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ABSTRACT 21 

1. Recent assessments of progress towards global conservation targets have revealed a 22 

paucity of indicators suitable for assessing the changing state of ecosystems. 23 

Moreover, land managers and planners are often unable to gain timely access to maps 24 

they need to support their routine decision-making. This deficiency is partly due to a 25 

lack of suitable data on ecosystem change, driven mostly by the considerable 26 

technical expertise needed to make ecosystem maps from remote sensing data.  27 

2. We have developed a free and open-access online remote sensing and environmental 28 

modelling application, REMAP (the remote ecosystem monitoring and assessment 29 

pipeline; https://remap-app.org) that enables volunteers, managers, and scientists with 30 

little or no experience in remote sensing to develop high-resolution classified maps of 31 

land cover and land use change over time.  32 

3. REMAP utilizes the geospatial data storage and analysis capacity of the Google Earth 33 

Engine, and requires only spatially resolved training data that define map classes of 34 

interest (e.g., ecosystem types). The training data, which can be uploaded or annotated 35 

interactively within REMAP, are used in a random forest classification of up to 13 36 

publicly available predictor datasets to assign all pixels in a focal region to map 37 

classes. Predictor datasets available in REMAP represent topographic (e.g. slope, 38 

elevation), spectral (Landsat Archive image composites) and climatic variables 39 

(precipitation, temperature) that can inform on the distribution of ecosystems and land 40 

cover classes. 41 

4. The ability of REMAP to develop and export high-quality classified maps in a very 42 

short (<10 minute) time frame represents a considerable advance towards globally 43 

accessible and free application of remote sensing technology. By enabling access to 44 
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data and simplifying remote sensing classifications, REMAP can catalyse the 45 

monitoring of land use and change to support environmental conservation, including 46 

developing inventories of biodiversity, identifying hotspots of ecosystem diversity, 47 

ecosystem-based spatial conservation planning, mapping ecosystem loss at local 48 

scales, and supporting environmental education initiatives. 49 

KEYWORDS 50 

Ecosystem monitoring, GIS, Google Earth Engine, Image classification, Landsat 51 

Archive, Land cover mapping, Remote sensing, Satellite mapping 52 

INTRODUCTION 53 

Maps of land use and land cover change have been a central component of 54 

environmental management and conservation planning for decades (Margules & Pressey 55 

2000). Land cover maps enable the depiction of the distribution of ecosystems and land cover 56 

types, assessments of biodiversity and identification of areas undergoing loss, fragmentation 57 

and degradation (Haddad et al. 2015; Potapov et al. 2017). As well as supporting spatial 58 

conservation planning, including mapping threats to nature, they are often used as surrogates 59 

for species distributions. However, existing methods for mapping land cover extent and 60 

changes over time are often based on remote sensing and rely on expert implementation and 61 

comprehensive knowledge of space borne or airborne sensor data, analytical methods and 62 

data uncertainties. This ‘capacity gap’ has been a severe constraint in obtaining information 63 

on the status of the world’s natural environment and has hindered environmental conservation 64 

programs across a range of spatial scales (Pereira, Brevik & Trevisani 2018; Murray et al. in 65 

press). 66 
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Recent advances in geospatial data access, storage and analysis have vastly improved 67 

our ability to utilize satellite sensor data archives in studies of land cover and land cover 68 

change (e.g. Lewis et al. 2016; Gorelick et al. 2017). Moderate (< 30 m) resolution remote 69 

sensing analyses are now possible at the global extent and have enabled the development of 70 

complex remote sensing analyses (Gong et al. 2013; Hansen et al. 2013; Pekel et al. 2016). 71 

At the same time, increases in satellite revisit frequencies, reductions in the time between 72 

data acquisition and delivery to users, and increasing access to data archives have led to the 73 

development of near real-time alert systems that can rapidly identify land cover loss and 74 

change in areas where no ground observations can be obtained. These systems mainly focus 75 

on automatic detection and analysis of land cover change for groups of related biomes (e.g. 76 

forests) and have vastly improved the ability of non-specialists, environmental managers and 77 

policy makers to access and use remote sensing data (Asner et al. 2009; Hansen et al. 2016; 78 

Lucas & Mitchell 2017).  79 

In this manuscript, we present a new online geospatial application that enables 80 

volunteers, managers, students and scientists with little or no experience in remote sensing to 81 

develop classified maps of land cover at Landsat spatial resolutions. The Remote Sensing 82 

