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ABSTRACT

In the  past,  many benchmarking studies  have  been performed on protein-protein and

protein-ligand  docking  however  there  is  no  study  on  peptide-ligand  docking.  In  this

study, we evaluated the performance of seven widely used docking methods (AutoDock,

AutoDock Vina, DOCK 6, PLANTS, rDock, GEMDOCK and GOLD) on a dataset of 57

peptide-ligand  complexes.  Though  these  methods  have  been  developed  for  docking

ligands to proteins but we evaluate their ability to dock ligands to peptides. First,  we

compared  TOP docking  pose  of  these  methods  with  original  complex  and  achieved

average RMSD from 4.74Å for AutoDock to 12.63Å for GEMDOCK. Next we evaluated

BEST docking  pose  of  these  methods  and  achieved  average  RMSD from 3.82Å for

AutoDock to 10.83Å for rDock. It has been observed that ranking of docking poses by

these methods is not suitable for peptide-ligand docking as performance of their TOP

pose is much inferior to their BEST pose.  AutoDock clearly shows better performance

compared to the other six docking methods based on their TOP docking poses. On the

other  hand,  difference  in  performance  of  different  docking  methods  (AutoDock,

AutoDock Vina, PLANTS and DOCK 6) was marginal when evaluation was based on

their  BEST  docking  pose.  Similar  trend  has  been  observed  when  performance  is

measured  in  terms  of  success  rate  at  different  cut-off  values.  In  order  to  facilitate

scientific  community  a  web  server  PLDbench  has  been  developed

(http://webs.iiitd.edu.in/raghava/pldbench/).

Keywords:  peptide ligand docking;  benchmarking;  ligand preparation;  RMSD cutoff;

scoring capability of docking methods.
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INTRODUCTION

Docking methods are widely used to study the molecular interactions between receptor

and ligand molecules, thereby facilitating the process of drug discovery [1,2]. There are

several  well-established  docking  methods  for  the  prediction  of  protein-protein  [3-8],

nucleic  acid-ligand  [9-11] and  protein-ligand  [12-17] interactions.  In  the  past,  many

benchmarking  studies  have  been  carried  out  to  evaluate  the  performance  of  docking

methods  and  scoring  functions  [18-22].  However,  benchmarking  studies  on  docking

methods involving peptide-ligand interactions are not available in the literature.

Peptide-ligand interactions have important applications in the treatment of diseases [23-

26], development of drug-delivery systems [24,27], diagnostics [28,29] as well as in the

development of sensor devices for rapid and reliable measurement of the concentration of

target  molecules  [30].  In  Alzheimer’s  disease,  small  molecules  have  been utilized  as

potential  inhibitors,  which  prevent  the  oligomerization  and aggregation  of  amyloid  β

peptides  [23]. Rodriguez et al designed and developed multifunctional thioflavin-based

small molecules, which served as molecular probes in the detection of peptide amyloid

fibrils as well as therapeutic agents in the treatment of Alzheimer’s disease [28]. Peptides

such as cell-penetrating peptides (CPPs) are widely used as drug delivery vehicles to

deliver small molecule drugs inside the cell  [31-33]. Small molecules bind to CPPs by

either  covalent  or  non-covalent  interaction  and  are  transported  into  the  cell  [34].

Recently, the combination therapy utilizing the combination of cell-penetrating peptides

and  small  molecule  antibiotics  has  been  proposed  as  a  potential  alternative  in  the

treatment  of  infections  caused by methicillin-resistant  Staphylococcus aureus [24].  In

recent years, peptide-based therapeutic is gaining attention due to their low toxicity and
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high specificity [35,36]. Therefore, many peptide-based resources have been developed in

the last decade to enhance peptide-based therapeutics  [37-46]. Thus, modeling peptide-

ligand  interactions  require  a  detailed  understanding  of  the  way  in  which  the  small

molecules bind to the active site of peptides.

Unfortunately, systematic parameterization in the docking methods is not available for

studying  peptide-ligand  interactions.  Docking  methods  efficiently  produce  acceptable

docked poses but usually fail in ranking of the poses probably because of the failure of

scoring function [47]. Development of a new scoring function is sometimes necessary for

modeling the interactions of a new class of compounds. However, such lengthy and time-

consuming  process  may  not  be  essential  if  the available  methods  are  capable  of

predicting the interactions of a new class of compounds. Best of author’s knowledge, no

benchmarking study of the docking methods is currently available for modeling peptide-

ligand interactions in the literature. We have benchmarked seven existing protein-ligand

docking methods for their ability to correctly predict the peptide-ligand interactions on a

series of 57 peptide-ligand complexes in this study. AutoDock [48], AutoDock Vina [16],

DOCK  6  [49,13],  PLANTS  [14],  rDock  [10],  GEMDOCK  [15] and  GOLD  [17,50]

docking  methods  were  chosen  for  the  benchmarking  study.  All  of  them  have  their

strategies for the prediction of the best conformation of the ligand within the active site of

a protein.  All  of these docking methods are  available freely for academic use except

GOLD. The extensive benchmarking of all the methods is carried out by analyzing 1, 3,

5, 10, 20 and 30 docked poses separately. We also tested the performance of tools like

add hydrogen command of Open Babel [51] and Schrodinger [52].
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MATERIALS AND METHODS

