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ABSTRACT 13 

Metagenomic studies have primarily relied on de novo approaches for reconstructing genes and 14 

genomes from microbial mixtures. While database driven approaches have been employed in certain 15 

analyses, they have not been used in the assembly of metagenomes. Here we describe the first 16 

effective approach for reference-guided metagenomic assembly of low-abundance bacterial genomes 17 

that can complement and improve upon de novo metagenomic assembly methods. When combined 18 

with de novo assembly approaches, we show that MetaCompass can generate more complete 19 
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assemblies than can be obtained by de novo assembly alone, and improve on assemblies from the 20 

Human Microbiome Project (over 2,000 samples). 21 

 22 

Keywords: metagenome assembly, microbiome, low coverage assembly, comparative assembly 23 

Background 24 

Microorganisms play an important role in virtually all of the Earth's ecosystems, and are critical for 25 

the health of humans [1], plants, and animals. Most microbes, however, cannot be easily grown in a 26 

laboratory [2]. The analysis of organismal DNA sequences obtained directly from an environmental 27 

sample (a field termed metagenomics), enables the study of microorganisms that are not easily 28 

cultured. Metagenomic studies have exploded in recent years due to the increased availability of 29 

inexpensive high-throughput sequencing technologies. For example, the MetaHIT consortium 30 

generated about 500 billion raw sequences from 124 human gut samples in its initial analysis [3], and 31 

the Human Microbiome Project (HMP) has generated hundreds of reference microbial genomes and 32 

thousands of whole metagenome sequence datasets from healthy subjects [4].  33 

 34 

The analysis of these vast amounts of data is complicated by the fact that reconstructing large 35 

genomic segments from metagenomic reads is a formidable computational challenge. Even for single 36 

organisms, the assembly of genome sequences from short reads is a complex task, primarily due to 37 

ambiguities in the reconstruction that are caused by genomic repeats [5]. In addition, metagenomic 38 

assemblers must be tolerant of non-uniform representation of genomes in a sample as well as of the 39 

genomic variants between the sequences of closely related organisms.  Despite advances in 40 
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metagenomic assembly algorithms over the past years [6–10], the computational difficulty of the 41 

assembly process remains high and the quality of the resulting assemblies requires improvement.   42 

 43 

Consequently, many analyses of metagenomic data are performed directly on unassembled reads [11–44 

15], however the much shorter genomic context leads to lower accuracy [16].The need for effective 45 

and efficient metagenomic assembly approaches remains high, particularly since long read 46 

technologies (which partly mitigate the challenges posed by repeats [17–19]) are not yet effective in 47 

metagenomic applications due to lower throughput, higher costs [20, 21], and higher required DNA 48 

quality and concentration. 49 

 50 

Reference-guided, comparative assembly approaches have previously been used to assist the 51 

assembly of short reads when a closely related reference genome was available [22, 23]. Comparative 52 

assembly works as follows: short sequencing reads are aligned to a reference genome of a closely 53 

related species, then their reconstruction into contigs is inferred from their relative locations in the 54 

reference genome [23]. This process overcomes, in part, the challenge posed by repeats as the entire 55 

read (not just the segment that overlaps within adjacent reads) provides information about its location 56 

in the genome. 57 

 58 

Currently, thousands of bacterial genomes have been sequenced and finished [24], and this number is 59 

expected to grow rapidly soon thanks to long read technologies. These sequenced genomes provide a 60 

great resource for performing comparative assembly of metagenomic sequences. Comparative 61 

approaches developed in the context of single genomes cannot, however, be directly used in a 62 

metagenomic setting.  Simply mapping a set of reads to even hundreds of different genomes is 63 
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currently computationally prohibitive.  Furthermore, genome databases comprise many variants of a 64 

same genome (e.g., the US FDAs GenomeTrackr project [25] alone has contributed over 60,000 65 

different strains of Salmonella), and genome by genome analyses would result in redundant 66 

reconstructions of metagenomic sequences.  We also note that some recent reference-guided 67 

strategies implemented in genomic analysis tools, such as the “--trusted-contigs” feature of the 68 

SPAdes assembler [26, 27] and StrainPhlan [28] ignore the fact that the data being reconstructed 69 

originates from genomes that are related but different from the genomes found in public databases.  70 

