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ABSTRACT

M etagenomic studies have primarily relied on de novo approaches for reconstructing genes and
genomes from microbia mixtures. While database driven approaches have been employed in certain
analyses, they have not been used in the assembly of metagenomes. Here we describe the first
effective approach for reference-guided metagenomic assembly of low-abundance bacterial genomes
that can complement and improve upon de novo metagenomic assembly methods. When combined

with de novo assembly approaches, we show that M etaCompass can generate more complete
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assemblies than can be obtained by de novo assembly alone, and improve on assemblies from the

Human Microbiome Project (over 2,000 samples).

Keywords: metagenome assembly, microbiome, low coverage assembly, comparative assembly

Background

Microorganisms play an important role in virtually all of the Earth's ecosystems, and are critical for
the health of humans[1], plants, and animals. Most microbes, however, cannot be easily grown in a
laboratory [2]. The analysis of organismal DNA sequences obtained directly from an environmental
sample (afield termed metagenomics), enables the study of microorganisms that are not easily
cultured. Metagenomic studies have exploded in recent years due to the increased availability of
inexpensi ve high-throughput sequencing technologies. For example, the MetaHI T consortium
generated about 500 billion raw sequences from 124 human gut samplesinitsinitial analysis[3], and
the Human Microbiome Project (HMP) has generated hundreds of reference microbial genomes and

thousands of whole metagenome sequence datasets from healthy subjects [4].

The analysis of these vast amounts of datais complicated by the fact that reconstructing large
genomic segments from metagenomic reads is a formidable computational challenge. Even for single
organisms, the assembly of genome sequences from short reads is a complex task, primarily due to
ambiguities in the reconstruction that are caused by genomic repeats [5]. In addition, metagenomic
assemblers must be tolerant of non-uniform representation of genomes in a sample as well as of the

genomic variants between the sequences of closely related organisms. Despite advancesin
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metagenomic assembly algorithms over the past years [6-10], the computational difficulty of the

assembly process remains high and the quality of the resulting assemblies requires improvement.

Conseguently, many analyses of metagenomic data are performed directly on unassembled reads [11—
15], however the much shorter genomic context leads to lower accuracy [16].The need for effective
and efficient metagenomic assembly approaches remains high, particularly since long read

technol ogies (which partly mitigate the challenges posed by repeats [17—-19]) are not yet effectivein
metagenomic applications due to lower throughput, higher costs[20, 21], and higher required DNA

quality and concentration.

Reference-guided, comparative assembly approaches have previously been used to assist the
assembly of short reads when a closely related reference genome was available [22, 23]. Comparative
assembly works as follows: short sequencing reads are aligned to a reference genome of a closely
related species, then their reconstruction into contigsisinferred from their relative locationsin the
reference genome [23]. This process overcomes, in part, the challenge posed by repeats as the entire
read (not just the segment that overlaps within adjacent reads) provides information about its location

in the genome.

Currently, thousands of bacterial genomes have been sequenced and finished [24], and this number is
expected to grow rapidly soon thanksto long read technologies. These sequenced genomes provide a
great resource for performing comparative assembly of metagenomic sequences. Comparative
approaches developed in the context of single genomes cannot, however, be directly used in a

metagenomic setting. Simply mapping a set of reads to even hundreds of different genomesis
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currently computationally prohibitive. Furthermore, genome databases comprise many variants of a
same genome (e.g., the US FDAs GenomeTrackr project [25] alone has contributed over 60,000
different strains of Salmonella), and genome by genome analyses would result in redundant
reconstructions of metagenomic sequences. We also note that some recent reference-guided
strategies implemented in genomic analysis tools, such as the “--trusted-contigs’ feature of the
SPAdes assembler [26, 27] and StrainPhlan [28] ignore the fact that the data being reconstructed
originates from genomes that are related but different from the genomes found in public databases.
As aresult, such approaches may actually mis-assemble the metagenomic data exactly within the

genomic regions where novel biological signals may be located.

In this paper, we describe the first effective assembly software package for the reference-assisted
assembly of metagenomic data. We rely on an indexing strategy to quickly construct sample-specific
reference collections, thereby dramatically reducing the computational costs of mapping
metagenomic reads to references. Furthermore, we eliminate redundancy in the assembly by
disambiguating the mapping of reads against closely related genomes, and identify differences
between the metagenomic data and the reference genomes in order to reduce the likelihood of mis-

assembly.

