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Abstract

The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of
coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying
this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional
regulation and acclimation to environmental change, is unknown. To assess the role of DNA
methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG
methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic
anemones in the model system Aiptasia. We find methylated genes are marked by histone
H3K36me3 and show significant reduction of spurious transcription and transcriptional noise,
revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes
in DNA methylation and expression show enrichment for symbiosis-related processes such as
immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate
interactions between the underlying pathways. Our results demonstrate that DNA methylation

provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

Introduction

Coral reefs are ecologically important marine ecosystems, which cover less than 0.2% of
our oceans but sustain an estimated ~25% of the world's marine species and 32 of 33 animal
phyla (Spalding and Grenfell 1997; Davidson 2002; Sylvain 2006). Coral reefs are also
economically important by providing food and livelihood opportunities to at least 500 million
people; worldwide, they have a net present value of almost USD 800 billion, and they generate

USD 30 billion in net economic benefits annually (Sylvain 2006). Unfortunately, these
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ecosystems are under severe threat from anthropogenic stressors including global warming and
water pollution, among others, which can cause coral bleaching (loss of intracellular
endosymbionts from coral) and overall coral reef decline. Despite increasing efforts on studying
the mechanisms underlying the regulation and environmental stress related breakdown of this
symbiotic association (Davy et al. 2012; Meyer and Weis 2012), we still lack knowledge on
basic molecular processes, for instance whether epigenetic mechanisms are involved in
symbiosis regulation and could potentially contribute to increased resilience in response to
environmental stress as reported in other organisms (Rando and Verstrepen 2007; Ladmke and

Baurle 2017).

DNA methylation plays an important role in many biological processes of plants and
animals (Bird 2002; Suzuki and Bird 2008; He et al. 2011; Jones 2012). It has been proposed as a
mechanism for organisms to adjust their phenotype in response to their environment in order to
optimize organismal response to changing environmental conditions (Richards 2006; Rando and
Verstrepen 2007). For instance, recent findings in mice show an important function for DNA
methylation in inhibiting spurious transcription along the gene body, allowing for reduction of
nonsense transcripts from highly expressed loci (Neri et al. 2017). Similar functions have also
been proposed in plants, suggesting a general role of DNA methylation in the maintenance of

transcriptional homeostasis (Zilberman 2017).

Several studies on DNA methylation in cnidarians have been published recently (Dixon
et al. 2016; Putnam et al. 2016), however, its role and function in cnidarians is, at present, mainly
unknown (Torda et al. 2017). The sea anemone Aiptasia is an emerging model to study the
cnidarian-dinoflagellate symbiosis. Like corals, it establishes a stable but temperature sensitive

symbiosis with dinoflagellates of the genus Symbiodinium but, unlike corals, can also be
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naturally maintained in an aposymbiotic state. This, compounded with its ease of culture,
provides a tractable system to study the molecular mechanism underlying symbiosis without the
impeding stress responses associated with coral bleaching stress (Voolstra 2013; Baumgarten et

al. 2015).

Using the model system Aiptasia (strain CC7, sensu Exaiptasia pallida), we obtained
whole-genome CpG DNA methylation, ChIP-Seq and RNA-Seq data from aposymbiotic (Apo)
and symbiotic (Sym) individuals to study the function of DNA methylation in transcriptional

regulation and its role in the cnidarian-dinoflagellate symbiosis.

Results
Aiptasia DNA Methylation patterns change with symbiotic states

To assess changes in DNA methylation in response to symbiosis, we performed whole-
genome bisulfite sequencing with an average coverage of 53x per individual on 12 anemones,
providing 6 biological replicates per treatment (symbiotic vs. aposymbiotic). Methylation calling
using the combined dataset identified 710,768 CpGs (6.37% of all CpGs in Aiptasia genome),
i.e. methylated sites in the Aiptasia genome. Notably, the percentage of CpGs is much lower than
in mammals (60—90%) (Tucker 2001), but comparable to the coral Stylophora pistillata (7%)
(Liew et al. 2017). We identified 10,822 genes (37% of all 29,269 gene models identified in the
Aiptasia genome) with at least 5 methylated positions that were subsequently defined as
methylated genes. On average, these genes had 18.4% CpGs methylated, 3-fold higher than the
average methylation density across the entire genome (Chi-squared test p value < 2.2 x 107'%)

and 167-fold higher than the methylation levels in non-coding regions. These findings indicate
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that the distribution of CpG methylation is non-random and mainly located in gene bodies,
similar to corals (Dixon et al. 2017; Liew et al. 2017) and other invertebrate species (Feng et al.

2010; Gavery and Roberts 2010; Wang et al. 2013; Gonzalez-Romero et al. 2017).

To analyze the relationship between methylation density (percentage of CpGs) and gene
density (the number of genes per 10,000 bp), we ran a sliding window (window size: 40 kb, step:
30 kb) and visualized the results in a Circos plot (Fig. S1) (Krzywinski et al. 2009). The
correlation of CpG content and distribution of methylation showed a negative correlation
(Pearson correlation coefficient: » = -0.31, p value < 2.2 x 107') suggesting that methylation
tends to preferentially occur in CpG-poor regions (Fig. S2). Gene density had a positive
correlation with methylation density (+ = 0.21, p value < 2.2 x 10°'°) consistent with the finding
that methylation is predominantly located in gene bodies (Fig. 1). We also observed that within

gene bodies, introns showed significantly higher methylation densities than exons (Fig. 1B).


https://doi.org/10.1101/213066
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/213066; this version posted January 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

91

92

93

94

95

96

97

98

aCC-BY-NC-ND 4.0 International license.