Monitoring and Assessment Pipeline (REMAP) utilizes the geospatial data storage and analysis 83 

capacity of the Google Earth Engine (GEE; https://earthengine.google.com), a cloud-based 84 

analysis platform, to allow users to interactively develop machine learning classifications of 85 

land cover within an area of interest anywhere in the world for which there is sufficient 86 

archival Landsat data. The REMAP application additionally allows monitoring and analysis of 87 

land cover change by enabling users to map ecosystem distributions at two points in time (i.e. 88 

2003 and 2017), quantify area change of each map class, and report the standard distribution 89 

size metrics used by the International Union for the Conservation of Nature (IUCN) Red List 90 

of Ecosystems (Keith et al. 2013). 91 
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REMAP was developed to complement a range of other applications that support the 92 

conservation of biodiversity, including GeoCAT (Bachman et al. 2011), Global Forest Watch 93 

(www.globalforestwatch.org), the Map of Life (www.mol.org) and R packages such as 94 

‘redlistr’ (Lee & Murray 2017) and ‘rCat’ (Moat & Bachman 2017). Potential uses of REMAP 95 

include mapping the distributions of ecosystem types (Murray et al. in press), developing 96 

land cover maps for protected areas (Lucas et al. 2015), assessing the performance of 97 

protected areas over multi-decadal time frames (Green et al. 2013; Murray & Fuller 2015), 98 

and identifying areas where degradation of ecosystems has occurred (Bhagwat et al. 2017). 99 

REMAP was also developed to support the global effort to assess the status of all ecosystem 100 

types on earth under the IUCN Red List of Ecosystems criteria (Keith et al. 2015; Rodríguez 101 

et al. 2015) and can contribute to monitoring progress towards addressing the 2020 102 

Convention on Biological Diversity Aichi Targets (CBD 2014). We describe here the 103 

rationale for design, methodological considerations and analytical framework of REMAP, and 104 

demonstrate its utility and limitations with four case studies (see Case Studies).  105 

REMAP: REMOTE ECOSYSTEM MONITORING & ASSESSMENT PIPELINE  106 

REMAP (https://remap-app.org) is a free and open-source web application that classifies land 107 

cover according to user-supplied training data and a set of globally available remote sensing 108 

datasets as predictor variables (Figure 1). We followed six design principles to develop 109 

REMAP: 110 

1. Provide the ability to develop high quality maps from remote sensing data in a short time 111 

frame and without the need for high performance computers. Maps can be developed in 112 

REMAP within a few minutes and, because REMAP completes classifications online by 113 

accessing the GEE, the only prerequisites are an internet connection and web browser. 114 
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2. Reduce the need to download, pre-process and process remote sensing data for use in 115 

environmental mapping. The system offers access to 13 publicly available geospatial 116 

predictors that represent spectral, topographic and climatic variables that may influence 117 

the distribution of different land cover types. Default predictors were selected to enable 118 

the development of high quality maps of the widest range of land cover types possible, 119 

and users are provided with options to explore different combinations of predictors in the 120 

production of their classified map. 121 

3. Simplify implementation of machine learning classification approaches. REMAP conducts 122 

its classifications using the random forest algorithm (Breiman 2001) with a single execute 123 

button. This approach allows users to implement a widely used machine learning method 124 

known to achieve high classification accuracy from large amounts of potentially 125 

correlated predictor variables (Rodriguez-Galiano et al. 2012).  126 

4. Permit the production of maps for at least two time periods to enable the quantification of 127 

any detectable spatial change. REMAP can be used to measure the impacts of, for 128 

example, deforestation (Hansen & Loveland 2012), coastal reclamation (Murray et al. 129 

2014), and many other land cover changes that can be reliably observed with Landsat 130 

sensors. 131 

5. Enable estimation of standard spatial metrics used for assessing the status of ecosystems. 132 

Metrics that are useful for environmental conservation, including area, change in area, 133 

extent of occurrence (EOO) and area of occupancy (AOO) can be calculated by users to 134 

assess ecosystem change and contribute to global efforts to assess the status of 135 

ecosystems.  136 

6. Implement free and open access software design principles. Source code for REMAP is 137 

available and we will maintain open access to the application (see Data Accessibility). 138 

DATA 139 
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The 13 publically available gridded datasets that were selected for inclusion in REMAP 140 

