gene	Therapy	Center	Vector	Core,	

University	of	North	Carolina	at	Chapel	Hill,	Chapel	Hill,	NC).	Injections	were	performed	on	3-5	week	old	

mice	of	both	sexes.	Animals	were	anesthetized	with	isoflurane	(1.5-2%)	and	craniotomized	above	

auditory	cortex	based	on	stereotaxic	coordinates	(Franklin	and	Paxinos	2008).	A	total	of	500-1000	nl	of	

virus	was	injected	into	2-3	sites	spanning	auditory	cortex	rostral-caudally	approximately	500	μm	from	

the	lateral	pial	surface	over	20-30	minutes	(about	10	minutes	per	injection	site).	Injections	were	

performed	through	a	patch	pipette	broken	to	a	tip	diameter	of	approximately	50	μm	and	controlled	with	

a	Nanoject	II	(Drummond	Scientific	Company,	Broomall,	PA)	mounted	on	a	stereotaxic	frame.	Injected	

mice	recovered	for	3-5	weeks	prior	to	preparation	of	brain	slices.	In	later	experiments,	we	bred	SOM-Cre	

and	PV-Cre	animals	with	mice	with	Cre-dependent	expression	of	the	inhibitory	pump	archaerhodopsin	

(Stock	021188,	Ai40(RCL-ArchT/EGFP)-D)	to	yield	pups	with	ArchT	expressed	selectively	in	each	

interneuron	subtype.		
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Slice	preparation	

Auditory	TC	slices	were	prepared	from	male	or	female	mice	(de	novo:	4-12	week	old;	recovered	

from	surgery:	6-10	week	old)	deeply	anesthetized	with	isoflurane	and	decapitated.	We	modified	a	

previously	described	slicing	method	(Cruikshank	et	al.	2002;	Krause	et	al.	2014)	to	maximize	

preservation	of	afferents	connecting	auditory	thalamus	and	cortex	in	young	adult	and	adult	animals.	In	

this	method,	brains	were	blocked	with	three	cuts	(Supplementary	Figure	1),	each	perpendicular	to	the	

preceding	cut:	first,	a	sagittal	cut	about	2	mm	lateral	to	the	midline,	preserving	the	larger	block;	second,	

a	45°	rostral-dorsal	to	caudal-ventral	cut,	preserving	the	dorsal/caudal	block;	and	third,	a	cut	20°	off	the	

horizontal-caudal	plane,	preserving	the	lateral/caudal	block.	The	resulting	block	was	affixed	to	a	

vibrating	microtome	on	the	final	cut	face	and	sliced	into	500	μm	sections.	Slices	at	this	angle	are	roughly	

midway	between	the	coronal-horizontal	plane,	such	that	‘caudal’	regions	of	the	slice	are	about	equally	

‘dorsal,’	but	tilted	slightly	so	that	medial	regions	are	ventral	to	lateral	regions.	In	the	adult	mouse,	this	

blocking	procedure	best	preserves	the	ventral	medial	geniculate	nucleus	(MGv)	and	primary	auditory	

cortex	(Au1)	in	the	same	slice	along	with	the	C-shaped	TC	fibers	that	travel	rostal	and	ventral	before	

arcing	caudal	on	the	way	to	auditory	cortex	(based	on	the	Allen	Mouse	Brain	Connectivity	Atlas,	

http://connectivity.brain-map.org)(Oh	et	al.	2014).	

During	blocking	and	sectioning,	slices	were	maintained	in	ice-cold	cutting	ACSF	consisting	of	(in	

mM)	111	NaCl,	35	NaHCO3,	20	HEPES,	1.8	KCl,	1.05	CaCl2,	2.8	MgSO4,	1.2	KH2PO4,	10	glucose	and	

bubbled	with	95%	O2/5%	CO2.	Once	cut,	slices	were	immediately	placed	in	cutting	ACSF	warmed	to	34°C,	

which	cooled	to	room	temperature	as	slices	rested	for	at	least	one	hour.	Slices	were	moved	to	the	

recording	chamber	and	perfused	at	>6	ml/min	with	regular	ACSF	consisting	of	(in	mM)	111	NaCl,	35	

NaHCO3,	20	HEPES,	1.8	KCl,	2.1	CaCl2,	1.4	MgSO4,	1.2	KH2PO4,	and	10	glucose,	warmed	to	30-33°C	and	

bubbled	with	95%	O2/5%	CO2.	Maintaining	a	strong	flow	of	ACSF	over	the	slice	by	minimizing	the	volume	
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in	the	chamber	and	strategic	arrangement	of	inflow	and	outflow	was	necessary	to	ensure	robust	

network	activity.	

Electrophysiology	and	data	analysis	

Bipolar	stimulating	electrodes	(100KΩ,	FHC)	were	placed	into	the	TC	fiber	bundle	rostral	to	

hippocampus;	we	have	shown	previously	that	this	stimulation	configuration	activates	current	sinks	in	

auditory	cortex	indistinguishable	from	those	elicited	by	stimulation	in	thalamus	(Krause	et	al.	2014).	

Current	pulses	consisted	of	a	200	μs	biphasic	square	wave	of	amplitude	10-100	μA	(STG4002	stimulator,	

Multichannel	Systems,	Reutlingen,	Germany).	The	vertical	strip	of	cortex	(‘column’)	with	optimal	

responses	to	the	stimulated	TC	fibers	was	identified	by	recording	TC	responses	in	layer	4	of	Au1	at	250	

μm	increments,	using	a	glass	patch	pipette	filled	with	ACSF	and	broken	to	a	resistance	of	500-700	kΩ.	

We	used	these	responses	to	identify	the	cortical	location	with	the	largest	early	(<10	ms	latency)	

extracellular	responses;	further	recordings	were	focused	at	this	location.	During	data	collection,	the	

stimuli	were	delivered	as	a	train	of	4	pulses	at	40	Hz,	which	reliably	evoked	recurrent	network	activity	

(Krause	et	al.	2014).	The	stimulus	intensity	used	for	a	given	experiment	was	adjusted	to	give	network	

bursts	that	occurred	reliably	after	pulse	2	and	before	pulse	4	in	the	train;	the	specific	intensity	required	

likely	depended	on	the	integrity	of	TC	fibers	in	each	slice.	For	most	experiments,	there	was	substantial	

adaptation	after	the	first	or	second	trial	so	we	omitted	the	first	two	trials.	To	further	account	for	

adaptation	of	responses,	we	repeated	our	analyses	using	only	the	latest	half	of	the	trials,	but	this	did	not	

qualitatively	impact	results	or	conclusions.	

For	single-cell	recordings,	SOM+	or	PV+	interneurons	were	patched	using	a	combination	of	

fluorescence	and	differential	interference	contrast	(DIC)	microscopy.	Light	from	a	mercury	arc	lamp	(X-

Cite	exacte;	Lumen	Dynamics,	Mississauga,	Ontario,	Canada)	passed	through	an	excitation	filter	(540-

580	nm;	Chroma,	Bellows	Falls,	VT)	and	broad	spectrum	transmitted	light	were	presented	
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simultaneously	to	identify	labeled	cells	and	surrounding	tissue	features,	respectively,	and	

emission/transmittance	(emission	filter	593-667	nm;	Chroma)	captured	on	a	CCD	camera	(C9100-02,	

Hamamatsu	Corp.,	Sewickley,	PA).	A	borosilicate	micropipette	(KG-33,	1.7	mm	OD,	1.1	mm	ID;	King	

Precision	Glass,	Claremont,	CA),	pulled	to	give	open-tip	resistance	of	3-5	MΩ	(P-1000;	Sutter	

Instruments,	Novato,	CA)	filled	with	intracellular	solution	(in	mM:	140	K-gluconate,	10	NaCl,	10	HEPES,	

0.1	EGTA,	2	MgATP,	and	0.3%	biocytin;	pH	7.2),	was	advanced	to	contact	the	targeted	cell	and	a	>1GΩ	

seal	made	with	weak	negative	pressure.	Pyramidal	cells	were	patched	similarly,	with	transmitted	light	

only,	and	identified	based	on	their	visible	triangular	morphology	with	apical	dendrite	under	DIC	optics.	

Spikes	were	recorded	in	the	on-cell	configuration	in	voltage-clamp	in	response	to	trains	of	4x40	Hz	TC	

stimuli.	After	on-cell	recording,	whole-cell	access	was	established	and	recordings	continued	in	current-

clamp	mode.	For	some	cells,	whole-cell	access	occurred	before	on-cell	recordings	were	completed.	In	

these	cells,	spikes	recorded	in	whole-cell	configuration	were	analyzed.	In	addition	to	Cre-dependent	

tdTomato	expression	and	morphological	characteristics,	cell	types	were	identified	by	their	characteristic	

responses	to	current	pulses,	particularly	spiking	patterns	and	rates	(i.e.,	regular-spiking	vs.	fast	spiking).	

For	all	recordings,	the	recorded	voltage	or	current	signal	was	low-pass	filtered	at	4	kHz	and	digitized	at	

40	kHz.	

During	all	experiments,	including	during	single-cell	recordings,	simultaneous	extracellular	

population	recordings	in	layer	5	(and	in	some	experiments	also	in	layers	2/3)	were	used	to	measure	

network	activity.	Broken	glass	pipettes	(as	above,	broken	to	resistances	of	500kΩ-800kΩ)	filled	with	

regular	ACSF	were	inserted	into	layer	5	at	a	cortical	depth	slightly	greater	than	halfway	from	pia	to	white	

matter.	Stimulus	artifacts	were	blanked	by	interpolating	between	points	before	and	after	the	artifact.	

Extracellular	voltage	was	filtered	between	500-3000	Hz,	full-wave	rectified,	and	smoothed	by	

convolution	with	a	Gaussian	kernel	with	unit	integral	and	σ=2	ms	to	produce	a	smoothed	MUA	signal	

(smMUA),	also	referred	to	as	“population	activity”	throughout	this	paper.	A	threshold	for	elevated	
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activity	was	defined	as	the	geometric	mean	of	all	the	points	greater	than	the	arithmetic	mean	of	the	

smMUA	signal	(Krause	et	al.	2014;	Sakata	and	Harris	2009).	Burst	onsets	were	defined	as	periods	above	

threshold	for	at	least	80%	of	points	in	a	20	ms	window,	and	burst	offsets	defined	as	a	decrease	below	

the	threshold	for	80%	of	points	in	a	50	ms	window.	These	criteria	reliably	identified	network	bursts	

observed	by	eye,	and	did	not	include	early	responses	to	individual	stimulus	pulses	(which	are	too	brief).		

Many	measures	have	been	suggested	for	quantifying	spike	timing,	but	creating	a	firing-rate	

independent	measure	of	correlative	features	such	as	spike	timing	across	trials	is	nontrivial	(Cohen	and	

Kohn	2011;	Cutts	and	Eglen	2014;	Joris	et	al.	2006).	We	assayed	spike	timing	using	a	variation	of	the	

previously-described	“spike-time	tiling	coefficient”	(STTC;	(Cutts	and	Eglen	2014)),	which	computes	the	

fraction	of	spikes	coincident	with	a	specified	coincidence	window	(Dt)	above	those	expected	by	chance.	

Instead	of	comparing	between	two	simultaneously	recorded	units	as	originally	described,	the	measure	

was	computed	between	all	permutations	of	trials	for	a	given	unit.	The	calculation	depends	on	a	free	

parameter	Δt,	which	defines	the	window	on	which	spikes	are	considered	“coincident.”	Then,	two	

proportions	are	calculated,	PA,	the	proportion	of	spikes	from	spike	train	A	that	are	within	Δt	of	any	spike	

in	spike	train	B,	and	TB,	the	proportion	of	all	time	that	is	within	Δt	of	any	spike	in	spike	train	B.	The	STTC	

is	calculated	as:	

𝑆𝑇𝑇𝐶 =
1

𝑁(𝑁 − 1)
𝑃+ − 𝑇,
1 − 𝑃+𝑇,,-+./+/0

	

This	measure	is	high	(approaching	1)	when	all	spikes	occur	at	the	same	time	as	spikes	in	other	

trials,	and	zero	for	randomly	distributed	spikes.	The	STTC	was	only	calculated	for	cells	that	fired	at	least	

one	spike	on	more	than	1/3	of	trials.	The	STTC	tends	toward	unity	as	the	coincidence	interval	increases.	

Importantly,	the	STTC	is	robust	to	changes	in	firing	rate	(Cutts	and	Eglen	2014),	but	will	change	with	

coordinated	changes	in	firing	rate	that	are	on	time	scales	much	slower	than	Δt.	
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A	second	measure	of	spiking	precision	across	trials	was	adapted	from	a	spike	train	distance	

metric	(Victor	and	Purpura	1996).	We	define	the	spike	train	similarity	S	between	two	trials	(a,b)	as:	

𝑆 = 1 − 𝐷23456 𝑎, 𝑏 /(𝑁; + 𝑁=)	

where	Dspike	is	the	Victor-Purpura	metric	for	spike	train	distance	(Victor	and	Purpura	1996),	defined	as	

the	cost	of	transforming	one	spike	train	into	another	by	adding,	shifting,	or	removing	spikes.	The	cost	of	

adding	or	removing	a	spike	is	defined	as	1;	the	cost	of	shifting	a	spike	is	equal	to	q·Δt,	where	q	is	a	free	

parameter	that	determines	the	temporal	precision	of	interest.	We	used	q=0.5/ms	to	compare	with	our	

STTC	results,	meaning	that	it	is	more	efficient	to	remove	and	add	a	spike	(a	total	cost=2)	than	to	shift	a	

spike	by	more	than	4	ms.	We	normalized	the	Victor-Purpura	distance	by	the	sum	of	the	number	of	

spikes	N	in	trains	a	and	b	(Dimitrov	et	al.	2014),	and	subtracted	from	1	to	transform	from	a	measure	of	

distance	to	a	measure	of	similarity.	We	defined	the	spike	train	similarity	for	one	cell	across	all	trials	as	

the	average	of	S	across	all	trial	combinations	(a,b)	for	which	Na+Nb≠0.	Even	with	the	normalization	to	

number	of	spikes,	this	measure	can	be	sensitive	to	changes	in	firing	rates,	but	has	an	advantage	over	the	

STTC	measure	in	that	it	uses	a	non-binary	measure	of	coincidence.	