As a result, such approaches may actually mis-assemble the metagenomic data exactly within the 71 

genomic regions where novel biological signals may be located.  72 

 73 

In this paper, we describe the first effective assembly software package for the reference-assisted 74 

assembly of metagenomic data.  We rely on an indexing strategy to quickly construct sample-specific 75 

reference collections, thereby dramatically reducing the computational costs of mapping 76 

metagenomic reads to references. Furthermore, we eliminate redundancy in the assembly by 77 

disambiguating the mapping of reads against closely related genomes, and identify differences 78 

between the metagenomic data and the reference genomes in order to reduce the likelihood of mis-79 

assembly. 80 

 81 

We show that our approach effectively complements de novo assembly methods.  We also show that 82 

the combination of comparative and de novo assembly approaches can boost the contiguity and 83 

completeness of metagenomic assembly, and provide an improved assembly of the entire whole-84 

metagenome sequencing data generated by the Human Microbiome Project [4]. 85 

 86 
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Our software is released freely under an open-source license at: 87 

http://www.github.com/marbl/MetaCompass .   88 

Results 89 

All assemblies were compared based on contiguity statistics, number of errors, and based on the 90 

number of complete phylogenetic marker genes found in the final assembly – a measure of how 91 

useful an assembly may be to downstream analyses. The coverage of the set of marker genes has 92 

been used by the HMP and others [3, 29, 30] as measure of the completeness of an assembly. 93 

Evaluation of performance on synthetic metagenomic dataset 94 

We first evaluated MetaCompass by assembling a synthetic microbial community [31]. The synthetic 95 

sample was downloaded from the NCBI Short Read Archive (SRA) database, (SRR606249) and 96 

contains 54 bacteria and 10 archaea. Among these organisms, 55 had complete genome sequences in 97 

the NCBI RefSeq database (the database used by default by MetaCompass), and 9 were available 98 

only as a high-quality draft assembly at the time of publication.  Since the true genome sequences are 99 

known, these data are ideal as they allow us to fully quantify the quality of the genomic 100 

reconstruction.   101 

 102 

We set the minimum coverage in MetaCompass at 1-and 2-fold (see Methods), then performed 103 

reference genome selection (see Methods and Supplementary Table 1). The assembly results (Table 104 

1, see MetaCompass 1X and 2X) can be considered an approximate upper bound on the performance 105 

of any assembly tool, as in this case 90% of the genomes recruited were exactly those from which the 106 

metagenomic reads were obtained.  We compared the performance of MetaCompass with that of 107 

three widely used de novo assemblers: IDBA-UD (July 2016) [8], MEGAHIT (v1.0.6) [32], and 108 
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metaSPAdes (v3.9.0) [33]. Compared with these assemblers, MetaCompass achieved higher genome 109 

recovery (Table 1, Figure 1) and produced significantly larger and more accurate contigs (Table 1). 110 

When we decreased the MetaCompass minimum coverage threshold from 2-fold to 1-fold, we 111 

observed gains in maximum contig size and total aligned length, while retaining a similar error 112 

profile. However, we observe higher genome recovery at minimum coverage threshold 2 and 3.  On 113 

the basis of the maximum contig size, total aligned length, error profile and genome recovery, we 114 

chose 2X as default setting for MetaCompass. Note that here we are not trying to prove that 115 

MetaCompass is better than de novo assemblers, and in this setting, the comparison is not fair 116 

because our reference collection contains the exact genomes present in the samples. Rather, we are 117 

trying to show that the performance of MetaCompass can be excellent if the reference collection 118 

contains genomes highly similar to those in the metagenomic sample being assembled. 119 

References removed from database 120 

To provide a better idea of how MetaCompass would perform in a worst-case scenario, we removed 121 

from the database the genomes represented in the mock community (Supplementary Table 2), thereby 122 

forcing MetaCompass to recruit near-neighbor reference genomes, when available. (see 123 

‘MetaCompass.nr’ row, Table 1). Median genome recovery for MetaCompass is just 1% less than 124 

that of de novo assemblers. The accuracy of the reconstruction, as measured by mismatch and indel 125 

rates, is higher than that of IDBA-UD and metaSPAdes (Table 1, MetaCompass.nr (2x)), while 126 

moderately lower than MEGAHIT.  127 
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The number of misassemblies and local misassemblies per 1 Mbp of assembled sequence (as reported 128 

by MetaQuast [34]) increased from 2.0 to 4.9 when reducing the coverage threshold to 1. To put this 129 

increase into context, we measured the total number of possible errors by evaluating the "accuracy" 130 

of the near-neighbor reference genomes recruited by MetaCompass with respect to the correct 131 

reference sequence (Figure 2, see hashed blue bar). This allows us to capture the real differences 132 

between the recruited reference genomes and the actual genome represented in the synthetic dataset 133 

[31], essentially providing an upper bound for the number of errors MetaCompass would make if it 134 

simply recapitulated the sequence of the selected reference genomes. As seen in Figure 2, 135 

MetaCompass is making five times fewer errors than would be expected, indicating our software is 136 

not unduly biased by the sequence and structure of the reference genome.  137 

Evaluation of performance on downsampled synthetic datasets 138 

To evaluate the ability of MetaCompass to assemble low-coverage genomes, we down-sampled the 139 

synthetic dataset to just 5 million paired-end reads, or 10% of the original data set. After down-140 

sampling, the average coverage was reduced to approximately 3-fold (data not shown). The results 141 

