

1 **Title:**

2 A microbial perspective on the life-history evolution of marine invertebrate larvae: if,
3 where, and when to feed

4

5 **Running Title:**

6 Larval life-history and associated-microbiota

7

8 **Authors:**

9 Tyler J. Carrier ^{1,*} Jason Macrander ¹, and Adam M. Reitzel ¹

10

11 **Affiliations:**

12 ¹ Department of Biological Sciences, University of North Carolina at Charlotte, 9201
13 University City Blvd., Charlotte, NC 28223 USA

14 * Corresponding author: tcarrie1@uncc.edu

15

16 **Keywords:** benthic marine invertebrates; larvae; life-history evolution; microbiome;
17 oceanography

18

19 **Abstract**

20 The feeding environment for planktotrophic larvae has a major impact on development
21 and progression towards competency for metamorphosis. High phytoplankton
22 environments that promote growth often have a greater microbial load and incidence of
23 pathogenic microbes, while areas with lower food availability have a lower number of
24 potential pathogens. Trade-offs between metabolic processes associated with growth and
25 immune functionality have been described throughout the animal kingdom and may
26 influence the life-history evolution of marine invertebrate planktotrophic larvae in these
27 environments. Namely, to avoid potential incidences of microbial-mediated mortality
28 and/or dysbiosis, larvae should regulate time spent between these two feeding
29 environments. We describe here transcriptomic and microbiome data that supports this
30 trade-off in larvae, where larvae in a well-fed environment upregulate genes associated
31 with metabolism and may regularly enter a state of dysbiosis, resulting in mortality. To
32 address the hypothesis that the environmental microbiota is a selective force on if, where,
33 and when planktotrophic larvae should feed, we present a strategy for determining the
34 specific interactions of larvae and microbes at a scale representative of their larger
35 pelagic environment.

36

37

38 “*Life in the sea cannot be understood without understanding the sea itself*” – Alfred C.

39 *Redfield*

40

41 **Oceanography and larval evolution**

42 The evolution of life-histories in the sea has largely been shaped by a diverse and
43 interacting suite of oceanographic features (Strathmann 1990; Burgess, Baskett et al.
44 2015). The oceanographic environment can be divided into four tiers of potential
45 selective pressures: physical, chemical, biological, and microbial. Among these, the first
46 three – physical, chemical, and biological – have been the focus of a majority of life-
47 history research, especially in studying the evolutionary ecology of marine invertebrate
48 larvae (Carrier, Reitzel et al. 2017). For example, the sensory systems of larvae
49 encompassing disparate phyla with distant phylogenetic relationships use physical
50 features of the sea spanning magnitudes in spatial scale, such as sound, turbulence, and
51 olfactory, for navigation (Hodin, Ferner et al. 2017). Additionally, some sea urchin larvae
52 (*e.g.*, *Strongylocentrotus purpuratus* along the Northeastern Pacific Ocean) are capable of
53 exhibiting signs of genomic and physiological adaptions to local ambient acidity and
54 resistance to acidification (Pespeni, Sanford et al. 2013). Lastly, some echinod and
55 mollusc larvae are polyphenic, whereby the biological oceanographic regime, namely
56 high or low levels of phytoplankton, selects for the expression of phenotypes geared
57 toward better feeding performance in each regime (McAlister and Miner 2017).

58 Pathogenic microbes are known to influence the survival of numerous marine
59 species, particularly in coastal species exposed to anthropogenic encroachment as well as
60 ongoing climate change (Harvell, Mitchell et al. 2002). To date, microbial oceanography

61 has been given little attention when linking the microbial oceanographic environment
62 with life-histories of marine invertebrate larvae. However, recent efforts suggest that the
63 microbiome of marine invertebrate larvae is species-specific and distinct from the
64 environmental microbiota (Galac, Bosch et al. 2016), which is consistent with other
65 animals and their developmental stages (e.g., McFall-Ngai and Ruby 2000). The
66 composition and structure of this associated microbial community is also, in part,
67 influenced by the abiotic and biotic environment experienced by the larva (Webster,
68 Botte et al. 2011; Carrier and Reitzel In Review). The ways by which the environmental
69 microbiota influences the structure and composition of the host-associated microbiome
70 remains largely unexplored, which may be a significant omission in understanding larval
71 life histories because associated microbiota have important impacts on physiology,
72 resistance to pathogens, development, and stress tolerance (Rosenberg, Sharon et al.
73 2009; McFall-Ngai, Hadfield et al. 2013; Bordenstein and Theis 2015; Gilbert, Bosch et
74 al. 2015; Theis, Dheilly et al. 2016).