We	wished	to	compare	across	experiments	the	timing	of	spikes	relative	to	burst	onset	and	

offset.	Because	population	bursts	vary	in	duration	between	and	within	slices,	we	normalized	burst	

duration	and	defined	the	“burst	phase”	as	0	at	the	start	of	a	burst	and	1	at	the	end	of	a	burst.	The	“burst	

firing	phase”	was	the	fractional	time	of	each	spike	between	onset	and	offset	of	the	burst	detected	on	

that	trial.	To	calculate	firing	rates	during	bursts,	spike	trains	recorded	from	single	cells	were	convolved	

with	a	Gaussian	kernel	(σ=2	ms)	before	temporal	scaling	to	units	of	burst	phase	to	preserve	units	of	

firing	rate	in	terms	of	spikes/second	(Hz).	

Statistical	comparisons	between	cell	types	used	standard	one-way	ANOVA	when	normality	was	

not	rejected	using	a	one-way	Kolmogorov-Smirnov	test;	otherwise,	a	Kruskal-Wallis	test	of	analysis	of	
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variance	by	ranks	was	used.	Levene’s	test	was	used	to	compare	variances.	All	statistical	tests	used	the	

MATLAB	(Mathworks,	Natick,	MA)	Statistics	Toolbox.	

Optogenetic	suppression	of	inhibition	

	 Halorhodopsin	or	ArchT	pumps	were	activated	by	passing	light	from	the	arc	lamp	through	the	

microscope	objective	(10x)	centered	on	the	cortical	region	of	study	using	a	filter	in	the	excitation	range	

for	halorhodopsin	(540-580	nm).	Activation	of	these	constructs	caused	substantial	hyperpolarization	in	

labeled	cells	(see	Supplementary	Figure	3).	The	light	was	turned	on	100	ms	before	stimulus	onset	and	

held	on	for	a	total	of	500	ms.	Light	intensity	was	titrated	for	each	experiment	to	a	level	that	produced	an	

effect	on	population	responses,	in	the	range	of	0.6	to	2.9	mW/mm2	for	halorhodopsin	and	1.5	to	5.8	

mW/mm2	for	ArchT.	Light-on	trials	were	interleaved	with	light-off	trials.	The	first	two	trials	of	each	type	

were	discarded	because	these	trials	often	contained	induced	bursts	that	differed	substantially	in	

magnitude	and	latency	from	subsequent	events.	The	effects	of	optogenetic	suppression	on	individual	

cells	were	tested	with	Wilcoxon	signed-rank	tests.	

We	did	not	observe	any	evidence	of	toxicity,	for	example	abnormal	“blebbing”	of	membranes,	

that	has	been	associated	with	older	halorhodopsin	constructs	(Gradinaru	et	al.	2008).	Additionally,	

patched	eNpHR3.0+	cells	had	normal	resting	potentials	and	firing	behavior.	Our	stimuli	were	brief	

(several	hundred	milliseconds)	relative	to	durations	known	to	impact	intracellular	chloride	

concentrations	which	span	several	seconds	(Raimondo	et	al.	2012).	We	also	did	not	observe	any	

differences	between	eNpHR3.0	and	ArchT	slices	with	or	without	light	stimulation,	and	did	not	observe	

any	differences	without	light	in	those	slices	compared	to	slices	without	any	optogenetic	expression.	

	

Linear	mixed-effects	model	
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	 To	analyze	the	effect	of	optogenetic	suppression	of	different	interneuron	populations,	we	fit	

population	responses	using	a	linear	mixed-effects	model	(Kristensen	and	Hansen	2004;	Winter	2013).	

This	approach	allows	for	controlling	for	random	effects	due	to	repeated	measures	within	subjects,	

enabling	us	to	consider	non-independent	samples	in	a	principled	way.	Other	methods	such	as	using	

repeated-measures	ANOVA	could	not	be	structured	to	our	data	without	enforcing	independence	by	

summarizing	each	experiment	with	a	single	value	for	each	condition	(such	as	a	mean	or	median)	and	

therefore	losing	important	information	about	within-subject	variability	or	consistency.	

	 Models	consisted	of	a	response	variable	based	on	the	population	activity	(smMUA	peak,	burst	

latency,	or	burst	duration),	fixed	effect	of	interneuron	suppression	(LightOff/SOM+/PV+)	and	recording	

layer	(L5	or	L2/3),	an	interaction	term	between	the	two	fixed	effects,	and	random	effect	of	slice	

(experiment),	with	random	slopes	by	condition	and	by	layer	for	the	effect	of	slice.	In	summary,	the	full	

model	was	as	follows,	with	fixed	effects	β,	random	effects	γ,	suppression	i,	layer	j,	and	slice	k:	

Responseijk	=	β0	+	β1	(i)	+	β2	(j)	+	β3	(i,j)	+	γ0k	+	γ1k	(i)	+	γ2k	(j)	+	εijk	 	

Statistical	evaluation	of	the	linear	mixed	effects	model	occurred	at	two	levels.	First,	we	used	a	

likelihood	ratio	test	to	determine	whether	fixed	effects	in	the	above	equation	are	significant,	comparing	

the	full	model	to	a	reduced	model	that	lacks	the	interaction	term	(the	interaction	term	indicates	an	

effect	of	suppression	that	depends	on	layer).	If	omitting	the	reaction	term	significantly	reduced	model	

likelihood,	we	further	analyzed	the	individual	coefficients	for	that	term.	Otherwise,	we	omitted	the	

interaction	from	the	model.	For	example,	for	the	effect	of	suppression	of	interneurons	on	the	peak	and	

latency	(Figure	6;	Table	2),	the	model	was	significantly	improved	by	including	the	interaction	between	

interneuron	suppression	and	layer	(i.e.,	β3;	peak	χ2(2)=124.1,	p<0.0001;	latency	χ2(2)=31.7,	p<0.0001).	

For	the	duration,	the	interaction	was	not	significant	(χ2(2)=0.72,	p=0.69)	but	both	of	the	individual	fixed	

effects	(β1,	χ2(2)=20.2,	p<0.0001,	and	β2,	χ2(2)=17.4,	p<0.0001)	were	significant.	This	result	indicates	
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that,	although	there	were	effects	of	interneuron	suppression	and	differences	between	layers,	there	was	

no	difference	in	the	effect	of	interneuron	suppression	across	layers.	Therefore,	we	used	a	reduced	

model	with	no	interaction	term	for	evaluating	duration	and	used	the	full	model	for	the	other	measures.	

We	report	likelihood	ratio	tests	using	chi-squared	values.	Residuals	were	visually	inspected	to	confirm	

homoscedasticity.	For	the	latency	and	duration	measures,	heteroscedasticity	was	corrected	by	log-

transforming	the	response	variables.	After	choosing	the	appropriate	models,	we	tested	the	significance	

of	individual	coefficients	(Table	2).	For	ease	of	interpretation,	coefficient	estimates	for	these	models	

were	exponentiated	after	fitting	to	express	effects	as	multiplicative	gains.	Coefficients	are	reported	with	

95%	confidence	intervals.	All	data	analysis	and	statistical	comparisons	used	the	MATLAB	(Mathworks,	

Natick,	MA)	Statistics	Toolbox	and	custom	MATLAB	software.	

Tempotron	learning	model	

	 To	test	how	discriminable	random	spiking	patterns	are	with	differing	distributions	of	burst	firing	

phase,	we	implemented	a	tempotron	learning	model	(Gütig	and	Sompolinsky	2006).	Briefly,	the	

tempotron	is	a	single-compartment,	leaky	integrate-and-fire	neuron	that	responds	in	a	binary	fashion	

(“spike”	or	“no-spike”)	to	a	pattern	of	weighted	synaptic	inputs.	Patterns	were	arbitrarily	assigned	to	

“go”	or	“no-go”	categories,	where	the	correct	response	to	a	“go”	pattern	is	a	spike,	and	the	correct	

response	to	a	“no-go”	pattern	is	no	spike.	The	membrane	voltage	V(t)	was	given	by	summing	the	

weighted	inputs	convolved	with	a	causal	filter	K	given	by	the	equation:	

𝐾 𝑡 = 	 𝑒BC/DEFGHI − 𝑒BC/DJKLF 	

We	set	𝜏N6O;P 	 ∶= 	15	𝑚𝑠	and	𝜏U426 ∶= 	3.75	𝑚𝑠.	If	V(t)	reached	threshold,	the	trial	ended	at	time	t	and	a	

spike	was	registered.	After	each	trial,	weights	ω	were	updated	according	to	the	tempotron	learning	rule:	

𝛥𝜔 = 𝜆 𝐾 𝑡\;] − 𝑡4
CK^C_H`
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This	rule	multiplies	the	maximum	update	step	(λ ∶= 	0.001 ∗ ∫ Κ	)	by	a	factor	that	represents	the	

contribution	of	spikes	at	the	observed	times	relative	to	the	time	of	the	maximum	V(t).	Synaptic	weights	

were	increased	by	∆ω	when	there	was	a	miss	error	and	decreased	by	∆ω	when	there	was	a	false	alarm	

error.	We	also	included	a	momentum	µ ∶= 0. 99,	as	in	the	original	tempotron	model,	to	accelerate	the	

learning	process.	Because	deep	cells	had	higher	mean	firing	rates	than	superficial	cells,	in	some	

simulations	(see	Results)	we	matched	firing	rates	between	deep	and	superficial	cells	by	omitting	deep	

cells	in	descending	rank	order	until	the	mean	firing	rate	in	the	sample	of	deep	cells	was	as	close	as	

possible	to	the	mean	firing	rate	of	the	superficial	cells.	 	
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Results	

Induced	network	activity	

We	seek	to	understand	the	spatio-temporal	patterns	of	spiking	during	correlated	network	

activity	(‘network	bursts’)	within	the	cortical	column,	and	the	regulation	of	this	activity	by	two	classes	of	

cortical	inhibitory	cells.	We	chose	to	study	these	questions	in	brain	slices	(Figure	1A),	in	which	we	and	

others	have	shown	that	such	activity	is	readily	observed.	In	murine	auditory	TC	slices,	two	types	of	

responses	are	observed	in	response	to	activation	of	TC	afferents.	Short	latency	current	sinks	in	layer	4	

and	EPSPs	in	cells	of	all	recorded	layers	are	consistent	with	monosynaptic	TC	inputs	(Cruikshank	et	al.	

2002;	Krause	et	al.	2014;	Raz	et	al.	2014)	(Figure	1B,	inset).	Longer	latency,	variable	duration	responses,	

corresponding	to	network	bursts,	are	also	observed.	Intracellularly,	these	consist	of	depolarizations	that	

arise	from	polysynaptic	inputs	and	are	shared	across	cells	in	the	column;	spiking	activity	recorded	in	

individual	cells	and	as	multiunit	activity	extracellularly	occurs	preferentially	during	these	burst	events	

(Figure	1B).	Here,	we	defined	network	bursts	as	a	sustained	increase	in	the	smoothed	population	MUA	

recorded	in	layer	5	(Figure	1C;	see	Methods).	Burst	duration	varied	with	stimulus	intensity	and	across	

slices,	but	was	typically	around	40-70ms	(Figure	1D).	Network	bursts	of	similar	duration	have	been	

observed	previously	in	vitro	(Hentschke	et	al.	2017;	Krause	et	al.	2014;	MacLean	et	al.	2005;	Metherate	

and	Cruikshank	1999;	Shu	et	al.	2003)	and	in	auditory	cortex	in	response	to	acoustic	stimuli	in	vivo	

(Curto	et	al.	2009;	Luczak	et	al.	2009;	2013;	Sakata	and	Harris	2009).		

Afferent	stimulation	can	itself	induce	bursts	of	correlated	network	activity	within	the	auditory	

cortical	column.	Importantly,	these	stimuli	can	also	coincide	with	spontaneous	bursts,	or	with	bursts	

induced	by	prior	stimulation	(Destexhe	and	Pare	1999;	Luczak	et	al.	2013;	MacLean	et	al.	2005;	Petersen	

et	al.	2003;	Rigas	and	Castro-Alamancos	2009).	Our	observation	that	nearly	all	spiking	activity	occurs	in	

the	context	of	network	bursts	suggests	that	driving	the	network	into	the	activated	state	underlying	

network	bursts	is	necessary	for	throughput	of	afferent	information.	Thus,	we	are	interested	in	how	the	
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network	responds	to	afferent	stimulation	occurring	during	bursts.	To	investigate	this,	we	chose	for	most	

of	our	experiments	trains	of	afferent	stimuli	(4x40	Hz,	10-100µA)	at	intensities	that	induced	bursts	after	

the	second	and	prior	to	the	fourth	stimulus	in	a	train	of	four	pulses,	such	that	there	was	always	at	least	

one	stimulus	pulse	occurring	during	the	burst	(Figure	1B).	

Because	stimulation	during	ongoing	bursts	can	hasten	their	termination,	we	verified	that	the	

bursts	we	observe	are	not	short	merely	due	to	our	experimental	paradigm	that	includes	trains	of	stimuli	

that	overlap	with	induced	bursts.	We	found	no	difference	in	burst	duration	with	versus	without	

stimulation	amidst	bursts	in	a	subset	of	experiments	(n=7,	mean	duration	difference	±	SEM=	1.1±5.0	ms;	

paired	t-test	p=0.84;	Figure	1E).	Duration	of	bursts	can	also	be	affected	by	the	method	for	detecting	and	

defining	bursts,	which	differs	across	studies.	For	example,	the	duration	of	the	thresholded	MUA	signal	in	

layer	5	was	typically	less	than	the	intracellular	depolarization	signal	(Figure	1B),	though	we	note	that	the	

vast	majority	of	spiking	activity	occurred	within	the	detected	bursts	according	to	our	definition	

(Hentschke	et	al.	2017;	Krause	et	al.	2014).		

Cell	type-specific	firing	patterns	during	network	bursts	

To	investigate	the	role	of	GABAergic	cells	in	regulating	network	activity,	and	specifically	spike	

timing	in	the	context	of	this	activity,	we	first	determined	the	firing	patterns	of	pyramidal,	PV+,	and	

SOM+	cells	during	network	bursts	induced	by	thalamic	stimulation.	To	record	from	specific	classes	of	

GABAergic	cells	during	network	bursts,	we	prepared	slices	from	transgenic	animals	expressing	the	

fluorophore	tdTomato	in	either	PV+	or	SOM+	cells	(Supplementary	Figure	2).	We	identified	pyramidal	

cells	based	on	their	morphology	in	these	same	slices.	The	three	cell	types	had	distinct	patterns	of	firing	

with	respect	to	bursts	(Figure	2A-C)	and	intrinsic	properties	(Table	1;	see	also	Supplementary	Material).	