We show that our approach effectively complements de novo assembly methods. We also show that
the combination of comparative and de novo assembly approaches can boost the contiguity and
completeness of metagenomic assembly, and provide an improved assembly of the entire whole-

metagenome sequencing data generated by the Human Microbiome Project [4].
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Our softwareis released freely under an open-source license at:

http://www.qgithub.com/marbl/M etaCompass .

Results

All assemblies were compared based on contiguity statistics, number of errors, and based on the
number of complete phylogenetic marker genes found in the final assembly — a measure of how
useful an assembly may be to downstream analyses. The coverage of the set of marker genes has

been used by the HM P and others [3, 29, 30] as measure of the completeness of an assembly.

Evaluation of performance on synthetic metagenomic dataset

We first evaluated M etaCompass by assembling a synthetic microbial community [31]. The synthetic
sample was downloaded from the NCBI Short Read Archive (SRA) database, (SRR606249) and
contains 54 bacteria and 10 archaea. Among these organisms, 55 had complete genome sequencesin
the NCBI RefSeq database (the database used by default by MetaCompass), and 9 were available
only as a high-quality draft assembly at the time of publication. Since the true genome sequences are
known, these data are ideal asthey allow usto fully quantify the quality of the genomic

reconstruction.

We set the minimum coverage in MetaCompass at 1-and 2-fold (see Methods), then performed
reference genome selection (see Methods and Supplementary Table 1). The assembly results (Table
1, see MetaCompass 1X and 2X) can be considered an approximate upper bound on the performance
of any assembly tool, asin this case 90% of the genomes recruited were exactly those from which the
metagenomic reads were obtained. We compared the performance of MetaCompass with that of

three widely used de novo assemblers. IDBA-UD (July 2016) [8], MEGAHIT (v1.0.6) [32], and
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metaSPAdes (v3.9.0) [33]. Compared with these assemblers, M etaCompass achieved higher genome
recovery (Table 1, Figure 1) and produced significantly larger and more accurate contigs (Table 1).
When we decreased the M etaCompass minimum coverage threshold from 2-fold to 1-fold, we
observed gains in maximum contig size and total aligned length, while retaining asimilar error
profile. However, we observe higher genome recovery at minimum coverage threshold 2 and 3. On
the basis of the maximum contig Size, total aligned length, error profile and genome recovery, we
chose 2X as default setting for MetaCompass. Note that here we are not trying to prove that
MetaCompass is better than de novo assemblers, and in this setting, the comparison is not fair
because our reference collection contains the exact genomes present in the samples. Rather, we are
trying to show that the performance of MetaCompass can be excellent if the reference collection

contains genomes highly similar to those in the metagenomic sample being assembled.

Refer encesremoved from database

To provide a better idea of how MetaCompass would perform in a worst-case scenario, we removed
from the database the genomes represented in the mock community (Supplementary Table 2), thereby
forcing MetaCompass to recruit near-neighbor reference genomes, when available. (see
‘MetaCompass.nr’ row, Table 1). Median genome recovery for MetaCompassiis just 1% less than
that of de novo assemblers. The accuracy of the reconstruction, as measured by mismatch and indel
rates, is higher than that of IDBA-UD and metaSPAdes (Table 1, MetaCompass.nr (2x)), while

moderately lower than MEGAHIT.
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The number of misassemblies and local misassemblies per 1 Mbp of assembled sequence (as reported
by MetaQuast [34]) increased from 2.0 to 4.9 when reducing the coverage threshold to 1. To put this
increase into context, we measured the total number of possible errors by evaluating the "accuracy”

of the near-neighbor reference genomes recruited by MetaCompass with respect to the correct
reference sequence (Figure 2, see hashed blue bar). This allows us to capture the real differences
between the recruited reference genomes and the actual genome represented in the synthetic dataset
[31], essentially providing an upper bound for the number of errors MetaCompass would make if it
simply recapitulated the sequence of the selected reference genomes. As seen in Figure 2,
MetaCompass is making five times fewer errors than would be expected, indicating our softwareis

not unduly biased by the sequence and structure of the reference genome.

Evaluation of performance on downsampled synthetic datasets

To evaluate the ability of MetaCompass to assemble low-coverage genomes, we down-sampled the
synthetic dataset to just 5 million paired-end reads, or 10% of the original data set. After down-
sampling, the average coverage was reduced to approximately 3-fold (data not shown). The results
(Table 2, Figure 3) highlight that MetaCompass can recover a median of 90% of each of the 64
genomes in the sample. While metaSPAdes comesin second place and is able to recover 80%
(median recovery), it does so at the cost of a four times higher mis-assembly rate. The two remaining

methods, MEGAHIT and IDBA-UD, leave a quarter to a half of the genomes unassembled (Table 3).