(Table 1) met the requirement of (i) full global extent, (ii) free availability with sufficient 141 

open access to be included in the GEE public data archive, and (iii) sufficiently high spatial 142 

resolution to permit identification of ecosystem distributions and common land cover classes. 143 

The final set of predictors includes spectral variables and derived indices from archival 144 

Landsat sensor data for two time periods, climate data (mean annual rainfall and mean annual 145 

temperature; Hijmans et al. 2005) and topographic data (derived from Shuttle Radar 146 

Topography Mission data). 147 

To obtain the required global coverage of cloud-free Landsat sensor data for two 148 

periods, referred to here as historical (1999-2003) and ‘current’ (2014-2017), we developed 149 

two global Landsat image composites. We produced image stacks of all Landsat scenes for 150 

each period (N1999-2003 = 340,658 images; N2014-2017 = 375,674 images) and applied the GEE 151 

implementation of the FMASK cloud masking algorithm (Gorelick et al. 2017). From these, 152 

the median pixel of Landsat Enhanced Thematic Mapper (ETM+; bands 2-5) bands 2−5 153 

(visible blue to shortwave infrared) and Operational Land Imager (OLI; bands 1-4) was used 154 

to generate the two 4-band global image composites. From these composites, Normalized 155 

Differenced Vegetation Index (Pettorelli 2013), Normalized Difference Water Index 156 

(McFeeters 1996) and several other index layers were generated for use as spectral predictors 157 

(Table 1). The provision of spectral data for two time periods facilitates the estimation of 158 

change in land cover extent, which is important for monitoring of the impact of threatening 159 

processes such as deforestation (Hansen et al. 2013), fragmentation (Haddad et al. 2015), 160 

coastal reclamation (Murray et al. 2014), aquaculture (Thomas et al. 2017) and water 161 

extraction (Tao et al. 2015). 162 

USER INPUT 163 
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Users of REMAP generally follow a 7 step procedure to map, assess and monitor 164 

ecosystem types or land cover classes (Table 2). Initially, users are required to define their 165 

region of interest interactively (focus region) or to upload a vector file (.kml). This enables 166 

REMAP to clip input data to a region of interest and limit the extent of the classification. The 167 

maximum size of the region of interest is presently 100,000 km2 due to limitations applied to 168 

users of the GEE (Gorelick et al. 2017). Future versions of REMAP may increase this size 169 

limit, although for larger regions or more complex map classifications we recommend users 170 

directly utilise the GEE (https://earthengine.google.com). 171 

Spatially resolved training data that define map classes of interest, which can include 172 

ecosystem types, land cover classes, areas of change (e.g. deforestation) or anthropogenic 173 

areas (e.g. urban areas) are used to assign a class membership to all pixels within a focal 174 

region. If developing land cover maps, we recommend that users adopt land cover 175 

classification taxonomies that are internationally recognized and confirm to International 176 

Organisation for Standards (ISO) such as the Food and Agricultural Organisation’s (FAO)  177 

Land Cover Classification System (LCCS). Training data can be provided interactively by 178 

adding training points via the user interface with reference to the predictor layers or by 179 

uploading data which identify the location of observation points and their class membership 180 

(.csv file). These may be sourced from field observations, external data archives, expert 181 

opinion, literature or existing maps. In general, classifications with larger numbers of training 182 

points will achieve higher class accuracies and we recommend users supply a minimum of 50 183 

points per class to develop an initial map. 184 

CLASSIFICATION APPROACH 185 

REMAP uses a random forest classifier to assign pixels to user-defined map classes 186 

(Breiman 2001). With sufficient training data that are representative of the classes of interest, 187 
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REMAP implements the classification on the predictor data and returns a classified image to 188 

the browser window. In many cases, use of the default predictors (Table 2) will yield 189 

classification accuracies that are acceptable to the user. To allow users to assess classification 190 

accuracy, REMAP returns a confusion matrix that compares classification results with a 191 

random subset of points held-out of the training dataset. Users can tune their classifications to 192 

maximize accuracies, either overall or for the class(es) of interest, (ideally to >85%; 193 

Congalton & Green 2008) by providing more training data for the classifier or by selecting a 194 

custom set of predictors (Table 2).  195 

ECOSYSTEM MONITORING AND ASSESSMENT 196 

Once a classified map of acceptable accuracy has been produced, REMAP can conduct 197 

the spatial analyses required to assess Criteria A (change in distribution size) and B (range 198 

size) of the IUCN Red List of Ecosystems (Keith et al. 2013; Bland et al. 2017). To assess 199 