Pyramidal	cells	tended	to	fire	sparsely	during	bursts	(Figure	2A).	By	contrast,	GABAergic	cells	tended	to	

fire	more	densely.	SOM+	cells	tended	to	fire	multiple	spikes	late	in	bursts;	occasionally,	some	SOM+	cell	

spikes	occurred	after	the	detected	burst	duration	(Figure	2B;	13.4%	of	SOM+	cell	spikes	were	after	
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bursts,	compared	to	only	2.6%	of	pyramidal	cell	spikes	and	3.9%	of	PV+	cell	spikes).	PV+	cells	tended	to	

fire	multiple	spikes	early	and	throughout	bursts	(Figure	2C).	On	average,	pyramidal	cells	fired	

significantly	fewer	spikes	per	trial	(including	spikes	before	or	after	detected	bursts)	than	either	inhibitory	

cell	population	(Figure	2D;	H(2)=32.1,	p<0.0001;	Pyr	vs.	SOM+	p<0.0001,	Pyr	vs.	PV+	p<0.0001)	and	were	

more	likely	to	fire	no	spikes	on	a	given	trial	(Figure	2E;	H(2)=21.7,	p<0.0001;	Pyr	vs.	SOM+	p=0.0003,	Pyr	

vs.	PV+	p=0.0016).	Thus,	although	interneurons	make	up	only	10	–	20%	of	neurons	in	auditory	cortex,	

their	substantial	firing	activity	positions	them	to	exert	strong	influence	over	induced	network	activity.	

Pyramidal	cells	in	layer	5	fired	more	spikes	per	trial	than	pyramidal	cells	in	layers	2/3	or	4	(not	shown;	

H(2)=21.0,	p<0.0001;	Pyr	L2/3	vs.	L5	medians	0.06	vs.	1.0,	p=0.0008;	Pyr	L4	vs.	L5	medians	0	vs	1.0,	

p=0.0009).	There	were	no	significant	laminar	differences	in	firing	rate	for	either	interneuron	type.		

Almost	all	spikes	from	single-cell	recordings	occurred	during	bursts,	but	occasionally	some	cells	

spiked	before	bursts.	We	presume	that	pre-burst	spiking	activity	is	necessary	to	initiate	bursts,	though	

we	found	that	this	activity	was	very	sparse	compared	to	participation	in	the	bursts	themselves,	as	we	

have	shown	previously	(Krause	et	al.	2014).	The	probability	of	firing	at	least	one	spike	before	a	burst	

(“early	spikes”)	was	actually	lowest	in	pyramidal	cells	and	highest	in	PV+	cells	(Figure	2F;	9/93	pyramidal,	

6/28	SOM+,	12/29	PV+).	Even	among	the	special	subset	of	cells	that	fired	some	early	spikes,	most	spikes	

occurred	after	burst	onset	(Figure	2G).	Very	few	early-spiking	cells	were	in	supragranular	layers	(Figure	

2H);	most	early-spiking	PV+	cells	were	in	layer	4,	whereas	most	early-spiking	pyramidal	and	SOM+	cells	

were	in	layer	5	(Figure	2H).	These	results	are	consistent	with	previous	reports	of	robust	thalamic	

excitation	of	granular	layer	PV+	cells	(Pouille	and	Scanziani	2001;	Rose	and	Metherate	2005),	the	relative	

density	of	infragranular	cell	spiking	(Barth	and	Poulet	2012;	Krause	et	al.	2014;	Sakata	and	Harris	2009),	

and	direct	thalamocortical	excitation	of	infragranular	cells	(Constantinople	and	Bruno	2013;	Krause	et	al.	

2014;	Tan	et	al.	2008).	
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Timing	of	spikes	relative	to	stimulus	train	

Sensory	information	in	vivo	is	likely	to	be	conveyed	during	high	conductance	states	manifested	

as	desynchronized	or	so-called	UP	states	(Destexhe	et	al.	2007;	Destexhe	et	al.	2003;	Harris	and	Thiele	

2011).	During	these	periods	of	elevated	network	activity,	high	levels	of	synaptic	input	and	net	

depolarization	of	cellular	membrane	potential	will	impact	substantially	on	the	precision	and	reliability	of	

spike	timing	(Destexhe	et	al.	2003;	Pachitariu	et	al.	2015),	but	there	have	been	few	systematic	studies	of	

spike	timing	and	its	control	by	GABAergic	interneurons	during	such	periods	of	high	network	activity.	We	

used	thalamically-induced	network	bursts	as	a	model	high	conductance	state,	and	assayed	spike	timing	

during	these	network	bursts	in	response	to	ongoing	thalamic	stimulation.		

The	precision	of	spike	timing	relative	to	the	TC	stimulus	train	varied	between	and	within	cell	

types	(Figure	3A-C).	Some	cells,	especially	PV+	interneurons,	exhibited	firing	that	was	tightly	linked	to	

the	ongoing	stimulus	train	and	relatively	independent	of	the	induced	network	activity	(e.g.	cell	9,	Figure	

3C).	However,	in	most	cells	precision	of	spike	timing	relative	to	thalamic	stimulation	was	poor	(e.g.	cells	

1	&	2,	Figure	3A).	This	finding	was	surprising.	Our	stimulus	paradigm	consisted	of	precise,	synchronous	

afferent	inputs.	Spike	timing	relative	to	auditory	stimulus	features	is	very	precise	earlier	in	the	auditory	

hierarchy	(Bartlett	and	Wang	2007;	Krishna	and	Semple	2000;	Langner	1992;	Wang	et	al.	2008),	and	

specializations	in	auditory	cortex	for	rapid	processing	of	incoming	input	suggest	that	timing	information	

is	also	important	in	auditory	cortex	(Kayser	et	al.	2010;	Rose	and	Metherate	2005).		

To	investigate	further,	we	quantified	stimulus-related	spike	timing	in	each	cell	class	using	the	

STTC	(see	Methods).	A	second	measure,	a	variation	on	the	Victor-Purpura	spike	train	distance	(Victor	

and	Purpura	1996)	(see	Methods),	gave	nearly	identical	results	(Supplementary	Figure	4A).	Importantly,	

we	chose	to	use	the	STTC	as	a	measure	of	spike	timing	because	other	measures	like	the	cross	correlation	

show	increases	with	firing	rate	(Cohen	and	Kohn	2011;	Cutts	and	Eglen	2014;	De	La	Rocha	et	al.	2007).	

We	calculated	the	STTC	over	a	range	of	coincidence	windows	within	which	spikes	were	deemed	
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coincident	(Figure	3D).	Although	there	was	variation	within	cell	types,	PV+	cells	tended	to	have	a	higher	

STTC	over	a	wide	range	of	coincidence	windows.	For	precision	of	Dt	=	1	ms	(Figure	3E),	PV+	cells	were	

significantly	better	timed	than	both	SOM+	cells	(F(2,88)=12.73,	p<0.0001;	SOM+	vs.	PV+	p=0.0014)	and	

pyramidal	cells	(Pyr	vs.	PV+	p<0.0001).	We	also	considered	the	effect	of	timing	by	layer	(Figure	3F),	

which	showed	more	precise	firing	in	layer	4	for	all	types	of	cells,	presumably	reflective	of	larger	TC	EPSPs	

in	this	layer	(Krause	et	al.	2014).	A	two-way	ANOVA	was	significant	for	main	effects	of	cell	type	

(F(2,82)=6.42,	p=0.0026)	and	layer	(F(2,82)=4.26,	p=0.017)	but	the	interaction	between	cell	type	and	

layer	was	not	significant	(F(4,82)=0.86,	p=0.49).	The	main	effect	of	layer	was	driven	by	greater	precision	

in	layer	4	compared	to	the	other	layers	(layer	2/3	vs.	layer	4,	p=0.023;	layer	4	vs.	layer	5,	p=0.030).	

Stimulus-based	timing	is	improved	by	suppressing	PV+,	but	not	SOM+	cells	

The	data	presented	so	far	indicate	that	PV+	cells	are	strongly	and	precisely	driven	by	thalamic	

stimuli	(Figure	3),	suggesting	that	they	are	poised	to	provide	precise	feedforward	inhibition	in	pyramidal	

cells.	These	observations	are	in	line	with	previous	reports,	which	have	suggested	that	thalamically-

evoked	action	potentials	in	cortical	pyramidal	cells	are	tightly	regulated	by	inhibitory	circuits	(Cruikshank	

et	al.	2007;	Gabernet	et	al.	2005;	Higley	and	Contreras	2006;	Isaacson	and	Scanziani	2011;	Oswald	et	al.	

2006;	Pouille	and	Scanziani	2001;	Rose	and	Metherate	2005;	Tiesinga	et	al.	2008;	Wehr	and	Zador	2003).	

Specifically,	these	studies	showed	that	inhibitory	cells	constrain	integration	windows	and	the	timing	of	

spikes	in	pyramidal	cells,	contributing	to	the	information	capacity	of	the	cortical	network.	We	sought	to	

determine	whether	inhibitory	cells	similarly	regulate	spike	timing	in	pyramidal	cells	during	bursts.	We	

expected	that	suppression	of	PV+	cells	in	particular	would	release	pyramidal	cells	from	inhibition,	

causing	them	to	fire	more	indiscriminately	and	decrease	the	precision	of	spike	timing	relative	to	the	

stimulus.	We	tested	this	hypothesis	by	recording	from	individual	pyramidal	cells	and	measuring	effects	

of	optogenetic	suppression	of	either	PV+	or	SOM+	cells	on	spike	rate	and	timing.	We	suppressed	SOM+	
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or	PV+	cell	activity	by	expressing	halorhodopsin	(via	viral	vectors)	or	ArchT	(via	transgenics)	in	SOM-Cre	

(n=43)	and	PV-Cre	(n=23)	mice	(Supplementary	Figure	3)	and	compared	spike	timing	in	pyramidal	cells	

with	and	without	suppression.		

Suppression	of	either	SOM+	or	PV+	interneurons	only	modestly	increased	the	firing	rate	of	

pyramidal	cells	during	bursts.	Pyramidal	cell	spike	probability	(Figure	4A)	trended	towards	increasing	for	

SOM+	cell	suppression	(Wilcoxon	signed-rank	test,	z=1.86,	p=0.062)	and	was	significantly	increased	for	

PV+	cell	suppression	(z=3.66,	p=0.0002).	Pyramidal	cells	fired	more	spikes	per	trial	(Figure	4B)	with	

suppression	of	either	cell	type	(SOM+	medians	0.76	versus	1.28	spikes/trial,	z=2.46,	p=0.014;	PV+	

medians	0.90	versus	1.06	spikes/trial,	z=4.24,	p<0.0001).	Thus,	pyramidal	cell	firing	during	bursts	

becomes	slightly	less	sparse	when	SOM+	or	PV+	cells	are	suppressed.	

	 We	expected	that	suppression	of	PV+	cells	in	particular	would	also	lead	to	less	precise	spike	

timing	in	pyramidal	cells	relative	to	TC	input.	However,	we	observed	no	evidence	of	degraded	timing	of	

pyramidal	cell	firing	during	suppression	of	PV+	or	SOM+	cells	(Figure	4C-F).	Contrary	to	our	expectations,	

suppressing	PV+	cells	actually	improved	stimulus-related	timing	of	most	pyramidal	cells	(Figure	4G),	an	

effect	not	observed	with	suppression	of	SOM+	cells.	We	observed	the	same	result	across	a	wide	range	of	

coincidence	intervals,	using	the	spike	similarity	measure,	and	in	the	cross	correlogram	(see	

Supplementary	Figure	4B-D).	There	are	several	possible	reasons	for	this	unexpected	result,	though	we	

were	unable	to	identify	one	specific	factor.	Relief	from	strong	feed-forward	inhibition	could	have	biased	

spiking	in	favor	of	responses	to	direct	TC	input	rather	than	intrinsic	network	activity.	Alterations	in	the	

dynamics	of	the	bursts	themselves	may	also	play	a	role.	Changes	in	STTC	in	pyramidal	cells	were	weakly	

correlated	with	reductions	in	burst	duration	(Figure	4H;	r2=	0.23,	p=0.04)).	We	also	observed	on	average	

a	reduction	in	the	standard	deviation	of	burst	onset	latency,	but	this	reduction	only	trended	towards	

correlation	with	changes	in	STTC	(r2=	0.16,	p=0.10).	These	latter	effects,	which	suggest	a	relationship	

between	burst	dynamics	and	timing,	led	us	to	investigate	how	PV+	and	SOM+-mediated	inhibition	
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regulates	spiking	activity	within	network	bursts.	Below,	we	present	data	suggesting	that	PV+	cells	do	

play	a	role	in	improving	spike	timing	in	pyramidal	cells,	but	in	the	context	of	network	activity	rather	than	

in	the	context	of	single	cell	responses	to	external	inputs.		

Packet-like	timing	of	spikes	relative	to	network	activity	

Spike	timing	relative	to	an	external	stimulus	can	provide	useful	information,	marking	at	a	fixed	

latency	the	occurrence	of	stimulus	features	within	a	particular	neuron’s	receptive	field.	However,	spike	

latencies	can	also	vary	with	stimulus	parameters,	e.g.	intensity,	orientation	or	location	(Panzeri	et	al.	

2001;	Shriki	et	al.	2012).	Therefore,	extraction	of	unambiguous	information	about	a	stimulus	requires	an	

internal	reference	signal,	such	as	one	provided	by	endogenous	network	activity	(Kayser	et	al.	2009).	

Organization	of	spike	times	relative	to	other	members	of	the	local	ensemble	has	been	proposed	to	

underlie	population	codes	in	the	cortical	network	(Abeles	et	al.	1993;	Luczak	et	al.	2013).	We	examined	

the	organization	of	spiking	within	network	bursts	in	slices	by	considering	the	phase	at	which	spikes	were	

fired,	and	examined	how	this	organization	depended	on	activity	of	GABAergic	cells.	Importantly,	we	

made	a	distinction	between	the	variation	of	burst	firing	phase	within	populations	of	cells	(separated	by	

cell	type)	versus	the	properties	of	individual	cells	within	those	populations.		