Intergenic - | —
%k 3k %k ok
Exon - /]
% %k %k %k
Intron - J
296,167

0.0% 2.5% 5.0% 7.5% 10.0%

(@)

2e-4
>
1]
€ 1.5e-4
]
=]
o
o
= le-4
)
2
&
o o5
o
0.0 —
b N >y v v D - T A P 2 N h)
& - I ; ; R
> o & & & &S RN o PN
A B T Sl S o O O O o
‘},‘e, ¢ & o . e Pl \O’é et . \(\é & ‘}@’b
\)Q 43(\

Genomic context

Fig. 1. DNA methylation landscape

(A) Distribution of methylated CpG across intergenic (18%), genic (82%), intronic (42%) and
exonic (40%) regions in the Aiptasia genome. (B) Normalized percentage of methylated CpGs in
different regions. Chi-squared test shows significant differences between intergenic and genic
regions, and between exons and intron (****p<0.0001). (C) Relative frequencies of methylated

positions across a normalized gene model.
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Methylated genes are marked by H3K36me3

Analysis of methylation patterns (see above) within gene bodies showed rapidly
increasing methylation levels after the transcription start site (TSS) that are maintained before
slowly decreasing towards the transcription termination site (TTS) (Fig. S3A). Interestingly, we
found that gene body methylation in Aiptasia is positively correlated with expression (Fig. 2A),
suggesting that DNA methylation either increases the expression of genes or that DNA
methylation is increased as a consequence of transcription whereby increased expression results
in methylation of the respective loci. The latter interpretation would be in line with recent
findings in mouse embryonic stem cells (Neri et al. 2017), which demonstrated that gene body
methylation is established and maintained as a result of active transcription by RNA polymerase
IT (Pol II) and recruitment of the histone modifying protein SetD2 that trimethylates histone H3
at lysine 36 (H3K36me3). This histone mark is specifically bound via the PWWP domain
present in the DNA methyltransferase Dnmt3b, which in turn methylates the surrounding DNA
accordingly, resulting in the inhibition of transcription initiation from cryptic promoters within

the gene body and thus a significant reduction of spurious transcription.

Analysis of the Aiptasia gene set identified a DNMT3 gene (AIPGENE24404) that also
encodes a PWWP domain as reported for the mouse homolog. In order to test if the mechanism
previously described in mice is conserved in Aiptasia, we performed a ChIP-Seq experiment
using a validated antibody against H3K36me3 (Fig. S4-S5). As predicted, our analysis confirmed
a significantly higher association of H3K36me3 with methylated genes (p = 2.48 x 10" for
highly methylated genes and all methylated genes, Fig. 2B and C) suggesting that DNA
methylation in Aiptasia might indeed be a consequence of expression. We then analyzed if

methylated genes also exhibited significantly lower levels of spurious transcription in Aiptasia.
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Analysis of transcriptional profiles of methylated and unmethylated genes indeed showed
significantly lower levels of spurious transcription along the gene body of methylated genes (p <

2 x 10°°, Fig. 3A).

A dampening effect of DNA methylation on transcription was also observed with regard
to transcriptional noise similar to findings in the coral Stylophora pistillata (Liew et al. 2017).
Regression analysis of median methylation levels and the coefficient of transcriptional variation
of genes showed that, given the same expression level, methylated genes always exhibited lower

levels of transcriptional variation (Fig. 3B).
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Fig. 2. DNA methylation is associated with higher expression

(A) Gene expression is positively correlated with median methylation levels, #-test p values are
7.65 x 107, 3.75 x 10"* and 1.75 x 10°" for the first quartile (Q1) and the second quartile (Q2)
of methylation levels, Q2 and Q3, and Q3 and Q4, respectively. (B) ChIP-Seq analysis of
H3K36me3 signals show significant enrichment in methylated genes (¢-test p values: 2.48 x 10™°
for highly methylated genes (HM) and all methylated genes (allM), and 1.06 x 107> for

unmethylated genes (UM) and allM). Highly methylated genes show the strongest enrichment
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139 with H3K36me3 followed by all methylated genes. In contrast unmethylated genes show only
140  weak enrichment of H3K36me3 over input controls. (C) Distribution of H3K36me3 enrichment
141  and DNA methylation levels across two exemplary gene models. H3K36me3 and DNA

142 methylation show coinciding distribution patterns over genes.
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146  Fig. 3. DNA methylation regulates transcriptional homeostasis

147  (A) Spurious transcription in gene bodies is significantly lower in methylated and highly

148  methylated genes. The y-axis shows the natural logarithm of the coverage fold change of exons
149  1-6vs.exon 1. *: p <0.05; **: p <0.01; ***: p <0.001; ****: p <0.0001. (B) There is a linear
150  relationship between the inverse of transcriptional noise (CV™') and log expression level

151  (logiofpkm). Given same expression level, methylated genes always show lower levels of

152  transcriptional noise. For methylated genes, n = 8,561, = 0.46,p <2.2 % 10'16, for

153  unmethylated genes, n = 2,491, = 0.52,p<2.2x 107'°.
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DNA methylation regulates transcriptional homeostasis during symbiosis

Based on our previous findings, we investigated if DNA methylation might also be
involved in the regulation of symbiosis by identifying differentially methylated genes (DMGs)
between symbiotic and aposymbiotic Aiptasia. Comparison of DNA methylation patterns using
Principal Component Analysis (PCA) clearly separated symbiotic and aposymbiotic individuals
by the first principal component, which accounted for ~18% of the variance (Fig. 4 and Fig. S6).
This analysis echoed the findings from a PCA analysis on gene expression where symbiosis state
was separated by the second principal component accounting for ~25% of the variance (Fig. 4B)
(Venables and Ripley 2002) and highlighted that specific changes in DNA methylation patterns
occurred in response to symbiosis. Analysis of DNA methylation and expression profiles using
correlation analyses further confirmed this finding, providing additional evidence that the

observed changes were indeed treatment specific (Fig. S6).