Computational performance

When dealing with large-scale data sets, the combination of total required memory and run timeisan
important factor in determining the applicability of a computational tool. We first evaluated the
runtime performance of MetaCompass on a Linux 12-core server node with 80 GB of memory using

the Shakya et al. synthetic dataset. The wall clock run time on this synthetic dataset for MetaCompass
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is comparable to that of de novo assemblers, sometimes lower (Supplementary Table 3).
MetaCompass (without PILON) and Megahit were the only approaches that required <16GB of RAM

on a 100 million read dataset, highlighting the scalability of these methods to large datasets.

Reassembly of the data generated by the Human Microbiome Project (HMP2)

To further explore the benefits and limits of comparative approaches for metagenomic assembly, we
re-analyzed with MetaCompass 2,077 metagenomic samples from the HMP Project (ftp://public-

ftp.nmpdacc.org/[llumina/l PHASEII/). These samples cover 15 body sites from four broad regions of

the human body: oral, skin, stool, and vaginal. We compared the assemblies produced by
MetaCompass with the official IDBA-UD assemblies reported by the HMP project [35]. Note that
these assemblies were recently improved by Lloyd-Price et a. [36] but we did not include them in
this study. Across all samples, on average, M etaCompass outperforms the HM P2 de novo approach,
leading to an overall better assembly of the original data (Table 3, Figure 4). However, the relative
performance of MetaCompass and the HM P2 assembly varied across body-sites due to the specific
characteristics of the microbial communities being reconstructed. While M etaCompass generates
more assembled sequence and complete marker genes across all body sites, the maximum contig size
and sizeat 1 Mbp metrics vary per body site. In oral and stool samples (Figure 4), MetaCompass
outperforms de novo assembly for all metrics. In skin and vaginal samples (Figure 4), the de novo
approach has better contiguity statistics but M etaCompass assembles more complete marker genes.
To gain further insight into these results we calculated the average nucleotide identity between the de
novo assembled contigs and the recruited reference genomes for each body site. In all body sites,
except for oral, the assembled contigs had 99% average nucleotide identity to the reference genomes.
In the oral samples, the most distant reference genomes had only 97% identity to the assembled
contigs, indicating that at least in part, the lower effectiveness of MetaCompass is due to the absence

of asufficiently closely related reference genome for some of the oral samples.
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To further explore the drop in contiguity in skin and vaginal samples, we focused on just the contigs
that mapped to bacterial genomes contained in the reference database, allowing for a direct
comparison between MetaCompass and de novo contigs. The results shown in Table 4 indicate that
for this set of contigs, MetaCompass outperforms the de novo approach for the vaginal samples.
However, the de novo HM P2 assembly of the skin sampleis still better in terms of complete genes
recovered, but equivalent to MetaCompass with respect to complete marker genes recovered (a

measure of assembly completeness).

Comparing reference-guided to de novo assembly on low-coverage HM P2 samples

To assess the ability of MetaCompass to assembl e low-abundance organisms, we focused on all skin
HMP2 samples. The skin samples had the second lowest average number of reads while still
containing reasonable diversity and richness, as reported in Table 3. We removed the contigs
assembled via de novo assembly from the M etaCompass output, collected the reference genomes that
were used, mapped the HM P2 contigs to these reference genomes, and then evaluated the number of
complete genes and complete marker genes in both. Compared to the HM P2 assembly, reference-
guided assembly of these low coverage samplesis able to reconstruct approximately 10% more
marker genes (4,423 versus 3,915) than the de novo approach, roughly equating to 10 additional

complete bacterial genomesin total.

We next searched for microbes that were present in the skin samples at relatively low coverage and
explored the differences between the reconstructions generated by the HM P2 project and
MetaCompass. Specifically, we identified alow coverage assembly of a Propionibacterium acnes

genome reconstructed by both M etaCompass and the HMP in sample SRS057083. The HMP2
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assembly covers less than 40% of the closest reference genome (NC_016516.1, Propionibacterium
acnes Typel A2 P.acn33), while the MetaCompass assembly covers more than 90% of the same

genome.

