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Abstract

There is a current interest in quantifying brain dynamic functional connectivity
(DFC) based on neuroimaging data such as fMRI. Many methods have been
proposed, and are being applied, revealing new insight into the brain’s dynamics.
However, given that the ground truth for DFC in the brain is unknown, many
concerns remain regarding the accuracy of proposed estimates. Since there
exists many DFC methods it is difficult to assess differences in dynamic brain
connectivity between studies. Here, we evaluate five different methods that
together represent a wide spectrum of current approaches to estimating DFC
(sliding window, tapered sliding window, temporal derivative, spatial distance
and jackknife correlation). In particular, we were interested in each methods’
ability to track changes in covariance over time, which is a key property in
DFC analysis. We found that all tested methods correlated positively with each
other, but there were large differences in the strength of the correlations between
methods. To facilitate comparisons with future DFC methods, we propose that
the described simulations can act as benchmark tests for evaluation of methods.
In this paper, we present dfcbenchmarker, which is a Python package where
researchers can easily submit and compare their own DFC methods to evaluate
its performance.
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Introduction

Dynamic functional connectivity (DFC) is being applied to an increasing number
of topics studying the brain’s networks. Topics that have been explored with
DFC include development (1), various pathologies (2,3), affect (4), attention (5),
levels of consciousness (6), and temporal properties of the brain’s networks (7–9).
There are many concerns raised regarding methodological issues. These issues
include from biased variance (10,11), movement artefacts (12), and statistics
(13,14).

Methods used to derive DFC estimates are as diverse as its range of appli-
cations. Examples of different methods include: the sliding window method,
sometimes tapered (15), temporal derivatives (16), methods using Euclidean
distance between spatial configurations (8), k-means clustering methods (7,17),
eigenconnectivities (18), point process methods (19,20), Kalman filters (21,22).
flexible least squares (23), temporal ICA (24), sliding window ICA (25), dynamic
conditional correlation (26), phase differences (27) wavelet coherence (4), hidden
Markov models (28), and variational Bayes hidden Markov models (29). This
list of DFC methods is not exhaustive, and even more methods can be found in
the literature.

While these methods and their applications may offer new insights into the
functions of the brain and cognition, it becomes difficult to compare results
when different studies use different methods to estimate brain dynamics. Each
method is often introduced and evaluated by the authors’ own simulations,
empirical demonstrations, and/or theoretical argumentations. However, apparent
differences in dynamic connectivity in different studies may have been influenced,
or even caused, by differences in the underlying methodology used to derive
connectivity estimates.

In order to maximize reproducibility of reported findings, it is important that
comparisons of proposed DFC methods can be made with a common set of
simulations. To this end, we have developed four simulations that aim to show
how well results from different DFC methods correlate with each other and
evaluate their performance of tracking time varying covariance. The proposed
methods and simulations are packaged in the Python package dfcbenchmarker,
(available at github.com/wiheto/dfcbenchmarker). Researchers can evaluate their
own DFC methods in dfcbenchmarker. The software also allows for new methods
to be submitted to us for inclusion in future reports. Here we demonstrate
the functionality and results obtained by dfcbenchmarker by evaluating the
performance of the following five methods: sliding window (SW), tapered sliding
window (TSW), spatial distance (SD), jackknife correlation (JC), and temporal
derivatives (TD).
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Methods section

Software used

All methods for DFC derivation were implemented in Teneto v0.2.1 (8). Bayesian
statistics for evaluating performance of DFC methods were calculated in PyMC3
V3.1 (30), simulations and analysis were done using Numpy V1.13.1 (31), Scipy
V0.19.1 (32), and Pandas V0.19.2. Matplotlib V2.0.2 (33) and Seaborn V0.7.1
(34) were used for figure creation.

Dynamic functional connectivity methods

As discussed in the introduction, the list of published DFC methods that are
designed to be applied to fMRI imaging data is long. In an ideal world all
methods will be contrasted under the same conditions so that an evaluation of
which methods that give appropriate results can be performed. However, it was
not our intention to provide a complete comparison of all published methods.
Instead we have made all simulation tools freely available so that researchers
can evaluate their own DFC methods. Before describing the simulations and the
results, we provide a brief overview of the five methods that are evaluated in
this article.

Sliding window (SW)

The SW method is one of the most commonly used methods to estimate DFC.
The sliding window method uses a continuous subsection of the data, estimates
the degree of correlation (Pearson correlation), slides the window one step in
the time series, and repeats. This creates a smooth connectivity time series as
neighbouring estimates of connectivity share all but two data points. The SW
method is based on the assumption that nearby temporal points are helpful to
estimate the covariance. In our simulations, the window length was set to 63,
which is reasonable for a sliding window analysis. Given the common choice of a
time resolution (TR) of 2 seconds in fMRI, this results in a window length of
126 seconds which is reasonable, given rule-of-thumb choices for window length
estimates that has recently been proposed (35).

Tapered sliding window (TSW)

The TSW method can be described as a weighted Pearson correlation where the
weights are set to zero except for the data points residing inside the window. This
procedure is identical to the SW method except that a larger weight is placed
on time points closer to the centre of the window (t). Often, the weights are
distributed according to a Gaussian distribution centred at t. In our simulations
using the TSW method, we used a Gaussian distribution with a variance of 10.
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The window length was the same as for the SW method (centred at t). See also
(15) for an example of usage of the TSW method.

Spatial Distance (SD)

An alternative to using temporally adjacent data points is to estimate the
covariance using data points that have similar spatial profiles. In this case, the
weights are based on distances in spatial dimensions of data acquired at different
time points. In functional neuroimaging data each spatial dimension corresponds
to a region of interest or voxels. One way to accomplish this is by first computing
weights for each time point (t) to all other time points. This can be done by
taking the inverse of their Euclidean distance to each other time point (u):

wt
u = 1

Dt,u
t 6= u (1)

where D is the Euclidean distance. Hence, the closer in space the data points
are located, the larger their individual weights will be. Each time point gets a
weight vector (wt) which is the length of the time series. The weight vector for
each time point are subsequently scaled between 0 and 1. The “self weights” (wt

t)
are set to 1. The connectivity estimate at t is the weighted Pearson correlation
where each time point is weighted by wt. For more details of the SD method,
see (8).

Jackknife Correlation (JC)

The JC method has previously been shown on electrocorticographic data for
signal trial coherence and Granger causality (36). To the best of our knowledge,
the jackknife correlation method has not yet been utilized in the DFC literature.
Thus, we provide a more detailed description of its logic and workings. The
jackknife correlation method is outlined in more detail and contrasted to a
binning approach (which is akin to the sliding window method) in (36). The JC
method, when applied to single time point covariance estimates of signals x and
y at t computes the Pearson correlation between the two signals using all time
points in x and y with the exception of xt and yt:

JCt = −
( ∑T

i (xi − x̄t)(yi − ȳt)∑T
i (xi − x̄t)2∑T

i (yi − ȳt)2

)
i 6= t (2)

Of note, the inclusion of the minus sign in the equation above is to correct for
the inversion caused by the leave-n-out process (see below). The x̄t and ȳt are
the expected values, excluding data at time point t:
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x̄t = 1
T − 1

T∑
i

xi i 6= t (3)

To demonstrate the JC method, 10,000 time points were drawn from a multivari-
ate Gaussian distribution with a mean of 0 and a variance of 1 to generate the two
time series shown in Figure 1A. Additionally, the time series were constructed so
that the covariance between the two varied as a function of time. For the first
2,000 time points, the covariance was set to 0.8 and then further decreased in
steps of 0.2 for every 2,000th time point (Figure 1B).