Mean	pyramidal	and	PV+	cell	firing	rates	coincided	with	population	activity	levels	throughout	

bursts,	though	pyramidal	cells	fired	sparsely;	firing	in	SOM+	cells	was	denser	later	in	the	burst	(Figure	

5A).	These	general	trends	are	more	evident	in	rate-normalized	traces	(Figure	5B).	However,	it	is	

important	to	also	consider	the	timing	of	individual	cells	within	each	population.	Previous	work	has	

shown	evidence	for	organization	of	network	spiking	activity	into	brief	“packets,”	reflecting	a	stereotyped	

sequence	of	activation	of	individual	cells.	Information	within	these	packets	can	be	carried	both	by	the	

subset	of	cells	participating	in	the	packet	and	by	the	relative	phase	at	which	cells	are	active	within	the	

packet	(Luczak	et	al.	2013;	Luczak	et	al.	2015).	Maximum	information	transfer	requires	maximum	
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entropy	in	the	repertoire	of	codes	but	minimum	entropy	in	the	code	for	a	given	stimulus.	Therefore,	an	

“ideal	population”	that	utilizes	timing	within	a	packet	to	encode	information	has	high	variance	in	timing	

across	the	population	but	also	high	precision	within	each	cell.	That	is,	for	a	downstream	neuron	

monitoring	the	output	of	this	cortical	network,	optimally	discriminable	spike	times	of	different	potential	

inputs	would	have	mean	firing	phases	distributed	across	the	burst	(high	phase	variability	across	the	

population)	but	low	phase	variability	for	each	individual	cell.	To	distinguish	between	these	critically	

different	types	of	variance,	we	refer	to	the	standard	deviation	of	mean	firing	phases	across	the	

population	as	“phase	diversity”	and	the	standard	deviation	of	firing	phases	within	a	cell	as	“phase	

variability.”	

We	computed	the	mean	and	variability	of	firing	phase	within	the	burst	(defined	as	0	at	burst	

onset,	1	at	burst	offset)	for	each	cell	(Figure	5C).	Over	all	cell	types,	firing	phase	spanned	~80%	of	the	

burst	duration,	i.e.	phase	diversity	was	high,	with	a	near	uniform	distribution	of	mean	firing	phases	

occurring	during	the	central	60%	of	the	burst.	However,	the	distribution	and	diversity	of	mean	firing	

phases	and	firing	phase	variability	differed	between	cell	types.	Pyramidal	cells	had	high	phase	diversity	

(Figure	5D),	but	the	phase	variability	for	individual	pyramidal	cells	was	low	(Figure	5E),	consistent	with	a	

population	adapted	for	temporal	coding.	That	is,	that	although	pyramidal	cell	population	activity	was	

distributed	throughout	bursts,	individual	pyramidal	cells	tended	to	fire	consistently	at	particular	phases	

of	the	burst.	By	comparison,	SOM+	and	PV+	populations	had	less	phase	diversity	(Figure	5D;	Pyr	vs.	

SOM+,	Levene’s	statistic	(1,64)=8.51,	p=0.0049;	Pyr	vs.	PV+,	Levene’s	statistic	(1,61)=9.97,	p=0.0025)	

and	individual	cells	had	more	phase	variability	(Figure	5E;	F(2,81)=20.66,	p<0.0001;	Pyr	vs.	SOM+	

p=0.040,	Pyr	vs	PV+	p<0.0001).	Consistent	with	the	mean	firing	rates	in	Figure	5A,	the	mean	firing	phase	

of	the	SOM+	population	was	later	than	both	pyramidal	and	PV+	cells	(F(2,81)=8.01,	p=0.0007;	SOM+	vs.	

Pyr	p=0.0004,	SOM+	vs.	PV+	p=0.0027).	These	results	are	consistent	with	the	organization	of	pyramidal	

cell	firing	observed	in	vivo	in	which	these	cells	tend	to	fire	at	consistent	latencies	relative	to	‘packets’	
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(Luczak	et	al.	2013).	However,	although	interneurons	(particularly	PV+	cells)	were	well-timed	to	input	

patterns	(Figure	3),	they	were	not	well-timed	to	the	output	packet	structure.	

Interneurons	exert	powerful	control	over	network	activity	

To	investigate	the	extent	to	which	SOM+	and	PV+	interneurons	regulate	network	activity	and	

the	temporal	organization	of	pyramidal	cell	spiking	during	bursts,	we	paired	TC	stimuli	with	optogenetic	

suppression	of	SOM+	or	PV+	cells	via	halorhodopsin	or	ArchT;	effects	of	the	two	opsins	did	not	differ	

significantly	and	were	pooled.	We	measured	population	activity	in	both	layer	5	and	layer	2/3	(Figure	6A-

B),	because	our	previous	observation	that	some	bursts	consisted	primarily	of	activity	in	layer	5	without	

activity	in	layer	2/3	(Krause	et	al.	2014)	suggested	differing	dynamics.	We	analyzed	three	measures	

extracted	from	the	population	activity:	burst	latency	(Figure	6C),	the	peak	of	the	MUA	signal	(Figure	6D),	

and	burst	duration	(Figure	6E).	We	fitted	a	linear	mixed-effects	model	to	the	population	activity	

measures	(see	Methods).	Model	coefficient	estimates	for	the	individual	parameters	are	in	Table	2;	we	

based	our	interpretations	of	significance	on	the	means	and	standard	errors	of	these	parameter	

estimates.	In	Figure	6C-E,	we	plot	means	and	standard	error	averaged	across	slices	for	each	combination	

of	factors.	

In	control	conditions,	bursts	were	earlier	in	layer	5	compared	to	layer	2/3	(center	inset,	Figure	

6A&B;	Table	2;	Figure	6C),	consistent	with	our	previous	results	and	with	other	results	that	showed	

activity	starting	in	deep	layers	and	propagating	to	superficial	layers	(Beltramo	et	al.	2013;	Chauvette	et	

al.	2010;	Krause	et	al.	2014;	Stroh	et	al.	2013;	Wester	and	Contreras	2012).	Layer	2/3	bursts	were	more	

intense	than	layer	5	bursts	but	did	not	last	as	long	(Table	2;	Figure	6D,E).		

Unsurprisingly,	suppression	of	either	population	of	inhibitory	cells	increased	burst	amplitudes,	

but	there	were	differential	effects	on	burst	latencies	and	durations,	as	well	as	differing	magnitudes	of	

effects	on	layer	5	compared	to	layer	2/3	bursts.	
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Suppressing	either	SOM+	or	PV+	cells	reduced	burst	onset	latency	in	layer	5	(Figure	6C),	but	this	

effect	was	much	greater	for	PV+	suppression	(ratio	of	the	latency	with	PV+	versus	SOM+	cells	

suppressed	=	0.64,	95%	CI	[0.58	0.71],	p<0.0001).	Both	PV+	and	SOM+	suppression	increased	the	peak	

intensity	of	bursts	(Figure	6D),	but	the	effect	was	larger	for	PV+	compared	to	SOM+	suppression	(PV	-	

SOM=0.016	mV,	95%	CI	[0.003	0.029],	p=0.017).	By	contrast,	suppression	of	SOM+	versus	PV+	

interneurons	had	opposite	effects	on	network	burst	duration.	Bursts	were	shorter	when	PV+	cells	were	

inactivated	(Figure	6E),	similar	to	the	effect	of	suppressing	inhibition	pharmacologically	(Sanchez-Vives	

et	al.	2010).	By	contrast,	bursts	were	longer	when	SOM+	cells	were	inactivated	(Figure	6E),	suggesting	

that	suppression	of	SOM+	cells	produces	more	complex	effects	than	simple	reduction	in	inhibitory	tone.		

The	most	dramatic	effects	were	observed	in	layer	2/3	following	suppression	of	PV+	cells.	There	

was	a	slightly	greater	reduction	in	latencies	following	SOM+	and	PV+	suppression	in	layer	2/3	compared	

to	layer	5.	Because	bursts	likely	initiate	in	layer	5,	this	result	suggests	that	suppression	of	inhibition	led	

to	more	rapid	spread	of	bursts	to	layers	2/3.	This	effect	is	likely	driven	by	either	the	greater	intensity	of	

bursts	in	layer	5	(demonstrated	by	increased	peak	MUA)	hastening	the	spread	of	activation	to	the	

supragranular	layers,	or	the	reduced	inhibition	in	the	supragranular	layers	increasing	responsiveness,	or	

a	combination	of	both	factors.	PV+	suppression	also	had	a	bigger	effect	on	burst	peak	in	layer	2/3	

compared	to	layer	5	(Table	2).	The	interaction	of	PV+-suppression	with	layer	was	significantly	greater	

than	the	interaction	of	SOM+-suppression	with	layer	(PV	–	SOM=0.0228	mV,	95%	CI	[0.0177	0.0280],	

p<0.0001),	and	the	interaction	of	SOM+	suppression	with	layer	was	not	significant	(Table	2).	These	

results	suggest	that	PV+	cells	exert	a	dominant	influence	on	activity	in	the	supragranular	layers	

compared	to	their	influence	in	the	infragranular	layers	and	compared	to	the	influence	of	SOM+	cells,	

consistent	with	the	concentration	of	PV+	cells	in	upper	layers	of	cortex	(Supplementary	Figure	2D),	

though	both	interneuron	populations	can	influence	the	rate	at	which	activity	spreads	between	laminae.	
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Suppressing	PV+	cells	impairs	packet-based	timing	

Spike	timing	during	network	bursts	can	greatly	enhance	the	amount	of	information	carried	in	a	

population	(Borst	and	Theunissen	1999;	Contreras	et	al.	2013;	Kayser	et	al.	2012;	Kwag	et	al.	2011;	

Luczak	et	al.	2015;	Panzeri	et	al.	2001).	If	information	is	encoded	in	temporal	patterns	of	spikes,	then	the	

relevant	timing	information	may	not	solely	be	timing	relative	to	the	stimulus	(Figure	4),	but	also	timing	

relative	to	population	activity	(Figure	5).	We	showed	above	that	there	is	low	variability	in	firing	phase	in	

individual	pyramidal	cells	within	bursts,	but	there	is	high	diversity	in	firing	phase	across	the	pyramidal	

cell	population	(Figure	5),	indicating	pyramidal	cells	can	encode	information	by	their	phase	of	firing	

(Kayser	et	al.	2009).	Next,	we	show	that	interneurons	play	a	role	in	organizing	this	network-based	spike	

timing	by	repeating	the	analysis	of	Figure	5C	with	and	without	suppression	of	SOM+	and	PV+	cells.	

Consistent	with	their	more	modest	effects	on	burst	properties	illustrated	in	Figure	6,	suppressing	SOM+	

cells	had	little	impact	on	the	order	that	pyramidal	cells	fired	during	bursts	(Figure	7A-B)	or	on	the	mean	

firing	phase	during	bursts	(Figure	7E;	mean	phase	change=0.007).	Thus,	as	for	spike	timing	relative	to	

afferent	stimuli	(Figure	4G),	SOM+	cells	appear	to	exert	little	regulatory	control	over	the	temporal	

organization	of	pyramidal	cell	spiking	during	bursts.	By	contrast,	suppression	of	PV+	cells	altered	the	

temporal	sequence	of	activation	(Figure	7C-D),	primarily	by	causing	some	cells	that	fired	later	in	bursts	

to	fire	earlier	(Figure	7E;	mean	phase	change=0.10,	PV+	versus	SOM+	effect	t(33)=2.52,	p=0.017),	and	

phase	diversity	was	significantly	lower	with	PV+	suppression	(Figure	7E;	Levene’s	statistic	(1,38)=4.63,	

p=0.038).	This	loss	of	phase	diversity	compressed	the	fractional	span	of	the	burst	over	which	the	

population	of	pyramidal	cells	was	active,	thereby	reducing	the	capacity	of	a	potential	temporal	

population	code.	Suppression	of	neither	PV+	nor	SOM+	cells	had	a	significant	effect	on	consistency	of	

burst	firing	phase	in	individual	cells	(Figure	7F).		

We	observed	two	effects	of	suppressing	PV+	cells	that	could	potentially	impact	the	organization	

of	firing	patterns	during	network	bursts.	First,	the	bursts	themselves	became	shorter	(Figure	6E),	
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compressing	the	temporal	scale	of	spike	packets	during	bursts.	Second,	the	diversity	of	spike	phases	

available	to	the	network	during	a	burst	was	reduced	with	suppression	of	PV+	cells,	compressing	the	

available	time	scale	for	population-based	codes	(Figure	7D).	Suppression	of	PV+	cells	also	(modestly)	

increased	firing	rates	of	pyramidal	cells	(Figure	4A,B)	and	had	differential	effects	on	network	activity	in	

supragranular	versus	infragranular	layers	(Figure	6).	Because	it	was	unclear	how	each	of	these	changes	

might	impact	the	ability	of	the	network	to	produce	distinct	patterns	of	activity	critical	for	population	

codes,	we	implemented	a	simple	decoding	model	that	interprets	spike	patterns,	the	tempotron	(Gütig	

and	Sompolinsky	2006).	The	tempotron	is	an	integrate-and-fire	model	that	produces	a	binary	decision	

(spike	or	no	spike)	in	response	to	patterns	of	synaptic	inputs.	Our	main	goal	was	to	test	the	ability	of	the	

model	to	distinguish	temporal	patterns	within	network	activity	based	on	the	structure	of	such	activity	

observed	in	control	conditions	versus	with	PV+	cells	suppressed.	The	model	was	driven	by	simulated	

spiking	activity	of	100	units	with	firing	statistics	based	on	our	recordings	from	pyramidal	cells	during	

bursts	(Figure	8A,	top).	The	tempotron	integrates	these	inputs	over	time	and	produces	a	“spike”	on	trials	

in	which	a	threshold	is	reached	(Figure	8A,	right).	

In	these	simulations,	we	generated	a	set	of	2	–	32	stochastic	spike	patterns	with	statistics	that	

mimic	recorded	pyramidal	cell	activity.	Patterns	differed	in	that	the	mean	firing	phase	for	each	input	

unit	was	randomized	between	patterns.	The	mean	firing	phase	for	each	unit	and	pattern	was	selected	

from	a	smoothed	distribution	based	on	observed	data	(Figure	5D).	The	firing	rate	and	variance	were	for	

each	unit	were	also	randomly	selected	from	a	smoothed	distribution	based	on	recorded	data	(Figure	5A;	

Figure	7F),	but	these	parameters	were	kept	constant	across	patterns.	Burst	durations	were	the	mean	

burst	durations	from	experiments	in	Figure	6.	Random	training	and	testing	trials	were	generated	using	

these	simple	statistics	for	each	input	unit.	Because	of	these	parameter	choices,	patterns	can	be	thought	

of	as	arbitrary	clouds	of	spike	patterns	in	an	N-dimensional	space,	where	N	is	the	number	of	input	units;	

a	toy	example	with	3	units	is	illustrated	in	Figure	8B.	The	size	in	each	dimension	reflects	the	variance	in	
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firing	phase	for	each	unit,	creating	an	ellipsoid.	Because	the	variances	are	constant	across	patterns,	but	

the	mean	firing	phases	are	not,	each	pattern	is	represented	by	an	ellipsoid	of	constant	shape	but	varying	

position	(four	patterns	are	illustrated	in	the	example	of	Figure	8B).	“Correct”	classification	was	deemed	

as	“go”	(i.e.	the	tempotron	should	fire	a	spike)	for	half	of	the	patterns	and	“no	go”	(i.e.	no	spike)	for	the	

others	(see	Supplementary	Figure	5).	Classifying	these	patterns	is	difficult,	because	there	is	no	

predetermined	structure	of	those	go/no	go	patterns	in	the	N-dimensional	space	nor	any	non-random	

similarity	among	the	“go”	patterns	or	among	the	“no	go”	patterns,	and	because	the	variance	of	each	

contributing	input	unit	is	large.	(In	Figure	8B,	we	depict	each	ellipsoid	with	semi-axes	representing	1/10	

of	1	standard	deviation	so	the	patterns	can	be	easily	distinguished	by	eye.)	