Discussion

The benefit of comparative assembly is highly dependent on the reference genomes available in the
database provided to MetaCompass. While MetaCompass can effectively use reference genomes that
are distantly related to the genomes being assembled, the quality of the reconstruction is lower than
can be achieved with closely related reference sequences. As the set of genome sequences available
in public databases continues to increase, so will the effectiveness of reference-guided assembly

approaches such as MetaCompass.

We have shown MetaCompass to be particularly effective in the assembly of low coverage or rare
microbes, setting in which de novo assembly approaches simply cannot be used with good results.
Improved assembly of low-abundance, rare microbes from existing datasets has the potential to
provide valuable information in complex microbial communities or clinical samples where the host
DNA comprises alarge fraction of the data. Clinical applications are also a particularly relevant
application domain for comparative approaches as the vast mgjority of publicly available genome

seguences comprises human pathogens.

While M etaCompass provided an advantage over de novo approaches for most of the human-
associated microbial communities sampled by the HMP project, in skin samples the performance of

M etaCompass was on average lower than the assemblies produced by the HMP. This result could be


https://doi.org/10.1101/212506
http://creativecommons.org/licenses/by/4.0/

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

bioRxiv preprint doi: https://doi.org/10.1101/212506; this version posted November 1, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

dueto structural genome dynamics of bacterial defense systerms commonly found in skin microbes
[37-39], situation that introduces frequent structural variants between the reference genomes and the
corresponding environmental isolates. We plan to further explore this hypothesi s through graph-

based analyses of de novo assemblies of the corresponding communities.

MetaCompass relies on the taxonomic profiling tool MetaPhyler as an efficient indexing strategy for
identifying the reference genomes most closely related to the data being assembled. Compared to
whole-genome indices, the MetaPhyler index is based on just 18 phylogenetic marker genes that are
ubiquitous in bacteria, thus providing a compact and efficient data-structure. Using marker genes
ensures that any genome present at a high enough coverage to allow assembly will be detected
despite indexing just a small fraction of its genome. Since MetaPhyler, and other similar tools [40,
41] are designed for much broader use cases than those targeted here, it islikely that better
performance in both memory and speed can be achieved by an indexing strategy designed
specifically for comparative metagenomic assembly, and we plan to explore such strategies in future
work. Furthermore, comparative assembly provides new opportunities for the development of
sequence alignment approaches that optimize the combined time of index creation and alignment.
Most of the recent devel opments in sequence alignment have assumed index construction to be a one-
time off-line operation, trading off a computationally intensive indexing approach for more efficient

gueries.

Conclusion

We have described M etaCompass, a computational pipeline for comparative metagenomic assembly.
This novel method for metagenomic assembly leverages the increasing number of genome sequences

available in public databases. We have shown that comparative and de novo assemblies provide
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243  complementary strengths, and that combining both approaches effectively improves the overall

244  assembly, providing a consistent increase in the quality of the assembly. Even when distant reference
245  genomes are recruited, MetaCompass is competitive with de novo genome assembly methods. These
246  results are dueto two critical steps. First, reference bias is avoided by constructing the consensus
247  seguence from the reads within the sample, using the reference genome as just a guide, and by

248  breaking the assembly where the reads indicate a structural disagreement with the reference. Second,
249  unmapped reads are used in a de novo assembly process to reconstruct the sections of the

250 metagenomic sample that are not sSimilar to known reference genomes. In summary, we believe that
251 reference-guided approaches such as MetaCompass, will increasingly replace the more

252  computationally expensive and error-prone de novo assembly approaches as the collection of

253  available reference genome sequences increases.

254

255 Methods

256 Methods overview. First, we use MetaPhyler [13] to identify reference genomes that are most

257 closdly related to the data represented in the input a sample. We use the NCBI RefSeq genome

258 database (June 2016) as the standard reference collection for MetaCompass. We only retain for

259 further consideration the genomes estimated by MetaPhyler to be represented at sufficient depth of
260 coverage. These genomes are aligned using Bowtie2 [42] (v2.2.9). The resulting read alignments are
261 then used to identify aminimal set of genomes that best explain all read alignments, then the read
262  alignments are used to construct contigs. We developed the tool buildcontig to generate a consensus
263  sequence for the contigs and then use Pilon [43] (v1.18) to correct the contigs in away that reflects
264  the genome being assembled and to avoid biasing the reconstruction towards the reference sequence.

265 Contigs may be broken at this stage if the metagenomic sequence diverges from the reference
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266  sequence. Finally the reads that were not included in the reference-guided process outlined above are
267  assembled usng MEGAHIT [32] (v1.0.6) to reconstruct the metagenomic segments not represented

268 inthe reference collection. The details of each analysis step are described below.