Subsequently we analyzed changes in DNA methylation and gene expression between
symbiotic and aposymbiotic Aiptasia to assess their correlation on potential biological functions
in symbiosis. We determined differentially methylated genes using a generalized linear model
from Foret et al. (Foret et al. 2012) that was modified to allow for replicate-aware analysis. This
approach identified 2,133 DMGs (FDR < 0.05, Supplement Table S1) that specifically changed
their methylation status in response to symbiosis. To verify these results, we sequenced a subset
of 14 DMGs using bisulfite PCRs. The results show a strong correlation (> = 0.815 and p =
1x107 for Apo, *=10.922 and p = 5.2 x 10" for Sym) to our WGBS and confirm the observed

methylation changes within these loci (Fig. S7).

Analysis of gene expression changes in the same 12 samples (i.e., 6 symbiotic and 6

10
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aposymbiotic anemones) identified 1,278 differentially expressed genes (DEGs, FDR <0.05,
Supplement Table S2), of which 14 genes were subsequently confirmed via qPCR (Fig. S8).
However, analysis of the overlap between DMGs and DEGs showed only 103 genes that were
shared, suggesting that differentially expressed genes are not necessarily the same cohort of
genes that are differentially methylated. Functional enrichment analyses based on Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of all DMGs and
DEGs identified several symbiosis relevant functions and pathways in both groups (Supplement

Table S3-S10).

Based on the finding that gene body DNA methylation is likely a consequence of active
transcription, we hypothesized that changes in DNA methylation patterns might also provide a
record of transcriptional activity over longer periods of time. We therefore tested if differential
methylation and acute transcriptional changes, obtained from our RNA-Seq analysis, provide a
complementary view of the processes underlying symbiosis. For this we compared enrichment of
symbiosis-specific pathways across the sets of 2,133 DMGs, 1,278 DEGs, and the combined set
of both DMGs and DEGs (3,308 DEMGs). Interestingly, we observed that the combined data set
(DEMGs) provided significantly lower p-values for previously identified symbiosis-related
pathways, including apoptosis, phagosome formation, nitrogen metabolism, and arginine
biosynthesis, among others (paired ¢-test: DEMG vs. DEG p = 0.015; DEMG vs. DMG p = 0.009)
(Fig. 4C and Supplement Table S11). This suggested that changes in methylation and
transcription indeed provide complementary information with regard to transcriptional

adjustments in response to symbiosis.

11
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202 (A, B) PCA (Principal Component Analysis) of gene expression and median methylation levels
203  of Aiptasia genes. Both gene expression and DNA methylation separate samples by symbiosis
204  state. (C) KEGG pathway enrichment analysis. The combined sets of differentially expressed
205  and differentially methylated genes (DEMG) provides significant lower p values (front ranks) for

206  symbiosis related pathways.

207

208  DMGs and DEGs are involved in all stages of symbiosis

209 Analysis of the combined DMG and DEG gene set showed significant enrichment of
210  genes involved in the distinct phases of symbiosis, that is symbiosis establishment, maintenance,

211  and breakdown (Davy et al. 2012). Using an integrated pathway analysis based on known
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molecular interactions between proteins we found that these processes are linked through several
DMGs and/or DEGs (Fig. S9 and Fig. S10, and see Supplement Table S11-S12 and

Supplementary discussion).

For instance, we found numerous symbiosis-related receptors to respond to symbiosis on
a transcriptional and/or methylation level (Fig. S9), including C-type lectins (Fig. S9.3), Toll-like
receptors (Fig. S9.5), and the scavenger receptor SRB1 (Fig. S9.2) that has previously been
implicated in symbiont recognition in the sea anemone Anthopleura elegantissima (Rodriguez-
Lanetty et al. 2006; Neubauer et al. 2016). Following symbiont recognition, we also found
several known engulfment and sorting-related genes to change in methylation and/or expression
such as Rab5 (Fig. S9.10), sorting nexin (Fig. S9.17), Racl (Fig. S9.6), the lysosomal-associated
membrane protein 1/2 (Fig. S9.22), and many genes related to the cytoskeleton and movement

(Fig. $9.33-39).

As expected in a metabolic symbiosis (Muscatine 1990; Davy et al. 2012) we also identified a
large number of genes involved in nutrient exchange. These included genes involved in the
provision of inorganic carbon in the form of CO; or bicarbonate (HCO3") to fuel symbiont driven
photosynthesis (Rédecker et al. 2017) (Fig. S10.1) as well as genes involved in the exchange of
fixed carbon in the form of lipids (Fig. S10.11), sugars and amino acids (Fig. S10.10, S10.4)
(Oakley et al. 2016). Concordantly, we also found that genes involved in nitrogen acquisition,
such as ammonium transporter (Fig. S10.2) and genes involved in glutamate metabolism (Fig.

S10.5-7), respond to symbiosis.