75 Here, we propose the hypothesis that the environmental microbiota is a selective
76 force on if, where, and when planktotrophic larvae of benthic marine invertebrates should
77 feed. We specifically emphasize roles for both pathogenic bacteria and a resultant state of
78 dysbiosis. First, we discuss when and where larvae are likely to interact with pathogenic
79 microbiota in the environment and, by analyzing transcriptomic data for one urchin
80 species, show for the first time the trade-off of metabolic activity and immunity in a
81 marine invertebrate larva. This is followed by a discussion on the influence of the
82 environmental microbiota on the state of the hologenome, which we support with
83 sequenced-based analyses of the microbiota associated with healthy and dying echinoid

84 larvae. Finally, we conclude with a sampling strategy for determining the specific
85 interactions of dilute densities of larvae and variable concentrations of microbes in their
86 natural environments.

87

88 **Larval oceanography and the plankton community**

89 Benthic marine invertebrates with planktotrophic larvae typically release their gametes in
90 synchronicity with the initiation of the spring phytoplankton bloom, as a means to
91 maximize the period of high food availability for developing larvae (Starr, Himmelman et
92 al. 1990). Over the course of their planktonic period, planktotrophic larvae experience
93 structural shifts in the phytoplankton community, as it varies dynamically in space (*e.g.*,
94 distance from shore, alongshore, and with depth), time (*e.g.*, daily and seasonally), and
95 diversity (*e.g.*, community members). On a finer scale, the most dominant contributor of
96 the phytoplankton community differs on a per day basis over the course of a bloom
97 (Needham and Fuhrman 2016). During this time, archaeal, bacterial, and likely viral
98 communities exhibit similar daily succession patterns (Needham and Fuhrman 2016),
99 implying that archaeal-bacterial-phytoplankton daily successional patterns are
100 biologically coupled and subsequently contribute to the rapid microbial growth and turn-
101 over during this period (Needham and Fuhrman 2016).

102 Phytoplankton blooms are tightly regulated by the environmental microbiota
103 (Azam 1998; Needham and Fuhrman 2016). During phytoplankton blooms, dissolved
104 (*e.g.*, dissolved organic material, DOM) and particulate nutrients (*e.g.*, phytoplankton)
105 are two of the primary energy sources for bacteria. Additionally, daily archaeal-bacterial-
106 phytoplankton succession mediate increases in bloom-associated environmental

107 microbial load and DOM (McKenny and Allison 1995; Azam and Malfatti 2007). Some
108 of the environmental microbiota (specifically bacteria and bacteriophages) colonize
109 phytoplankton cells, while others take up and metabolize DOM (Brum, Ignacio-Espinoza
110 et al. 2015; Sunagawa, Coelho et al. 2015). Moreover, in high nutrient environments
111 favoring growth, some bacteria express virulence factors and other pathogenic
112 characteristics (e.g., McKenny and Allison 1995).

113 In addition to concentrating phytoplankton during feeding, planktotrophic larvae
114 also encounter environmental microbiota. For example, *echinopleuti* are predicted to
115 contact as many as $\sim 2.0 \times 10^7$ bacteria•day⁻¹ by feeding alone (Hart and Strathmann
116 1994; Azam and Malfatti 2007), a portion of which would be consumed directly (Jaekle
117 2017). However, this estimate represents a fraction of the total environmental microbiota
118 encountered daily, as bacteria may contact other surfaces of the *echinoplateus*
119 (McEdward 1984). Thus, it is inevitable that larvae interact with and ingest
120 phytoplankton bloom-associated microbes (e.g., Rivkin, Bosch et al. 1986; Gallagher,
121 Waterbury et al. 1994), making it more likely for larvae to encounter pathogenic or
122 virulent species of microbes (e.g., McKenny and Allison 1995; Azam and Malfatti 2007).

123 Phytoplankton, particularly during a spring bloom, can be concentrated and
124 provided enhanced levels of both light and nutrients for growth at two common physical
125 oceanographic phenomena: pycnoclines and frontal zones. Planktotrophic larvae, as well
126 as phytoplankton communities, tend to aggregate in areas directly adjacent to these
127 physical oceanographic features (Dekshenieks, Donaghay et al. 2001; Metaxas,
128 Mullineaux et al. 2009). This is, in part, because larvae are capable of positioning
129 themselves vertically in the water column despite being poor swimmers (Strathmann and

130 Grunbaum 2006; Metaxas, Mullineaux et al. 2009; Arellano, Reitzel et al. 2012).
131 Physical mechanisms and/or behaviors that result in dense aggregations of phytoplankton
132 and associated environmental microbiota may affect life-history trade-offs for larvae. By
133 inhabiting zones that exhibit oceanographic characteristics favoring higher amounts of
134 food, larvae may promote growth and developmental progression. Conversely, these high
135 productivity areas may increase the incidence of interacting with potentially pathogenic
136 microbiota, a potentially significant source of larval mortality (Young and Chia 1987;
137 Rumrill 1990).