The relative connectivity time series are similar (but inverted) for a leave-n-
out compared to a window-length-n methods (Figure 1C). The JC method
corresponds to the case when n=1, i.e. a leave-1-out approach after correcting
for the inversion (all leave-n-out estimates are multiplied by -1 to correct for
the inversion in Figure 1). All possible choices of n were computed for both
methods (i.e. a leave-1-out to a leave-9,999-out and a window-of-length-2 to
window-length-10,000 (see Figures 1DE). As shown in Figure 1G, the Spearman
correlation between the two methods is close to 1 for various choice of n. However,
their correspondence in covariance estimates between the two methods departs at
the tails (Figures 1F and 1H). These deviations occur for two reasons: (1) when
n is very small it implies there is little data to work with for the window-length-n
method. On the other hand, low values of n do not hamper the performance
of the leave-n-out method. (2) Large values of n will result in few estimates
for covariance for each time point, which makes the correlation between the
two methods less stable. In sum, while it is impossible to create estimates for
window-of-length-1, it is however possible to use a leave-1-out method as an
approximation for a window-length-1 due to the symmetry between the two
methods.

When estimating the DFC, the two major aims are to accurately measure the
covariance and to be sensitive to changes in the covariance. In the case of
the leave-1-out (i.e. the jackknife correlation) approach, we achieve a unique
connectivity estimate per time point that is more reliable than using a smaller
window size (due to the fact that more data is used). Usually, the SW method
has to find a balance between the two aims. In this respect, the JC method is
an optimal sliding window method as it does not have to compromise between
sensitivity on one hand and accuracy on the other.

The time point based DFC estimate obtained with the JC method should be
interpreted as the relative difference in connectivity at any particular data
point compared to all other data points in the time series. This is because
the covariance for each data point is estimated based on its relationship to all
other data points. To illustrate this effect, consider the 49 data points randomly
sampled from a Gaussian distribution with a mean of 0 and a covariance of 0.5
as shown in Figure 1I. If we assume that the 49 time points are used to compute
the JC estimate for the covariance for a 50th time point, the value of this new
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Figure 1: Illustration of jackknife correlation and leave-n-out/window-length-n
symmetry. (A) Two time series drawn from a multi-variate Gaussian distribution,
stretching over 10,000 time points with their covariance parameter changing
every 2,000th time point. (B) The covariance parameter of the two time series
in A. (C) Depiction of how the window-length-n and leave-n-out relate to each
other. Shaded region indicates time points used in the correlation estimate
at time point t. (D) The correlation estimate per time point for varying n of
the leave-n-out method (correcting for the inversion by multiplying with -1).
The time series for each n is scaled between 0 and 1. (E) Same as D, but for
the window-length-n method. (F-H) Correlation between the time series of
connectivity estimates for window-length-n and leave-n-out methods for different
values of n. (F) Shows n between 1-50 (G) Shows n over the entire time series.
(H) Shows n between 9,950 and 10,000. (I) The correlate of the amplitude of
the two time series. 49 time points were sampled from a multivariate Gaussian
distribution with a covariance of 0.5. (J) Illustration of the jackknife correlation
estimate for different possible values, relative to the 49 time points in I.
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data point will have no impact on its JC covariance estimate because the other
49 points are used. What the 50th time point does is change the JC estimate
for the other 49 points. This means that the relative position of the 50th point
changes in relation to the rest of the time series. The standardized JC estimate
of covariance for all possible values of the 50th time point is shown in Figure 1J.
In sum, individual JC estimates have little meaning by themselves but they do
show which time points have an increased connectivity and which that have a
decreased connectivity relative to all the other points in the time series.

When using the JC method to estimate DFC, it is important to keep in mind
that it leads to a compression of the variance. Furthermore, the amount of
compression is proportional to the length of the time series. It is often helpful
to scale or standardize the connectivity time series derived by the JC method
before any subsequent analysis. Finally, while a Pearson correlation was used in
this study for the JC, it is possible to use other correlation methods such as the
Spearman Rank instead.

Temporal Derivative (TD)

The TD approach to estimate DFC was first introduced in (16). In brief, the
temporal derivative method first computes the temporal derivative of a time
series as:

dfi = xi,t − xi,t−1 (4)

Next, the coupling between the signal sources i and j is defined as the product
of the two derivatives dfi and dfj for each time point t, divided by the product
of the standard deviation for dfi and dfj :

TDi,j,t = dfi,tdfj,t

σdfiσdfj

(5)

The TD method is often used together with a smoothing function in the form of
a window function. In our simulations, a window length of 7 was chosen, since
this was considered optimal in (16).

Post-processing for DFC estimates

After each of the DFC methods were applied to the simulated data a Fisher
transform was applied to the connectivity time series (except for the TD method).
To illustrate the variance compression that results from the JC method, the
DFC for the JC method was not standardized in Simulation 1.

The SW, TSW and TD methods are all effected by any autocorrelation existing in
the BOLD signal, whereas the spatial distance and jackknife correlation method
are not effected by any autocorrelation in the time series.
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Simulations

To compare accuracy and performance for the five DFC methods, we performed
four different simulations. The first simulation investigated the similarity of
the five methods by correlating their respective connectivity estimates. The
second simulation targeted how well the different methods were able to track a
fluctuating covariance parameter. The third simulation tested how robust the
estimated fluctuating covariance is when the mean of the time series fluctuates,
mimicking the haemodynamic response function. The forth simulation considered
whether DFC methods can accurately track abrupt changes in covariance.

Simulations 2, 3, and 4 all consisted of fluctuating covariance parameter (rt)
that was used to generate the time series. This is the covariance between the
time series that the data was sampled from at t. The parameter choice for the
difference simulations were considered relevant for the fMRI BOLD signal. A full
account of all model assumptions made as well as a justification for our model
parameter settings for the four simulations models used in the present study is
given in the Supplementary Material.

Statistics

In principle, it is possible to simply correlate the results from the different DFC
methods with the rt values to statistically evaluate their performance. However
given the inherent, but known, uncertainty in rt, we deemed it was appropriate
to create a statistical model which accounts for this uncertainty. Thus, for
each DFC method, a Bayesian statistical model was created to evaluate the
relationship between the DFC estimate and the signal covariance.