(Table 2, Figure 3) highlight that MetaCompass can recover a median of 90% of each of the 64 142 

genomes in the sample. While metaSPAdes comes in second place and is able to recover 80% 143 

(median recovery), it does so at the cost of a four times higher mis-assembly rate. The two remaining 144 

methods, MEGAHIT and IDBA-UD, leave a quarter to a half of the genomes unassembled (Table 3).  145 

Computational performance 146 

When dealing with large-scale data sets, the combination of total required memory and run time is an 147 

important factor in determining the applicability of a computational tool. We first evaluated the 148 

runtime performance of MetaCompass on a Linux 12-core server node with 80 GB of memory using 149 

the Shakya et al. synthetic dataset. The wall clock run time on this synthetic dataset for MetaCompass 150 
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is comparable to that of de novo assemblers, sometimes lower (Supplementary Table 3).  151 

MetaCompass (without PILON) and Megahit were the only approaches that required <16GB of RAM 152 

on a 100 million read dataset, highlighting the scalability of these methods to large datasets.  153 

Reassembly of the data generated by the Human Microbiome Project (HMP2) 154 

To further explore the benefits and limits of comparative approaches for metagenomic assembly, we 155 

re-analyzed with MetaCompass 2,077 metagenomic samples from the HMP Project (ftp://public-156 

ftp.hmpdacc.org/Illumina/PHASEII/). These samples cover 15 body sites from four broad regions of 157 

the human body: oral, skin, stool, and vaginal. We compared the assemblies produced by 158 

MetaCompass with the official IDBA-UD assemblies reported by the HMP project [35]. Note that 159 

these assemblies were recently improved by Lloyd-Price et al. [36] but we did not include them in 160 

this study. Across all samples, on average, MetaCompass outperforms the HMP2 de novo approach, 161 

leading to an overall better assembly of the original data (Table 3, Figure 4). However, the relative 162 

performance of MetaCompass and the HMP2 assembly varied across body-sites due to the specific 163 

characteristics of the microbial communities being reconstructed. While MetaCompass generates 164 

more assembled sequence and complete marker genes across all body sites, the maximum contig size 165 

and size at 1 Mbp metrics vary per body site. In oral and stool samples (Figure 4), MetaCompass 166 

outperforms de novo assembly for all metrics.  In skin and vaginal samples (Figure 4), the de novo 167 

approach has better contiguity statistics but MetaCompass assembles more complete marker genes. 168 

To gain further insight into these results we calculated the average nucleotide identity between the de 169 

novo assembled contigs and the recruited reference genomes for each body site. In all body sites, 170 

except for oral, the assembled contigs had 99% average nucleotide identity to the reference genomes. 171 

In the oral samples, the most distant reference genomes had only 97% identity to the assembled 172 

contigs, indicating that at least in part, the lower effectiveness of MetaCompass is due to the absence 173 

of a sufficiently closely related reference genome for some of the oral samples.  174 
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 175 

To further explore the drop in contiguity in skin and vaginal samples, we focused on just the contigs 176 

that mapped to bacterial genomes contained in the reference database, allowing for a direct 177 

comparison between MetaCompass and de novo contigs. The results shown in Table 4 indicate that 178 

for this set of contigs, MetaCompass outperforms the de novo approach for the vaginal samples. 179 

However, the de novo HMP2 assembly of the skin sample is still better in terms of complete genes 180 

recovered, but equivalent to MetaCompass with respect to complete marker genes recovered (a 181 

measure of assembly completeness).  182 

Comparing reference-guided to de novo assembly on low-coverage HMP2 samples 183 

To assess the ability of MetaCompass to assemble low-abundance organisms, we focused on all skin 184 

HMP2 samples. The skin samples had the second lowest average number of reads while still 185 

containing reasonable diversity and richness, as reported in Table 3. We removed the contigs 186 

assembled via de novo assembly from the MetaCompass output, collected the reference genomes that 187 

were used, mapped the HMP2 contigs to these reference genomes, and then evaluated the number of 188 

complete genes and complete marker genes in both. Compared to the HMP2 assembly, reference-189 

guided assembly of these low coverage samples is able to reconstruct approximately 10% more 190 

marker genes (4,423 versus 3,915) than the de novo approach, roughly equating to 10 additional 191 

complete bacterial genomes in total. 192 

 193 

We next searched for microbes that were present in the skin samples at relatively low coverage and 194 

explored the differences between the reconstructions generated by the HMP2 project and 195 

