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Abstract

Background: Lesion load isacommon biomarker in multiple sclerosis, yet it has historically
shown modest associations with clinical outcomes. Lesion count, which encapsulates the natural
history of lesion formation and is thought to provide complementary information, is difficult to
assess in patients with confluent (i.e. spatially overlapping) lesions. We introduce a statistical
technique for cross-sectionally counting pathologically distinct lesions.

Methods: MRI is used to assess the probability of lesion at each location. The texture of this
map is quantified using anovel technique, and clusters resembling the center of alesion are
counted.

Results: Validity was demonstrated by comparing the proposed count to a gold-standard count in
60 subjects observed longitudinally. The counts were highly correlated (r = .97, p <.001) and not
significantly different (t59 = -0.83, p > .40). Reliability was determined using 14 scans of a
clinically stable subject acquired at 7 sites, and variability of lesion count was equivalent to that
of lesion load. Accounting for lesion load and age, lesion count was negatively associated (158 =
-2.73, p < .01) with the Expanded Disability Status Scale (EDSS). Average lesion size had a
higher association with EDSS (r =.35, p < .01) than lesion load (r = .10, p > .40) or lesion count
(r=-.12, p>.30) aone.

Conclusion: These findings demonstrate that it is possible to recover important aspects of the
natural history of lesion formation without longitudinal data, and suggest that lesion size

provides complementary information about disease.
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1. Introduction

Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by demyelinating
lesions that occur in the central nervous system. Magnetic resonance imaging (MRI) is the most
commonly used method to observe these lesions, especially in the white matter of the brain®. The
presence of new lesions on MRI is often considered an important clinical marker of disease
activity, yet MRI-based measures of disease severity have been dusive”. Thetotal lesion burden
in the white matter, or “lesion load” — measured as volume or volume fraction of brain size—is
often used in the study of M'S, typically as a measure of disease severity® and asaclinical tria
outcome”. However, lesion load has consistently shown a surprisingly weak association with
clinical measures of disease severity, calling into question its usefulness as a surrogate and
reinforcing the need for further development of MRI outcomes for M S?°.

In past years, several clinical studies have discussed the number of lesionsin apatient’s
brain as a possible outcome of interest®®. In these studies, baseline lesion count has been shown
to be correlated with EDSS and changes in lesion count have been shown to be correlated with
changesin EDSS. However, obtaining an accurate count of biologically distinct lesionsin the
brain can be costly and logistically challenging, typically requiring expert review of scans taken
at regular follow-up visits. This processis especially difficult in patients with a high lesion load
and many confluent lesions’.

Confluent lesions commonly occur when pathologically distinct lesions (i.e., lesions that
arise due to spatially separate sources of structural damage in the brain, usually separated in
time) occur in close proximity to each other, creating alarger connected region of lesion tissue.
Depending on the level of lesion burden, confluent lesions can range from two overlapping
lesions with a single connecting edge to dozens of connected lesions spanning large stretches of
white matter. The existence of such confluent tissue can make it difficult or impossible to obtain
an accurate estimate of the number distinct lesionsin the brain at any given visit. Instead, to
determine lesion counts a patient must be scanned regularly, with temporality of appearance
serving to separate spatially confluent lesions. However, MRI scans are extremely costly, which
can make regular follow-up viditsinfeasible. Additionally, in patients with agreat deal of disease
activity, even monthly or bi-monthly scans can produce multiple new lesionsthat are
overlapping in space'®™.
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To address thisissue, the current study introduces a statistical analysis technique for
obtaining valid and reliable estimates of lesion count from a single cross-sectional MRI study.
This fully automated method utilizes cutting-edge statistical models for segmenting lesion tissue
and well-demonstrated mathematical methods for quantifying texture to obtain the number and
location of temporally distinct white matter lesions. Additionally, this study provides evidence
that the derived lesion counts are associated with clinical measures of disease severity,

independent of total lesion volume.

2. Methods
2.1 Proposed lesion count algorithm

To obtain the lesion count estimate in a given subject, the following steps are carried out.
First, amap of lesion probability at each voxel in the brain is obtained using preprocessed and
co-registered MRI volumes from a single visit. Depending on the automated segmentation
method that is used, a combination of T;-weighted (T1), fluid attenuated inversion recovery
(FLAIR), To-weighted (T2), and proton density (PD) volumes will be required for probability
estimation. A threshold is then applied to the probability map create a binary mask of regions
that are considered lesion tissue.