The Bayesian model aims to predict y, which is the vector of the known sampled
covariances (i.e. rt) with x, which is the connectivity estimate for each DFC
model.

yi ∼ N (µi, σ)

µi = α+ βxi

α ∼ N (0, 1)

β ∼ N (0, 1)

σ ∼ Nhalf(0, 1) (6)

All DFC estimates and the values of rt were standardized prior to calculating the
models, to facilitate the interpretation of the posterior distribution parameter β.
The different DFC methods vary in length of number of time points estimated
(e.g. the beginning and end of the time series cannot be estimated with the sliding
window method). In order to facilitate model comparison between methods, we
restrained the simulations to include only the time points that had estimates
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from all DFC methods (i.e the limit was set by the SW and TSW methods which
can estimate the covariance for 9,938 out of 10,000 time points).

The statistical model were estimated through 5,500 draws from a Markov Chain
Monte Carlo (MCMC) with a No-U-Turn Sampler (37) sampler implemented in
pymc3. The first 500 samples were burned.

The statistical models for the different DFC methods can be contrasted in two
ways: (1) model comparison by examining the model fit; (2) by comparing the
posterior distribution of β for the different DFC methods. To evaluate the model
fit, the Watanabe-Akaike information criterion (WAIC) was used. The posterior
distribution of β illustrates the size and uncertainty of the relationship between
x and y. To aid the interpretation of these results for readers unfamiliar with
Bayesian statistics, the mode of the distribution corresponds approximately to a
maximum-likelihood estimated β value in a linear regression (if uniform priors
are used for the parameters the posterior mode and the maximum-likelihood
estimator would have been exactly the same).

Results

Simulation 1

The first simulation aimed to quantify the similarity of the different DFC time
series estimates. If two DFC methods are strongly correlated, this is a positive
sign as they are estimating similar aspects of the evolving relationship between
time series. A negative correlation between two methods would suggest that
they do not capture the same dynamics of the signal.

In this simulation we created two time series (X), each consisting of 10,000 time
points in length. The time series had an autocorrelation and covariance given
by:

Xt = αXt−1 + ε (7)

The autocorrelation with lag of 1 is determined by αXt−1 and the covariance at
t is determined by ε. ε was sampled from a multivariate Gaussian distribution
(N ):

ε ∼ N (µ,Σ) (8)

where µ is the mean and Σ being the covariance matrix of the multivariate
Gaussian distribution. Both time series were set to have a mean of 0, variance
of 1 and a covariance of 0.5. In summary:

µ = 0, 0
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Σ =
(

1 0.5
0.5 1

)
The autoregressive parameter α controls the size of the autocorrelation in relation
to the preceding time point (i.e. the proportion of the previous time point that is
kept). Here, it was set to 0.8 which was deemed to be an appropriate degree of
autocorrelation for BOLD time series. A portion of the two simulated time series
is found in Figure 2A together with the plots of their respective autocorrelation
(Figures 2BC) and a plot of the correlation between the two time series (Figure
2D).

Figure 2: Simulated data in Simulation 1. (A) Two correlated time series were
generated (a total of 10,000 time points were simulated, only the first 100 time
points shown in the figure). (B-C) Spectrum of autocorrelation of both time
series (colors corresponding to respective time series given in (A)) for up to 10
lags. (D) Kernel density estimation illustrating the covariance between two time
series (r = 0.51).

The resulting connectivity time series for the five different DFC methods when
applied to the simulated data is shown in Figure 3. From Figure 3, several
qualitative observations can be made about the methods. Firstly, there was a
very strong similarity between the SD and JC methods, despite the fact that they
consist of quite different assumptions. Further, the SD, JC, and TD methods
were all able to capture considerably quicker transitions than the SW and TSW
methods. Finally, the variance of the JC method was considerably smaller than
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all other methods, illustrating the variance compression as previously discussed.

Figure 3: Dynamic functional connectivity estimates for Simulation 1. The five
DFC methods (ordered alphabetically): (A) JC; (B) SD; (C) SW; (D) TD; (E)
TSW. Only the first 500 time points are shown.

To assess the degree of similarity of the estimates of functional connectivity time
series obtained from all five DFC methods, a Spearman correlations was used
(Figure 4). The connectivity time series estimates from all methods correlated
positively with each other (Figure 4). The SD and JC methods showed a
strikingly strong relationship (ρ = 0.976). The two sliding window methods
also display a strong correlation (ρ = 0.735). The lowest correlation was found
between the SW and TD methods (ρ = 0.086).

The results from Simulation 1 showed that the connectivity estimates provided
by the tested methods are, to a varying extent, correlated positively with each
other. It also illustrated how the different methods differ in their resulting
smoothness of the connectivity time series. The results from this simulation
cannot validate whether any DFC method is superior to any other, it merely
highlights which methods produce similar connectivity time series.

Simulation 2

In Simulation 1, it was not possible to evaluate how well the different DFC
methods perform. To evaluate the performance, the simulated data must change
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Figure 4: The degree of similarity of functional connectivity estimates for all
tested DFC methods computed with the Spearman correlation coefficient in
Simulation 1.

12

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212241doi: bioRxiv preprint 

https://doi.org/10.1101/212241
http://creativecommons.org/licenses/by-nc/4.0/


its covariance over time and how this change must be known beforehand. The
aim of this simulation was to see how well the derived DFC estimates can infer
the covariance that the data was sampled from when the covariance is fluctuating.

Two time series were generated (X). Each time point t is sampled from a
multivariate Gaussian distribution:

Xt ∼ N (µ,Σ) (9)

where the covariance matrix was defined as:

Σ =
(

σ rt

rt σ

)
(10)

and where the variance, σ = 1, was set to 1. At each time point, rt was sampled
from another Gaussian distribution:

rt ∼ N (µr, σr) (11)

The mean of the time series (µ) was set to 0, the mean of the covariance (µr)
was set to 0.2. The variance of the fluctuating covariance (σr) was set to vary
with the values of {0.08, 0.1, 0.12}.

The covariance at time (rt) was sampled from a Gaussian distribution. Each time
point received a new value of rt. This allowed us to compare each DFC method’s
connectivity estimate in relation to the time varying covariance parameter rt.
Note, rt is not a definitive measure of the covariance at t, it is only a parameter
of the covariance used to sample from a Gaussian distribution. Thus, we should
not expect the connectivity estimate from any method to correlate perfectly
with rt. However, it is possible to compare which method correlate best with rt

to evaluate the overall performance.

The above model will have a temporally fluctuating covariance. It fails to include
any autocorrelation in the time series. Not accounting for this may bias the
results for some of the tested methods that utilize nearby temporal points to assist
estimating the covariance. Merely adding an autocorrelation, like in Simulation
1, will also increase the covariance between the two time series and this will not
be tracked by rt. To account for this, we placed a 1-lag autoregressive model for
the fluctuating covariance at rt:

rt = αrt−1 + ε (12)

ε ∼ N (µr, σr) (13)
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Where α is the autocorrelation parameter. The values for µr and σr were the
same as above. When t = 1, ε was set to 0.