Benchmarking dataset of peptide-ligand complexes

All the peptide-ligand complexes were extracted from the Protein Data Bank (PDB) [53]

based on the  fulfillment  of  the  following conditions:  (i)  length  of  peptide  should  be

between 9 and 36 residues (9756 PDB entries), (ii) if the complex PDB is determined

using X-RAY, it should have resolution < 2.5Å (2713 entries), (iii) ligand should not have

any metal atoms (1748 entries), (iv) complexes having any covalent interactions between

peptide and ligand atoms (as defined by distance between any peptide and ligand atom to

be < 2Å) were removed using LPC software [54] (859 entries), (v) only one complex was

selected if the peptide sequences of multiple complexes were identical (192 entries), (vi)

complexes with only one ligand associated with its peptide were selected (75 entries).

Finally, all the 75 entries were manually inspected and unusual entries (e.g. a single atom

like Iodine being considered as ligand and entries with errors in docking calculations)

were removed to get a dataset of 57 peptide-ligand complexes.  The details of all  the

selected complexes are given in Table 1.

Preprocessing of ligands and peptides

The ligands were extracted from the crystal structures and hydrogen atoms were added

explicitly  by  using  ‘add  hydrogen tool’ available  in  Schrodinger  module.  The  added

hydrogen atoms were manually verified and errors (if any) were corrected.  We used three

initial geometries of ligands (first geometry is the coordinates of ligands as available in

the  PDB structures  (represented  as  ‘crystal  ligands’),  second  geometry  is  the  energy

minimized coordinates using GAFF force field in Open Babel (represented as ‘minimized
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ligands’)  and  third  geometry  is  the  ideal  coordinates  downloaded  from  Chemical

Component Dictionary available in PDB (represented as ‘CCD ligands’))  for docking

studies in order to see the effect of initial geometries of ligands on the overall results. The

docking results of all the three geometries were analyzed separately. The peptides were

extracted from their respective complexes and hydrogen atoms were added explicitly. All

the water molecules were removed from the peptides before docking.

Defining the binding site of the peptide-ligand interaction

Different docking methods define binding site either by creating a 3D-grid of X, Y and Z

dimensions or by creating a sphere of a given radius centered at a defined point. In our

study,  we  defined  the  center  point  by  calculating  the  center  of  mass  of  the  ligand

molecule. We defined grid dimensions as a cube of length 40Å and radius of sphere 25Å.

In this way, it was ensured that the search space in both the cases is approximately the

same.

Evaluation criteria

The root-mean-square deviation (RMSD) is a measure of the average distance between

the atoms of superimposed structures.  RMSD value is a widely used parameter to rank

the performance of docking methods. If the docked ligand shows <2.0Å RMSD value

with  the  crystallographic  ligand,  it  is  considered  as  a  successful  docking  [18].  We

calculated  the  RMSD  values  between  docked  pose  and  crystallographic  pose  using

DOCK 6  [55]. DOCK 6 provides three types of RMSD values namely standard heavy

atom RMSD, minimum-distance heavy atom RMSD and symmetry-corrected heavy atom
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RMSD. In our study, we used symmetry-corrected heavy atom RMSD, which is based on

Hungarian  algorithm.  The  Hungarian  algorithm  performs  one-to-one  assignments

between original and docked ligand atoms and calculates the minimum distance between

them [55].

Docking methods

The  ligands  were  docked  to  their  respective  peptides  using  seven  different  docking

methods  (AutoDock,  AutoDock  Vina,  DOCK  6,  PLANTS,  rDock,  GEMDOCK  and

GOLD).  For  each  docking  method,  we  used  default  parameters  except  defining  the

binding site as described in the above section. In order to evaluate the scoring function of

the considered docking methods, we generated 30 docked poses on each docking method

(except AutoDock Vina and GEMDOCK where maximum 20 poses were obtained). The

results are analyzed and presented on the basis of 10, 20 and 30 poses separately. The

docked pose with the top score (best score) is designated as ‘TOP pose’ and the docked

pose having least RMSD value with the original pose is designated as ‘BEST pose’ in this

study.  A brief description of the docking methods used in this benchmark study is given

below.

AutoDock: AutoDock is a frequently used and one of the most cited docking program in

the scientific community. AutoDock uses Lamarckian genetic algorithm (LGA) for the

prediction of the best conformation of a ligand within the active site of a receptor. It has

empirical scoring function comprising van der Waals, electrostatic, hydrogen bonding and

desolvation terms. 
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AutoDock  Vina:  AutoDock  Vina  is  developed  by  the  same  group,  who  developed

AutoDock.  With  a  new  scoring  function,  they  improved  the  speed  and  accuracy  of

docking and compared it with AutoDock 4. AutoDock Vina is based on Iterated Local

Search global optimizer algorithm for searching conformational space. Moreover, it  is

compatible with the PDBQT file format, which is used by AutoDock.

DOCK 6: DOCK 6 uses incremental construction approach and tries to geometrically

match the ligand atoms within the receptor-binding site. It uses the energy-based scoring

function as well as a grid-based footprint scoring function, which is used in rescoring the

poses after docking.