269  Selecting reference genomes. While comparative assembly approaches have aready been described
270  for single genomes [23, 44] their use in metagenomic datais complicated by the multiple unknown
271  organisms and the thousands of genomes available in public databases. Building efficient indexes for
272  largereference collectionsis computationally challenging for short read aligners [41], both in term of
273  speed and memory consumption. For assembly, however we only need to use the genomes that are
274  detected in asample. To speed up the genome reference selection step, we reduce the 31 marker

275 genesin MetaPhyler to 18 universally conserved marker genes in bacteria and archaea (intersection
276  between the sets of genes used by FetchMG [45, 46] and MetaPhyler [13]). The MetaPhyler index is
277  much smaller than awhole-genome index, yet still allows usto identify the closest reference genome
278  detected in the sample being assembled. We further speed up the execution of MetaPhyler by

279  restricting the analysis to just those reads that share at |east one 28-mer with one of the marker gene
280  seguencesin the database. We rely on kmer-mask

281  (http://kmer.sourceforge.net/wiki/index.php?Main_Page) to execute this filtering step. The selected
282  reads are then aligned to the marker collection using BLASTN with the parameters *-word_size 28 -
283  evalue 1e-10 -perc_identity 95 -max_target_seqs 100" and a minimum HSP alignment length of 35.
284  Since closdly related genomes can share the same marker genes, weretain all hits with abit score
285  equal tothat of the top hit. Finally, we exclude from further consideration all the genomes with an

286  estimated coverage below a user-selected coverage threshold (2-fold, by default).

287  Aligning readsto reference sequences. The results presented in the paper are based on aligning the
288 readsto the selected reference genomes with Bowtie 2 [42] (parameters. --sam-nohead --sam-nosq --

289  end-to-end --quiet --all -p 12). The alignments are then filtered to keep ties of lowest edit distance for
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each reads, allowing aread to be aligned in multiple locations similar to the best-strata option of

bowtiel.

Selecting a minimal reference set. In its smplest form, the comparative assembly approach involves
mapping the reads to a genome and using their relative placement within this genome to guide the
construction of contigs[23]. In the context of metagenomic data, however, this processis
complicated by the fact that individual reads may map to multiple reference genomes, some of which
are highly similar to each other. Adequately dealing with thisambiguity is critical for effective
assembly. If al read mappings are retained, allowing a read to be associated with multiple reference
genomes, the resulting assembly will be redundant, reconstructing multiple copies of the homologous
genomic regions. If for each read a random placement is selected from among the multiple
equivalent matches, none of the related genomes may recruit enough reads to allow assembly,

thereby leading to a fragmented reconstruction. Assigning reads to genomes according to their
estimated representation in the sample (determined, e.g., based on the number of reads uniquely
mapped to each genome), may bias the reconstruction towards the more divergent reference genomes,
which may lead to an overall poorer reconstruction of the genomic regions shared across related
genomes. Here we propose a parsimony-driven approach — identifying the minimal set of reference

genomes that explains all read alignments.

Formally, this problem can be framed as a set cover problem, an optimization problem which is NP-
hard. To solve this problem, we use a greedy approximation algorithm, which iteratively picks the set
of genomes that covers the greatest number of unused reads. It can be shown that this greedy

algorithm is the best-possible polynomial time approximation algorithm for the set cover problem

[47].
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312  Building contigs. Given a set of reference genomes, selected as described above, a set of shotgun
313 reads, and the alignment between each read and reference genome, the process of creating contigsis
314  straightforward. For each nucleotide in each reference genome, we look at the bases from the reads
315 that are mapped to each locus, and pick the variant (nucleotide or indel) with the highest depth of
316 coverage as the consensus and report it. Minimum depth of coverage and length for creating contigs

317  can be specified through the program command-line options.

318 Removing reference-biaswith Pilon. Differences between the sequences being assembled and the
319 reference genome used by MetaCompass can degrade the performance of the comparative assembly
320 process. We employ Pilon [43] to "polish” the reference-guided assemblies, thereby changing the
321  consensus sequence to resemble the datain the sample rather than the reference genome. During this
322  process we also identify signatures of larger differences between the metagenomic sample and the

323  reference sequence, and break the assembly at those locations.