In	Figure	8C	(top)	we	show	spike	rasters	for	four	example	patterns	across	all	100	input	units	

under	control	conditions	(top	four	panels)	and	with	PV+	suppression	(bottom	four	panels).	The	biggest	

effects	of	PV+	suppression	on	patterns	were	that	bursts	were	shorter	and	that	activity	was	earlier	within	

the	burst,	resulting	in	temporal	compression	of	patterns	in	PV+-suppressed	conditions	(Figure	8C,	

bottom).	

	The	tempotron	was	trained	by	altering	synaptic	weights	(see	Methods)	according	to	responses	

to	the	patterned	input	(Figure	8D).	As	the	number	of	input	patterns	increases,	the	classification	task	

becomes	more	complex,	leading	to	poorer	steady-state	performance	(Figure	8E).	Training	within	the	

control-based	and	PV	suppression-based	populations	was	completely	independent.	

In	these	simulations,	we	tested	the	discriminability	of	patterns	generated	by	populations	of	

units	with	different	relative	temporal	and	rate	statistics	observed	under	control	conditions	and	with	PV+	

cells	suppressed.	We	assayed	the	ability	of	the	control	versus	PV	suppression-based	populations	to	

encode	temporal	information	by	the	performance	of	the	tempotron	after	50,000	training	trials	for	a	

range	of	pattern	counts	(i.e.	discrimination	complexities).	For	a	given	pattern	count,	inputs	from	control-
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based	populations	modestly	outperformed	those	from	PV-suppressed	populations	(Figure	8E).	However,	

we	also	found	that	there	was	a	large	impact	on	the	potential	complexity	that	could	be	represented	at	a	

moderate	performance	level	(for	example,	70%)	(Figure	8E;	arrow	depicts	a	leftward	shift	towards	less	

complexity).	Therefore,	we	conclude	that	PV-mediated	inhibition	may	allow	networks	of	pyramidal	cells	

to	encode	a	greater	number	of	distinct	patterns	by	increasing	the	duration	of	network	bursts.		

A	further	advantage	of	this	modeling	approach	is	that	we	can	assay	the	effects	of	individual	

parameter	changes	by	choosing	which	effects	to	incorporate	into	the	model.	The	two	effects	of	PV-

suppression	most	likely	to	contribute	to	impaired	discrimination	performance	are	the	reduced	duration	

of	bursts	(Figure	6E)	and	the	reduced	phase	diversity	across	the	pyramidal	cell	population	(Figure	7D,E).	

These	effects	jointly	contribute	to	the	temporal	compression	seen	in	Figure	8C.	To	determine	whether	

one	of	these	factors	was	the	dominant	influence	on	impaired	discrimination	in	the	PV-suppressed	

population,	we	performed	simulations	using	PV-suppressed	population	statistics	except	we	substituted	

either	control	burst	durations	(while	maintaining	PV-suppressed	firing	phase	statistics)	or	control	mean	

firing	phase	distributions	(while	maintaining	PV-suppressed	burst	durations)	into	the	model.	Either	

manipulation	partially	relieved	the	temporal	compression	caused	by	PV-suppression.	We	found	that	

using	control	burst	durations	only	recovered	the	PV-suppression	effect	slightly,	but	using	control	mean	

firing	phase	distributions	completely	recovered	the	PV-suppression	effect	(Figure	9A).	Therefore,	we	

conclude	that	while	both	of	these	factors	affect	encoding	potential,	the	reduced	range	of	firing	phases,	

i.e.	the	concentration	of	mean	firing	phase	early	in	bursts,	was	a	key	mediator	of	the	effect	of	

suppressing	PV+	cells.	

Although	superficial	and	deep-layer	cells	can	act	in	one	functional	circuit	in	a	cortical	column,	

pyramidal	cells	are	most	highly	connected	with	other	cells	in	the	same	layer,	and	populations	of	cells	

from	different	layers	have	different	long-range	projection	patterns.	Differences	in	tuning	properties	and	

firing	density	in	superficial	and	deep	pyramidal	cells	likely	contribute	to	differences	in	sensory	coding	
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(Barth	and	Poulet	2012).	Our	simulation	results	emphasize	the	importance	of	firing	rate	during	bursts	for	

population	coding	capacity.	Thus,	the	tempotron	performed	better	with	inputs	whose	firing	statistics	

were	based	on	recordings	from	deep	cells	under	control	conditions	than	with	inputs	based	on	superficial	

cells	(Figure	9B).	However,	there	was	no	longer	a	difference	between	populations	if	we	subsampled	the	

deep	cells	to	produce	mean	firing	rates	comparable	to	superficial	cells	(Figure	9C).	

We	also	show	in	Figure	6	that	PV-	suppression	appears	to	have	the	most	profound	effects	in	the	

superficial	layers.	Therefore,	we	also	used	the	tempotron	model	to	separate	the	effects	of	PV-

suppression	on	deep	versus	superficial	cells.	Our	simulation	results	suggest	that	the	effects	on	

population	coding	of	suppressing	PV+	cells	were	manifested	primarily	in	supragranular	layers.	We	found	

that	PV-suppression	actually	had	very	little	effect	on	tempotron	performance	using	the	deep	population	

(Figure	9D),	but	had	a	substantial	effect	using	the	superficial	population	(Figure	9E).	The	differential	

effect	was	not	due	to	differences	in	firing	rate,	because	the	deep	population	was	still	insensitive	to	PV-

suppression	when	we	resampled	to	match	to	superficial	firing	rates	(Figure	9F).	These	simulations	

suggest	that	PV+	cell-mediated	inhibition	in	supragranular	layers	strongly	regulates	the	information	

encoding	capacity	of	the	local	cortical	network,	consistent	with	its	greater	effects	on	network	activity	in	

supragranular	layers	and	with	reports	suggesting	that	sparse	firing	in	supragranular	cells	contributes	to	

their	importance	in	sensory	information	processing	(Barth	and	Poulet	2012).	 	
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Discussion	

Summary	

We	used	burst	activity	induced	by	TC	afferents	to	auditory	cortex	as	a	model	to	study	the	spatial	

and	temporal	structure	of	correlated	network	activity	in	the	cortical	column	and	its	regulation	by	local	

GABAergic	interneurons.	We	note	that	in	this	preparation,	afferent	stimuli	served	both	to	initiate	

network	activity	and	as	a	model	for	ascending	sensory	information	conveyed	to	cortex	on	the	

background	of	ongoing	activity	during	the	desynchronized	state.	Three	distinct	cell	classes,	pyramidal	

cells,	PV+	cells	and	SOM+	cells,	exhibited	differences	in	density	and	timing	of	spiking	activity	during	

these	network	bursts	and	relative	to	patterned	afferent	stimulation.	The	precisely	timed	spikes	observed	

in	PV+	cells	in	response	to	TC	stimuli	suggest	they	are	poised	to	regulate	spike	timing	in	pyramidal	cells	

via	feedforward	inhibition,	as	observed	in	somatosensory	cortex	(Gabernet	et	al.	2005).	In	contrast	to	

these	expectations,	however,	spike	timing	in	pyramidal	cells	was	poor	under	control	conditions	and	

improved	upon	optogenetic	suppression	of	PV+	cells.	Instead,	our	data	suggest	that	the	organization	of	

spiking	during	network	bursts	is	consistent	with	observations	in	vivo	of	population	codes	relying	on	

packet-based	stimulus	representation.	Furthermore,	our	data	suggest	that	PV+	cells	act	to	regulate	spike	

timing	within	these	bursts	by	maintaining	this	temporal	structure.	Simulation	results	suggest	that	the	

temporal	sequence	of	activity	within	the	pyramidal	cell	population	is	important	for	producing	

population	spike	patterns	that	can	be	categorized	by	downstream	neurons,	and	suppressing	PV+	cells	

degrades	the	ability	of	the	network	to	produce	discriminable	activity	patterns.	This	effect	is	most	

pronounced	for	supragranular	pyramidal	cells,	consistent	with	previous	results	indicating	a	critical	role	

for	sparsely-firing	supragranular	cells	in	sensory	coding	(Barth	and	Poulet	2012;	Crochet	et	al.	2011;	

DeWeese	et	al.	2003;	Hromadka	et	al.	2008;	Poulet	and	Petersen	2008;	Sakata	and	Harris	2009).		
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Spike	timing	in	auditory	cortex	

The	ability	of	pyramidal	cells	to	encode	stimulus	information	depends	not	only	on	firing	rates	

but	also	on	precision	and	reliability	of	responses	across	trials	(Kayser	et	al.	2010;	Mainen	and	Sejnowski	

1995).	Because	PV+	cells	have	been	shown	to	constrain	pyramidal	cell	spikes	to	particular	windows	of	

time	(Cruikshank	et	al.	2007;	Gabernet	et	al.	2005;	Pouille	and	Scanziani	2001;	Rose	and	Metherate	

2005;	Wehr	and	Zador	2003;	Zhu	et	al.	2015),	we	expected	that	suppressing	PV+	cells	would	impair	

pyramidal	cell	timing.	Furthermore,	spiking	responses	to	TC	afferents	in	PV+	cells	were	better	timed	

than	in	other	cell	types	(Figure	3),	positioning	them	to	precisely	control	spike	timing.		

These	expectations	were	unmet	in	our	observations	in	two	ways.	First,	pyramidal	cell	spiking	

responses	to	afferent	stimulation	were	not	well	timed	(Figure	3).	Previous	work	(Gil	et	al.	1999;	Krause	

et	al.	2014;	Rose	and	Metherate	2005)	has	shown	that	TC	EPSPs	are	precisely	timed	and	large,	especially	

in	layer	4	pyramidal	cells,	suggesting	that	spikes	would	be	precise	and	readily	evoked.	The	absence	of	

precise	timing	in	pyramidal	cells	relative	to	the	stimulus	train	was	unexpected	given	the	importance	of,	

and	specialization	for,	timing	information	in	the	ascending	auditory	pathway	(Elhilali	et	al.	2004;	Heil	and	

Irvine	1997;	Phillips	and	Hall	1990;	Rose	and	Metherate	2005),	but	may	reflect	a	transition	from	

timing/feature-based	coding	to	rate/object-based	coding	in	auditory	cortex	(Wang	et	al.	2008).	Indeed,	

we	have	shown	that	monosynaptically	driven	spikes	in	pyramidal	cells	are	rare	in	auditory	cortex,	with	

most	spiking	occurring	in	the	context	of	network	bursts	induced	by	thalamic	stimulation	(Hentschke	et	

al.	2017;	Krause	et	al.	2014).	On	the	background	of	this	ongoing	activity,	thalamic	synaptic	responses	are	

less	effective	at	driving	precise	spiking	responses,	and	spike	timing	may	be	influenced	significantly	by	

intrinsic	cortical	activity.	This	result	is	consistent	with	degraded	spike	timing	information	in	auditory	

cortex	compared	to	the	periphery	(Chechik	et	al.	2006;	Linden	et	al.	2003;	Nelken	2004;	Ter	Mikaelian	et	

al.	2007),	even	though	first-spike	precision	persists	in	many	cells	(Heil	and	Irvine	1997;	Phillips	and	Hall	

1990).		
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Second,	suppression	of	PV+	cells	did	not	further	degrade	spike	timing	in	pyramidal	cells.	In	fact,	

spike	timing	was	improved	in	the	absence	of	strong	PV+	cell-mediated	inhibition	(Figure	4).	The	basis	for	

this	improvement	is	not	entirely	clear.	It	is	possible	that	PV+	cell-mediated	feedforward	inhibition	was	

initially	strong	enough	and	fast	enough	to	prevent	direct	(monosynaptic)	TC	input	from	producing	spikes	

in	most	cells.	That	is,	if	we	consider	input	to	pyramidal	cells	as	arising	from	either	the	direct	

(monosynaptic)	TC	input	or	from	cortico-cortical	inputs	associated	with	the	network	burst,	suppressing	

PV+	cells	could	bias	the	pyramidal	cells	to	respond	to	direct	TC	input	due	to	disruptions	in	the	balance	of	

excitation	and	inhibition	(Gabernet	et	al.	2005;	Isaacson	and	Scanziani	2011;	Vogels	and	Abbott	2009;	

Wehr	and	Zador	2003).	Alternatively,	it	is	possible	that	changes	in	the	properties	of	bursts	themselves	

underlie	this	effect.	For	example,	there	is	a	negative	correlation	between	the	reduction	in	burst	duration	

and	the	improvement	in	STTC	and	a	potential	correlation	with	decreased	variability	(Figure	4).	This	

suggests	that	briefer,	more	stereotyped	bursts	cause	an	apparent	increase	in	spiking	precision.	

Whatever	the	basis	for	the	improvement,	it	is	clear	that	we	did	not	observe	the	expected	degradation	in	

spike	timing	upon	suppression	of	PV+	cells.	

	

Network	activity	in	auditory	cortex	

Classical	studies	of	response	properties	in	sensory	cortex	characterized	single	cells	in	terms	of	

tuning	curves,	reflecting	mean	firing	activity	across	many	trials	(Hubel	and	Wiesel	1959;	Spillmann	

2014).	Much	of	what	we	understand	about	topography	and	hierarchical	processing	in	cortex	is	based	on	

these	representations.	Implicit	in	these	analyses,	however,	is	the	assumption	of	independent	firing	in	

individual	cells.	Population	codes	in	these	models	are	derived	from	assaying	spike	rate	or	timing	based	

on	each	cell’s	tuning	curve	for	the	stimulus	of	interest.	However,	the	importance	of	correlated	spiking	

activity	in	cortical	networks	that	arises	due	to	intrinsic	connectivity	and	shared	afferent	input	has	long	

been	recognized	as	well	(Kohn	et	al.	2009;	Panzeri	et	al.	1999).	Data	suggest	that	local	cortical	networks,	
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and	in	particular	the	cortical	column,	can	operate	as	a	unit	with	all-or-none	responses	to	afferent	

stimulation	analogous	to	the	behavior	of	single	neurons	(Bathellier	et	al.	2012;	Luczak	et	al.	2015;	Yuste	

2015).		