PLANTS: PLANTS (Protein-Ligand ANT System), a new docking method, is based on

ant colony optimization (ACO) algorithm. ACO mimics the behavior of real ants, which

try to find the shortest path from their nest to a food source. The ants mark the path

between the nest and food resource for their communication. In protein-ligand docking,

an artificial ant colony is used to find minimum energy conformation of a ligand in the

binding site.

rDock: rDock is originated from a program called RiboDock [11], developed for virtual

screening of RNA targets. It uses stochastic as well as deterministic search techniques

implementing  genetic  algorithm,  Monte  Carlo  and  simplex  minimization  stages  for

searching conformational space. The scoring function of rDock includes intermolecular

terms  like  van  der  Waals  forces  and  polar  desolvation.  rDock  consist  of  two  main

programs rbcavity for the cavity generation and rbdock for the docking. 

GEMDOCK: Generic Evolutionary Method for molecular DOCking (GEMDOCK) uses

global as well as local search strategies to search for the conformational space of the
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ligand and uses  empirical  scoring function to  score the generated poses.  The scoring

function of GEMDOCK uses energy parameters like steric, electrostatic and hydrogen

bonding potentials.

GOLD: Genetic Optimization for Ligand Docking (GOLD) is one of the very promising

molecular docking tools. It uses genetic algorithm for searching the conformational space

of the ligand and docking it into the receptor-binding site. GOLD works on the basis of a

fundamental requirement that the ligand molecule should have the capability to displace

water molecules, which are loosely bound to the receptor.

RESULTS AND DISCUSSION

This study is conducted to evaluate seven widely used protein-ligand docking methods

(six of  them are freely available  for academic use except  GOLD) for their  ability  to

successfully model the peptide-ligand interactions. 57 different peptide-ligand complexes

(fitted to our selection criteria as explained in the methodology section) were used as a

dataset for this purpose.

Performance of docking methods based on TOP docking poses

The performance of all docking methods computed on the basis of their TOP docking

pose reveals that AutoDock performed the best while GEMDOCK performed worst with

average RMSD 4.735Å and 12.627Å respectively (Table 2). AutoDock showed 21.05%

success in reproducing crystallographic poses within 2Å RMSD and rest of the docking

methods showed much less success rate  (Table 2). As shown in Table 3, the success rate

of docking methods improved as we increased cutoff value of RMSD.  The performance

of  each docking pose of different  methods on each peptide-ligand complex has  been

shown in supplementary tables (Table S1-S7). It was observed that most of the methods
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performed  worst  on  certain  peptide-ligand  complexes.  Therefore  we  assigned  these

peptide-ligand complexes as outliers and evaluated the performance of docking methods

after removing outliers. The number of outliers at an RMSD cutoff of 8.5Å and 8Å were

2  and  6  respectively.  The  performance  of  docking  methods  on  all  complexes,  after

removing 2 outliers and after removing 6 outliers is shown in Table S8.  The performance

of most of the methods improved significantly after removing outliers. TOP docking pose

obtained from any docking software may or may not be the BEST docking pose (having

least RMSD with original pose). Therefore, we also compared the performance of these

docking methods in terms of generating the BEST docking pose.

Performance of docking methods based on BEST docking poses

In addition to TOP docking pose, we identified and evaluated BEST docking pose from

number  of  docking  poses  generated  by  different  methods.  AutoDock  Vina  and

GEMDOCK generated maximum 20 docking poses wereas for the rest of the docking

methods,  upto  30  docking  poses  were  generated  corresponding  to  each  ligand.   The

performance of BEST docking pose among top 3, 5, 10, 20 and 30 poses generated by

different  methods is  shown in Table 2.  AutoDock showed 22.81%, 26.32%, 28.07%,

31.58% and 35.09% success rate for the top 3, 5, 10, 20 and 30 poses respectively. The

average RMSD also decreased (4.655Å for 3 poses, 4.505Å for 5 poses, 4.230Å for 10

poses and 3.816Å for 30 poses) with the increase of the docked poses in AutoDock.

AutoDock Vina and PLANTS docking methods showed the most dramatic effect on the

overall success rate with increase in the number of poses. Success rate increased from

28.07% to 40.35% in AutoDock Vina and 35.09% to 43.86% in PLANTS as the docked

poses increased from 10 to 20. Success rate for PLANTS was close to the success rate
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for  AutoDock on the  basis  of  3  and 5 docked poses.  Noticiable  improvement  in  the

success rate was obtained in AutoDock Vina  and PLANTS on the increase of the number

of docked poses from 1 to 10 (10.53% to 28.07% for AutoDock Vina and 12.28% to

35.09% for PLANTS). AutoDock Vina and PLANTS showed more than 40% success rate

for 20 poses which is better than the success rate of Audodock for the same number of

poses. This clearly indicates that AutoDock Vina and PLANTS docking methods are able

to generate many docked poses close to the crystallographic pose, however their scoring

function is not able to give them higher scores. Average RMSD values reduced from

6.601Å to  4.496Å for  AutoDock  Vina  and  6.682Å to  4.872Å for  PLANTS  while

increasing  the  docked  poses  from  10  to  20.  Most  of  the  docking  methods  showed

improved RMSD values even for 3 and 5 docked poses. However, the improvement was

highest  in  PLANTS  (11.299Å for  1  pose  and  8.773Å for  5  poses)  and  lowest  in

AutoDock (4.735Å for 1 pose and 4.505Å for 5 poses). Much improvement in the RMSD

values were obtained on the increase of the number of poses from 1 to 10 in AutoDock

Vina and PLANTS. Success rate and average RMSD values were not much affected with

the increase in the docked poses in rDock and GEMDOCK docking methods. Therefore,

rDock and GEMDOCK methods completely fail  to model peptide-ligand interactions.