This revised formulation of our simulation model allowed for the covariance
to fluctuate, but with an added autocorrelation on the covariance parameter.
In simulation 2, three different settings of the parameter α were used (α =
0, 0.25, 0.5). When α = 0 it is equivalent to the original model outlined above
with no autocorrelation. With an increased α it entails a greater influence of the
covariance from t−1 in sampling the covariance at t. α = 0.5 is reasonable given
highly correlated BOLD time series. An α = 0 is more to be expected when time
series are less correlated. 10,000 time points were sampled for each of the three
different settings of the autocorrelation parameter. See also the Supplementary
Materials for a justification of the parameter settings chosen here.

Simulation 2 was run with 9 different simulation hyperparameter combinations:
three different values of α and three different values of σr.

A sample of time series generated with the model using different settings for the
autocorrelation parameter α is shown in Figure 5A. Due to the varying degree
of autocorrelation, the mean covariance for time series changes as a function of
α, but all still create a Gaussian distribution of rt (Figures 5B-D). The degree of
crosscorrelation between the two time series followed the specified α parameter
for the autocorrelation of the covariances (Figures 5E-G).

The results from Simulation 2 are shown in Tables 1-9. The JC method had
the lowest WAIC score for all settings of α, followed by the SD method. The
SW, TSW and TD methods performed nearly equally well for α = 0. The TD
method came in third place for all but one parameter configuration. All WAIC
values, their standard error and ∆ WAIC scores are shown in Tables 1-9.

The posterior distribution of the β parameter for each of the DFC methods for
all parameter choices are shown in Figure 6. Larger values in the β distribution
for a method (i.e. correlating more with rt) conforms with the best fitting models
(i.e. lower WAIC score). The SW method performed the worst, followed by the
TSW method. The TD method came in third place. SD and JC showed the
best performance, with similar posterior distributions of β, although the JC was
always slight higher.

There was little difference between the methods when changing the variance of
the fluctuating covariance (σr). The β values do however scale when σr changes.
When σr is smaller, β values decrease.

In sum, the JC method, followed closely by the SD method, showed the best
performance in terms of tracking a fluctuating covariance between two time
series as performed in Simulation 2. The TD method ranked in third place when
there is a higher crosscorrelation between the time series present. The SW and
TSW methods showed the worst performance, both in the WAIC score (Tables
1-9) and posterior distributions of β (Figure 6).
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Figure 5: A sample of fluctuating covariance generated in Simulation 2. (A-C)
α = 0 and σr = 1. (A) An example of rt fluctuating over time, showing only first
500 time points shown. (B) Distribution of the fluctuating covariance parameter
(rt) (C) autocorrelation of rt for 10 lags. (D-F) Same as A-C but with the
parameters α = 0.25. (G-I) Same as A-C but with the parameters α = 0.5.
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Figure 6: Posterior distributions of the β parameter of the Bayesian linear
regression models in Simulation 2. Figure shows a 3x3 grid with the varying values
of the autocorrelation (α) and the variance of the fluctuating covariance (σr). For
each parameter configuration, a model was created for each DFC method. The
DFC estimate was the independent variable estimating the fluctuating covariance
(rt) between the two time series.
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Simulation 3

The aim of Simulation 3 was to examine the behaviour of different DFC methods
when there were non-stationarities present in the data. A typical scenario when
this will occur is in DFC is in task fMRI. Simulation 3 is identical in structure to
Simulation 2 apart from the following two changes: (1) A non-stationarity, aimed
to mimic the occurrence of an event related haemodynamic response function
(HRF). Specifically µ, which was set to 0 for both time series in Simulation 2,
received a different value at each t (see next paragraph). (2) σr was set to 0.1
instead of varying across multiple values. This is because Simulation 2 showed
no large differences when varying σr.

µt was set, for both time series, according to the value of a simulated HRF,
that was twenty time points in length and repeated throughout the simulation.
The HRF was simulated, with a TR of 2, using the canonical HRF function as
implemented in SPM12 using the default parameters (38). This HRF, which
has a length of 17 time points, was padded with an additional 3 zeros. The
amplitude of the normalized HRF was multiplied by 10 to have a high amplitude
fluctuations compared to the rest of the data. µt is thus the padded HRF
repeated throughout the entire simulated time series. This represents a time
series that includes 250 “trials” that each lasts 40 seconds. This simulation helps
illustrate how well DFC methods could be implemented in task based fMRI.
Examples of the time series generated using different autocorrelation are shown
in Figure 7.

The results from Simulation 3 are shown in Figure 8 (Posterior distributions of β)
and Tables 10-12 (model fit) which evaluated each DFC’s method performance
at tracking the fluctuating covariance (rt). Results were similar with Simulation
2. In the case when the autocorrelation of the covariance was 0, the SW, TSW
and TD methods performed quite poorly, but all improved to varying degrees
as this increased. The SW method was generally the worst method, followed
by TSW. The TD method came in third place. The JC method has the best
performance, followed closely by the SD method, in all parameter conditions.

In sum, the results from Simulations 2 and 3 suggests that the JC method has
the best performance in terms of detecting fluctuations in covariance compared
to the other four DFC methods. This result also holds when a non-stationary
event related haemodynamic response was added to the mean of the time series.

Simulation 4

Simulation 4 aimed to test how sensitive different DFC methods are to large
and sudden changes in covariance (i.e. changes in “brain state”) that previously
have been postulated to exist in fMRI data (e.g. (11,15,17)). We here start in a
similar fashion as we did in Simulation 2 where samples for the two time series
are drawn from a multivariate Gaussian distribution
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Figure 7: Examples of time series used in Simulation 3 where the mean of the
time series is sampled from a time series that included a train of simulated event
related HRF fMRI responses (spaced apart every 20 time points). Only the first
100 time points are shown. (A) α = 0, (B) α = 0.25, (C) α = 0.5

Figure 8: Posterior distributions of the β parameter of the Bayesian linear
regression models in Simulation 3. Figure shows a 1x3 grid with the varying
values of the autocorrelation (α). For each parameter configuration, a model was
created for each DFC method. The DFC estimate was the independent variable
estimating the fluctuating covariance (rt) between the two time series.
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Xt ∼ N (µt,Σt) (14)

Σt =
(

σ rt

rt σ

)
(15)

Similar to simulation 2, we set µt = 0 and σ = 1. The covariance parameter rt

was sampled from a Gaussian distribution where the mean was shifted

rt ∼ N (µstatet
, σr) (16)

and where σr = 1. At each state transition, µstatet
was randomly chosen from

a set M (M = {0.2, 0.6}). The duration of each state was randomly sampled
from L. Two different scenarios for state transitions were simulated. In the
fast transition condition L = {2, 3, 4, 5, 6} and in the slow transition condition
L = {20, 30, 40, 50, 60}. These values correspond to the number of time points
a “state” lasts. Beginning at t = 1, µstatet

to µstatet+l
was randomly sampled

from M where l was sampled from L. This procedure was continued until Xt

was 10,000 samples long.