Using the probability map, the texture of the lesion tissue is quantified to find regions that
exhibit the properties expected of the center of asinglelesion. Textureis quantified using the
eigenvalues of the Hessian matrix. The Hessian matrix is calculated for the intensity of the lesion
probability map at every voxel in the lesion mask, with a gradient window of one voxel in each
direction. In the context of a 3-dimensional image, the Hessian matrix describes the second-order
variation in image intensity in the local neighborhood around a voxel. When applied to alesion
probability map, the eigenvalues of the Hessian matrix at each voxel represent the three primary
directions of change in lesion probability at that voxel.

Thus, voxelsin the center of alesion would be expected to have a negative eigenvalue,
implying a decrease in probability, in al directions. This follows from the commonly accepted
pathology of MS lesions, in which initial damage to a vein causes residual inflammation to
spread outwards from the vein in arelatively ovoid fashion, with less damage occurring around
the periphery of the visible lesion®?. Therefore, voxels are eliminated if any of the three

eigenvalues are positive, indicating that the voxd isless likely to be lesion than its surroundings
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in at least one direction. Remaining voxels with three negative eigenvalues are clustered by
location, and connected clusters (operationalized as the centers of distinct lesions) are counted.

2.2 Data and preprocessing
2.2.1 Validation and clinical-radiological association

Sixty subjects diagnosed with M S were scanned between 2000 and 2008 on a monthly
basis over a period of up to 5.5 years (mean = 2.2 years, sd = 1.2) as part of a natural history
study at the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland. The
subjects ranged from 18 to 60 years of age, with a mean age of 38 years (sd = 9). Of the 60
subjects, 38 were female and 22 were male. The majority of the subjects (n = 44) were diagnosed
with relapsing-remitting MS, 13 were characterized as secondary-progressive, one as primary
progressive, and two were unspecified. Subjects were either untreated or treated with a variety of
disease-modifying therapies during the observation period, including both FDA-approved
(various preparations of interferon-beta) and experimental therapies.

Details of theimage acquisition and preprocessing have been previously published™ and
are briefly summarized in this section. Whole-brain 2D FLAIR, PD, T2, and 3D T1-weighted
volumes were acquired in a 1.5 tesla (T) MRI scanner (Signa Excite HDxt; GE Healthcare,
Milwaukee, Wisconsin). The 2D FLAIR, PD, and T2 volumes were acquired using fast-spin-
echo sequences, and the 3D T1 volume was acquired using a gradient-echo sequence. Al
scanning parameters were clinically optimized for each acquired image. Subjects were each
scanned over multiple visits, and subjects’ images at each visit wererigidly co-registered
longitudinally and across sequences to a template space™.

All images are N4 bias-corrected, and FLAIR, T2, and PD volumes for each subject are
interpolated and rigidly co-registered to the T1 volumein isotropic 1 mm® space™. Extracerebral
voxels were removed using the T1 volume via a skull-stripping procedure'®, and intensity
normalization®’ of the volumes based on z-scoring was applied. Studies were manually quality
controlled by a researcher with over five years experience with structural MRI, and studies with
analysis-limiting motion or other artifacts were removed. Following preprocessing and quality
control, automatic lesion segmentation was performed on co-registered T1, T2, FLAIR, and PD
volumes using the OASISis Automated Statistical Inference for Segmentation (OASIS) model*®
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to produce alesion probability map for each subject. A conservative threshold of 30% was
applied to the probability maps to create binary lesion masks.
2.2.2 Reliability

Data from one 45-year-old man diagnosed with clinically stable relapsing-remitting M S
were used to test reliability. This patient was imaged at seven sitesin the United States as part of
apilot study for the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative. He
was characterized as having mild-to-moderate physical disability, which was stable between the
first and last visits, and had no clinical relapses nor radiological changes during the course of the
study™.

Details of theimage acquisition have been previously published™ and are briefly
summarized in this section. Whole-brain 3D high-resolution FLAIR, T2, and T1-weighted
volumes were acquired on seven 3T Siemens MRI scanners across the United States (4 Skyra, 2
Tim Trio, 1 Verio). A standardized high-resolution scanning protocol was devel oped through a
consensus agreement in the NAIM S Cooperative, and was used to the extent possible (allowing
for different scanner types and software versions) for each scan. The participant was scanned
twice on the same day at each site, and was removed and repositioned between scan and rescan.