MetaCompass. Specifically, we identified a low coverage assembly of a Propionibacterium acnes 196 

genome reconstructed by both MetaCompass and the HMP in sample SRS057083. The HMP2 197 
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assembly covers less than 40% of the closest reference genome (NC_016516.1, Propionibacterium 198 

acnes TypeIA2 P.acn33), while the MetaCompass assembly covers more than 90% of the same 199 

genome. 200 

Discussion 201 

The benefit of comparative assembly is highly dependent on the reference genomes available in the 202 

database provided to MetaCompass. While MetaCompass can effectively use reference genomes that 203 

are distantly related to the genomes being assembled, the quality of the reconstruction is lower than 204 

can be achieved with closely related reference sequences.  As the set of genome sequences available 205 

in public databases continues to increase, so will the effectiveness of reference-guided assembly 206 

approaches such as MetaCompass.  207 

 208 

We have shown MetaCompass to be particularly effective in the assembly of low coverage or rare 209 

microbes, setting in which de novo assembly approaches simply cannot be used with good results. 210 

Improved assembly of low-abundance, rare microbes from existing datasets has the potential to 211 

provide valuable information in complex microbial communities or clinical samples where the host 212 

DNA comprises a large fraction of the data.  Clinical applications are also a particularly relevant 213 

application domain for comparative approaches as the vast majority of publicly available genome 214 

sequences comprises human pathogens. 215 

 216 

While MetaCompass provided an advantage over de novo approaches for most of the human-217 

associated microbial communities sampled by the HMP project, in skin samples the performance of 218 

MetaCompass was on average lower than the assemblies produced by the HMP. This result could be 219 
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due to structural genome dynamics of bacterial defense systems commonly found in skin microbes 220 

[37–39], situation that introduces frequent structural variants between the reference genomes and the 221 

corresponding environmental isolates. We plan to further explore this hypothesis through graph-222 

based analyses of de novo assemblies of the corresponding communities.  223 

 224 

MetaCompass relies on the taxonomic profiling tool MetaPhyler as an efficient indexing strategy for 225 

identifying the reference genomes most closely related to the data being assembled.  Compared to 226 

whole-genome indices, the MetaPhyler index is based on just 18 phylogenetic marker genes that are 227 

ubiquitous in bacteria, thus providing a compact and efficient data-structure.  Using marker genes 228 

ensures that any genome present at a high enough coverage to allow assembly will be detected 229 

despite indexing just a small fraction of its genome. Since MetaPhyler, and other similar tools [40, 230 

41] are designed for much broader use cases than those targeted here, it is likely that better 231 

performance in both memory and speed can be achieved by an indexing strategy designed 232 

specifically for comparative metagenomic assembly, and we plan to explore such strategies in future 233 

work. Furthermore, comparative assembly provides new opportunities for the development of 234 

sequence alignment approaches that optimize the combined time of index creation and alignment.  235 

Most of the recent developments in sequence alignment have assumed index construction to be a one-236 

time off-line operation, trading off a computationally intensive indexing approach for more efficient 237 

queries. 238 

Conclusion 239 

We have described MetaCompass, a computational pipeline for comparative metagenomic assembly. 240 

This novel method for metagenomic assembly leverages the increasing number of genome sequences 241 

available in public databases. We have shown that comparative and de novo assemblies provide 242 
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complementary strengths, and that combining both approaches effectively improves the overall 243 

assembly, providing a consistent increase in the quality of the assembly. Even when distant reference 244 

genomes are recruited, MetaCompass is competitive with de novo genome assembly methods. These 245 

results are due to two critical steps.  First, reference bias is avoided by constructing the consensus 246 

sequence from the reads within the sample, using the reference genome as just a guide, and by 247 

breaking the assembly where the reads indicate a structural disagreement with the reference.  Second, 248 

unmapped reads are used in a de novo assembly process to reconstruct the sections of the 249 

metagenomic sample that are not similar to known reference genomes. In summary, we believe that 250 

reference-guided approaches such as MetaCompass, will increasingly replace the more 251 

computationally expensive and error-prone de novo assembly approaches as the collection of 252 

available reference genome sequences increases.   253 

 254 

Methods 255 

Methods overview. First, we use MetaPhyler [13] to identify reference genomes that are most 256 

closely related to the data represented in the input a sample.  We use the NCBI RefSeq genome 257 

database (June 2016) as the standard reference collection for MetaCompass. We only retain for 258 

further consideration the genomes estimated by MetaPhyler to be represented at sufficient depth of 259 

coverage. These genomes are aligned using Bowtie2 [42] (v2.2.9). The resulting read alignments are 260 

then used to identify a minimal set of genomes that best explain all read alignments, then the read 261 

alignments are used to construct contigs.  We developed the tool buildcontig to generate a consensus 262 

sequence for the contigs and then use Pilon [43] (v1.18) to correct the contigs in a way that reflects 263 

the genome being assembled and to avoid biasing the reconstruction towards the reference sequence.  264 