These choices for brain state changes provide time scales of state transitions
between 40-120 seconds (slow condition) or 4-12 seconds (fast condition) in
simulated fMRI data with a TR of 2 (Figure 9A). The statistical model for
evaluating the different DFC methods performance was the same as Simulation
2 and 3. A summary of data generated in Simulation 4 is shown in Figure 9A-F.

The results from Simulation 4 are shown in Figure 10 and Tables 13-14. In the
quick transition condition, the JC and the SD showed the best performance for
both the WAIC scores and the posterior distribution of β (Figure 10A; Table 7).
In the slow transition condition the two sliding window methods outperformed
the other methods (Figure 10B; Table 8). The JC and SD methods perform
similarly for both conditions. Thus, when there are shifts in covariance that
occur relatively slowly, the sliding window methods are sensitive at tracking
these changes.

Discussion

In this study we have developed four simulations to test the performance of
different proposed dynamic functional connectivity methods. The first simulation
showed which methods yield similar connectivity time series. Notably, all
methods correlated positively with each other, but to a varying degree. The
second simulation generated data in which the autocorrelated covariance between
simulated time series varied in time. In this case, the JC method, followed closely
by the SD method, showed the best performance. In the third simulation, the
generated time series contained a non-stationary mean related to haemodynamic
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Figure 9: A sample of fluctuating covariance generated in Simulation 4. (A-C)
Quick state transitions (between 2-6 time points long). (A) An example of rt

fluctuating over time, showing only first 500 time points shown. (B) Distribution
of the fluctuating covariance parameter (rt) (C) autocorrelation of rt for 10 lags.
(D-F) Same as A-C but with the long state transitions (between 20-60 time
points long).

Figure 10: Posterior distributions of the β parameter of the Bayesian linear
regression models in Simulation 4. Figure shows a 1x2 grid with the varying
values of the state length. For each parameter configuration, a model was
created for each DFC method. The DFC estimate was the independent variable
estimating the fluctuating covariance (rt) between the two time series.
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responses. Again, our simulations suggested that the JC method performed best.
The forth simulation included nonlinear shifts in covariance (in an attempt to
simulate brain state shifts). When the states changes were quick, the JC method
performed best. When the state changes were slow, the TSW (followed by the
SW) performed best.

In a previous simulation that evaluated the sliding window method, the sensitivity
of SW and TSW method was found to be good at detecting state shifts (39).
Here, at least when the transitions are slow, we found similar results. The
sliding window methods is optimal if there are slow state changes. However it is
unclear if “state changes” are the best yardstick for dynamic brain connectivity.
In particular, non-stationarities in dynamic connectivity have been attributed
to spurious sources such as movement (12). Given the unknowns of the “true”
connectivity, methods which are robust over conditions are more likely the
safer options — in this case the JC or SD method performed similarly in both
conditions.

Overall the jackknife correlation method performed the best across all simulations.
We have shown it to be robust to numerous changes in parameters. However,
the JC method is not without some considerations. First, it introduces variance
compression that reduces the absolute variance, while preserving the relative
variance within the time series. This variance compression also scales with the
length of the time series. The consequence of this is that direct comparisons
of the DFC variance between cohorts/conditions becomes hard to interpret as
dynamic fluctuations, especially when the length of the data varies. However,
this is the case for most methods and it should be remembered that the variance
is proportional to the static functional connectivity (7,9,10). Simply put, the JC
method (like all other methods) should not be used for a direct contrast of the
variance of DFC time series. Second, the JC method sensitivity means that noise
will be carried over per time point instead of being smeared out over multiple
time points. This is actually beneficial as it allows for further processing steps to
be applied that aims to remove any remaining noise (e.g. motion) which cannot
be done when the noise has been smeared across the connectivity time series
(e.g. in windowed methods).

The simulations and results presented in this study should not be taken as
an exhaustive and complete assessment of all aspects of a given method to
conduct DFC. Rather, the four simulations described here represents a subset
of possible scenarios in terms of different methodological characteristics that
might be of interest. The current four simulations are marked dfcbenchmarker
simulation routine V1.0. If modifications or additional scenarios are considered
to be improvements to the current simulations, these will get an updated version
number. Many additional simulations could be conceived of on top of this
original routine. For example, one could include multiple time series, adding
movement type artifacts, adding frequency relevant characteristics, a stationary
global signal etc. These have not been included here, as the focus in these
simulations was to primarily assess tracking of a fluctuating covariance. Input
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from researchers about appropriate additions to the simulations is welcome.

We encourage researchers designing DFC methods to benchmark their own results
with dfcbenchmarker (www.github.com/wiheto/dfcbenchmarker). Researchers
need only to write a Python function for their method and use it as an input for
dfcbenchmarker.run_simulations() and their method will be compared to
the five methods presented in this paper (see online documentation). Functions
can then be submitted through the function dfcbenchmarker.send_method().
All valid methods submitted will be released in summaries of the submitted
benchmarked results so that researchers can contrast the performance of different
methodologies.
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Figure Captions

Figure 1 Illustration of jackknife correlation and leave-n-out/window-length-n
symmetry. (A) Two time series drawn from a multi-variate Gaussian distribution,
stretching over 10,000 time points with their covariance parameter changing
every 2,000th time point. (B) The covariance parameter of the two time series
in A. (C) Depiction of how the window-length-n and leave-n-out relate to each
other. Shaded region indicates time points used in the correlation estimate
at time point t. (D) The correlation estimate per time point for varying n of
the leave-n-out method (correcting for the inversion by multiplying with -1).
The time series for each n is scaled between 0 and 1. (E) Same as D, but for
the window-length-n method. (F-H) Correlation between the time series of
connectivity estimates for window-length-n and leave-n-out methods for different
values of n. (F) Shows n between 1-50 (G) Shows n over the entire time series.
(H) Shows n between 9,950 and 10,000. (I) The correlate of the amplitude of
the two time series. 49 time points were sampled from a multivariate Gaussian
distribution with a covariance of 0.5. (J) Illustration of the jackknife correlation
estimate for different possible values, relative to the 49 time points in I.

Figure 2 Simulated data in Simulation 1. (A) Two correlated time series were
generated (a total of 10,000 time points were simulated, only the first 100 time
points shown in the figure). (B-C) Spectrum of autocorrelation of both time
series (colors corresponding to respective time series given in (A)) for up to 10

25

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212241doi: bioRxiv preprint 

https://doi.org/10.1101/212241
http://creativecommons.org/licenses/by-nc/4.0/


lags. (D) Kernel density estimation illustrating the covariance between two time
series (r = 0.51).

Figure 3 Dynamic functional connectivity estimates for Simulation 1. The five
DFC methods (ordered alphabetically): (A) JC; (B) SD; (C) SW; (D) TD; (E)
TSW. Only the first 500 time points are shown.