Correlated	spiking	activity	in	neocortex	arises	in	a	variety	of	circumstances,	but	is	particularly	

prominent	when	the	TC	network	is	in	the	‘synchronized	state’.	Here,	the	network	cycles	between	ON	

and	OFF	periods	of	spiking	activity	and	quiescence,	respectively,	and	individual	cells	cycle	between	

depolarized/high	conductance	and	hyperpolarized/low	conductance	resting	states	(UP	and	DOWN	

states).	The	synchronized	state	is	most	obviously	observed	in	slow	wave	sleep	and	under	anesthesia,	but	

can	also	be	observed	during	quiet	wakefulness,	when	the	network	can	exhibit	UP/DOWN	transitions	or	

dwell	in	extended	DOWN	periods	(McGinley	et	al.	2015;	Mochol	et	al.	2015;	Petersen	et	al.	2003;	Poulet	

and	Petersen	2008).	Upon	sensory	arousal	and	motor	activation,	the	network	eschews	synchrony	in	

favor	of	an	extended	ON	period	(desynchronized	state),	and,	intracellularly,	extended	UP	states.	In	

auditory	cortex,	the	transition	from	quiet	wakefulness	to	arousal	and	especially	locomotion	has	similar	

effects	on	network	activity,	with	cells	moving	from	ON/OFF	cycling	to	extended	ON	periods	(Zhou	et	al.	

2014).	However,	evidence	suggests	that	optimal	stimulus	detection	and	discrimination	occurs	during	

moderate	arousal	(McGinley	et	al.	2015).	Here,	activity	is	low	and	bursts	are	inducable,	in	contrast	to	

periods	of	high	arousal,	when	the	network	is	depolarized	and	desynchronized,	or	low	arousal,	when	the	

network	exhibits	spontaneous	UP-DOWN	state	transitions.	This	is	consistent	with	the	intuition	that	

maximal	sensitivity	in	audition	occurs	during	quiet,	alert	periods.		

Sensory	stimulation	triggers	synaptic	and	spiking	activity	that	occurs	on	the	background	of	

spontaneous	network	activity.	The	largest	responses	occur	when	activation	of	thalamic	or	cortical	

afferents	triggers	correlated	network	activity	within	the	cortical	column	(Hentschke	et	al.	2017;	Krause	

et	al.	2014;	Luczak	et	al.	2013;	Sakata	and	Harris	2009).	The	spatio-temporal	patterns	of	spiking	activity	

(packets)	during	these	network	bursts	in	auditory	cortex	are	preserved	across	the	synchronized-
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desynchronized	state	continuum,	suggesting	that	the	fundamental	structure	of	network	activity	can	be	

elucidated	by	examining	network	bursts	in	isolation.	Stimulus-related	variability	in	spike	packets	during	

networks	bursts	is	postulated	to	underlie	population	codes	for	sensory	information	(Luczak	et	al.	2015),	

while	other	neurons	may	provide	a	reliable	timing	signal	to	mark	actual	temporal	structure	(Brasselet	et	

al.	2012).		

The	structure	of	network	events	we	observe	in	auditory	TC	slices	is	similar	in	many	regards	to	

the	structure	of	activity	observed	during	sensory	processing	in	auditory	cortex	in	vivo.	The	firing	rates	of	

single	cells	during	bursts	(Figure	2)	were	comparable	to	those	observed	in	auditory	cortex	in	vivo	

(Hromadka	et	al.	2008;	Luczak	et	al.	2013).	The	duration	of	network	bursts	we	observe	(Figure	1),	is	

similar	to	the	~50-100	ms	“packets”	(Luczak	et	al.	2013)	or	~50	ms	“bumps”	(DeWeese	and	Zador	2006)	

observed	in	auditory	cortex	in	vivo.	Unlike	in	auditory	cortex,	spontaneous	and	evoked	bursts	or	“UP	

states”	in	other	cortical	areas	tend	to	last	for	hundreds	of	milliseconds	to	seconds	(Neske	et	al.	2015;	

Sanchez-Vives	and	McCormick	2000).		These	data	suggest	that	the	short	duration	of	bursts	in	auditory	

cortical	columns	reflect	the	operation	of	auditory	cortical	networks	on	rapid	timescales,	consistent	with	

other	temporal	specializations	in	the	ascending	auditory	pathway	(Elhilali	et	al.	2004;	Heil	and	Irvine	

1997;	Phillips	and	Hall	1990).		Furthermore,	the	spatiotemporal	structure	of	network	bursts	is	

comparable	as	well.	Both	in	vivo	and	in	slices	burst	activity	originates	in	layer	5	and	spreads	to	other	

layers	(Beltramo	et	al.	2013;	Chauvette	et	al.	2010;	Krause	et	al.	2014;	Sakata	and	Harris	2009;	Wester	

and	Contreras	2012).	Variable	involvement	of	supragranular	cells,	presumably	due	to	their	more	

hyperpolarized	resting	potentials	during	DOWN	states	as	well	as	strong	PV+-mediated	inhibition,	is	

observed	both	in	slices	(Krause	et	al.	2014)	and	in	vivo	(Sakata	and	Harris	2009).	The	temporal	structure	

of	pyramidal	cell	spiking	activity	we	observe	in	slices,	including	mean	firing	phases	that	span	almost	the	

entire	burst	duration	and	consistent	firing	phase	in	single	cells	(Figure	5),	is	compatible	with	the	packet-

based	organization	of	spiking	activity	observed	in	vivo	(Luczak	et	al.	2015).		
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Overall,	these	similarities	suggest	that	the	experimental	model	used	here	to	elucidate	the	role	of	

inhibitory	cells	in	regulating	network	activity	and	spike	timing	in	pyramidal	cells	has	direct	implications	

for	understanding	cortical	sensory	processing	in	vivo.	However,	we	note	that	reduced	preparations	

exhibit	substantially	different	activity	patterns	from	those	observed	in	vivo,	likely	reflecting	the	absence	

of	subcortical	neuromodulators	and	reduced	numbers	of	synaptic	inputs	in	the	cortical	column.	Long	

range	connections	especially	are	lost	in	slice	preparations,	resulting	in	a	significantly	altered	balance	

between	excitation	and	inhibition	(Stepanyants	et	al.	2009).	These	changes	in	connectivity	result	in	

reduced	levels	of	spontaneous	activity,	and	especially	of	spontaneous	network	bursting,	which	may	

preclude	observation	of	richly	varied	network-level	interactions	observed	in	vivo	(Kato	et	al.	2017;	

Seybold	et	al.	2015).	Because	of	reduced	excitatory	inputs	in	slices,	manipulations	of	inhibitory	cells	may	

overemphasize	their	overall	contribution	to	network-level	phenomena.	On	the	other	hand,	because	

axonal	projections	of	SOM+	cells	tend	to	be	more	extended	compared	to	PV+	cells	(Caputi	et	al.	2013;	

Markram	et	al.	2004),	it	is	possible	that	the	experiments	presented	here	have	underemphasized	their	

importance.	Subsequent	studies	investigating	spike	timing	during	network	activity	in	vivo	will	provide	a	

more	complete	picture	of	how	inhibitory	and	excitatory	cell	populations	interact	to	produce	firing	

patterns	critical	to	sensory	coding,		

	

Regulation	of	network	activity	by	GABAergic	cells	

Both	PV+	and	SOM+	cells	are	strongly	activated	directly	by	afferent	inputs	and	during	network	

activity	triggered	by	these	inputs	(Figure	2).	Suppressing	either	cell	type	reduced	burst	onset	latency	and	

increased	the	peak	intensity	of	bursts	(Figure	6),	but	both	of	these	effects	were	much	greater	for	PV+	

cells	than	SOM+	cells.	These	data	suggest	that	PV+	cells	exert	far	greater	control	over	network	activity	

compared	to	SOM+	cells,	consistent	with	previous	studies	of	regulation	by	UP	state	activity	by	

GABAergic	cells	(Fanselow	and	Connors	2010;	Neske	et	al.	2015).	The	opposite	effect	on	duration	of	
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suppression	of	SOM+	(increased	duration)	versus	PV+	cells	(decreased	duration)	likely	in	part	reflects	

differences	in	inhibitory	tone	during	network	bursts.	That	is,	eliminating	a	major	source	of	peri-burst	

inhibition	by	suppressing	PV+	cells	leads	the	network	to	burst	intensely	but	dissipate	at	a	faster	rate	(e.g.	

due	to	depletion	of	vesicles),	while	suppressing	a	less	dominant	form	of	inhibition	in	SOM+	cells	allows	

burst	activity	to	proceed	for	a	longer	period	of	time	at	only	slightly	elevated	intensity.	These	effects	are	

also	consistent	with	the	distinct	temporal	profiles	of	spiking	activity	of	these	cells	during	bursts	(Figure	

5).	PV+	cells	tended	to	be	active	before	and	throughout	bursts,	while	SOM+	cells	were	active	late.	The	

combination	of	reduced	latency	and	duration	observed	with	suppression	of	PV+	cell	is	reminiscent	of	

effects	observed	with	moderate	concentrations	of	GABAergic	antagonists.	These	studies	also	showed	an	

inverse	relationship	between	burst	intensity	and	duration	(Sanchez-Vives	et	al.	2010),	indicating	that	the	

relationships	found	with	GABAergic	antagonists	reflect	the	influence	of	PV+-mediated	inhibition.		

The	observations	that	the	vast	majority	of	spiking	occurs	in	the	context	of	network	bursts	

(Krause	et	al.	2014),	and	that	sensory	stimuli	induce	burst-like	responses	from	hyperpolarized	states	

(Curto	et	al.	2009;	McGinley	et	al.	2015;	Sakata	and	Harris	2009),	indicate	that	the	overall	gain	of	the	

cortical	column	is	reflected	in	the	magnitude	of	network	bursts	(Womelsdorf	et	al.	2014),	which	is	

controlled	by	activity	of	GABAergic	cells	(Figure	6).	In	vivo,	modulation	of	PV+	cell	activity	modulates	the	

gain	of	sensory	responses	(Atallah	et	al.	2012;	Wilson	et	al.	2012)	consistent	with	our	observations	that	

suppressing	PV+	cells	increases	the	magnitude	of	network	bursts.	Interestingly,	although	active	behavior	

and	attention	are	associated	with	increases	in	gain	(Andersen	and	Mountcastle	1983;	McAdams	and	

Maunsell	1999;	Salinas	and	Thier	2000;	Treue	and	Trujillo	1999),	attention	can	also	increase	firing	rates	

of	fast-spiking	cells	specifically,	especially	when	tasks	are	difficult	(Chen	et	al.	2008;	Mitchell	et	al.	2007),	

suggesting	instead	a	reduction	in	gain.	These	results	and	our	observations	are	consistent	with	a	model	in	

which	there	is	an	optimal	level	of	PV+-mediated	inhibition	depending	on	the	type	of	task,	where	PV+	
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cell-mediated	inhibition	produces	longer	bursts	of	activity	that	allow	for	downstream	circuitry	to	extract	

more	nuance	necessary	for	sensory	discrimination	on	difficult	tasks.	

In	contrast	to	our	observations	(Figure	5),	SOM+	cells	are	far	less	active	during	bursts	in	

somatosensory	and	entorhinal	cortices	compared	to	PV+	cells	and	have	been	proposed	to	play	less	

significant	functional	roles	in	regulating	network	activity	in	those	areas	(Neske	et	al.	2015;	Tahvildari	et	

al.	2012).	However,	suppression	of	SOM+	cells	substantially	increased	pyramidal	cell	firing	rates	in	

somatosensory	cortex	(Neske	and	Connors	2016),	again	in	contrast	to	our	results	(Figure	4).	Although	we	

saw	higher	firing	rates	in	SOM+	cells	in	auditory	cortex,	we	still	observed	that	SOM+	cells	fired	less	

precisely	and	reliably	from	trial	to	trial	compared	to	PV+	cells,	despite	large	TC	EPSPs	(Table	1).	This	

result	may	be	due	to	slower	membrane	time	constants,	lack	of	inhibition	from	PV+	cells	to	constrain	

spike	times,	or	variable	burst	firing	patterns	triggered	by	afferent	stimulation	(Kawaguchi	and	Kubota	

1996).	Unlike	previous	studies	(Fanselow	and	Connors	2010;	Neske	et	al.	2015),	we	found	that	SOM+	cell	

activity	is	biased	towards	the	end	of	bursts;	we	note	that	because	these	bursts	are	so	brief	in	auditory	

cortex,	“late”	activity	in	our	bursts	may	correspond	with	early	activity	in	those	other	studies.	In	addition,	

SOM+	cell	activity	may	depend	on	age	(P28-56	here	versus	P12-18	in	(Fanselow	and	Connors	2010;	

Neske	et	al.	2015;	Tahvildari	et	al.	2012))	or	how	bursts	are	triggered	(spontaneous	or	induced	with	

cortical	stimulation	versus	bursts	induced	by	trains	of	TC	input).		

Due	to	facilitating	excitatory	inputs	from	pyramidal	cells,	SOM+	cells	are	well-positioned	to	

contribute	to	burst	termination	(Krishnamurthy	et	al.	2012;	Melamed	et	al.	2008;	Reyes	et	al.	1998;	

Silberberg	and	Markram	2007).	However,	most	evidence	suggests	that	activity-dependent	potassium	

conductances	are	more	important	than	inhibition	in	terminating	UP	states	(Compte	et	al.	2003;	Hill	and	

Tononi	2005;	Neske	2016;	Sanchez-Vives	and	McCormick	2000).	We	show	here	that	suppression	of	

SOM+	cells	increases	burst	duration	(Figure	6).	Although	the	increase	in	duration	was	modest,	the	

intensity	and	duration	of	bursts	is	typically	inversely	correlated,	as	seen	in	the	optogenetic	suppression	
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of	PV+	cells	here	and	with	GABAergic	antagonists	previously	(Sanchez-Vives	et	al.	2010).	Thus,	the	co-

occurrence	of	increased	duration	and	increased	intensity	observed	with	suppression	of	SOM+	cells	is	

even	more	striking.	The	high	level	of	SOM+	cell	activity	during	bursts	in	auditory	cortex	may	be	a	

specialization	contributing	to	the	brevity	of	network	bursts	in	auditory	cortex,	possibly	via	activation	of	

GABAB	receptors.	GABAB,	but	not	GABAA,	antagonists,	can	prolong	UP	states	(Mann	et	al.	2009),	and	

SOM+	cells	trigger	GABAB-mediated	suppression	of	glutamatergic	synapses	(Urban-Ciecko	et	al.	2015).		