All images are N4 bias-corrected, and the subject’ simages at each scan were rigidly co-
registered across sequences to the T1 volume in isotropic 1 mm?®space™. Extracerebral voxels
were removed using the T1 volume via a skull-stripping procedure®, and intensity
normalization®’ of the volumes based on z-scoring was applied. Following preprocessing,
automatic lesion segmentation was performed on co-registered T1, T2, and FLAIR volumes
using an extension of the OASIS model®* to produce a lesion probability map for each scan
session. A conservative threshold of 30% was applied to the probability maps to create binary

lesion masks.

2.3 Satistical analysis
2.3.1 Validation

Using the longitudinal nature of the data, a‘gold-standard’ count of lesions that appeared
during the course of the study was developed for validation. A state-of-the-art technique for
segmenting new lesions since a previous visit* was applied at each visit after basdline, resulting

in the number and location of new lesions at each visit for every patient. For the gold-standard
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count, segmented regions containing lesions that were separated in space or time were
considered distinct. For example, if alarge contiguous region at study’s end consisted of one
lesion that appeared at the sixth visit and one lesion that appeared at the eighth visit, this would
be considered two lesions in the gold-standard count.

The gold-standard count, henceforth referred to as Cg, was compared to two counts
obtained cross-sectionally at the final of observation for each patient. Thefirst, Cp, isthe count
based on the technique proposed in this study. Cp was obtained by applying the algorithm
described in Section 2.1 to the images obtained at each patient’ s final visit, then restricting the
count to the number of lesion centers contained in the lesion voxels determined to have appeared
during the course of the study. Importantly, this restriction means that Cp represents a subset of
the total number of lesions in asubject’s scan, and is distinct from the full lesion count that is
later described in the context of the clinical-radiological analysis. This limitation was
implemented to make direct comparison between Cp and Cg possible, since a gold-standard
count can only be obtained for lesions that appeared during the study.

The second cross-sectional count, Ce, refers to a count based on the standard connected
components technique. Cc was obtained by performing lesion segmentation on the images
obtained at each patient’s final visit, thresholding at a probability of 30%, and labeling lesions as
distinct if they were separated in space. Cc was then restricted to the number of unique lesion
labels contained in the lesion voxels known to have appeared during the course of the study, in
order to facilitate comparison with Cp and Ce.

Comparison between Cg, Cc, and Cp occurred in two ways. First, to compare the linear
correspondence between the gold-standard and the different counting techniques, the correlation
between Cg and Cp was compared to that of Cs and Cc. Then, to determine whether the counts
themselves differ meaningfully from the gold-standard, paired t-tests were run for Cs and Cp, as
well as Cg and Cc.

2.3.2 Reliability

Determination of the reliability of the proposed counting method was be based on the
coefficient of variation (CV) of the counts obtained from the 14 repeated scans. Because the
typical connected components technique for counting automatically or manually segmented
lesions yields a stable but invalid estimate of the true count, thereis no current gold-standard CV
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for alesion count. Thus, the CV of the proposed count was compared to a commonly used
outcome measure for MS: total cerebral lesion volume (“lesion load”).

This comparison took place in two contexts. The first represented a fully automated
version of the proposed count, in which variation may arise from false negatives in the
segmentation mask, false positives in the segmentation mask, thresholding of the segmentation
mask, and changes in the Hessian structure of the segmentation mask. This coefficient was
compared to the CV of automated lesion load, as determined by the segmentation method.

The second context represented a manually supplemented version of the count, where a
mask of lesion tissue was provided by an expert rater'®, and the count was obtained using the
segmentation probability map within the manual lesion tissue mask. In this case, variation in the
count arises solely due to changes in the Hessian structure of the segmentation mask and changes
in the manual segmentation. This coefficient was compared to the CV of the manually obtained
lesion load.

2.3.3 Clinical-radiological association

As the Expanded Disability Status Score (EDSS) is known to be noisy, a more stable
measure of neurologic disability was created by averaging the EDSS scores over all visits for
each subject in the NINDS longitudinal study, hereby referred to as EDSS,,g. One subject had no
EDSS information across all follow-ups, and was excluded from this analysis. Using OASIS
lesion probability maps'®, lesion load was obtained at the final visit for each subject using a
probability threshold of 30%. Then, using the lesion count technique described in Section 2.1, a
full count of white matter lesions at the final visit was obtained for each subject. Importantly, the
counts obtained for the clinical-radiological analysis are distinct from the Cp measure described
in Section 2.3.1, as these counts represent the application of the proposed method to the entire
brain, while Cp represents the application of the proposed method to only lesion tissue that
appeared during the course of the longitudinal study.