Figure 4 The degree of similarity of functional connectivity estimates for all
tested DFC methods computed with the Spearman correlation coefficient in
Simulation 1.

Figure 5 A sample of fluctuating covariance generated in Simulation 2. (A-C)
α = 0 and σr = 1. (A) An example of rt fluctuating over time, showing only first
500 time points shown. (B) Distribution of the fluctuating covariance parameter
(rt) (C) autocorrelation of rt for 10 lags. (D-F) Same as A-C but with the
parameters α = 0.25. (G-I) Same as A-C but with the parameters α = 0.5.

Figure 6 Posterior distributions of the β parameter of the Bayesian linear
regression models in Simulation 2. Figure shows a 3x3 grid with the varying values
of the autocorrelation (α) and the variance of the fluctuating covariance (σr). For
each parameter configuration, a model was created for each DFC method. The
DFC estimate was the independent variable estimating the fluctuating covariance
(rt) between the two time series.

Figure 7 Examples of time series used in Simulation 3 where the mean of the
time series is sampled from a time series that included a train of simulated event
related HRF fMRI responses (spaced apart every 20 time points). Only the first
100 time points are shown. (A) α = 0, (B) α = 0.25, (C) α = 0.5

Figure 8 Posterior distributions of the β parameter of the Bayesian linear
regression models in Simulation 3. Figure shows a 1x3 grid with the varying
values of the autocorrelation (α). For each parameter configuration, a model was
created for each DFC method. The DFC estimate was the independent variable
estimating the fluctuating covariance (rt) between the two time series.

Figure 9 A sample of fluctuating covariance generated in Simulation 4. (A-C)
Quick state transitions (between 2-6 time points long). (A) An example of rt

fluctuating over time, showing only first 500 time points shown. (B) Distribution
of the fluctuating covariance parameter (rt) (C) autocorrelation of rt for 10 lags.
(D-F) Same as A-C but with the long state transitions (between 20-60 time
points long).

Figure 10 Posterior distributions of the β parameter of the Bayesian linear
regression models in Simulation 4. Figure shows a 1x2 grid with the varying
values of the state length. For each parameter configuration, a model was
created for each DFC method. The DFC estimate was the independent variable
estimating the fluctuating covariance (rt) between the two time series.
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Tables

Table 1: Results of Simulation 2 where α = 0.0 and σrt
= 0.08.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28149.6 142.529 0
SD 28151.5 142.499 1.89794
TD 28206.2 142.673 56.6558
SW 28207.6 142.662 58.0093
TSW 28207.9 142.679 58.2634

Table 2: Results of Simulation 2 where α = 0.0 and σrt
= 0.1.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28103.6 142.963 0
SD 28104.3 143.047 0.687371
TD 28200.4 143.872 96.7158
TSW 28201.9 143.896 98.2981
SW 28205.8 143.956 102.192

Table 3: Results of Simulation 2 where α = 0.0 and σrt
= 0.12.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28078.1 140.821 0
SD 28079.6 140.76 1.57315
TD 28191.7 140.898 113.678
TSW 28206.2 140.933 128.116
SW 28207.4 140.981 129.332
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Table 4: Results of Simulation 2 where α = 0.25 and σrt = 0.08.
Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28098.3 141.602 0
SD 28101.2 141.699 2.91403
TD 28189.5 141.813 91.1754
TSW 28206.8 141.598 108.57
SW 28207.1 141.565 108.849

Table 5: Results of Simulation 2 where α = 0.25 and σrt
= 0.1.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28104.6 139.337 0
SD 28117.6 139.386 12.9322
TD 28168.1 139.483 63.5039
TSW 28181.8 139.501 77.1804
SW 28195.7 139.752 91.0829

Table 6: Results of Simulation 2 where α = 0.25 and σrt
= 0.12.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28043.9 140.876 0
SD 28050.1 140.796 6.22696
TD 28160.6 140.532 116.743
TSW 28191.3 140.782 147.414
SW 28205.8 140.958 161.904
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Table 7: Results of Simulation 2 where α = 0.5 and σrt = 0.08.
Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28053.3 138.816 0
SD 28067.3 138.677 13.9106
TD 28107.8 138.729 54.4824
TSW 28132.9 138.766 79.5354
SW 28165.8 138.557 112.445

Table 8: Results of Simulation 2 where α = 0.5 and σrt
= 0.1.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 28037.2 141.83 0
SD 28053.5 141.797 16.2988
TD 28120.2 141.398 82.9943
TSW 28148.7 141.628 111.464
SW 28201.2 142.018 163.961

Table 9: Results of Simulation 2 where α = 0.5 and σrt
= 0.12.

Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 27933.6 142.039 0
SD 27967.3 142.002 33.7184
TSW 28042 141.938 108.408
TD 28046.3 141.97 112.708
SW 28169.3 142.095 235.72
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Table 10: Results of Simulation 3 where α = 0.0. Tables shows
WAIC, WAIC standard error, and difference in WAIC from the best
performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE ∆ WAIC
JC 28175.3 142.323 0
SD 28184 142.346 8.68954
TD 28207.1 142.591 31.7657
TSW 28207.5 142.661 32.2356
SW 28207.6 142.653 32.2856

Table 11: Results of Simulation 3 where α = 0.25. Tables shows
WAIC, WAIC standard error, and difference in WAIC from the best
performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE ∆ WAIC
JC 28138.3 142.606 0
SD 28160.5 142.749 22.2079
TD 28184.1 143.06 45.8161
TSW 28190.6 143.249 52.3508
SW 28202 143.265 63.7404

Table 12: Results of Simulation 3 where α = 0.5. Tables shows
WAIC, WAIC standard error, and difference in WAIC from the best
performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE ∆ WAIC
JC 28106.1 139.883 0
SD 28136.7 139.769 30.6289
TD 28150.5 139.587 44.4145
TSW 28177.2 139.546 71.1701
SW 28203 139.717 96.9538

Table 13: Results of Simulation 4 where State length = {2,3,4,5,6}.
Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better
fit.

Model WAIC WAIC SE ∆ WAIC
JC 27548.3 92.0207 0
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Model WAIC WAIC SE ∆ WAIC
SD 27571.1 92.7548 22.8124
TD 27741.6 93.5845 193.243
TSW 27749.5 93.3275 201.18
SW 28072.5 87.9986 524.197

Table 14: Results of Simulation 4 where State length =
{20,30,40,50,60}. Tables shows WAIC, WAIC standard error, and
difference in WAIC from the best performing method. A lower
WAIC indicates a better fit.

Model WAIC WAIC SE ∆ WAIC
TSW 21730.5 144.261 0
SW 22796.5 139.927 1065.97
TD 26630.8 106.131 4900.32
JC 27478.9 92.087 5748.42
SD 27503.1 93.3021 5772.6
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Supplementary Materials - A justification of the
assumptions regarding model parameter choices
made in the simulations.