Finally, our analysis also highlighted genes putatively involved in the expulsion or

degradation of symbionts in response to environmental stress or as a means to control symbiont

13
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densities. Autophagy is of interest in this regard because it links to other membrane trafficking
pathways and to apoptosis, and evidence suggests that autophagy also plays a role in removal of
symbionts during bleaching (Dunn et al. 2007; Downs et al. 2009). Intracellular degradation of
the symbiont is a result of reengagement of the phagosomal maturation process or autophagic
digestion of the symbiont by the host cell (Davy et al. 2012), and we find both apoptosis- and
autophagy-related genes to significantly change in their methylation and/or expression level.
These include the apoptosis genes RAC serine/threonine-protein kinase (Fig. S9.25), Caspase 7
(Fig. S9.31), Caspase 8 (CASP8) (Fig. S9.30), Nitric oxide synthase (Fig. S9.21) and Bcl2 (Fig.

S9.27), as well as the Autophagy proteins 5 and 10 (Fig. S9.14-15), among others.

Discussion

To assess the role of CpG methylation in the cnidarian-dinoflagellate symbiosis, we
undertook a global analysis of changes in the DNA methylomes and transcriptomes of
aposymbiotic and symbiotic Aiptasia. In contrast to their vertebrate counterparts, only 6.37% of
the CpGs in the Aiptasia genome are methylated, but their distribution is highly non-random (p <
3 x 107" and that methylated CpGs are most highly localized in gene bodies (18.4% of CpGs).
Analysis of the distribution of the histone modification H3K36me3 further showed significant
enrichment of this epigenetic mark in methylated genes, echoing findings in mammals and
invertebrates (Nanty et al. 2011). More importantly, we find that methylated genes show
significant reduction of spurious transcription and transcriptional noise (Fig. 2B), suggesting that
both the underlying mechanism of epigenetic crosstalk as well as the biological function of DNA
methylation is evolutionarily conserved throughout metazoans. These results highlight a tight

interaction of transcription and epigenetic mechanisms in optimizing gene expression in response
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to changing transcriptional needs (Neri et al. 2017). Further support for such a role is provided
by the analysis of differentially methylated and differentially expressed genes, which, when
combined, showed significant increase in enrichment of symbiosis relevant processes. This
suggests that DNA methylation and transcriptome analyses provide complementary views of
cellular responses to symbiosis whereby methylation changes provide a transcriptional record of

longer-term transcriptional adjustments.

While our analysis identified several genes, processes, and pathways previously reported
to be involved in symbiosis, it further highlights their intricate molecular interactions. Symbiosis
recognition, sorting and breakdown are interconnected processes, which is reflected in the
observed changes in methylation and expression. The molecular machinery involved in
phagosome maturation is tightly linked to autophagy and apoptosis enabling the host to respond
to potential pathogen invasion but also to degrade and remove dead or unsuitable symbionts.
This is strongly supported by immunofluorescence examinations of Aiptasia pulchella
gastrodermal cell macerates, showing that Rab5 appears around healthy, newly ingested and
already established Symbiodinium, but is replaced by Rab7 in heat-killed or DCMU-treated
newly ingested Symbiodinium. Conversely, Rab7 is absent from untreated newly infected or

already-established Symbiodinium (Chen et al. 2003; Chen et al. 2004).

Rab5 is also required for the exosomal release of CD63 (Baietti et al. 2012), which
mediates the endocytotic sorting process and transport to lysosomes (Latysheva et al. 2006). This
process is further regulated by Racl (Anitei et al. 2010) in conjunction with sorting nexin and the
GTPase Rho, all of which were also identified in our analyses. The sorting of phagocytosed
Symbiodinium is critical to symbiosis establishment as Symbiodinium cells are phagocytosed at

the apical end and transported to the base of the cell, where they are protected from digestion. In
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contrast, Symbiodinium staying at the apical end of the cell are degraded (McAuley and Smith

1982).

Similar to the processes of symbiosis initiation and breakdown, we also found significant
enrichment of genes involved in nutrient exchange and many of these transporters have
previously been implicated in symbiosis maintenance (Davy et al. 2012; Lin et al. 2015).
Notably, this also included genes involved in the transport and assimilation of ammonium.
Nitrogen is a main limiting nutrient in coral reefs (Cook et al. 1992; Grover et al. 2008; Radecker
et al. 2015), and the coral-dinoflagellates symbiosis has been proposed to increase the efficiency
of nitrogen utilization by both partners (Wang and Douglas 1998b) whereby the underlying

nature of this mechanism is currently debated (Wang and Douglas 1998a; Aranda et al. 2016).

Conclusions

This study provides the first analysis of the function and role of DNA methylation in a symbiotic
anthozoan. Our results show that the epigenetic crosstalk between the histone mark H3K36me3
and gene body methylation is conserved in cnidarians and reveal a role of gene body methylation
in reducing of spurious transcription and transcriptional noise. Furthermore, we show that
changes in DNA methylation patterns are specific to symbiosis and imply a functional in the
establishment, maintenance, and breakdown of this important symbiotic association. Our
findings therefore provide evidence for a role of DNA methylation as an epigenetic mechanism
involved in the maintenance of transcriptional homeostasis during the cnidarian-dinoflagellate
symbiosis. The premise that epigenetic mechanisms play a role in organismal acclimation

warrants future experiments targeted to investigate if DNA methylation could also contribute to
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resilience through the epigenetic adjustment of transcription in response to environmental stress

in Aiptasia and corals.