Contigs may be broken at this stage if the metagenomic sequence diverges from the reference 265 
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sequence. Finally the reads that were not included in the reference-guided process outlined above are 266 

assembled using MEGAHIT [32] (v1.0.6) to reconstruct the metagenomic segments not represented 267 

in the reference collection. The details of each analysis step are described below. 268 

Selecting reference genomes. While comparative assembly approaches have already been described 269 

for single genomes [23, 44] their use in metagenomic data is complicated by the multiple unknown 270 

organisms and the thousands of genomes available in public databases. Building efficient indexes for 271 

large reference collections is computationally challenging for short read aligners [41], both in term of 272 

speed and memory consumption. For assembly, however we only need to use the genomes that are 273 

detected in a sample. To speed up the genome reference selection step, we reduce the 31 marker 274 

genes in MetaPhyler to 18 universally conserved marker genes in bacteria and archaea (intersection 275 

between the sets of genes used by FetchMG [45, 46] and MetaPhyler [13]). The MetaPhyler index is 276 

much smaller than a whole-genome index, yet still allows us to identify the closest reference genome 277 

detected in the sample being assembled. We further speed up the execution of MetaPhyler by 278 

restricting the analysis to just those reads that share at least one 28-mer with one of the marker gene 279 

sequences in the database. We rely on kmer-mask 280 

(http://kmer.sourceforge.net/wiki/index.php?Main_Page) to execute this filtering step. The selected 281 

reads are then aligned to the marker collection using BLASTN with the parameters ‘-word_size 28 -282 

evalue 1e-10 -perc_identity 95 -max_target_seqs 100’ and a minimum HSP alignment length of 35. 283 

Since closely related genomes can share the same marker genes, we retain all hits with a bit score 284 

equal to that of the top hit. Finally, we exclude from further consideration all the genomes with an 285 

estimated coverage below a user-selected coverage threshold (2-fold, by default). 286 

Aligning reads to reference sequences. The results presented in the paper are based on aligning the 287 

reads to the selected reference genomes with Bowtie 2 [42] (parameters: --sam-nohead --sam-nosq --288 

end-to-end --quiet --all -p 12). The alignments are then filtered to keep ties of lowest edit distance for 289 
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each reads, allowing a read to be aligned in multiple locations similar to the best-strata option of 290 

bowtie1. 291 

Selecting a minimal reference set. In its simplest form, the comparative assembly approach involves 292 

mapping the reads to a genome and using their relative placement within this genome to guide the 293 

construction of contigs [23].  In the context of metagenomic data, however, this process is 294 

complicated by the fact that individual reads may map to multiple reference genomes, some of which 295 

are highly similar to each other.  Adequately dealing with this ambiguity is critical for effective 296 

assembly.  If all read mappings are retained, allowing a read to be associated with multiple reference 297 

genomes, the resulting assembly will be redundant, reconstructing multiple copies of the homologous 298 

genomic regions.  If for each read a random placement is selected from among the multiple 299 

equivalent matches, none of the related genomes may recruit enough reads to allow assembly, 300 

thereby leading to a fragmented reconstruction.  Assigning reads to genomes according to their 301 

estimated representation in the sample (determined, e.g., based on the number of reads uniquely 302 

mapped to each genome), may bias the reconstruction towards the more divergent reference genomes, 303 

which may lead to an overall poorer reconstruction of the genomic regions shared across related 304 

genomes.  Here we propose a parsimony-driven approach – identifying the minimal set of reference 305 

genomes that explains all read alignments.     306 

Formally, this problem can be framed as a set cover problem, an optimization problem which is NP-307 

hard. To solve this problem, we use a greedy approximation algorithm, which iteratively picks the set 308 

of genomes that covers the greatest number of unused reads. It can be shown that this greedy 309 

algorithm is the best-possible polynomial time approximation algorithm for the set cover problem 310 

[47]. 311 
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Building contigs. Given a set of reference genomes, selected as described above, a set of shotgun 312 

reads, and the alignment between each read and reference genome, the process of creating contigs is 313 

straightforward. For each nucleotide in each reference genome, we look at the bases from the reads 314 

that are mapped to each locus, and pick the variant (nucleotide or indel) with the highest depth of 315 

coverage as the consensus and report it. Minimum depth of coverage and length for creating contigs 316 

can be specified through the program command-line options.  317 

Removing reference-bias with Pilon. Differences between the sequences being assembled and the 318 

reference genome used by MetaCompass can degrade the performance of the comparative assembly 319 

process. We employ Pilon [43] to "polish" the reference-guided assemblies, thereby changing the 320 

consensus sequence to resemble the data in the sample rather than the reference genome.  During this 321 

process we also identify signatures of larger differences between the metagenomic sample and the 322 

reference sequence, and break the assembly at those locations.  323 

Combining reference-guided and de novo assembly. We employ the de novo assembler MEGAHIT 324 

to assemble reads that were unable to be mapped back to the reference-guided assembly generated by 325 