324  Combining reference-guided and de novo assembly. We employ the de novo assembler MEGAHIT
325 to assemble reads that were unable to be mapped back to the reference-guided assembly generated by
326 MetaCompass. These reads represent microbes that are missing from our reference database and

327  nove variants. This approach allows the final assembly to capture both reference and non-reference
328  sequences. We chose MEGAHIT becauseit is currently the most efficient de novo assembler for

329 metagenomics [48]. MEGAHIT is also the default assembly methods for the JGI metagenomic

330 pipeline [49] and performed well in arecent review [50].

331 Geneprediction and marker gene detection. The genes were predicted in the contigs using
332 MeaGeneMark [51](v3.26) with the “MetaGeneMark_v1.mod’ model parameter file and using the

333 option “-n” to remove partial genes containing long strings of “N”. The completion status of the
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genes (complete, lack 5, lack 3’ and lack both) was defined by detecting all the common start codon

“ATG",“TTG", “GTG") and stop codon (“TAA”, “TAG”, “TGA") of prokaryotic genes.

The 40 universal single copy marker proteins[52, 53] were identified in predicted genes using the

standalone version of fetchM G (v1.0) http://www.bork.embl.de/software/mOTU/) [46].

MetaQuast validation parameters. The command used to run MetaQuast was. ‘ metaquast.py -R

Jshakya references --fragmented --gene-finding’

Synthetic metagenome assembly parameters. IDBA-UD requires asingle fasta file that was
generated using the IDBA ‘fg2fa --merge --filter’ command. MEGAHIT was run using the options * --
presets meta-sensitive --min-count 3 --min-contig-len 300 -t 12'. MetaSPAdes was run using the
options ‘--meta -t 12’, then all contigs shorter than 300nt and with less than 3X coverage were
removed. IDBA-UD was run using the options ‘--min_count 3 --min_contig 300 --mink 20 --maxk
100 --num_threads 12’'. MetaCompass was run using the options -m [1,2,3] -g 300 -t 16" on the

synthetic dataset and *-m 3 -g 300 -t 16’ on the HM P2 samples.

Data availability. A list of all available HMP samples was obtained by combining those available

from the HM P Data Analysis and Coordination Center (DACC) (www.hmpdacc.org) and the HMP

SRA project PRINA48479 on 11/16/2016. Any sample listed in the SRA and not in the DACC was
downloaded and processed by the HMP WGS Read Processing Protocol

(http://www.hmpdacc.org/doc/ReadProcessing_SOP.pdf). Three DACC samples were corrupt or

extracted to aduplicate SRS identifier (SRS023176, SRS043422, and SRS057182) and were
downloaded from SRA and processed as above. A total of 98 454 samples were excluded from the
downloaded set. Thisresulted in 2,713 samples. Some samples (504) had no references recruited and
were excluded from further analysis. This resulted in 2,209 M etaCompass assemblies. All HM P2

assemblies available at ftp://public-ftp.hmpdacc.org/HMASM/IDBA/ were downloaded (2,341 total
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357 assemblies). A total of 2,077 samples (Supplementary Table 4) had both an HMP2 assembly and a

358 MetaCompass assembly and were used for the analysis.

359

360 The set of known genomes for the synthetic dataset is available via the Supplementary Table 2 from

361 Shakyaetal [31].

362 Software availability. MetaCompass is available as an open-source package at:

363  https://github.com/marbl/MetaCompass. The codeis licensed under the Artistic License 2.0:

364  https://opensource.org/licenses/Artistic-2.0

365
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535 Tablel. Evaluation of performance on synthetic dataset. MetaCompass (X) indicates the

536  minimum coverage setting (1X or 2X), and MetaCompass.nr indicates all 64 reference genomes

537  comprising the Shakya et al. dataset were removed from the database. T ool indicates the assembler, #
538 ctgs thetotal number of assembled contigs reported by each assembler, Max ctg isthe maximum
539 contig length (broken at errors) for all assembled contigs, Median Genome Recovery (%) isthe
540 median percentage of each of the synthetic genomes that is recovered, Complete Mar ker Genes

541  (median) isthe median number of fully reconstructed marker genes, Total Aligned L ength isthe
542  sum of the length of contigs aligned to the reference genomes, Total Unaligned L ength is the sum of
543 thelength of unaligned contigs, and M etaQuast reported errors are error statistics generated with