Data availability

Sequencing data of Bis-Seq, RNA-Seq and ChIP-Seq were deposited in NCBI Sequence Read

Archive (SRA) under BioProject codes PRINA415358.
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Materials and methods
Exaiptasia pallida Culture and DNA/RNA Extraction

Exaiptasia pallida of the clonal strain CC7 (Sunagawa et al. 2009) was used for this study.
Anemones were maintained in polycarbonate tubs with autoclaved seawater at ~25 °C on a 12 h:
12 h light: dark cycle at 20-40 pmol m™ s light intensity and fed freshly hatched Artemia
nauplii (brine-shrimp) approximately twice per week. To generate aposymbiotic anemones,
animals were subjected to multiple cycles of cold-shock treatment and the photosynthesis
inhibitor diuron (Sigma-Aldrich, St. Louis, MO) as described in Baumgarten (2015)

(Baumgarten et al. 2015). Aposymbiotic anemones were kept individually in 15 ml autoclaved
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432  seawater in 6-well plates and inspected by fluorescence stereomicroscopy to confirm complete
433 absence of dinoflagellates. In order to exclude potential batch effects as source of DNA
434  methylation changes we first generated four separate batches of aposymbiotic anemones and
435  maintained them for a period of 1 year before beginning of the experiment described below.

436 To generate symbiotic anemones, we then separately infected aposymbiotic CC7 individuals
437  from each of the four aposymbiotic cultures described above using the compatible Clade B
438  Symbiodinium strain SSBO1, originally isolated from Aiptasia strain H2 (Xiang et al. 2013;
439  Baumgarten et al. 2015). The four batches of symbiotic anemones were maintained for further 12
440  months under regular culture condition as described above. The corresponding four aposymbiotic
441  cultures were maintained in darkness until 3 months before collection. For the last 3 months
442  individuals from these aposymbiotic cultures were subjected to the same culture conditions as
443  the symbiotic cultures in order to monitor for unwanted spontaneous re-establishment of
444  symbiosis under light.

445 After the 12-month experimental period, we collected six biological replicates from each of
446  the four aposymbiotic and symbiotic cultures (one additional replicate was taken from batches 1
447  and 2 of each treatment) for subsequent DNA and RNA extraction as described below.

448 For each treatment, 6 biological replicates, weighing 20-28 mg (wet weight), were extracted
449  using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, Hilden, Germany). The
450  manufacturer’s protocol was followed with the omission of the optional step 4 (temporal storage
451  at 4°C if not performing DNA purification immediately). DNA concentrations were determined
452 using a Qbit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA). RNA
453  concentrations and integrity were determined using a Bioanalyzer Nano RNA Kit (Agilent

454  Technologies, Santa Clara, CA).
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455

456  RNA-Seq and Bisulfite Sequencing

457 Directional mRNA libraries were produced using the NEBNext” Ultra™ Directional RNA
458  Library Prep Kit for Illumina® (NEB) following the manufacturer’s protocol.

459 Bisulfite DNA libraries were prepared following a modified version of the NEBNext”
460  Ultra™ II DNA Library Prep Kit for Illumina® (NEB). Methylated TruSeq Illumina® adapters
461  (Illumina) were used during the adapter ligation step followed by bisulfite conversion with the
462  EpiTect Bisulfite kit (QIAGEN), with the following cycling conditions (95°C — 5 min, 60°C — 25
463  min, 95°C — 5 min, 60°C — 85 min, 95°C — 5 min, 60°C — 175 min, and 3 cycles of 95°C — 5 min,
464  60°C — 180 min, hold at 20°C < 5 hours) (reference is [llumina Bisulfite).

465 The final libraries were enriched with the KAPA HiFi HotStart Uracil+ ReadyMix (2X)
466 (KAPA Biosystems) following the standard protocol for bisulfite-converted NGS library
467  amplification. Final libraries were quality checked using the Bioanalyzer DNA 1K chip
468  (Agilent), and quantified using Qubit 2.0 (Thermo Fisher Scientific), and then pooled in
469  equimolar ratios and sequenced on the HiSeq2000.

470
471  Identification of methylated CpGs

472 Sequencing of the 12 libraries (2 conditions, 6 biological replicates each) resulted in 8§19
473  million read pairs from 8 lanes of the Illumina HiSeq2000 platform. Adapters were trimmed
474  from the raw sequences using cutadapt v1.8 (Martin 2011). Subsequently, trimmed reads were
475 mapped to the Exaiptasia pallida genome (Baumgarten et al. 2015) using Bowtie2 v2.2.3

476  (Langmead and Salzberg 2012), and methylation calls was performed using Bismark v0.13
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477  (Krueger and Andrews 2011).

478 Three filters were used to reduce false positives. Firstly, for each position with £ methylated
479  reads mapping to it, the probability of it occurring through sequencing error (i.e. unmethylated
480  position appearing as methylated) was modelled using a binomial distribution B(n, p), where # is
481  the coverage (methylated + unmethylated reads) and p the probability of sequencing error (set to
482  0.01). We kept positions with £ methylated reads if P(X > k) < 0.05 (post-FDR correction).
483  Secondly, retained methylated positions had to have > 1 methylated read in all six biological
484  replicates of at least one growth condition. Finally, median coverage of retained positions across

485  all 12 samples had to be > 10.

486

487  Assignment of genomic context to methylated cytosines

488 Based on the gene annotation of the Exaiptasia pallida genome (GFF3 file) (Baumgarten et
489  al. 2015) and the positional coordinates of the methylated cytosines produced by Bismark, we
490 annotated every methylated cytosine based on the genomic context, including whether the
491  methylated position resides in a genic or intergenic region, and the distances to the 5’ and 3’ end

492  of each genomic feature (gene/intergenic region/exon/intron).