MetaCompass. These reads represent microbes that are missing from our reference database and 326 

novel variants. This approach allows the final assembly to capture both reference and non-reference 327 

sequences. We chose MEGAHIT because it is currently the most efficient de novo assembler for 328 

metagenomics [48]. MEGAHIT is also the default assembly methods for the JGI metagenomic 329 

pipeline [49] and performed well in a recent review [50]. 330 

Gene prediction and marker gene detection. The genes were predicted in the contigs using 331 

MetaGeneMark [51](v3.26) with the “MetaGeneMark_v1.mod” model parameter file and using the 332 

option “-n” to remove partial genes containing long strings of “N”. The completion status of the 333 
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genes (complete, lack 5’, lack 3’ and lack both) was defined by detecting all the common start codon 334 

(“ATG”, “TTG”, “GTG”) and stop codon (“TAA”, “TAG”, “TGA”) of prokaryotic genes.  335 

The 40 universal single copy marker proteins [52, 53] were identified in predicted genes using the 336 

standalone version of fetchMG (v1.0) http://www.bork.embl.de/software/mOTU/) [46]. 337 

MetaQuast validation parameters. The command used to run MetaQuast was: ‘metaquast.py -R 338 

./shakya_references --fragmented --gene-finding’ 339 

Synthetic metagenome assembly parameters. IDBA-UD requires a single fasta file that was 340 

generated using the IDBA ‘fq2fa --merge --filter’ command. MEGAHIT was run using the options ‘--341 

presets meta-sensitive --min-count 3 --min-contig-len 300 -t 12’. MetaSPAdes was run using the 342 

options ‘--meta -t 12’, then all contigs shorter than 300nt and with less than 3X coverage were 343 

removed. IDBA-UD was run using the options ‘--min_count 3 --min_contig 300 --mink 20 --maxk 344 

100 --num_threads 12’. MetaCompass was run using the options -m [1,2,3] -g 300 -t 16’ on the 345 

synthetic dataset and ‘-m 3 -g 300 -t 16’ on the HMP2 samples. 346 

Data availability. A list of all available HMP samples was obtained by combining those available 347 

from the HMP Data Analysis and Coordination Center (DACC) (www.hmpdacc.org) and the HMP 348 

SRA project PRJNA48479 on 11/16/2016. Any sample listed in the SRA and not in the DACC was 349 

downloaded and processed by the HMP WGS Read Processing Protocol 350 

(http://www.hmpdacc.org/doc/ReadProcessing_SOP.pdf). Three DACC samples were corrupt or 351 

extracted to a duplicate SRS identifier (SRS023176, SRS043422, and SRS057182) and were 352 

downloaded from SRA and processed as above. A total of 98 454 samples were excluded from the 353 

downloaded set. This resulted in 2,713 samples. Some samples (504) had no references recruited and 354 

were excluded from further analysis. This resulted in 2,209 MetaCompass assemblies. All HMP2 355 

assemblies available at ftp://public-ftp.hmpdacc.org/HMASM/IDBA/ were downloaded (2,341 total 356 
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assemblies).  A total of 2,077 samples (Supplementary Table 4) had both an HMP2 assembly and a 357 

MetaCompass assembly and were used for the analysis. 358 

 359 

The set of known genomes for the synthetic dataset is available via the Supplementary Table 2 from 360 

Shakya et al  [31]. 361 

Software availability. MetaCompass is available as an open-source package at: 362 

https://github.com/marbl/MetaCompass.  The code is licensed under the Artistic License 2.0: 363 

https://opensource.org/licenses/Artistic-2.0  364 

 365 
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Table 1. Evaluation of performance on synthetic dataset. MetaCompass (X) indicates the 535 

minimum coverage setting (1X or 2X), and MetaCompass.nr indicates all 64 reference genomes 536 

comprising the Shakya et al. dataset were removed from the database. Tool indicates the assembler, # 537 

ctgs  the total number of assembled contigs reported by each assembler, Max ctg is the maximum 538 

contig length (broken at errors) for all assembled contigs, Median Genome Recovery (%) is the 539 

median percentage of each of the synthetic genomes that is recovered, Complete Marker Genes 540 

(median) is the median number of fully reconstructed marker genes, Total Aligned Length is the 541 

sum of the length of contigs aligned to the reference genomes, Total Unaligned Length is the sum of 542 

the length of unaligned contigs, and MetaQuast reported errors are error statistics generated with 543 

MetaQuast.  544 

 545 

Tool 

# 

ctgs 

Max 

ctg 

Median 

Genome 

Recovery 

(%) 

 

Total 

Aligned 

Length 

Total 

Unaligned 

Length 

                   MetaQuast reported errors  

Complete 

Marker 

Genes 

(median) 

  