To determine the clinical relevance of the proposed lesion count independent of other
potentially confounding variables, alinear regression model was created for EDSS,,q With age,
lesion load, and lesion count as predictors. Additionally, Pearson correlations with EDSS,,q were
calculated for lesion load and lesion count, as well as anew variable we refer to as average
lesion size (defined as lesion load divided by lesion count).
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3. Results
3.1 Validation

The temporally informed gold-standard count of new lesions appearing over the course of
study, Cg, ranged from 0 to 75 among the 60 subjects, with amedian of 4 (IQR =1, 12]). The
connected components count, Cc, ranged from 0 to 14 with amedian of 2 (IQR=[1, 5]). The
proposed count, Cp, ranged from 0 to 60 with amedian of 5 (IQR =[1, 15]). Figure 1 provides a
visual example of these counting techniques.

The correlation between Cp and Cg was .97, compared to the correlation of .67 between
Cc and Cg. Figure 2 shows the scatterplots for the two linear associations, along with the line
demonstrating a one-to-one relationship. The paired t-test comparing Cc and Cg yielded a highly
significant result (tsg = 4.19, p < .001), with Cs being 6.9 lesions larger than Cc on average (95%
Cl: [3.6, 10.2]). The paired t-test comparing Cp and Cg did not find a significant difference
between the counts (tso = -0.83, p > .40), with Cp being 0.4 lesions larger than Cs on average
(95% CI: [-1.3, 0.5]).

3.2 Reliability

For the fully automated count, the coefficient of variation was .19, compared to aCV of
.22 for the automated lesion load. Using the manual segmentation as a mask, the CV for the
lesion count was reduced to .12, compared to a CV of .10 for the manual lesion load. In one case,
automated lesion segmentation was discovered to have failed, creating a probability map with a
drastically different Hessian structure and large regions of false positive segmentation. With this
scan removed the CV of the fully automated lesion count remained at .19 and the CV of the
manual segmentation-based lesion count dropped to less than .06, suggesting that the proposed

count has equivalent or lower variability than the current clinical standard of lesion load.

3.3 Clinical-radiological association

Accounting for lesion load and age, the proposed lesion count was negatively associated
with EDSS,yq (tss = -2.73, p < .01), suggesting that for a given lesion load and age, a higher
count is associated with lower disease severity. The inclusion of lesion count in the model
explains an additional 10% of the variance in EDSS,,q compared to a model with only age and


https://doi.org/10.1101/212860
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/212860; this version posted November 1, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

lesion load, providing support to the hypothesis that the proposed count contains disease
information independent of other commonly used measures.

The Pearson correlation between lesion load and EDSS,,g was small and did not reach
significance (r = .10, p > .40), nor did the correlation between lesion count and EDSS,q (1 = -
12, p> .30). However, average lesion size was significantly correlated with EDSS.q (r = .35, p
<.01), indicating that larger lesions were associated with higher disability.

4. Discussion

In this paper, we introduce a novel technique for obtaining cross-sectional counts of
pathologically distinct lesions, and demonstrate it to be avalid, reliable, and clinically
meaningful biomarker for MS disease status. Utilizing information contained in the Hessian
structure of lesion probability maps produced by automated segmentation methods, this
technique counts distinct lesions by identifying regions that resemble the physiological traits of
distinct lesion centers.

Validity of this measure was established by comparing counts obtained at a single time
point to gold-standard counts that incorporated temporal information on lesion devel opment. The
proposed count had a correlation of .97 with the gold-standard count, indicating very strong
validity of thismeasure. A count obtained using the connected components method had only a
.67 correlation with the gold-standard, and appeared to strongly underestimate the number of
lesions in individuals who developed more than one or two lesions per year over the course of
the study. This underestimation manifested in a highly significant difference between the
connected components counts and the gold-standard counts in a paired t-test, whereas no
difference was found between the proposed counts and the gold-standard counts. These findings
demonstrate that the proposed technique yields a count that is consistent with the natural history
of lesion formation.