GOLD and DOCK 6 docking methods showed some improvement in the success rate

with  the  increase  in  the  docked  poses  but  the  results  are  not  better  than  AutoDock,

AutoDock Vina or PLANTS. DOCK 6 showed reasonable average RMSD values while

considering  30  docked  poses.  The  lowest  RMSD  values  for  each  ligand  for  all  the

docking methods are depicted in Table S9; clearly AutoDock shows lower RMSD values

for  most  of  the ligands as  compared to  other  docking methods.  Figure 1 depicts  the
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RMSD variation in the TOP and BEST poses for all the docking methods. The RMSDs of

all the docking methods are arranged in the increasing order to clearly see the variation

and thus they are irrespective of the PDB-IDs. The RMSD variations of the best-of-TOP

poses and best-of-BEST poses are also included in Figure 1. Best-of TOP was obtained

by taking the best values provided by any docking method for the TOP poses and best-of-

BEST was obtained by taking the best values provided by any docking method for the

BEST poses.  Clearly,  the  RMSD  values  obtained  from best-of-TOP and  the  RMSD

values obtained from AutoDock is almost similar. However, AutoDock, AutoDock Vina,

PLANTS and DOCK 6 docking methods show similar trends for the BEST poses. The

best-of-BEST shows much improved performance and indicates that the combination of

existing  methods  may  provide  reasonable  success  rate  for  modeling  peptide-ligand

interactions. Figure 2 depicts the RMSD variation in the top 20 poses for all the docking

methods.  The  RMSD  values  of  >5.0Å are  not  included  in  Figure  2  for  better

representation of the data.  All the values are provided in the Table S1-S7 for details.

Figure 2 clearly indicates that AutoDock generates most of the poses in lower RMSD

range and same is  not  true for  other  docking methods.  Figure  3 shows a case study

(1xw7C), depicting the TOP and BEST docked poses obtained from various  docking

methods.

Table 3 shows the success rate on the basis of sequential increase in cutoff RMSD values.

Interestingly  the  success  rate  of  some  of  these  methods  increases  dramatically  in

producing  the  docked  poses  a  little  higher  than  2.0Å RMSD with  the  original  pose.

AutoDock,  AutoDock  Vina,  PLANTS,  DOCK  6  and  GOLD  docking  methods

respectively show 47.37%, 43.86%, 43.86%, 33.33% and 24.56% success in producing
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the docked poses within 2.25Å RMSD with the crystallographic poses. The success rate

of AutoDock, AutoDock Vina and PLANTS docking methods are comparable for 3.00Å

cutoff value. GEMDOCK and rDock fails to produce acceptable success rate even after

increasing the cutoff value from 2.0Å to 3.0Å. We also calculated the maximum possible

success rate by combining the results obtained from all the docking methods. For this, we

calculated success rate of best-of-TOP pose (lowest RMSD value achieved by the TOP

poses  of  all  the  docking methods  for  each complex)  and best-of-BEST pose  (lowest

RMSD value achieved by the BEST poses of all the docking methods for each complex).

61.40% and 75.40% success rate was achieved by best-of-TOP pose at 2.00Å and 3.00Å

RMSD cutoff values respectively. In addition, much improvement was observed in the

average RMSD value (2.30Å) for best-of-BEST pose. Clearly, if one can combine the

scoring function of all these docking methods, ~75% success rate may be achieved and

reasonable average RMSD values may be obtained. This directs the path of the future

work in this area. Table 4 depicts the RMSD variation of TOP and BEST docking poses

generated by all  the docking methods. All the docking methods shows higher RMSD

variations  and hence are  capable of  generating  diverse poses.  RMSD variation while

considering the BEST pose, is very high for GEMDOCK and rDock and is lowest for

AutoDock. 

Evaluation of scoring capability of docking methods

The  foremost  purpose  of  any  docking  method  is  to  differentiate  between  the  true

solutions  (usually  defined  as  the  ones  docked  within  2.0Å RMSD from the  original

structure) and misdocked structures. This differentiation is based on the scoring function

of the docking methods. Thus, scoring function is very crucial  to get correct docking
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results. We benchmarked the scoring function of all the docking methods on our dataset

by generating various docked poses. Table 5 shows the performance of scoring function

and extent of deviation in the scoring of all the docking methods. Any successful docking

should either produce the TOP pose as the BEST pose or should show the minimum

deviation among them. All  the docking methods show poor success in producing the

same pose as TOP pose and BEST pose. However, AutoDock shows 91.23% success in

producing the TOP and the BEST poses within the difference of 0.75Å RMSD while

considering 10 generated docked poses. Success rate in producing the TOP pose and the

BEST pose within minimum deviation is higher for rDock, GEMDOCK and GOLD, and

lower for PLANTS, AutoDock Vina and DOCK 6. Moreover, the significant difference in

average  RMSD  values  between  TOP pose  and  BEST  pose  in  AutoDock  Vina  and

PLANTS shows that their scoring function are unable to give high scores to BEST pose

(Table 2). Overall, the scoring function of AutoDock is able to model the peptide-ligand

complexes better than other methods on our dataset. 