493

494  CpG bias

495 Methylated cytosines are frequently spontaneously deaminated to uracil which can be
496  subsequently converted to thymine after DNA repair. As a result of this process, methylated
497  CpGs are expected to decrease in abundance over evolutionary time, and the ratio of observed to

498  expected CpGs (CpG O/E) has previously been used to predict putatively methylated and
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499  unmethylated genes (Suzuki et al. 2007; Wang and Leung 2008). CpG O/E of Exaiptasia pallida

500 protein coding genes were calculated according to J. Zeng et al (Zeng and Yi 2010).

501

502  Identification of differentially methylated genes

503 Using the methylation level of aposymbiotic genes as a control, generalized linear models
504  (GLMs) (Hastie and Pregibon 1992) were implemented in R (R Core Team 2016) to identify

505  genes that were differentially methylated in the symbiotic treatment. The general formula used

506  was:
507 glm(methylated, non methylated ~ treatment * position, family="binomial”)
508 where “methylated, non methylated” was a two-column response variable denoting the

509  number of methylated and non-methylated reads at a particular position. For predictor variables,
510  “position” denoted relative position of the methylated site in the gene, while “treatment” denoted
511  symbiotic or aposymbiotic conditions. Data from individual replicates were entered separately to
512 assign equal weightage to each replicate, as pooling results in a disproportionate skew towards
513  the replicate with the highest coverage. Genes with < 5 methylated positions were filtered out to
514 reduce type I errors; and genes with FDR < 0.05 were considered as differentially methylated

515  genes (DMGs).

516

517  Identification of differentially expressed genes

518 RNA-Seq generated 889 million raw read pairs from six lanes on the Illumina Hiseq2000
519  platform. Adaptors, primers and low quality bases were removed from the ends of raw reads

520  using Trimmomatic v0.33 (ILLUMINACLIP:TruSeq2-PE.fa:4:25:9 LEADING:28
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TRAILING:28 SLIDINGWINDOW:4:30 MINLEN:50). The resulting trimmed reads were

mapped to the Exaiptasia pallida genome using HISAT v2.0.1 (Kim et al. 2015) and transcripts

were assembled based on the Exaiptasia pallida gene models (GFF3 file) using StringTie v1.2.2

(Pertea et al. 2015). Trinity (align _and estimate abundance.pl — Bowtie2 v2.2.7/RSEM
v1.2.22/edgeR v3.10.5) (Robinson et al. 2010; Grabherr et al. 2011; Li and Dewey 2011;
Langmead and Salzberg 2012; Haas et al. 2013) was run against the transcripts using trimmed

reads for expression abundance estimation, then differentially expressed genes (DEGs) were

identified with FDR < 0.05.

PCA and correlation matrices

Median methylation levels and log FPKM (base 2) of genes were shifted to be zero

centered and analyzed by Principal Component Analysis (PCA) using the prcomp function in R.
Using the same data we calculated correlation matrices (Pearson correlation coefficient)
and clustered samples with hclust implemented in R using complete linkage and euclidean

distance .

Spurious transcription analysis

Trimmed reads were mapped to the Exaiptasia pallida genome using HISAT2 v2.1.0 and

mapping coverage per position was extracted using BEDtools v2.17.0. Coverage per exon was
calculated and normalized across all 6 replicates (assuming every replicate had 1 million
coverage in total), then average coverage ratios of exon 2 to 6 versus exon 1 per gene were

calculated to determine spurious transcription levels.
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GO enrichment of DMGs and DEGs

GO (Gene Ontology) (Ashburner et al. 2000) annotation was based on the previously
published Exaiptasia pallida genome (Baumgarten et al. 2015). Functional enrichment of DMGs
and DEGs was carried out with topGO respectively (Adrian Alexa 2016) using default settings.
GO terms with p < 0.05 were considered significant, and the occurrence of at least > 5 times in
the background set was additionally required for DMGs. Multiple testing correction was not
applied to the resulting p-values as the tests are considered to be non-independent (Adrian Alexa

2016).

KEGG enrichment of DMGs and DEGs

KEGG (Kyoto Encyclopedia of Genes and Genomes)(Kanehisa and Goto 2000; Kanehisa et
al. 2016) orthology (KO) annotation was carried out by combining the KEGG annotations
provided in the original Exaiptasia pallida genome publications and a separate set of annotations

based on the KAAS (KEGG Automatic Annotation Server, http://www.genome.jp/tools/kaas/)

(parameters: GHOSTZ, Eukaryotes, Bi-directional Best Hit) (Moriya et al. 2007). A KEGG
pathway enrichment analysis of both DMGs and DEGs was carried out using Fisher’s exact test

and pathways with p < 0.05 were considered significant.

Validation of gene expression changes from RNA-Seq by qPCR
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Three randomly picked RNA libraries per treatment were used for qPCR validation of
RNA-Seq results. cDNA was synthesized using Invitrogen SuperScript III First-Strand Synthesis
SuperMix kit. A total of 14 genes were validated for differential expression using qPCR
(Supplement Table S13-S15). RPS7, RPL11 and NDHS5 were used as internal reference
standards (Lehnert et al. 2014). qPCR was carried out using Invitrogen Platinum SYBR Green
qPCR SuperMix-UDG kit on Applied Biosystems 7900HT Fast Real-Time PCR System. All

protocols were strictly followed.