In simulation routine V1.0 of dfcbenchmarker, we wanted the simulations to
either be justified based on the properties of fMRI data or, in the case of
Simulation 4, reflect what dynamics are hypothesized to exist in fMRI data.

Since the properties of the simulations are determined by their parameters,
we justify these parameters in three different ways. First, we show that some
parameters have no substantial effect on the result. Second, some are justified
from previous findings/hypothesis in the literature. Third, by use resting state
fMRI data to justify the assumptions.

fMRI data used

The midnight scanning club (MSC) data (1) is used to justify the assumptions.
The dataset contains ten subjects with ten sessions of resting state fMRI. This
data was obtained from the OpenfMRI database (accession number: ds000224).
The preprocessed volumetric data was used. To reduce the dimensions of the
data, 278 spherical regions of interest were defined (5mm radius) with their the
centre of mass defined by the Shen et al 2013 atlas (2) (using the Talairach
coordinates). Subject MSC08 is often reported as an outlier, which has previously
been noted in Gordon et al where they noted this subject had poor data quality
due to subject head movement and sleep (1). When a single subject and and
session is shown (for illustration purposes), subject MSC10 and session 7 was
used. This subject and session was selected at random. When specific ROIs
were selected to be shown, these were randomly generated (from subject MSC10,
session 7).

See github.com/wiheto/dfcbenchmarker_assumptions/1.0/assumptions.ipynb
for the Jupyter notebook to run all the analysis from start to finish.

Simulation 1 - summary of assumptions

Information

Aim: See how well the estimates from different DFC methods correlate with
each other.

Evaluation: Spearman correlation between functional connectivity time series
computed by the five DFC methods.

n samples: 10,000
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Random seed: 2017

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ (mean of each time series): 0

σ (variance of time series): 1

rt (covariance of time series): 0.5

α (autocorrelation of the time series): 0.8

Simulation 2 - summary of assumptions

Information

Aim: To investigate how well the different DFC methods correlate with a
fluctuating covariance parameter.

Evaluation: Bayesian linear regressions between the estimates of the DFC
methods and rt (evaluated by comparing WAIC scores and posteriors of β).

n samples: 10,000

Random seed: 2017

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ (mean of each time series): 0

σ (variance of time series): 1

µr (mean of fluctuating covariance): 0.2

σr (variance of fluctuating covariance): {0.08, 0.1, 0.125}

α (autocorrelation of the fluctuating covariance): {0, 0.25, 0.5}

Simulation 3 - summary of assumptions

Information

Aim: To investigate how well different DFC methods perform when the fluc-
tuating covariance parameter contains a non-stationary mean to simulate a
HRF.
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Evaluation: Bayesian linear regressions between the estimates of the DFC
methods and rt (evaluated by comparing WAIC scores and posteriors of β).

n samples: 10,000

Random seed: 2017

TR: 2

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ A scaled HRF.

σ (variance of time series): 1

µr (mean of fluctuating covariance): 0.2

σr (variance of fluctuating covariance): 0.1

α (autocorrelation of the fluctuating covariance): {0, 0.25, 0.5}

Trial length (samples): 20

HRF scale: 10

Simulation 4 - summary of assumptions

Information

Aim: To investigate the performance of DFC methods when there is a fluctuating
covariance parameter that nonlinearly shifts between covariance.

Evaluation: Bayesian linear regressions between the estimates of the DFC
methods and rt (evaluated by comparing WAIC scores and posteriors of β).

n samples: 10,000

Random seed: 2017

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ (mean of each time series): 0

σ (variance of time series): 1

rµ (average covariance in different states): 0.2, 0.6

rσ (variance of covariance in different states) : 0.1
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State length: Fast Condition: {2,3,4,5,6}; Slow condition: {20,30,40,50,60}

Justifying the assumptions

Mean and variance of the time series (µ, σ)

µ and σ for all simulations were set to 0 and 1, with the exception of µ in
simulation 3. As long as the time series have a stationary mean and variance,
then these parameters can be set to anything and have no effect on the overall
result. Simulation 3 tests how methods deal with the non-stationartity of µ.

Autocorrelation and crosscorrelation assumptions (α)

Autocorrelation of the time series (Simulation 1).

The auto-correlation (α) is an important parameter for simulation 1. In Figure
S1, we can see the average auto-correlation for a single subject between 0 and
10 lags. The average and standard deviation for each subjects and session
is shown in Figure S2. Excluding the sessions from the subject known to be
noisy (MSC08), there were only a few sessions with average auto-correlation
values outside the range of 0.70-0.85. Most subject averages were close to 0.80.
Accordingly, α in simulation 1 was set to 0.80.

Autocorrelation of rt (Simulation 2 and 3)

The autocorrelation of rt is an important parameter for simulation 2 and 3,
where the parameter α now refers to the autocorrelation of the covariance
parameter rt. The expected crosscorrelation will be different for different values
of static functional connectivity. Thus, we binned each edge based on its static
connectivity bins (each bin was placed between -1 and 1 in spaces of 0.1). Figure
S3A shows the average crosscorrelation of the example subject and session for
10 lags for each bin. The general pattern is that at lag 1, the average correlation
tends towards zero compared to lag 0 (which is the static functional connectivity).
The frequency of the number of edges across the different correlation values is at
lag 0 (Figure S3B) and lag 1 (Figure S3C) shows that the majority of edges are
within the range -0.5 and 0.5.

The average crosscorrelation at lag 1 looks very similar across different subjects
and sessions (Figure S4). When pooling all static functional connectivity values
across subjects and sessions, the histogram (Figure S5) shows that the pattern at
a group level is similar to that shown in Figure S3B. Thus, more edges correspond
to a degree of connectivity that would be modeled with a lower α parameter.
However, for edges with larger degree functional connectivity, a higher α is to
be expected.
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Figure 1: Auto-correlation of the example subject and session for 10 lags.
Averaged over all ROIs. Error bars show standard deviation. Dashed lines show
the min and max.
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Figure 2: Average auto-correlation at lag 1 for each subjects and sessions. Each
dot represents a session (ordered from top to bottom). Each dot signifies the
average autocorrelation at lag 1. Error bars show standard deviation.
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Figure 3: Average crosscorrelation of the example subject and session for 10
lags. Averaged over all ROIs. Each coloured line represents a bin based on the
correlation value at lag 0 (i.e. the static functional connectivity).
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Figure 4: Average crosscorrelation at lag 1 for all subjects and sessions. Each
dot represent a bin based on the correlation value at lag 0 (i.e. static func-
tional connectivity). Each dot signifies the average (across ROIs in the bin)
crosscorrelation at lag 1. Error bars indicate standard deviation.
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Figure 5: The frequency of the static functional connectivity for each subject
and session. Each row in the figure represents one session for a subject. Each
row contains a normalized histogram of the connectivity values.
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When choosing the α for simulation 2 and 3, we only considered positive auto-
correlations and sampled from the values 0, 0.25, and 0.5 which cover most of
the positive span of functional connectivity.