The	robust	activity	of	SOM+	cells	during	bursts	in	auditory	cortex	may	suppress	feedback	inputs	

to	distal	dendrites	of	pyramidal	cells	during	sensory	stimulation.	In	vivo,	activity	in	SOM+	cells	is	state-

dependent;	for	example,	SOM+	cells	are	suppressed	by	VIP+	cells	during	whisking	and	locomotion	(Fu	et	

al.	2014;	Gentet	et	al.	2012;	Lee	et	al.	2013;	Reimer	et	al.	2014).	VIP+	cells	also	suppress	SOM+	cells	in	

auditory	cortex	in	a	state-dependent	manner	(Pi	et	al.	2013).	Based	on	the	results	presented	here,	

suppression	of	SOM+	cells	by	VIP+	cells	in	auditory	cortex	could	act	to	prolong	sound-induced	network	

activity	to	facilitate	integration	of	feedback	input	and	sensory	information	from	other	modalities.	

One	potential	caveat	in	interpreting	the	effects	of	suppressing	SOM+	cells	is	that	SOM+	cells	

strongly	inhibit	other	interneuron	types,	including	PV+	cells	(Jiang	et	al.	2015;	Pfeffer	et	al.	2013;	Xu	et	

al.	2013),	and	activation	of	SOM+	cells	can	have	disinhibitory	effects	(Cottam	et	al.	2013;	Xu	et	al.	2013).	

Therefore,	we	may	underestimate	the	effects	of	SOM+	cell	suppression	on	pyramidal	cells	because	of	

disinhibition	of	PV+	cells	and	other	interneurons,	The	importance	of	these	types	of	network-level	

interactions	has	been	highlighted	recently	in	two	reports.	In	the	first	(Seybold	et	al.	2015),	activation	of	

SOM+	and	PV+	cells	was	shown	to	have	diverse	inhibitory	effects	on	cells	in	the	network	depending	on	

complex	interactions	between	membrane	properties	at	the	singe	cell	level	and	network	connectivity.	A	

more	recent	study	(Kato	et	al.	2017)	showed	SOM+	interneurons	mediate	a	novel	form	of	network-level	

lateral	inhibition,	and	that	inactivation	of	inhibitory	cells	could	yield	unexpected	increases	in	inhibitory	

input	to	cells	in	the	network.	Further	experiments	involving	targeted	activation	or	suppression	of	
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subtypes	of	SOM+	cells	may	yield	insights	into	these	complex	network-level	effects.	We	note	that	the	

same	caveat	is	less	likely	to	arise	for	PV+	cells,	as	they	mostly	inhibit	only	other	PV+	interneurons	

(Pfeffer	et	al.	2013),	which	would	be	simultaneously	suppressed	optogenetically	in	our	experiments.	

Finally,	we	note	another	caveat	as	well:	because	spiking	in	interneurons	contributes	to	measured	

population	spiking	activity,	suppressing	these	cells	will	diminish	modestly	the	observed	effects	on	total	

population	activity.	Thus,	although	we	observed	increases	in	population	activity	with	suppression	of	

inhibitory	cells	(Figure	6),	we	may	be	underestimating	those	increases.		

	

Spike	timing	during	network	bursts	

Timing	information	may	exist	not	only	relative	to	external	stimuli	but	also	relative	to	

endogenous	information	packets	or	the	phase	of	ongoing	oscillations	(Kayser	et	al.	2009;	Luczak	et	al.	

2013;	Luczak	et	al.	2015).	Our	observation	that	pyramidal	cells	tend	to	fire	at	particular	moments	during	

network	bursts	(Figure	5)	is	consistent	with	these	results.	Suppression	of	PV+	cells	led	to	earlier,	briefer	

bursts	of	activity	(Figure	6),	and	disrupted	the	organization	of	preferred	firing	phases	of	pyramidal	cell	

during	the	burst	(Figure	7).	That	is,	with	PV+	cell-mediated	inhibition	intact,	activity	within	the	

population	of	pyramidal	cells	unfolded	over	a	particular	temporal	sequence	that	spanned	most	of	the	

duration	of	the	network	event;	with	PV+	cells	suppressed,	that	organization	was	severely	disrupted.		

We	used	simulations	to	examine	the	consequences	of	this	disrupted	organization	for	decoding	

of	temporal	activity	patterns.	The	tempotron	model	we	employed	was	originally	presented	as	a	simple	

implementation	of	a	logic	unit	able	to	capture	the	spatiotemporal	input	patterns	characteristic	of	real	

nervous	systems	(Gütig	and	Sompolinsky	2006).	However,	such	models	cannot	demonstrate	how	

information	is	actually	transmitted	between	networks	in	the	brain,	and	using	a	single	decoding	unit	

oversimplifies	a	decoding	process	that	is	massively	parallel	at	the	output	stage,	as	well	as	the	input.	

Theoretical	approaches	using	the	tempotron	model	have	allowed	for	estimates	of	how	the	encoding	
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capacity	of	individual	units	varies	with	the	spatiotemporal	statistics	of	the	input	and	highlights	how	

timing	information	increases	encoding	potential	(Rubin	et	al.	2010).	We	used	an	empirical	

implementation	of	the	tempotron	model	to	impose	biologically	relevant	integration	timescales	on	a	

hypothetical	spatiotemporal	discrimination	task.	We	showed	that	when	firing	phases	are	concentrated	

at	the	beginning	of	bursts,	as	observed	when	PV+	cells	are	suppressed,	different	spike	patterns	are	

confused	at	a	higher	rate	and	take	longer	to	learn	(Figure	8),	reducing	the	repertoire	of	distinct	network	

responses.		

	

Effects	on	infragranular	versus	supragranular	layers	

Suppressing	PV+	cells	had	greater	effects	on	burst	latency	and	burst	peak	in	supragranular	

compared	to	infragranular	layers	(Figure	6).	This	observation	suggests	a	role	for	these	cells	in	regulating	

the	flow	of	activity	through	the	cortical	column.	Supragranular	as	well	as	infragranular	pyramidal	cells	

receive	direct	inputs	from	thalamus	in	auditory	cortex	(Ji	et	al.	2015;	Krause	et	al.	2014),	as	in	other	

sensory	areas	(Constantinople	and	Bruno	2013),	but	both	spontaneous	and	stimulus-induced	activity	

often	originate	infragranularly	and	then	spreads	to	other	layers	(Beltramo	et	al.	2013;	Chauvette	et	al.	

2010;	Krause	et	al.	2014;	Stroh	et	al.	2013;	Wester	and	Contreras	2012).	Interestingly,	when	PV+	cells	

were	suppressed,	burst	latency	was	nearly	the	same	in	supragranular	and	infragranular	layers	(Figure	6).	

This	result	supports	a	model	in	which	PV+-mediated	inhibition	in	the	supragranular	layers	contributes	to	

segregating	the	infragranular	mechanisms	generating	network	activity	from	supragranular	information	

coding	(Sakata	and	Harris	2009).	In	this	model,	sensory	stimulation	activates	the	network	via	dense-

coding	infragranular	cells,	with	network	activity	spreading	subsequently	to	other	laminae	with	variable	

probability.	Bursts	restricted	to	the	infragranular	layers	(Krause	et	al.	2014;	Sakata	and	Harris	2009)	

could	mediate	motor	responses	in	the	absence	of	higher-order	processing	(Harris	and	Thiele	2011),	

while	more	complex	and	informative	representations	are	revealed	in	the	patterns	of	supragranular	
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pyramidal	cells	that	participate	during	induced	network	activity	(Bathellier	et	al.	2012;	Luczak	et	al.	

2013).	These	data	are	consistent	with	suggestions	that	sparse	coding	in	supragranular	pyramidal	cells	

(Barth	and	Poulet	2012;	Crochet	et	al.	2011;	DeWeese	et	al.	2003;	Hromadka	et	al.	2008;	Poulet	and	

Petersen	2008;	Sakata	and	Harris	2009)	is	likely	regulated	by	inhibition	(Bruno	and	Simons	2002;	Crochet	

et	al.	2011;	Haider	et	al.	2010;	Li	et	al.	2014).	Consistent	with	this	model,	our	simulations	show	that	the	

effect	of	inhibition	is	greatest	on	spike	patterns	encoded	by	supragranular	cells	(Figure	9).	

	

Functional	implications	

Elucidating	the	roles	of	specific	interneuron	populations	in	regulating	cortical	network	activity	is	

central	to	understanding	sensory	information	coding	and	its	disruption	under	pathological	conditions.	

Dysfunction	of	PV+-mediated	inhibition	is	implicated	in	numerous	conditions	and	disorders	(Marín	

2012),	including	schizophrenia	(Lewis	et	al.	2012),	autism	(Hashemi	et	al.	2017),	and	epilepsy	(DeFelipe	

1999;	Ogiwara	et	al.	2007).	Consideration	of	spike	timing	with	respect	to	informative	packets	of	

information	can	possibly	resolve	the	ambiguity	between	rate	coding	of	time-varying	stimuli	at	a	high	

temporal	resolution	versus	true	temporal	codes	(Borst	and	Theunissen	1999).	Indeed,	we	show	here	

that	it	is	possible	to	preserve	important	timing	relationships	in	isolated	cortical	slices,	and	specifically	to	

dissociate	temporal	precision	with	respect	to	a	stimulus	and	with	respect	to	internal	cortical	activity.	

Our	results	suggest	that	PV+	interneurons	have	an	important	role	in	regulating	the	temporal	structure	of	

cortical	network	activity,	and	that	this	temporal	structure	should	be	considered	as	a	potential	target	

when	inhibition	is	affected	by	behavioral	state,	attention,	pharmacological	interventions,	or	in	cognitive	

disorders.	
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Tables	

	
RMP	(mV)	 Rin	(MΩ)	 τm	(ms)	

Spike	width	
(ms)	

ISI	ratio	
EPSP	slope	
(mV/ms)	

EPSP	Latency	
(ms)	

Pyr	 -69.1±10.5	 92.6±53.2	 10.2±6.2	 1.04±0.26	 0.30±0.18	 2.35±2.39	 2.6±0.86	

SOM+	 -64.6±5.2	 173.9±84.5	 13.4±9.6	 0.67±0.25	 0.61±0.26	 3.99±7.86	 3.4±2.4	

PV+	 -66.8±11.4	 82.0±26.0	 4.2±1.3	 0.37±0.14	 0.86±0.15	 15.0±12.2	 1.9±0.36	

Table	1.	Properties	of	recorded	cell	types.	Values	are	presented	as	mean±SD.	Spike	widths	are	full-

width	at	half-maximum.	ISI	ratio	is	a	measure	of	spike	adaptation	equal	to	the	ratio	of	first	to	last	

interspike	interval	for	a	400	ms	depolarizing	current	at	half-maximal	firing	rate.	Resting	membrane	

potential	(RMP)	did	not	vary	significantly	between	groups	(F(2,112)=1.86,	p=0.16).	Input	resistance	was	

significantly	higher	in	SOM+	cells	(F(2,112)=21.0,	p<0.0001;	Pyr	vs.	SOM+,	p<0.0001;	Pyr	vs.	PV+,	p=0.69;	

SOM+	vs.	PV+,	p<0.0001).	Membrane	time	constants	were	significantly	shorter	in	PV+	cells	

(F(2,112)=14.0,	p<0.0001;	Pyr	vs.	SOM+,	p=0.10;	Pyr	vs.	PV+,	p=0.0002;	SOM+	vs	PV+,	p<0.0001).	Spike	

widths	were	significantly	different	between	all	groups	(F(2,112)=84.3,	p<0.0001;	Pyr	vs.	SOM+,	

p<0.0001;	Pyr	vs.	PV+,	p<0.0001;	SOM+	vs	PV+,	p<0.0001).	Spike	adaptation	(ISI	ratio)	was	significantly	

different	between	all	groups	(F(2,112)=89.6,	p<0.0001;	Pyr	vs.	SOM+,	p<0.0001;	Pyr	vs.	PV+,	p<0.0001;	

SOM+	vs	PV+,	p=0.0001).	EPSP	slopes	were	greater	in	PV+	cells	(H(2)=30.6,	p<0.0001;	Pyr	vs.	SOM+,	

p=0.69;	Pyr	vs.	PV+,	p<0.0001;	SOM+	vs	PV+,	p<0.0001).	Similarly,	EPSP	latencies	were	shorter	in	PV+	

cells	than	pyramidal	or	SOM+	cells	(H(2)=20.2,	p<0.0001;	Pyr	vs.	SOM+,	p=0.75;	Pyr	vs.	PV+,	p=0.0002;	

SOM+	vs	PV+,	p=0.0003).	 	
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Measure/Parameter	 Interpretation	 Estimate	 95%	CI	 p-value	

LATENCY	 Intercept	 48.4	 [43.0	54.5]	 	

β1(SOMsupp)	 Effect	in	L5	of	SOM+	suppression	 0.96	 [0.93	0.99]	 0.014	

β1(PVsupp)	 Effect	in	L5	of	PV+	suppression	 0.62	 [0.56	0.68]	 <0.0001	

β2(L2/3)	 L2/3	vs.	L5,	with	no	light	 1.15	 [1.09	1.21]	 <0.0001	

β3(SOMsupp,L2/3)	
Interaction	between	SOM+	

suppression	and	L2/3	recording	 0.95	 [0.93	0.97]	 <0.0001	

β3(PVsupp,L2/3)	
Interaction	between	PV+	suppression	

and	L2/3	recording	 0.94	 [0.90	0.97]	 0.0003	

PEAK	 Intercept	 0.0442	 [0.0388	0.0497]	 	

β1(SOMsupp)	 Effect	in	L5	of	SOM+	suppression	 0.0041	 [0.0009	0.0072]	 0.011	

β1(PVsupp)	 Effect	in	L5	of	PV+	suppression	 0.0198	 [0.0068	0.0328]	 0.0028	

β2(L2/3)	 L2/3	vs.	L5,	with	no	light	 0.0181	 [0.0100	0.0262]	 <0.0001	

β3(SOMsupp,L2/3)	
Interaction	between	SOM+	

suppression	and	L2/3	recording	 0.0018	 [-0.0011	0.0047]	 0.22	

β3(PVsupp,L2/3)	
Interaction	between	PV+	suppression	

and	L2/3	recording	 0.0246	 [0.0203	0.0290]	 <0.0001	

DURATION	 Intercept	 44.3	 [41.7	47.0]	 	