Validation of methylation changes using bisulfite PCR

Three randomly picked DNA libraries per treatment were used for methylation validation.
Bisulfite conversion was done using the EZ-96 DNA Methylation-Gold Kit (Zymo Research). 18
genes were used to design primers, 14 of 18 obtained effective amplifications (Supplement Table
S16), then the fragments were enriched by PCR amplification using Promega PCR Master Mix.
Sequencing indices were added to enriched fragments using Illumina Nextera XT Index Kit.
Enriched fragments were sequenced on the Illumina MiSeq platform. All protocols were strictly
followed. 1,870x data per replicate were obtained, methylated CpGs were identified using
Bismark as described above. The correlations between whole genome bisulfite conversion and

bisulfite PCR were calculated using generalized linear model.

Chromatin Immunoprecipitation — ChIP
We used the Zymo-Spin ChIP Kit to conduct histone bound chromatin extraction, with

minor adjustments to manufacturer’s protocol. Briefly, three biological replicates, each
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consisting of two symbiotic anemones, were used for this experiment. Each anemone was first
washed with PBST (phosphate-buffered saline with 0.1% triton). Anemones were then fixed in
1X PBS with 1% formaldehyde for 15 minutes. To stop cross-linking reactions glycine was
added to the solution and left to rest for 10 more minutes. Following manufacturer’s protocol, we
centrifuged and washed whole anemones. We prepared the Nuclei Prep Buffer according to
protocol and crushed the two anemones of each replicate together using a douncer for
homogenization. Samples were then sonicated for 15 cycles on ice (15 sec ON, 30 sec cooling)
to ensure fragmentation to 200-500 bp. Thereafter the protocol was followed without further
modifications.

Immunoprecipitation was achieved using a target specific antibody to histone 3 lysine 36
tri-methylation (H3K36me3) (ab9050, Abcam), which has been validated in many eukaryotic
species, including mouse(Soboleva et al. 2017), Arabidopsis thaliana(Wollmann et al. 2017),
yeast(Janke et al. 2017) and zebrafish(Vastenhouw et al. 2010; Wu et al. 2011) ef al. Comparison
of Aiptasia histone H3 to the respective homologs from several species for which this antibody
has been previously validated showed high conservation of the N-terminal tail containing
position H3K36 (Fig. S4) whereby 100% conservation to the zebrafish homolog was observed.

Corresponding input controls for each of the 3 replicates were generated as suggested by
the manufacturer. DNA fragment quality and quantity were confirmed using High Sensitivity
DNA Reagents (Agilent Technologies, California, United States) on a bioanalyzer, after which
ChIP libraries were constructed using the NEBNext® ChIP-Seq Library Prep Master Mix Set
(#E7645, New England Biolabs, Massachusetts, United States).

Sequencing resulted in 10M read pairs per replicate. These read pairs were trimmed using

Trimmomatic and mapped to the Exaiptasia pallida genome using HISAT2 as described above.
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609  H3K36me3 enrichments were calculated as log,(average signal/average input control) for all
610  genes, unmethylated genes and highly methylated genes (methylation level > 70 and methylation
611  density > 40). P-values were calculated using t-test.

612

613  Antibody affinity validation through Western blotting

614 Total protein was extracted from a snap-frozen anemone crushed in 10% TCA

615  (Trichloroacetic acid). The homogenized sample was left to incubate overnight at -20 °C to allow
616  proteins to precipitate. The solution was centrifuged at 20,000g at 4 °C for 20 minutes to collect
617  suspended proteins. The pellet was then washed three times in 80% acetone and then spun down
618  again as previously. The final pellet was then air-dried for 10-15 minutes to remove residual

619  acetone. The final protein was suspended in urea lysis buffer (7 M urea, 2 M thiourea, pH 7.5) by
620  vortexing for 2 hours.

621 Samples were then prepared for western blot by adding 4x sampling buffer (0.38 M Tris
622  base, 8% SDS, 4mM EDTA, 40% glycerol, 4mg/ml bromphenol blue) to a final concentration of
623  1X. After a 2 minute incubation at 90°C samples were ready to be run on a gel at 10-12 mA. The
624  gel was transferred to a PVDF nitrocellulose membrane, rinsed with TBS buffer (150mM NacCl,
625  25mM Tris pH7.4, 0.1% Triton X-100) and blocked for 30 min at RT in TBS containing 5% fat-
626  free powder milk. The primary antibody was diluted in TBS/milk and incubated on an undulating
627  orbital shaker overnight at 4 °C. After three washes in TBS for 10 minutes each, the membrane
628  was again blocked in TBS/milk for 20 minutes at RT before proceeding with secondary antibody
629  staining. The horseradish peroxidase-linked-antibody (Anti-Rabbit IgG HRP conjugate W4011

630  and Anti-Mouse IgG HRP conjugate W4031, Promega. Wisconsin, United States) was diluted in

31


https://doi.org/10.1101/213066
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/213066; this version posted January 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

631  TBS/milk (1:10000) and incubated for 2 hours at RT. After final triplicate 10 minute washes in
632  TBS, membranes were developed.
633

634

635  Supplementary Figures

636
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638  Fig. S1. Circos visualization of different data at the genome-wide level

639  (a) TE density. (b) Gene density. (¢) Fraction of methylated CpGs in symbiotic treatment. (d)

640  Fraction of methylated CpGs in aposymbiotic treatment. (e) CpG content.
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644  Fig. S2. Methylated genes in Aiptasia have lower CpG O/E

645  CpG distribution of methylated genes (represented by red curve) peaks at around 0.5, which is
646  lower than in unmethylated genes (represented by green curve) peaking at around 0.9. mC to T
647  conversion skews the CpG O/E distribution of all genes as expected (represented by blue curve),

648  but methylated and unmethylated genes still show a large overlap of their CpG O/E distributions.
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649  These results indicate that gene body methylation cannot be accurately inferred from CpG O/E in