544 MetaQuast.

945
MetaQuast reported errors
Median Complete Local Total
Genome Marker Total Total Mismatches Indels Misasms Misasms  Misasms
# M ax Recovery  Genes Aligned Unaligned (/100kbp)  (/100kbp) (/IM bp) (/IMbp)  (/AMbp)
Tool ctgs ctg (%) (median) Length Length
MetaCompass 18,766 7,057,109 100% 40 198,113,036 6,340,278 61.9 19 0.8 11 1.9
(1X)
MetaCompass 23,648 5,841,107 100% 40 195,836,655 6,198,040 63.1 1.8 0.9 11 2.0
(2X)
MetaCompassnr 42,852 1,151,857 98% 40 195,225,556 6,338,183 89.9 36 33 16 4.9
(2X)
IDBA-UD 22,355 991,792 98% 39 186,777,879 6,186,424 98.6 35 53 1.0 6.3
MEGAHIT 35351 1,151,857 99% 40 195,334,581 6,263,018 66.5 2.8 15 1.0 25
metaSPAdes 21,424 1,438,235 99% 40 192,795,050 6,208,276 97.1 3.7 13 1.0 2.3

546
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547  Table 2. Evaluation of performance on down-sampled synthetic dataset. The synthetic dataset
548  was down-sampled to only contain 10% of the total reads. Tool indicates the assembler, # ctgs the
549  total number of assembled contigs reported by each assembler, M ax ctg is the maximum contig

550 length (broken at errors) of all assembled contigs, Median Genome Recovery (%) isthe median
551 percentage of each of the synthetic genomesthat is recovered, Complete Marker Genes (median) is
552  the median number of fully reconstructed marker genes, Total Aligned L ength isthe sum of the

553 length of contigs aligned to the truth genomes, Total Unaligned L ength isthe sum of the length of

554  unaligned contigs, and M etaQuast reported errorsare error statistics generated with M etaQuast

555  [54].
556
M etaQuast reported errors
Median Complete Mismatches Indels Misasms  Misasms
Genome Marker Total Total (/100kbp)  (/100kbp)  (>1kbp)  (<1kbp)
# Max Recovery Genes Aligned Unaligned
M ethod ctgs Ctg (%) (median) Length Length
MetaCompass 71457 962,929 90% 22 134,008,055 3,009,931 117.6 19 112 33
IDBA-UD 43973 120159  45% 6 75,970,693 1,564,008 175.0 53 3447 93
MEGAHIT 62842 209,706 76% 15 105,665,678 2,774,432 128.0 4.1 772 122
metaSPAdes 67138 287,554 80% 16 111,636,826 3,154,199 133.0 43 470 115

557
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Table 3. Re-assembly of 2,077 samples generated in the Human Microbiome Project. The results
are aggregated by body site. # indicates the total reads per sample, Avg cvg per sample (X) isthe
mean estimate read coverage calculated based on the de novo assembly of each sample and body site,
Shannon Entropy (median) isthe Shannon diversity value per body site as reported in Li et al 2012
[55].The rows labeled MC contain results obtained with MetaCompass. The rows labeled HM P2
show the statistics for contigs from the production HM P2 assembly. Total Size (Mbp) isthe total
assembly size for each method, M ax ctg size (kbp) is the size of the largest contig, M edian
Size@1Mbp (kbp) represents the mediad size of the largest contig C such that the sum of all contigs
larger than C exceeds 1Mbp. Median Complete Genes represents the median number of complete

genes per sample. Median Marker Genes indicates the median number of complete marker genes

per sample.
Shannon
Avg
Max Median
Entropy Median
cvg Total ctg Size@ Median
(median) size size Complete Marker
per IMbp
HMP2 # sample [55] Asm (Mbp) (kbp) (kbp) Genes Genes
body site
1107 20.0 24 HMP2 106,693 546.4 70.8 54,100 762
Oral
+8.1
MC 135,586 892.3 95.8 63,144 915
182 184 15 HMP2 2,944 890.7 36.5 4,654 78
Skin
4.7
MC 3,782 2,159.3 15.1 5,010 79