Criterion A, REMAP computes the area of each class by summing the number of pixels in each 200 

class. Criterion A requires assessors to estimate change in area over time, which can be 201 

achieved by repeating the workflow for the second time period. To account for potential 202 

changes in land cover between the two time periods, users should develop a new training set 203 

or modify the existing set to ensure accurate representation of land cover in the second time 204 

period. Once area estimates are completed for two time periods, assessors can follow the 205 

IUCN Red List of Ecosystems guidelines to estimate area change manually (Bland et al. 206 

2017) or with the recently developed ‘redlistr’ R package (Lee & Murray 2017). To assess 207 

criterion B of the IUCN Red List of Ecosystems, REMAP applies a minimum convex polygon 208 

to a class of interest and reports its area, representing the Extent of Occurrence (EOO) of the 209 

map class. Finally, the Area of Occupancy (AOO) of a map class is calculated by applying a 210 
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10×10 km grid and counting the number of grid cells occupied by the map class (Bland et al. 211 

2017; Murray et al. 2017).  212 

To support further analyses of the classified map data, users can export each classified 213 

map as a georeferenced raster file (.tif). Furthermore, training data can be exported as a .csv 214 

file with fields ‘latitude’, ‘longitude’ and ‘class’ suitable for import into a GPS unit or GIS 215 

software. Training data can also be saved as a JSON file, which is analogous to ‘save 216 

workspace’ functions in other software. This allows users to return to their analysis at a later 217 

time by uploading the JSON file (see Appendix 1 for examples). 218 

CASE STUDIES 219 

 Classifications of remote sensing data enable the measurement and monitoring of an 220 

enormous range of environmentally relevant variables. To demonstrate the use of REMAP, we 221 

developed case studies for (i) mapping a single ecosystem type (e.g. Murray et al. 2012; 222 

Nascimento et al. 2013), (ii) generating a comprehensive land cover map for a region of 223 

interest (e.g.,Malatesta et al. 2013; Connette et al. 2016), and (iii) quantifying land cover 224 

change between two periods (e.g., Sexton et al. 2013; Olofsson et al. 2016; Thomas et al. 225 

2017). All training data (.csv) and REMAP workspace files (.JSON) used to reproduce these 226 

case studies are available in supplementary material (Appendix 1) and can be used in 227 

association with tutorials available on the REMAP website (https://remap-app.org/tutorial).  228 

1. Mapping single land cover types or ecosystem types. Mapping the distribution and change 229 

of mangrove ecosystems has been an important focus of ecosystem monitoring programs 230 

for decades due to their provision of ecosystem services (Mumby et al. 2004; Spalding et 231 

al. 2014) and susceptibility to a wide range of threats (Cavanaugh et al. 2014; Asbridge et 232 

al. 2016; Duke et al. 2017).  In this case study, we developed a simple classification of 233 

mangroves and non-mangrove from a set of 150 training points for a small focal region 234 
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(8301 ha) in the Gulf of Carpentaria, Australia (Figure 2). Against random subsets of 235 

training data, the resubstitution accuracy reported by REMAP was 99.2%. Furthermore, a 236 

random allocation of 389 points over the focal region indicated a 93.3% agreement with 237 

the 2000 global mangrove map data produced for the year 2000 (Giri et al. 2011). 238 

2. Comprehensive classification of land cover for a focal region. Land cover maps, which 239 

represent all land types in a region, is a common aim of remote sensing programs (Lucas 240 

& Mitchell 2017). We used REMAP to develop a land cover map with classes semi-241 

deciduous vine forest, eucalypt woodland and human settlement for a focal region in the 242 

dry tropics of Northern Australia (Figure 3; Figure S1). A comparison with ecosystem 243 

maps produced by the state-wide regional ecosystem mapping program, which develops 244 

regulatory land cover maps through manual interpretation of aerial photography and 245 

Landsat TM and SPOT satellite imagery, indicated good agreement between the two 246 

mapping methods (Figure 3; Neldner et al. 2017; Queensland Department of Natural 247 

Resources and Mines 2017). We provide a second land cover example that covers a larger 248 

area with more land-cover classes in the Supplementary Material (Cheduba Island, 249 

Myanmar, Figure S2). 250 

3. Quantifying land cover change. To demonstrate capacity to detect changes in land and 251 

water,  REMAP was applied to the two Landsat composite images available (2003) and 252 