Mismatches  

(/100kbp) 

 

Indels 

(/100kbp) 

 

Misasms 

(/1Mbp) 

Local 

Misasms 

(/1Mbp) 

Total 

Misasms 

(/1Mbp) 

MetaCompass 
(1X) 

18,766 7,057,109 100% 40 198,113,036 6,340,278  61.9 1.9 0.8 1.1 1.9 

MetaCompass 
(2X) 

23,648 5,841,107 100% 40 195,836,655 6,198,040  63.1 1.8 0.9  1.1 2.0 

MetaCompass.nr 
(2X) 

42,852 1,151,857 98% 40 195,225,556 6,338,183  89.9 3.6 3.3  1.6 4.9 

IDBA-UD 22,355 991,792 98% 39 186,777,879 6,186,424  98.6 3.5 5.3  1.0 6.3 

MEGAHIT 35,351 1,151,857 99% 40 195,334,581 6,263,018  66.5 2.8 1.5  1.0 2.5 

metaSPAdes 21,424 1,438,235 99% 40 192,795,050 

 

6,208,276 

 

 97.1 3.7 1.3  1.0 2.3 
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Table 2. Evaluation of performance on down-sampled synthetic dataset. The synthetic dataset 547 

was down-sampled to only contain 10% of the total reads. Tool indicates the assembler, # ctgs  the 548 

total number of assembled contigs reported by each assembler, Max ctg is the maximum contig 549 

length (broken at errors) of all assembled contigs, Median Genome Recovery (%) is the median 550 

percentage of each of the synthetic genomes that is recovered, Complete Marker Genes (median) is 551 

the median number of fully reconstructed marker genes, Total Aligned Length is the sum of the 552 

length of contigs aligned to the truth genomes, Total Unaligned Length is the sum of the length of 553 

unaligned contigs, and MetaQuast reported errors are error statistics generated with MetaQuast 554 

[54].  555 

 556 

Method 

# 

ctgs 

Max 

Ctg 

Median 

Genome 

Recovery 

(%) 

 

Total 

Aligned 

Length 

Total 

Unaligned 

Length 

MetaQuast reported errors 

Complete 

Marker 

Genes 

(median) 

Mismatches  

(/100kbp) 

Indels 

(/100kbp) 

Misasms 

(>1 kbp) 

Misasms 

(<1 kbp) 

MetaCompass  71457 962,929 90% 22 134,008,055 3,009,931 117.6 1.9 112 33 

IDBA-UD 43973 120159 45% 6 75,970,693 1,564,008 175.0 5.3 3447 93 

MEGAHIT 62842 209,706 76% 15 105,665,678 2,774,432 128.0 4.1 772 122 

metaSPAdes 67138 287,554 

 

80% 16 111,636,826 3,154,199 

 

133.0 4.3 470 115 
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Table 3. Re-assembly of 2,077 samples generated in the Human Microbiome Project. The results 558 

are aggregated by body site. # indicates the total reads per sample, Avg cvg per sample (X) is the 559 

mean estimate read coverage calculated based on the de novo assembly of each sample and body site, 560 

Shannon Entropy (median) is the Shannon diversity value per body site as reported in Li et al 2012 561 

[55].The rows labeled MC contain results obtained with MetaCompass. The rows labeled HMP2 562 

show the statistics for contigs from the production HMP2 assembly. Total Size (Mbp) is the total 563 

assembly size for each method, Max ctg size (kbp) is the size of the largest contig, Median 564 

Size@1Mbp (kbp) represents the mediad size of the largest contig C such that the sum of all contigs 565 

larger than C exceeds 1Mbp. Median Complete Genes represents the median number of complete 566 

genes per sample. Median Marker Genes indicates the median number of complete marker genes 567 

per sample. 568 

        569 

HMP2 
body site 

# 

Avg  

cvg   

per 

sample 

Shannon 

Entropy 

(median) 

[55] Asm 

Total 

size 

(Mbp) 

Max 

ctg 

size 

(kbp) 

Median

Size@ 

1Mbp 

(kbp) 

Median 

Complete 

Genes 

Median 

Marker 

Genes 

Oral 

1107 20.0 

±8.1 

2.4 HMP2 106,693 546.4 70.8 54,100 762 

MC 135,586 892.3 95.8 63,144 915 

Skin 

182 18.4 

±4.7 

1.5 HMP2 2,944 890.7 36.5 4,654 78 

MC 3,782 2,159.3 15.1 5,010 79 

Stool 427 17.4 2.6 HMP2 56,573  592.8 109.1 84,193 847 
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 ±4.9

 

MC 66,838 3,301.0 230.9 94,297 1,043 

Vaginal 

159 7.8 

±4.5 

0.2 HMP2 1,179 465.8 28.7 2,539 45 

MC 1,458 558.0 16.1 2,934 60 

All 

(+NA) 