Covariance (µr, σr, rt)

σr dictates how wide rt is going to fluctuate over time. What the true value
of σr is, is one of the key questions dynamic functional connectivity wants to
answer. Making σr higher, entails that there is a larger parameter space that
rt gets sampled from which decreases the noise when estimating rt. When the
distribution that rt is sampled from widens, there is a lower probability that
the time series will be sampled similarly, meaning the inherent uncertainty of
estimating single samples of rt decreases when the variance of rt increases. The
effect of changing σr is that the β values will scale with it, but the relative
difference of the β values between methods will remain similar. The σr parameter
in is set to 0.08, 0.1 and 0.12 to illustrate this in simulation 2 to show that this
has little effect other than a scaling effect of β (Figure 6). In simulation 3, only
0.1 was used for σr.

The average connectivity (µr) was set to 0.2 in Simulation 2 and 3. It can be
seen in Figure S5 that this is a reasonable positive connectivity value. The µr
parameter is unchanged throughout simulation 2 and 3, however due to the
fluctuating α parameter the effective covariance between the two time series
increases as a function of α (Figure 5). It can be seen that this effective increase
in covariance had little effect on the different methods (Figure 6, Figure 8).

The rt in simulation 4 switched between a very high connectivity “state” of 0.6 and
lower, but positive, connectivity “state” of 0.2. These are plausible connectivity
values (Figure S5). See the section below on state change assumptions for more
details.

Gaussian assumption

All simulated time series were sampled from a (multivariate) Gaussian distri-
bution. The simulations can be improved by considering frequency specific
information (see caveats below). The amplitude of the time series for ROIs in
the example subject and session have a unimodal shape and relatively unskewed
distributions (Figure S6A). To illustrate this more clearly, Figure S6B shows
three randomly selected ROIs. When looking at all groups the average skewness
was calculated (Figure S7). Given the distributions are unimodal they too can at
least be approximated with a Gaussian distribution. While not perfect, and still
a simplification, a Gaussian distribution is a reasonable distribution to sample
from.

The Gaussian distribution assumption for sampling rt can also be motivated by
(3) where the dynamic functional connectivity was generally unimodal and, with
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Figure 6: Distribution of BOLD signal for each ROI in example subject and
session. A. Histograms over each ROI showing the frequency of signal intensity.
Each row functions as a histogram for a ROI. B. Three randomly selected ROIs
from A are depicted as traditional histograms showing the same information as
in A.

42

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212241doi: bioRxiv preprint 

https://doi.org/10.1101/212241
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7: Average skewness for each subject and session. Each dot represents a
session. Each dot signifies the average skewness over all BOLD time series for
ROIs. Error bars show one standard deviation
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appropriate transformation, approximates to Gaussian.

Trial length and HRF scale

The scale of the HRF amounts to how much the standardized HRF has been
scaled so that it creates a larger non-stationarity in mean of the simulated data in
Simulation 3. This parameter was set to a high value to illustrate each method’s
ability to estimate connectivity when a non-stationarity mean is present in the
data. There will be little effect when changing this, but if it was reduced it will
eventually be identical to simulation 2. The non-stationarity introduced by the
adding the HRF function to the data is shown in Figure 7.

The HRF lasting 20 seconds with an assumed TR of 2 means that there are 40
seconds between trials. This is quite long for an event related fMRI experiment.
If this was reduced, it would just entail that the HRF stacks due to overlap. This
would have no effect on what the simulation is testing which is just how well the
different methods can act upon non-stationarities. The TR was considered to
be 2 seconds because many studies still use this TR despite lower TRs being
available. However, this has no implications on the results.

Assumptions regarding shift in “brain state”

The duration of a state in the quick condition are on the approximate time
scale found in (4), although slightly quicker (where the average state transition
was 7 seconds). The longer transitions are based on the time scale explored
in (5). Note however that these two different time scales for states originate
from different dynamic functional connectivity methods. Detecting brain states
has, to our knowledge, not been justified without using dynamic functional
connectivity which makes the reasoning to justify this parameter somewhat
circular. Simulation 4 was added primarily to evaluate how the different methods
can capture dynamics that many researchers hypothesize dynamic functional
connectivity to be, not necessarily how the data is.

Caveats

The current simulations do not take into account any frequency information of
fMRI brain connectivity which is known to play a role in resting state fMRI. This
means that any methods that utilize this aspect of the signal (e.g. phase) cannot
be evaluated at the moment. The Gaussian assumption of the distributions
can be improved upon by adding more fMRI specific noise. Moreover, negative
correlations were not considered in the simulations.

The autocorrelation of rt in simulations 2 and 3 do not necessarily entail an
autocorrelation of X. While this could in principle be added to the simulation
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model, it would mean there is a greater correlation between the time series in X
that is not known by the parameter rt. This caveat does not however impact
the connectivity between the two signals.

Supplementary References

1. Gordon EM, Laumann TO, Gilmore AW, Petersen SE, Nelson SM, Dosenbach
NUF, et al. Precision Functional Mapping of Individual Human NeuroResource
Precision Functional Mapping of Individual Human Brains. Neuron. 2017;1–17.

2. Shen X, Tokoglu F, Papademetris X, Constable R. Groupwise whole-brain
parcellation from resting-state fMRI data for network node identification. Neu-
roImage. 2013 Nov;82(October 2009):403–15.

3. Thompson WH, Fransson P. On Stabilizing the Variance of Dynamic Func-
tional Brain Connectivity Time Series. Brain Connectivity. 2016 Dec;6(10):735–
46.

4. Thompson WH, Fransson P. Bursty properties revealed in large-scale brain net-
works with a point-based method for dynamic functional connectivity. Scientific
Reports. 2016 Dec;6(November):39156.

5. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD.
Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex
(New York, NY : 1991). 2014 Mar;24(3):663–76.

45

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212241doi: bioRxiv preprint 

https://doi.org/10.1101/212241
http://creativecommons.org/licenses/by-nc/4.0/

	A simulation and comparison of dynamic functional connectivity methods
	Author contributions
	Abstract
	Introduction
	Methods section
	Software used
	Dynamic functional connectivity methods
	Simulations
	Statistics

	Results
	Discussion
	Acknowledgements
	References
	Figure Captions
	Tables

	Supplementary Materials - A justification of the assumptions regarding model parameter choices made in the simulations.
	fMRI data used
	Simulation 1 - summary of assumptions
	Information
	Assumptions

	Simulation 2 - summary of assumptions
	Information
	Assumptions

	Simulation 3 - summary of assumptions
	Information
	Assumptions

	Simulation 4 - summary of assumptions
	Information
	Assumptions

	Justifying the assumptions
	Mean and variance of the time series (\mu, \sigma)
	Autocorrelation and crosscorrelation assumptions (\alpha)
	Covariance (\mu_r, \sigma_r, r_t)
	Gaussian assumption
	Trial length and HRF scale
	Assumptions regarding shift in brain state

	Caveats
	Supplementary References