650  Aiptasia.
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653  Fig. S3. Methylation patterns

654  (A) DNA methylation is mainly located in the proximal part of gene bodies with slightly

655  decreasing levels towards the end. (B) Methylation pattern over intergenic regions. (C)

656  Methylation pattern around splice donor sites show increasing levels immediately after donor
657  sites. (D) Methylation pattern around acceptor sites show decreasing levels immediately after
658  splice acceptor sites. (E) Methylation pattern over initial exons show increasing methylation
659 levels (3,147 exons with 35,885 methylation sites were used). (F) Methylation pattern over

660 internal exons show decreasing methylation levels (7,977 exons with 139,009 methylation sites
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were used). (G) Methylation pattern over terminal exons show decreasing methylation levels
(7,905 exons with 102,162 methylation sites were used). (H) Methylation pattern over introns
from single-exon genes follow a similar trend as observed for multi exon genes with increasing
methylation levels in the proximal and decreasing levels in the posterior part of the exon (298
exons with 4,735 methylation sites were used). (I) Methylation pattern over initial introns show
increasing methylation levels (3,381 introns with 39,262 methylation sites were used). (J)
Methylation pattern over internal introns maintain stable methylation levels (7,371 introns with
211,950 methylation sites were used). (K) Methylation levels over terminal introns decrease
slightly (3,959 introns with 34,246 methylation sites were used). (L) Methylation levels over
introns from one-intron genes change gently with initial increase followed by a decrease (1,055

introns with 10,709 methylation sites).
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human_CAB02546.1 GGKAPR GGVKKP, 50
Arabidopsis_AAA32809.1 GGKAPR GGVKKP, 50
yeast_PJP07865.1 GGVKKP 50
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mouse_AAA37813.1 100
human_CAB02546.1 100
Arabidopsis_AAA32809.1 100
yeast_PJP07865.1 100

674

675  Fig. S4. Sequence conservation of histone H3 homologs

676  Sequence conservation of Aiptasia histone H3 protein and histone H3 homologs from species for
677  which antibody (ab9050, Abcam) has previously been validated. The N-terminal tail of Aiptasia
678  H3 is identical to the fragment from the zebrafish Danio rerio (the first 100 amino acid fragment
679  from human was used to produce this antibody).

680

681
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684  Fig. S5. Western blot

685  Western blot result for antibody affinity validation, target band is 15kDa in size as expected from
686  molecular weight analysis.
687
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691 DNA methylation Gene expression

692  Fig. S6. Correlation matrices of replicates

693  Correlation matrices of replicates based on median DNA methylation level of genes (A) and log
694  gene expression values (base 2) (B). Replicates from the same treatments showed higher

695  correlation and clustered together both based on DNA methylation as well as gene expression
696  profiles, further supporting the findings obtained from the PCA analyses (figure 4) that changes
697  in DNA methylation and expression are treatment specific.

698

38


https://doi.org/10.1101/213066
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/213066; this version posted January 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

699
A 100+ Apo - Gene B 100 - Sym - Gene
° ] °
75 A 75 A
c (=4
ke 8
g 50 g s0-
< <
=1.19x - 9.33
25 y=3 y =1.17x - 8.53
r*=0.815 25 - 20922
[ ]
ZIO 4l0 6I0 8I0 2l0 4IO 6lO 8I0 1(l)0
WGBS WGBS
C Apo - Locus D Sym - Locus
100 4 o™ 100
80 A 80 A
i 60 = 60 -
g y = 1.08x +0.571 g
< o 11=082 <
40 ° 40 A
20 A 20 A
2I5 5I0 7I5 1(I)0 2I5 5I0 7I5 1(')0
WGBS WGBS
700

701  Fig. S7. Validation of methylation level

702  Validation of methylation level using bisulfite PCR on selected genes. (A, B) validation of
703 methylation level on genes (median methylation levels of methylated CpGs were used to

704  represent genes). (C, D) validation of methylation level on locus (methylated CpGs). WGBS:
705  whole genome bisulfite sequencing; Amplicon: MiSeq sequencing results of bisulfite PCR
706  amplicons on selected genes.
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712 Fig. S8. qPCR validation of gene expression levels

713 Validation of gene expression changes using qPCR. Expression levels are shown as log;o(fold
714 change). All genes show similar expression changes as determined by RNA-seq and q-PCR.
715
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Fig. S9. Schematic diagram of symbiosis establishment and breakdown associated
genes. Every node represents a category of genes, and generally has multiple corresponding
genes. The inside colors of nodes represent the expression changes of corresponding genes,
including non-DEGs (cyan), up-regulated (red), down-regulated (blue) and up- and down-
regulated DEGs (light red). The colors of node edges represent the methylation level changes
of corresponding genes, including non-DMGs (light blue), hypermethylated (red),
hypomethylated (blue) and hyper- and hypo-methylated DMGs (light red). Numbers in

circles denote genes/proteins as detailed below.
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717  Fig. S10. Schematic diagram of symbiosis maintenance associated genes. Every node

718  represents a category of genes, and generally has multiple corresponding genes. The inside

719  colors of nodes represent the expression changes of corresponding genes, including non-DEGs
720  (cyan), up-regulated (red), down-regulated (blue) and up- and down-regulated DEGs (light red).
721  The colors of node edges represent the methylation level changes of corresponding genes,

722 including non-DMGs (light blue), hypermethylated (red), hypomethylated (blue) and hyper- and

723 hypo-methylated DMGs (light red).
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