Reliability was considered using arich set of data from the NAIMS Cooperative. In that
study, aclinically and radiologically stable subject was scanned two times at each of seven
different sites across the United States. To judge the reliability of the proposed measure, the
lesion count was obtained for all 14 scans of this subject, and the coefficient of variation of the
counts was compared to that of lesion load in two contexts. In the fully automated comparison,
lesion count had a dlightly lower CV than lesion load. This indicates that across repeated scans of
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the same brain, automated lesion count is a less variable measure than automated lesion load. In
the manually supplemented comparison, lesion count had a slightly higher CV than lesion load,
implying that manually obtained lesion load is a slightly |ess variable measure than semi-
automated lesion count. Upon ingpection there appeared to be one scan where automated lesion
segmentation failed, producing an abnormal Hessian structure within the manually segmented
lesion mask. With this scan removed, the CV of semi-automated lesion count dropped to slightly
more than half that of manual lesion load. This suggests that when automated lesion
segmentation methods perform as expected, semi-automated lesion count is appreciably more
reliable than manual lesion load, awidely used measure of disease severity.

Clinically, the lesion count measure appears to be a potentially important addition to
commonly used radiological biomarkers for MS. In amode accounting for lesion load and age,
lesion count was highly significantly associated with EDSS. Interestingly, this association was
negative, indicating that for subjects who have similar lesion load, better outcomes are associated
with more (and smaller) lesions rather than fewer (and larger) lesions. This lends support to the
ideathat neither the number of lesions nor the amount of tissue damage alone captures all
relevant clinical information, and instead that suggests they should be considered together. One
way to conceptualize the combination of these metricsis average lesion size, which tapsinto the
degree to which the brain is capable of halting the growth of lesions and encouraging lesional
recovery'*%*? after incidence.

To investigate this concept more directly, a measure of average lesion size was created by
dividing lesion load by lesion count. Pearson correlations with EDSS were then compared for the
three biomarkers of lesion load, lesion count, and average lesion size. These findings provided
further support for the combined importance of lesion load and lesion count, with both showing
small and nonsignificant associations with EDSS. However, average lesion size showed a
significant positive association with EDSS, consi stent with the notion that the brain’ s ability to
slow or stop lesion growth is clinically relevant. These findings point to the importance of
considering lesion count in M S research, and provide further evidence of the validity of the
proposed counting technique.

The main limitation of the current study is the possibility of alternate explanations of
confluence that are not accounted for in the design of the proposed count. It has been
hypothesized that confluent lesions may occasionally occur as aresult of the growth of older
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lesions, or the expansion of pathological processes. Future research should consider the degree to
which this technique does or does not characterize these types of confluence as pathologically
distinct lesions.

The lesion count method presented in this paper has several appealing features, including
its low computational burden and its easy and flexible implementation. Computationally, the
counting algorithm takes less than a minute to run once probability maps are obtained. The speed
of the full technique varies depending on the lesion segmentation method used, but took
approximately 25 minutes per subject as presented in this study. In terms of implementation, this
method can be quickly and easily coded in any program capable of calculating the Hessian
structure of a 3D image, afeature included in most image processing packages. It can also be
used with any lesion segmentation method that yields a probability map, alowing it be added to
almost any pipeline regardless of preferred segmentation algorithm.

5. Conclusion

This paper introduces anovel and reliable fully automated method for counting
pathologically distinct lesions using images obtained at a single time point, allowing for an
accurate reconstruction of the natural history of lesion formation without longitudinal data.
Lesion count was found to be significantly associated with EDSS, independent of potential
confounders such as lesion load and age, and the results suggest that individuals with more small
lesions may have better clinical outcomes than those with fewer large lesions. This study also
demonstrates the importance of obtaining both lesion count and lesion load by using them to
construct anew M S biomarker, average lesion size, and showing that average lesion size has a
significantly larger association with EDSS than both lesion load and Iesion count. With further
study, thistechnique and the findingsit produces could set the stage for new lesion-level

considerations in research and treatment of M S.
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Figure 1. Example of the lesion counts in aregion with four apparently distinct lesions, two of
which develop with observable temporal separation. Panels A-D show devel opment of two new
and temporally distinct lesions. Panels E and F show the performance of a connected
components count and the proposed count, respectively. The connected components method

finds one confluent lesion in the visualized space (connected in an adjacent plane), and the

proposed method finds four distinct lesion centers. Days from scan in panel A: (B) 28 days; (C)
91 days; (D-F) 252 days.



https://doi.org/10.1101/212860
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/212860; this version posted November 1, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Figure 2. Scatterplots for the comparison between the gold-standard count and the connected
components count and comparison between the gold-standard count and the proposed count,
respectively. Diagonal lines represent a one-to-one relationship.
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