Effect of initial geometry of ligand on docking results

We prepared three different initial geometries of ligands for docking.  First geometry is

the coordinates of ligands as available in the PDB (crystal ligands), second geometry is

obtained from energy minimization of PDB ligands using GAFF force field with the help

of Open Babel program (minimized ligands) and third geometry is the coordinates of

ligands downloaded from the Chemical Component Dictionary available in PDB (CCD

ligands).  Summary of docking results  using all  three initial  geometries of ligands are

given in Table 2, S10 and S11 respectively for crystal, minimized and CCD ligands. It is
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clear that the initial  geometry of ligands is  not affecting the overall  success rate and

average RMSD values. This may be associated with the size of the ligands as most of the

ligands considered in this study are small in size.

Correct addition of hydrogen atoms

Correctly adding hydrogen atoms in ligands and receptors is crucial in order to get the

meaningful  docking  results.  We  tested  the  ‘add  hydrogen’ tool  of  Open  Babel  and

Schrodinger packages in adding the hydrogen atoms explicitly to the ligand molecules in

our  dataset.  Schrodinger  package shows 61% success  while  Open Babel  shows 40%

success in correctly adding hydrogen atoms in the considered ligands. The success rate of

‘add hydrogen’ tool of both the programs is given in  Table S12. The performance of

Schrodinger is better as compared to Open Babel in adding hydrogen atoms to the current

dataset. However, both these tools are not able to correctly add hydrogen atoms on all the

ligands. Generally, Open Babel fails to correctly add hydrogen atoms in charged ligands

like SO4
2–, PO4

3– etc. and Schrodinger generally fails in aromatic ligands like C6H5OH

(phenol), C6H6O2 (resorcinol) etc. The failure of ‘add hydrogen tool’ of Schrodinger may

be associated with the higher bond lengths in PDB structures. Thus, manual verification

of added hydrogen in ligand molecules is necessary before proceeding to the next step in

docking.

Effect of charged ligands on overall docking results

We divided the whole dataset in charged and uncharged ligands in order to understand the

effect of charge on ligand molecules on overall docking results. Table S13 shows the

performance of all the considered docking methods for charged and uncharged ligands
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separately. Considering the TOP pose, AutoDock docking method shows 25% success

rate for charged ligands and only 15.38% success rate for uncharged ligands. In fact the

performance  for  all  the  considered  docking  methods,  except  DOCK-6,  is  better  for

charged ligands compared to uncharged ligands for both BEST and TOP docking poses.

On the other hand DOCK-6 shows comparable performance for charged and uncharged

ligands. The performance of AutoDock is  much better  compared to all  other docking

methods for TOP docking poses. Considering BEST docking poses, PLANTS shows the

best  performance  with  53.12%  success  rate  for  charged  and  34.62%  for  uncharged

ligands. Interestingly, AutoDock Vina performs better for charged and uncharged ligands

compared to AutoDock. In general, docking methods show better success rate for charged

ligands.

Effect of aromatic ligands on overall docking results

We tested the effect of aromatic ligands on overall docking results. The Table S14 depicts

the docking results for aromatic and non-aromatic ligands for all the considered docking

methods for both TOP and BEST poses.  All  the docking methods,  except AutoDock,

completely fail for aromatic ligands on the basis of TOP docking poses. AutoDock shows

27.27% success rate for aromatic and 19.15% success rate for other ligands for TOP

poses and this is the best performance. AutoDock vina shows most dramatic effect as the

success rate increases from 0% to 54.55% on considering BEST poses. Success rate is

0% for GOLD, rDOCK and GEMDOCK docking methods even for BEST docking poses

on  considering  aromatic  ligands.  On  the  other  hand,  PLANTS,  AutoDock  Vina,

AutoDock and DOCK 6 docking methods show better performance for aromatic ligands
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on  considering  BEST poses.  Thus,  AutoDock  is  much  better  compared  to  all  other

docking  methods  for  aromatic  ligands  on  the  basis  of  TOP poses.  Interestingly,  the

performance  of  AutoDock  Vina  docking  method  is  best  for  aromatic  ligands  and

PLANTS docking method for non aromatic ligands on the basis of BEST poses.