OLS (2017) data acquired over Dubai, United Arab Emirates. The resulting maps provide 253 

quantitative information on the extent of marine ecosystem loss as a result of large-scale 254 

coastal reclamation projects (Figure 4). REMAP’s use for change mapping is also 255 

demonstrated with a deforestation example at Roraima, Brazil (Figure 1, Figure S3, 256 

Appendix A). 257 

DISCUSSION 258 
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REMAP is a fast, user-friendly approach to developing land cover maps from freely 259 

available remote sensing data and its outcomes can be accepted if the accuracies of 260 

classifications meet the expectations of the users. Our case studies indicate that such 261 

accuracies can be achieved in REMAP but these depend upon the accuracy of the training data. 262 

By utilizing the geospatial storage and analysis capacity of the GEE, REMAP allows users 263 

with no prior knowledge in remote sensing and analysis to develop maps directly within a 264 

web-browser. This enables mapping to be undertaken in regions by locally-responsible 265 

individuals and organisations where computing infrastructure is scarce or the quality of 266 

internet connections do not allow the download of remote sensing data for local analyses. 267 

Indeed, REMAP is particularly useful for participatory mapping projects, expert elicitation and 268 

engagement with a wide-range of environmental stakeholders.  269 

We acknowledge that REMAP has several limitations. Most notably, the ability of 270 

REMAP to produce accurate maps is limited by the quality of the training data, the accuracy of 271 

the predictors, and the suitability of the predictor set for distinguishing land cover classes 272 

and. Further development of the REMAP application will therefore include incorporating a 273 

greater number of relevant predictor data layers, such as climate maxima and minima. Future 274 

work will also focus on (i) incorporating new global image composites from the same or 275 

different years to allow monitoring of land use and cover change with higher temporal 276 

resolution or selection of specific time frames by users, (ii) utilizing all relevant and available 277 

satellite imagery (e.g. Sentinel 2), (iv) improving the user experience through the provision of 278 

more analysis tools (e.g. image differencing), and (v) improving the application for use in 279 

collecting field data and producing maps in mobile devices.  280 

In conclusion, we have developed REMAP to make remote sensing accessible to a very 281 

wide audience with the aim of broadening the use of classified maps in ecosystem monitoring 282 
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and conservation programs, and to help support the conservation of natural environments. We 283 

expect REMAP to extend the ability of volunteers, students, scientists and managers to assess 284 

the extent of land cover changes and implement conservation actions to reduce the loss of 285 

natural ecosystems.   286 
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Table 1. List of predictor layers available for use in land cover classifications using 
REMAP. Short name refers to the name given to each layer in the REMAP user interface. 
REMAP default indicates whether the predictor is used in a default classification. Raw data for 
all predictors used in REMAP are available for download from the Google Earth Engine. 

Long Name Short Name REMAP 
Default? Earth Engine ID 

Topographic 
Shuttle Radar Topography Mission 
(SRTM) Elevation  Elevation ● USGS/SRTMGL1_003 

SRTM Slope Slope ● USGS/SRTMGL1_003 
Climatic 

Mean Annual Temperature Mean Annual 
Temperature  WORLDCLIM/V1/BIO 

Annual Precipitation Annual 
Precipitation  WORLDCLIM/V1/BIO 

Spectral 
Normalised Difference Vegetation Index 
(NDVI) NDVI ● LANDSAT/LC8_SR 

Normalised Difference Water index 
(NDWI) NDWI ● LANDSAT/LC8_SR 

Water Band Index (WBI) WBI  LANDSAT/LC8_SR 
Blue band minus Red band (BR) BR  LANDSAT/LC8_SR 
Normalised Difference Blue Green (BG) BG ● LANDSAT/LC8_SR 
Blue band Blue ● LANDSAT/LC8_SR 
Green band Green ● LANDSAT/LC8_SR 
Red band Red ● LANDSAT/LC8_SR 
Near Infrared band (NIR) NIR ● LANDSAT/LC8_SR 
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Table 2. Descriptions of major analysis steps required to develop classified maps in 
REMAP. Analysis step refers to button in the sidebar of the REMAP user interface. 

Analysis steps Purpose Options 

1 Focus Region Define the boundary of the analysis 
(region of interest) 

Move vertices or supply by .kml file. 