β1(SOMsupp)	 Effect	in	L5	of	SOM+	suppression	 1.10	 [1.02	1.28]	 0.012	

β1(PVsupp)	 Effect	in	L5	of	PV+	suppression	 0.85	 [0.79	0.92]	 <0.0001	

β2(L2/3)	 L2/3	vs.	L5,	with	no	light	 0.82	 [0.75	0.89]	 <0.0001	

Table	2.	Population	effects	of	optogenetic	suppression	of	interneurons	during	UP	states.	Intercepts	

reflect	population	responses	recorded	in	L5	with	no	light.	Interpretations	indicate	the	meaning	of	a	

given	parameter	based	on	the	ordering	of	parameters	in	the	model;	β-parameters	not	listed	are	those	

defined	as	zero.	Units	for	the	peak	measure	are	in	mV.	For	burst	latency	and	duration	measures,	the	

response	variables	were	log-transformed	prior	to	regression;	estimated	coefficients	are	reported	in	their	

exponentiated	form	(see	Methods)	and	represent	unitless	multiplicative	factors;	the	intercepts	are	

expressed	in	units	of	ms.	
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Figure	Captions	

Figure	1.	Induced	network	bursts	and	spiking	activity.	(A)	Typical	recording	configuration.	Two	glass	

micropipettes	are	shown,	one	in	layer	2/3	and	one	in	layer	5.	During	single-cell	recordings,	another	

electrode	always	monitored	population	activity	in	layer	5.	A	metal	stimulating	electrode	pair	is	placed	in	

the	fiber	tract	from	MGv	to	auditory	cortex.	Toward	the	left	of	the	image	is	approximately	

rostral/ventral;	toward	the	top	is	roughly	lateral,	but	note	from	Supplementary	Figure	1	that	the	slicing	

procedure	results	in	slices	not	in	any	cardinal	plane	of	section.	ACx:	auditory	cortex,	with	boundaries	

indicated	by	white	bars;	MGv:	medial	geniculate	nucleus,	ventral	division.	(B)	Three	example	trials	from	

two	simultaneously	recorded	cells,	along	with	high-pass	filtered	population	activity	recorded	on	a	third	

electrode.	Horizontal	bars	indicate	bursts	detected	in	extracellular	activity.	Inset	shows	magnified	

response	to	the	first	stimulus	pulse	from	one	cell.	EPSP	latency	=	2.4	ms.	(C)	Network	burst	detection	

procedure.	The	raw	extracellular	trace	(black,	top)	is	filtered	between	500-3000	Hz	to	give	the	MUA	

signal	(grey,	center).	TC	stimulus	times	are	marked	with	triangles.	The	MUA	signal	is	smoothed	with	a	

Gaussian	kernel	to	give	the	smoothed	MUA	signal	(black,	bottom).	Burst	onset	and	offset	(vertical	lines)	

are	determined	by	threshold	(horizontal	dashed	line)	crossings	above	the	geometric	mean	of	the	

smoothed	MUA	signal	(see	Methods).	(D)	Histogram	of	mean	burst	durations	while	recording	from	each	

individual	cell.	(E)	Six	example	trials	and	detected	bursts.	On	three	trials,	the	fourth	stimulus	pulse	

(which	would	have	occurred	during	bursts)	is	omitted,	but	there	is	no	change	in	burst	duration.	Scale	

same	as	in	(B).	

	

Figure	2.	(A-C)	Intracellular	recordings	(top)	from	a	pyramidal	(A),	SOM+	(B),	and	PV+	cell	(C),	along	with	

example	MUA	traces	(middle:	high-pass	filtered	and	rectified	signal;	bottom:	smoothed	MUA	signal)	

from	three	different	slices	.	Upward-pointing	triangles	mark	the	time	of	TC	afferent	stimulus	pulses,	and	
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downward	pointing	triangles	mark	intracellular	spikes.	Horizontal	bars	indicate	duration	of	detected	

bursts.	Spikes	are	truncated	above	-20	mV.	Values	in	mV	indicate	resting	membrane	potential.	(D)	

Pyramidal	cells	averaged	fewer	spikes	per	trial	than	SOM+	or	PV+	cells.	Box	plots	here	and	elsewhere	

indicate	median	(horizontal	line),	interquartile	range	(box),	range	outliers	(black	bars),	and	outliers	

(symbols).	(E)	Most	pyramidal	cells	(Pyr)	fired	sparsely	or	not	at	all,	even	during	UP	states,	whereas	most	

interneurons	(SOM+	and	PV+)	fired	at	least	one	spike	on	every	trial.	(F)	A	minority	of	all	cell	types	fired	

some	fraction	of	their	spikes	early,	prior	to	burst	onset,	though	this	was	more	common	in	interneurons,	

particularly	PV+	cells.	(G)	Even	among	those	cells	that	fired	some	early	spikes,	most	cells	fired	most	of	

their	spikes	during	induced	bursts.	(H)	PV+	cells	with	the	greatest	fraction	of	early	spikes	were	found	in	

layer	4;	pyramidal	and	SOM+	cells	that	fired	early	spikes	were	mostly	found	in	layer	5.	Horizontal	axis	

depicts	fractional	depth	from	pia	to	white	matter;	dotted	lines	mark	boundaries	between	layers	1,	2/3,	

4,	5,	and	6.	

	

Figure	3.	Spike	timing	with	respect	to	stimulus.	(A)	Spike	rasters	for	three	example	pyramidal	cells,	each	

with	20	trials.	Bursts	are	indicated	by	gray	bars	that	alternate	shade	for	the	three	cells.	The	cells	are	

plotted	in	order	of	increasing	(from	top	to	bottom)	spike-time	tiling	coefficient	(STTCs;	see	Methods).	

STTC	values	listed	are	for	Δt	=	1	ms.	(B-C)	Same	as	in	(A),	but	for	three	SOM+	(B)	and	three	PV+	(C)	cells.	

(D)	STTC	plotted	as	a	function	of	the	time	window	(Δt)	in	which	spikes	were	considered	synchronous	for	

pyramidal	cells	(black),	SOM+	cells	(red),	and	PV+	cells	(blue).	Dark	lines	are	medians,	and	shaded	

regions	indicate	the	interquartile	range.	(E)	Comparison	of	STTC	between	cell	populations	at	Δt	=	1	ms.	

Spiking	activity	in	PV+	cells	was	better	timed	across	trials	than	for	pyramidal	or	SOM+	cells.	(F)	The	data	

in	(E)	separated	by	cortical	layer.	Overall,	across	all	cell	types	cells	in	layer	4	were	better	timed	(see	

Results).		
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Figure	4.	Single-cell	effects	of	suppressing	inhibition	on	firing	rates	and	stimulus-related	timing.	(A)	Spike	

probability	for	pyramidal	cells	recorded	in	slices	with	SOM+	or	PV+	cells	expressing	inhibitory	opsins	in	

control	conditions	versus	with	inhibition	suppressed.	(B)	As	in	(A),	for	spikes	fired	per	trial.	(C)	Spike	

rasters	for	three	example	pyramidal	cells,	like	in	Figure	3A.	(D)	Suppressing	SOM+	cells	had	little	effect	

on	these	cells’	timing.	(E)	Same	as	(C),	but	for	cells	recorded	in	slices	in	which	PV+	cells	express	inhibitory	

opsins.	(F)	Suppressing	PV+	cells	led	to	a	pronounced	improvement	of	pyramidal	cells’	stimulus-related	

timing.	(G)	The	spike	time	tiling	coefficient,	calculated	at	Δt=1ms,	for	cells	recorded	with	and	without	

optogenetic	suppression	of	SOM+	or	PV+	cells.	(H)	Effects	on	STTC	were	weakly	correlated	with	effects	

on	burst	duration.	In	(A)	and	(G),	*	indicates	significant	differences	based	on	a	Wilcoxon	signed-rank	test	

(α=0.05).	

	

Figure	5.	Spike	timing	with	respect	to	bursts.	(A)	Firing	rates	averaged	within	populations	as	a	function	

of	burst	duration	for	pyramidal	(black),	SOM+	(red),	and	PV+	(blue)	cells.	Population	activity	(green)	is	

also	plotted	on	an	independent	vertical	scale,	normalized	to	the	peak	population	activity.	Dark	lines	

indicate	means,	shaded	area	is	±SEM.	(B)	Same	as	(A),	but	with	all	traces	normalized	to	peak	firing	rate	

to	illustrate	the	relative	time	courses	of	population	activity	in	each	cell	type.	(C)	Timing	of	spikes	across	

the	duration	of	burst,	normalized	from	onset	(0)	to	offset	(1).	Cells	are	sorted	by	their	mean	firing	phase	

relative	to	bursts,	indicated	with	dots.	Shaded	bars	indicate	+/-	one	standard	deviation.	Color	code	

indicates	cell	type:	pyramidal	cells,	black/gray;	SOM+	cells	red,	PV+	cells	blue.	(D)	Mean	firing	phases	for	

the	data	from	(C).	Phase	diversity	is	indicated	by	the	range	of	the	distributions.	Pyramidal	cells	had	the	

most	phase	diversity.	(E)	Standard	deviation	of	firing	phase	relative	to	bursts.	Firing	phase	variability	was	

lower	in	individual	pyramidal	cells	compared	to	SOM+	or	PV+	cells.	
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Figure	6.	Effects	of	optogenetic	suppression	of	interneurons	on	network	bursts.	(Ai)	Population	activity	

(smoothed	MUA)	recorded	in	layer	5	in	an	animal	expressing	an	inhibitory	opsin	in	SOM+	cells.	The	top	

gray	traces	are	single	trial	examples	recorded	with	no	light;	the	colored	traces	are	with	yellow	light	

suppressing	SOM+	cells.	Darker	black/colored	lines	at	the	bottom	are	means	across	trials.	Light	came	on	

100	ms	before	activation	of	TC	afferents	(TC	afferents	were	activated	starting	at	time=0)	and	lasted	a	

total	of	500	ms.	(Aii)	Simultaneously	recorded	data	from	supragranular	layers	2/3	in	the	same	slice	as	in	

(A).	Central	insets	show	the	same	data,	but	grouped	by	control	(black,	top)	and	SOM+	suppression	

(colored,	bottom)	and	normalized	by	peak	to	emphasize	temporal	relationships,	with	infragranular	

bursts	as	solid	lines	and	supragranular	bursts	as	dotted	lines.	(Bi-ii)	Another	example	experiment,	but	

with	PV+	suppression.	Conventions	are	the	same	as	in	(Ai-ii).	(C-E)	Means	±	standard	error	for	peak	(C),	

latency	(D),	and	duration	(E).	Results	are	separated	according	to	the	layer	(infragranular/supragranular)	

where	population	activity	was	recorded;	within	each	layer,	the	black,	red,	and	blue	symbols	represent	

light	off,	SOM+	suppressed,	and	PV+	suppressed,	respectively.		

	

Figure	7.	Effects	of	suppressing	inhibition	on	timing	with	respect	to	bursts.	(A)	Burst	firing	phase	means	

(points)	and	±1	standard	deviation	(shaded)	for	pyramidal	cells.	(B)	Same	cells	as	in	(A)	but	with	SOM+	

cells	suppressed.	Dotted	line	in	(B)	shows	the	original	firing	phase	means	from	(A).	(C-D)	Same	as	(A-B),	

but	showing	how	suppression	of	PV+	cells	(D)	altered	the	temporal	sequence	of	firing.	(E)	Mean	firing	

phase	of	pyramidal	cells	relative	to	bursts.	Suppression	of	PV+	cells	caused	pyramidal	cells	to	fire	earlier	

in	bursts	and	reduced	phase	diversity.	(F)	Phase	variability	is	not	significantly	affected	by	suppressing	

either	interneuron	population.	
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Figure	8.	Decoding	simulated	patterns	in	bursts.	(A)	Input	from	100	spike	trains	(left)	is	summed	by	a	

leaky	integrate-and-fire	unit	(center)	called	a	tempotron.	On	a	given	trial,	this	unit	produces	a	spike	if	it	

reaches	threshold	(right,	black),	otherwise	it	produces	no	spike	(grey).	(B)	Input	patterns	depicted	as	3D	

ellipsoids,	representing	the	mean	(position)	and	phase	variability	(semi-axes	of	ellipsoids)	for	three	of	

the	100	total	input	units.	The	semi-axes	represent	only	1/10	of	one	standard	deviation;	the	patterns	are	

quite	overlapped	in	three	dimensions	compared	to	the	simplified	toy	representation	here,	which	is	why	

many	inputs	are	necessary	and	why	performance	is	not	perfect.	The	“go”	(light	gray)	and	“no	go”	(dark	

gray)	patterns	do	not	have	any	spatial	organization	in	this	space.	(C)	Randomly	generated	input	spike	

rasters	for	two	example	“go”	and	two	“no	go”	patterns,	for	simulations	based	on	“no	light”	experiments	

(top)	and	based	on	PV+-suppression	experiments	(bottom).	Note	that	there	are	no	obvious	similarities	

among	the	go	versus	no	go	patterns,	and	that	the	patterns	based	on	PV+-suppression	data	are	

compressed	in	time.	(D)	As	the	tempotron	learns	by	adjusting	the	weights	of	the	input	units	(see	

Methods),	performance	increases	but	eventually	plateaus.	These	traces	represent	a	single	learning	

example.	(E)	Mean	performance	(±standard	error)	after	50,000	trials	for	100	unique	model	runs	at	each	

point	indicated.	The	number	of	unique	patterns	indicates	the	difficulty	of	the	classification.	Simulations	

based	on	PV+-suppression	underperform	compared	to	control	results	at	all	difficulty	levels.	

	

Figure	9.	Parameter	and	laminar	influences	on	decoding.	(A)	Results	from	Figure	8E	(solid	lines)	

compared	to	models	that	used	mostly	PV+	suppression	parameters	except	for	burst	duration	(dashed	

line)	or	mean	distribution	(dotted	line).	(B)	Model	performance	using	deep	(solid	line)	versus	superficial	

(dotted	line)	pyramidal	cells	as	inputs	from	no	light	condition.	(C)	Model	performance	using	firing	rates	

for	deep	cells	matched	to	the	firing	rates	of	superficial	cells.	(D-E)	Effects	of	PV+	suppression	on	model	

performance	for	models	using	only	deep	(D)	or	only	superficial	(E)	inputs.	(F)	Effects	of	PV+	suppression	
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on	performance	with	deep	cell	inputs	matched	to	the	firing	rates	of	superficial	cells.	Error	bars	represent	

±SEM	for	all	panels.	
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