Implementation of web server

Based on the above benchmarking study and to help the scientific community, we have

developed a web server ‘PLDbench’ with an easy interface. This server has following

modules: (i) Single: In this module a user can submit a docked pose and can select the

original crystal ligand out of 57 peptide-ligand complexes (used in this benchmark study)

from  dropdown  menu.  User  will  get  the  RMSD  value  between  these  ligands.  (ii)

Benchmark: This module provides an option to perform a benchmark analysis on a set of

docked poses given by a user in archived zip file format. (iii) Compare: This module

provides an option to calculate RMSD between original ligand and predicted pose given

by  the  user.  PLDbench  web  service  is  freely  accessible  at

http://webs.iiitd.edu.in/raghava/pldbench/

LIMITATIONS

Currently  no  docking  method  is  available  specifically  for  modeling  peptide-ligand

interactions. Studying peptide-ligand interactions is difficult and suffers from following

limitations: i). Peptides are more flexible than proteins and tend to adopt more than one

conformation  ii)  binding  of  small  molecules  to  peptides  may  trigger  substantial

conformational changes and therefore changing the tertiary structure of the peptide. iii)
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Peptides  lack  a  well-defined  active  site  cavity  and are  generally  involved  in  surface

mediated interactions. Moreover, the peptide-ligand complexes extracted from the PDB

and used as dataset in this study, lacks the structural diversity in small ligands, which

further poses a limitation in studying peptide-ligand interactions. However, considering

the importance of peptide-ligand docking, we need to understand this  area even after

these limitations. Thus, selection of methods from currently available docking methods

may be crucial till a novel method is developed specifically for studying peptide-ligand

interactions.

CONCLUSION

The capability of 7 docking methods is benchmarked for their ability to model peptide-

ligand interactions. Three different initial geometries of ligands were tested for docking.

We observed that the docking results are not affected on the basis of initial geometries of

ligand molecules. This work also indicates the necessity of manual verification of added

hydrogen  atoms  in  ligand  molecules  before  proceeding  to  the  next  step  in  docking.

AutoDock clearly shows much better performance compared to the other six docking

methods to model peptide-ligand interactions considering the TOP pose. On the other

hand, performance of AutoDock, AutoDock Vina, PLANTS and DOCK 6 are similar for

the BEST poses. A slight increase in the cutoff values (>2.00Å to >2.25Å) shows much

improvement in the success rate of most of the docking methods. Comparison of 3, 5, 10,

20 and 30 docked poses shows that 20 docked poses may be appropriate for modeling

peptide-ligand interactions. Much improvement in the success rate  and average RMSD

values is observed on the combination of all the considered docking methods. Clearly, if
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one can combine the scoring function of all these docking methods, 75% success rate

may be achieved and reasonable average RMSD values may be obtained for peptide-

ligand interaction. This directs the path of the future work in this area. This work also

shows  the  need  to  parameterize  the  docking  methods  for  modeling  peptide-ligand

interactions  and  development  of  a  new  scoring  function.  However,  one  may  use

AutoDock for docking studies of peptide-ligand complexes till further advancements are

achieved in this area.

SUPPLEMENTARY MATERIAL

One file named ‘Supplementary file’ in PDF file format contains detailed information

about RMSD values of all the docked poses generated by all the benchmarked docking

methods.
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Table legends

Table 1:  List of 57 peptide-ligand complexes used in this study for benchmarking, it

includes amino acid sequence of peptides and name of ligand.

Table 2: The performance of different docking methods on 57 peptide-ligand complexes

in terms of RMSD between docked and original poses as well as success rate.  These

methods were evaluated on the basis of their TOP and BEST docking pose. 

Table 3: The performance of different docking methods in terms of percent success rate

at different RMSD cut-off.

Table 4: Variation in performance (average RMSD and RMSD range) of TOP and BEST 

docking poses generated by different docking methods on 57 peptide-ligand complexes.

Table 5:  Percent of cases with absolute difference between BEST and TOP poses at  

different RMSD cut-off.

Figure Legends

Figure 1:  The performance (RMSD between docking and original  pose)  of  different

methods based on their TOP and BEST docking pose, including best-of-TOP poses and

best-of-BEST poses. 

Figure 2: RMSD variation in top 20 poses for all the docking methods

Figure  3:  A case  study  (1xw7C)  of  the  comparison  of  docked  poses  obtained  from

various docking methods
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Table 1:

PDB chains Peptide sequence Ligands
1cjrA KETAAAKFERQHMDS SO4
1cq4B YRIDRVRLFVDKLDNIAQVPRVG SO4
1gmdE CGVPAIQPVL HEX
1jmtB KYWDVPPPGFEHITPMQYKAMQA HEZ
1oxgB IVNGEEAVPGSWPW SO4
1rweC GIVEQCCHSICSLYQLENYCN IPH
1ssaB PYVPVHLDASV SO4
1ssbB PYVPVHYDASV SO4
1uo4B MKQIEDKGEEILSKLYHIENELARIKKLLGE PIH
1xw7C GILEQCCTSICSLYQLENYCN IPH
2c5kP KSLRVSSLNKDRRLLLREFYNL SO4
2g9hC PKYVKQNTLKLAT SO4
2hy6E VKQLADAVEELASANYHLANAVARLAKAVGE HEZ
2hy6G VKQLADAVEELASANYHLANAVARLAKAVG HEZ
2ipzD MKVKQLVDKVEELLSKNYHLVNEVARLVKLVGER IPA
2kadA SSDPLVVAASIIGILHLIAWILDRL 308
2krdI RISADAMMQALLGARAK WW7
2ljcA SDPLVVAASIIGILHFIAWTIGHLNQIKR RIM
2ly0A SNDSSDPLVVAANIIGILHLILWILDRLFFK A2Y
2nlpD DHYNCVSSGGQCLYSACPIFTKIEGTCYRGKAKCCK SO4
2nrnC KVKQLADKVEELLSKNYHLANEVARLAKLVG PO4
2nrnD MKVKQLADKVEELLSKNYHLANEVARLAKLVGER PO4
2odbB EISAPQNFQHRVHTSFDPKEGKFVGLPPQWQNILD SO4
2plxB QCKVMCYAQRHSSPELLRRCLDNCEK GOL
2qbxD SNEWIQPRLPQ SO4
2qurB TTYADFIASGRTGRRNAIHD ADP
2vohB PNSILGQVGRQLALIGDDINRRYD SO4
2w44E QCCTSICSLYQLENYCN RCO
2xxmT ITFEDLLDYYG ACT
3cs8B PSLLKKLLLAPA SO4
3gkyC GIVEQCCHSICSLYQVENYCN IPH
3gnyB ACYCRIPACIAGERRYGTCIYQGRLWAFCC GOL
3gs2B EVTVTDITANSITVTFREAQAAEGFFRDRS SO4
3i5wA ATCYCRTGRCATHESLSGVCEISGRLYRLCCR FLC
3ipuC SLTERHKILHRLLQE SO4
3jz1A EADCGLRPLFEKKSLEDKTERELLESYIDG NO3
3jzsP ETFEHWWSQLLS EDO
3kq6C GIVHQCCHSICSLYQLENYCN IPH
3kujB FVPNVHAAEFVPSFL SO4
3lvxB ACYCRAPACIAGERRYGTCIYQGRLWAFCC SO4
3m94C RIIYDRKFLMECR ACE
3srnB PYVPVHFNASV SO4
3t2aB FVNQHLCGSHLVEALYLVCGERGFFYTPKA TMO
3tzxC SDKENFWGMAVA SO4
3tzzC DKENFWGMAV SO4
3v19C GLLEQCCHSICSLYQLENYCN IPH
4ehqG HSMQALSWRKLYLSRAKLKA GBL
4gbiA GIVEQCCTSICSLYQLENYCN CRS
4gwtA KLPPGWEKRMSRSSGRVYYFNHITNASQWERPS LMR
4jygG RHKILHRLLQE FLC
4jyiG HKILHRLLQE FLC
4jznK TGWLAGLFYQHK SO4
4lbfD ACYCRIPACIAGERRYGTCAYQGRAWAFCC GOL
4nagA GGPLAGEEIGGFNVPG HEZ
4srnB PYVPVHFAASV SO4
4uneB FVNQHLCGSHLVEALYLVCGERGFFFTPKT SO4
4uneD FVNQHLCGSHLVEALYLVCGERGFFFTPK SO4
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Table 2:

Docking methods
Performance of TOP and BEST docking pose

RMSD % Success
AutoDock-30 3.816 35.09
AutoDock-20 3.956 31.58
AutoDock-10 4.230 28.07
AutoDock-5 4.505 26.32
AutoDock-3 4.655 22.81
AutoDock-1 4.735 21.05
AutoDock Vina-20 4.496 40.35
AutoDock Vina-10 6.601 28.07
AutoDock Vina-5 8.806 14.04
AutoDock Vina-3 9.528 10.53
AutoDock Vina-1 10.420 10.53
GEMDOCK-20 9.531 8.77
GEMDOCK-10 10.477 8.77
GEMDOCK-5 10.940 7.02
GEMDOCK-3 11.795 7.02
GEMDOCK-1 12.627 7.02
rDock-30 10.826 5.26
rDock-20 11.280 5.26
rDock-10 11.558 5.26
rDock-5 11.786 5.26
rDock-3 11.869 5.26
rDock-1 12.300 5.26
PLANTS-30 4.480 43.86
PLANTS-20 4.872 43.86
PLANTS-10 6.682 35.09
PLANTS-5 8.773 24.56
PLANTS-3 9.595 21.05
PLANTS-1 11.299 12.28
GOLD-30 7.251 21.05
GOLD-20 8.045 15.79
GOLD-10 8.575 12.28
GOLD-5 9.341 10.53
GOLD-3 10.469 8.77
GOLD-1 11.669 3.51
DOCK 6-30 4.142 22.81
DOCK 6-20 4.760 22.81
DOCK 6-10 6.071 15.79
DOCK 6-5 6.922 10.526
DOCK 6-3 7.732 5.263
DOCK 6-1 8.961 5.26

RMSD is the root mean square deviation between docked and crystallographic poses. % Success is the
percent success rate in reproducing the docked poses within 2.0Å RMSD with the original pose. 3, 5, 10, 20
and 30 notations show the number of generated poses to select the BEST pose. 1 notation shows the TOP
pose.
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Table 3

RMS
D

(Å)

% Success rate of TOP docking pose
AutoDoc

k
AutoDock Vina GEMDOCK rDock PLANTS GOLD DOCK 6

2.00 21.05 10.53 7.02 5.26 12.28 3.51 5.26
2.25 31.58 10.53 7.02 5.26 15.79 7.02 7.02