2 Build Training Set Define the map classes to be used in 
the classification and provide 
georeferenced locations for each class 
 

Uploading a training set (.csv, .kml or 
.JSON) or train interactively using 
Landsat image mosaics and predictor 
base layers 

3 Select Predictors Select predictor layers to be used in the 
classification.  
 

Custom selection or use default 
settings (Table 1) 

4 Classify Run the random forest classification 
and return the classified map.  

Run the classification on either the 
2017 (present) or 2003 (historical) 
Landsat image mosaic. 

5 Results Obtain map accuracy statistics and area 
of each map class in hectares 

 

6 Assessment Obtain area, AOO and EOO estimates 
for a single map class 

 

7 Export Data Export training data or the classified 
image 

Export training data as a .csv (for 
mapping or using in a GPS), a .JSON 
file (for saving the current 
workspace) or a georeferenced .tif 
file (for map making and further 
analysis). 
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Figure 1. Simplified process chart of REMAP: the remote ecosystem assessment and 
monitoring pipeline. REMAP requires spatially resolved training data, and estimates class 
membership of all pixels in a region of interest using global remote sensing predictor layers 
and the random forests classification algorithm. To facilitate observations of land cover 
change, classifications in REMAP can be implemented on Landsat data obtained in the year 
2003 or data obtained in the year 2017. 
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Figure 2. Workflow demonstrating the use of REMAP to map of a single ecosystem type, 
mangroves of the Gulf of Carpentaria, Australia. The panels show (a) the Landsat 8 OLI 
3-year composite base layer from which all Landsat indices available in REMAP are 
calculated, (b) the Normalized Differenced Water Index (NDWI), (c) the Normalized 
Differenced Vegetation Index (NDVI), and (d) the final classified map of the distribution of 
mangroves in the region of interest (red box). 
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Figure 3. Demonstration of the use of Remap to classify ecosystem types, Mount Stuart, 
Queensland, Australia. (a) High resolution aerial photograph, (b) the 2017 Landsat OLI 
image composite, (c) training data used to produce the final 3-class map, and (d) the final 
classified map of the distribution of ecosystems in the focal region. Aerial photography in 
panel (a) copyright 2017 Nearmap Australia Pty Ltd. 
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Figure 4. The use of REMAP to identify cover change between 2003 and 2017, Dubai. The 
classified land-water maps developed from (a) the 2003 global Landsat mosaic and (b) 2003 
land-water classification (c) 2017 global Landsat mosaic and (d) 2017 land-water 
classification. (e) image differencing allows areas of coastal reclamation to be mapped and 
quantified. Refer to Figure 1 and Appendix A for a deforestation example. 
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SUPPLEMENTARY MATERIAL 

 

Appendix A: Supplementary Data 

Data used to produce Figure 1 and Figure S3 

• training points (remap_points_roraimaForest.csv) 
• remap workspace (remap_training_roraimaForest.json) 

Data used to produce Figure 2 

• training points (remap_points_carpentariaMangroves.csv) 
• remap workspace (remap_training_carpentariaMangroves.json) 

Data used to produce Figure 3 

• training points (remap_points_mtStuart.csv) 
• remap workspace (remap_training_mtStuart.json) 

Data used to produce Figure 4 

• training points (remap_points_Dubai_2003.csv) 
• remap workspace (remap_training_Dubai_2003.json) 
• training points (remap_points_Dubai_2017.csv) 
• remap workspace (remap_training_Dubai_2017.json) 

Data used to produce Figure S2 

• training points (remap_points_chedubaMyanmar.csv) 
• remap workspace (remap_training_chedubaMyanmar.json) 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2018. ; https://doi.org/10.1101/212464doi: bioRxiv preprint 

https://doi.org/10.1101/212464
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

Appendix B: Land cover example 2 

 

Figure S1. Comparison of land cover map produced by the Queensland State 
Government with the REMAP map shown in Figure 3, Mount Stuart, Queensland, 
Australia. (a) Queensland government regional ecosystem map produced from aerial 
photography and satellite image interpretation (Neldner et al. 2017; Queensland Department 
of Natural Resources and Mines 2017), (b) the classified map of the distribution of major 
ecosystems in the focal region produced with REMAP.  
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Figure S2. Demonstration of the use of REMAP to classify land cover types in Cheduba 
Island, Myanmar. The focal region for which the classification is implemented is shown by 
the red polygon. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2018. ; https://doi.org/10.1101/212464doi: bioRxiv preprint 

https://doi.org/10.1101/212464
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

Figure S3. Demonstration of the use of REMAP to map deforestation in the Roraima 
area of Brazil.  
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