2077 

(202) 

18.2 

± 5.6 

1.9 HMP2 184,518 890.7 79.0 48,836 633 

MC 232,161 3,301.0 114.6 57,639 764 
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Table 4. Results of Human Microbiome Project analysis within the reference genomes. The 571 

results are aggregated by body site. # indicates the total reads per sample, Avg cvg per sample (X) is 572 

the mean estimate read coverage calculated based on the de novo assembly of each sample and body 573 

site,  Shannon Entropy (median) is the Shannon diversity value per body site as reported in Li et al 574 

2012 [55].The rows labeled MC contain results obtained with MetaCompass. The rows labeled 575 

HMP2 show the statistics for contigs from the production HMP2 assembly. Total Size (Mbp) is the 576 

total assembly size for each method, Max ctg size (kbp) is the size of the largest contig, Median 577 

Size@1Mbp (kbp) represents the median size of the largest contig C such that the sum of all contigs 578 

larger than C exceeds 1Mbp. Median Complete Genes represents the median number of complete 579 

genes per sample. Median Marker Genes indicates the median number of complete marker genes 580 

per sample. 581 

        582 

HMP2 
body site 

# 

Avg  

cvg   

per 

sample 

Shannon 

Entropy 

(median) 

[55] Asm 

Total 

size 

(Mbp) 

Max 

ctg 

size 

(kbp) 

Median 

       Size@ 

1Mbp 

(kbp) 

Median 

Complete 

Genes 

Median 

Marker 

Genes 

Oral 

1107 20.0 

±8.1 

2.4 HMP2 10,977 162.2 10.1 5411 176 

MC 17,731 594.0 23.4 8899 265 

Skin 

182 18.4 

±4.7 

1.5 HMP2 615 716.9 15.4 1973 35 

MC 618 2,159.3 8.3 1652 35 

Stool 427 17.4 2.6 HMP2 8,655  217.3 33.2 12512 142 
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 ±4.9

 

MC 8,665 3,301.0 104.3 12759 217 

Vaginal 

159 7.8 

±4.5 

0.2 HMP2 310 172.8 7.8 1364 37 

MC 330 558.0 8.0 1370 37 

All 

(+NA) 

2077 

(202) 

18.2 

± 5.6 

1.9 HMP2 23,126 716.9 12.7 5578 145 

MC 30,296 3,301.0 28.2 8201 202 

 583 

 584 

Figure 1. Genome recovery percentages in synthetic metagenome (MetaCompass versus de novo 585 

assembly).  Box plots represent distribution of genome recovery percentages (for the 64 genomes 586 
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present in the synthetic metagenome). x-axis indicates the assembly method, either IDBA-UD, 587 

metaSPAdes, MEGAHIT, or MetaCompass. MetaCompass was run both with the reference genome588 

present in the database (recruited as described in the methods) and without the truth reference 589 

genomes in the database (they were individually removed). y-axis indicates the genome recovery 590 

percentage, 0% indicates the genome was unassembled, whereas 100% indicates the genome was 591 

fully assembled.  592 

 593 

Figure 2. Error profile on synthetic dataset. The hashed blue bar represents the difference betwee594 

the second-best reference genome (recruited by MetaCompass) and the true genome represented in 595 

the sample. This bar can be viewed as an upper bound on the errors metacompass.nr could make if i596 

simply reconstructed the reference genome. Mismatches are the number of bases in a contig that 597 

differ from the reference genome. Misassemblies include large-scale (left flanking region aligns >1598 

kbp away from right flanking region) relocations, interspecies relocations, translocations, and 599 

inversions. Local misassemblies include small-scale (left flanking region aligns <=1 kbp away from600 
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right flanking region) translocations and inversions. All errors are normalized to represent rates per 601 

Mbp. 602 

 603 

Figure 3. MetaCompass performance on low coverage dataset. Results obtained by down-604 

sampling the Shakya et al. synthetic genome to just 10% of the original set of reads. The 64 genome605 

present in the sample are ordered per assembler by percent recovery, from lowest to highest. The y-606 

axis indicates how much of the n-th reference was covered by correctly assembled contigs (can rang607 

from 0% to 100%). The colored dashed lines indicate the median percent recovery for each 608 

assembler.  609 
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 610 

Figure 4. Comparative assembly of 2,077 metagenomic samples from the HMP2 Project. The 611 

'bean plots' represent the distribution of assembly contiguity and completeness statistics across all 612 

samples within the data. The x axis organizes the data by assembly and body site. The y-axis 613 

indicates the statistic used to evaluate the assembly contiguity or completeness. The top panel shows614 

total assembly size (kbp), the second panel shows maximum contig size (kbp), the third panel shows615 

the size of the contig at 1 Mbp, and the bottom panel shows the complete marker genes assembled p616 

sample.  617 
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