2.50 35.09 10.53 8.77 5.26 19.30 8.77 7.02

2.75 36.84 10.53 10.53 7.02 19.30 10.53 8.77

3.00 40.35 10.53 10.53 7.02 21.05 12.28 8.77

4.00 45.61 12.28 12.28 7.02 24.56 15.79 8.77

5.00 50.88 14.04 12.28 10.53 26.32 15.79 12.28

8.00 84.21 28.07 21.05 17.54 33.33 21.05 35.09

10.00 98.25 57.89 38.60 33.33 42.11 35.09 59.65

12.00 100 73.68 57.89 52.63 56.14 52.63 84.21

15.00 82.46 71.93 68.42 66.67 71.93 98.25

20.00 87.72 80.70 89.47 85.96 94.74 98.25

25.00 100 92.98 100 100 98.25 100

30.00 98.25 100
35.00 100

RMS
D

(Å)

% Success rate of BEST docking pose
AutoDoc

k
AutoDock Vina GEMDOCK rDock PLANTS GOLD DOCK 6

2.00 35.09 40.35 8.77 5.26 43.86 21.05 22.81
2.25 47.37 43.86 10.53 8.77 43.86 24.56 33.33

2.50 47.37 43.86 12.28 10.53 47.37 24.56 38.60

2.75 47.37 47.37 12.28 10.53 50.88 26.32 42.11

3.00 50.88 47.37 14.04 10.53 54.39 26.32 43.86

4.00 59.65 52.63 15.79 12.28 57.89 31.58 57.89

5.00 61.40 61.40 21.05 12.28 57.89 36.84 64.91

8.00 89.47 80.70 38.60 26.32 82.46 56.14 94.74

10.00 100 89.47 63.16 45.61 91.23 73.68 96.49

12.00 98.25 77.19 66.67 96.49 80.70 98.25

15.00 100 87.72 78.95 98.25 96.49 100

20.00 92.98 92.98 100 100

25.00 96.49 100

30.00 98.25
35.00 100

TOP pose means the pose with best docking score. BEST pose means the pose having lowest RMSD
value compared to the original pose.
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Table 4: Variation in performance (average RMSD and RMSD range) of TOP and BEST
docking poses generated by different docking methods on 57 peptide-ligand complexes.

Docking methods
Average RMSD (RMSD Range) (Å)

TOP poses BEST poses

AutoDock 4.735 (0.32 – 10.02) 3.816 (0.28 – 9.56)
AutoDock Vina 10.420 (0.30 – 24.55) 4.496 (0.28 – 12.19)

GEMDOCK 12.627 (1.59 – 30.68) 9.531 (0.52 – 30.62)

rDock 12.300 (1.53 – 21.97) 10.826 (0.56 – 21.95)

PLANTS 11.299 (1.31 – 23.19) 4.480 (0.40 – 15.50)

GOLD 11.669 (0.41 – 25.25) 7.251 (0.41 – 19.08)

DOCK 6 8.961 (1.20 – 20.64) 4.142 (1.20 – 13.47)

TOP pose means the pose with best docking score. BEST pose means the pose having lowest RMSD value 
compared to the original pose.
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Table 5: Percent of cases with absolute difference between BEST and TOP poses at
different RMSD cut-off.

Docking methods
RMSD cut-offs

|B-T|=0Å |B-T|≤0.25Å |B-T|≤0.50Å |B-T|≤0.75 Å

AutoDock-30 1.75 52.63 70.18 77.19

AutoDock-20 1.75 59.65 75.44 84.21

AutoDock-10 5.26 73.68 84.21 91.23

AutoDock-5 19.30 84.21 91.23 96.49

AutoDock-3 35.09 89.47 94.74 98.25

AutoDock Vina-20 5.26 15.79 17.54 19.30

AutoDock Vina-10 10.53 29.82 35.09 38.60

AutoDock Vina-5 22.81 56.14 63.16 64.91

AutoDock Vina-3 50.88 78.95 80.70 84.21

GEMDOCK-20 1.75 40.35 50.88 56.14

GEMDOCK-10 1.75 52.63 57.89 63.16

GEMDOCK-5 15.79 63.16 68.42 68.42

GEMDOCK-3 31.58 75.44 77.19 78.95

rDock-30 3.51 43.86 54.39 63.16

rDock-20 8.77 57.89 64.91 71.93

rDock-10 12.28 63.16 71.93 82.46

rDock-5 19.30 78.95 80.70 87.72

rDock-3 33.33 85.96 89.47 92.98

PLANTS-30 3.51 10.53 12.28 15.79

PLANTS-20 3.51 10.53 14.04 17.54

PLANTS-10 10.53 21.05 29.82 35.09

PLANTS-5 21.05 38.60 50.88 61.40

PLANTS-3 38.60 57.89 66.67 70.18

GOLD-30 3.51 14.04 21.05 24.56

GOLD-20 8.77 26.32 33.33 36.84

GOLD-10 14.04 31.58 38.60 42.11

GOLD-5 22.81 42.11 49.12 56.14

GOLD-3 40.35 61.40 71.93 78.95

DOCK 6-30 5.26 10.53 12.28 12.28

DOCK 6-20 8.77 15.79 17.54 17.54

DOCK 6-10 14.04 26.32 26.32 33.33

DOCK 6-5 17.54 40.35 47.37 52.63

DOCK 6-3 29.82 56.14 61.40 70.18

|B-T| represents the absolute difference in the RMSD between the BEST and the TOP pose. 3, 5, 10, 20 and
30 notations show the number of generated poses to select the BEST pose.
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