Stool 427 174 26 HMP2 56,573 592.8 109.1 84,193 847
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4.9 MC 66,838 3,301.0 230.9 94,297 1,043
159 7.8 0.2 HMP2 1,179 465.8 28.7 2,539 45
Vaginal
+4.5
MC 1,458 558.0 16.1 2,934 60
2077 18.2 19 HMP2 184,518 890.7 79.0 48,836 633
All
(+NA) (202) +56
MC 232161 3,301.0 114.6 57,639 764
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Table 4. Results of Human Microbiome Project analysiswithin the r efer ence genomes. The
results are aggregated by body site. # indicates the total reads per sample, Avg cvg per sample (X) is
the mean estimate read coverage calculated based on the de novo assembly of each sample and body
site, Shannon Entropy (median) isthe Shannon diversity value per body site asreported in Li et al
2012 [55].The rows labeled MC contain results obtained with MetaCompass. The rows labeled
HMP2 show the statistics for contigs from the production HM P2 assembly. Total Size (Mbp) isthe
total assembly size for each method, M ax ctg size (kbp) isthe size of the largest contig, Median
Size@1Mbp (kbp) represents the median size of the largest contig C such that the sum of all contigs
larger than C exceeds 1Mbp. Median Complete Genes represents the median number of complete

genes per sample. Median Marker Genes indicates the median number of complete marker genes

per sample.
Shannon
Avg Median
Max
Entropy Median
cvg Total ctg Size@ Median
(median) size size Complete Marker
per 1IMbp
HMP2 # sample [55] Asm (Mbp) (kbp) (kbp) Genes Genes
body site
1107 20.0 24 HMP2 10,977 162.2 10.1 5411 176
Oral
8.1
MC 17,731 594.0 234 8899 265
182 18.4 15 HMP2 615 716.9 154 1973 35
Skin
4.7
MC 618 2,159.3 8.3 1652 35

Stool 427 174 26 HMP2 8,655 2173 33.2 12512 142
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+4.9 MC 8,665 3,301.0 104.3 12759 217
159 7.8 0.2 HMP2 310 172.8 7.8 1364 37
Vaginal
+4.5
MC 330 558.0 8.0 1370 37
2077 18.2 1.9 HMP2 23,126 716.9 12.7 5578 145
All
(+NA) (202) +5.6
MC 30,296 3,301.0 28.2 8201 202
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585 Figurel. Genome recovery percentagesin synthetic metagenome (MetaCompass versus de novo

586 assembly). Box plots represent distribution of genome recovery percentages (for the 64 genomes
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587  present in the synthetic metagenome). x-axis indicates the assembly method, either IDBA-UD,

588 metaSPAdes, MEGAHIT, or MetaCompass. M etaCompass was run both with the reference genomes
589  present in the database (recruited as described in the methods) and without the truth reference

590 genomesin the database (they were individually removed). y-axis indicates the genome recovery
591  percentage, 0% indicates the genome was unassembled, whereas 100% indicates the genome was

592  fully assembled.

mismatches
upper bound
| Bmetacompass.nr
local misassemblies
metacompass
metaspades
B megahit
. . idba-ud
misassemblies
0 20 40 60 80 100 120 140

Error rate (errors/1 Mbp)

593

594  Figure2. Error profile on synthetic dataset. The hashed blue bar represents the difference between
595  the second-best reference genome (recruited by MetaCompass) and the true genome represented in
596 the sample. Thisbar can be viewed as an upper bound on the errors metacompass.nr could makeif it
597  simply reconstructed the reference genome. Mismatches are the number of basesin a contig that

598 differ from the reference genome. Misassembliesinclude large-scale (left flanking region aligns >1
599  kbp away from right flanking region) relocations, interspecies relocations, translocations, and

600 inversions. Local misassembliesinclude small-scale (left flanking region aligns <=1 kbp away from
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right flanking region) translocations and inversions. All errors are normalized to represent rates per 1

Mbp.

100

80

Percent recovery (%)
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0 10 20 30 40 50 50

Reference genome index

Figure 3. MetaCompass perfor mance on low cover age dataset. Results obtained by down-
sampling the Shakya et al. synthetic genome to just 10% of the original set of reads. The 64 genomes
present in the sample are ordered per assembler by percent recovery, from lowest to highest. They-
axis indicates how much of the n-th reference was covered by correctly assembled contigs (can range
from 0% to 100%). The colored dashed lines indicate the median percent recovery for each

assembler.
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Figure 4. Compar ative assembly of 2,077 metagenomic samples from the HM P2 Project. The
'bean plots represent the distribution of assembly contiguity and completeness statistics across all
samples within the data. The x axis organizes the data by assembly and body site. The y-axis
indicates the statistic used to evaluate the assembly contiguity or completeness. The top panel shows
total assembly size (kbp), the second panel shows maximum contig size (kbp), the third panel shows
the size of the contig at 1 Mbp, and the bottom panel shows the complete marker genes assembled per

sample.


https://doi.org/10.1101/212506
http://creativecommons.org/licenses/by/4.0/