138 To avoid inhabiting positions in the water column where microbe-induced
139 mortality would be higher, larvae may vertically position themselves in zones of reduced
140 phytoplankton abundance and bloom-associated microbiota, including surface waters
141 (incidence of photo-inhibition) and bottom waters (below the critical depth). In these
142 areas microbe-induced mortality may be reduced, while the combined abundance of
143 phytoplankton and alternative dietary options remain sufficient to maintain the larval
144 structures or developmental progression, albeit at a slower rate (Rivkin, Bosch et al.
145 1986; Manahan, Davis et al. 1993; Feehan, Grauman-Boss et al. In Review). This implies
146 that the pelagic period for larvae would lengthen greatly, and although microbe-induced
147 mortality is reduced, the incidence of mortality by predation or offshore transport would
148 be higher, assuming time-dependent relationship (Young and Chia 1987; Rumrill 1990).

149 Together, planktrophic larvae in a phytoplankton bloom face two primary
150 feeding environments: high particulate exogenous nutrients and high microbial load with
151 pathogenic characteristics, or low particulate exogenous nutrients and low microbial load.
152 To inhabit the former environment larvae would need to maintain an elevated metabolic

153 rate (that promotes an accelerated development) as well as an elevated immune system
154 (to combat the higher incident of pathogens). On the other hand, the latter requires the
155 opposite, where low particulate exogenous nutrients and the likelihood of pathogens
156 suppresses both metabolic activity and the need for an elevated immune system. Previous
157 research using a diversity of animals has shown a well-characterized trade-off between
158 the metabolic cost for growth, development, and body maintenance and functional
159 capacity of the immune system to fend against pathogens (Lochmiller and Deerenberg
160 2000) (Figure 2).

161 Larvae in an environment with high food and a high microbial load are predicted
162 to exhibit trade-offs between investing energetic input in growth, development, and body
163 maintenance (*i.e.*, feeding) or the functional capacity of the immune system (*i.e.*, defend
164 against pathogens), but not at maximum capacity for both. At present, research has, to our
165 knowledge, yet to directly compare the trade-off of growth and immune function in
166 marine invertebrate larvae, but a study with echinopleuti suggests this trade-off may
167 occur (Carrier, King et al. 2015). Larvae of the sea urchin *Strongylocentrotus*
168 *droebachiensis* were cultured in two different feeding environments: a high food
169 reflective of the chlorophyll maximum and a low food which was phytoplankton-
170 deprived, like surface and deeper water. Larvae in a chlorophyll maximum-like
171 environment, as compared to diet-restricted individuals, exhibited higher levels of
172 expression for genes involved with various metabolic processes. Genes involved in innate
173 immunological response, on the other hand, were expressed at higher levels in larvae
174 experiencing restricted diets, while other immune-associated genes were expressed at
175 higher levels within the *ad libitum* condition (Figure 3). If these gene expression patterns

176 persist in the natural environment, it would suggest that larvae concentrated in regions of
177 high phytoplankton (and high microbial load) are unlikely to defend against
178 environmental microbiota exhibiting pathogenic characteristics and, thus, are more
179 susceptible to microbe-induced mortality when relying on the innate immune repertoire
180 alone.

181

182 **Larval dysbiosis**

183 Both host physiology (e.g., innate immunity) and associated microbial flora act as the
184 primary line of defense against pathogenic invaders. The composition and structure of
185 this community, referred to as the microbiome, has been shaped over time in concert with
186 host evolution and serves as an adaptive character for acclimating to environmental
187 variation (Zilber-Rosenberg and Rosenberg 2008; Bordenstein and Theis 2015; Alberdi,
188 Aizpurau et al. 2016; Carrier and Reitzel In Review). In the face of abiotic and/or biotic
189 stressors, the composition of this community changes following the onset of a particular
190 environmental change, which could be a stressor(s) (Carrier and Reitzel In Review). In
191 certain cases, environment-mediated shifts in the composition of host-associated
192 microbiota confer physiological acclimation (e.g., recruitment of microbes for tolerance)
193 while in other situations a shift in the microbiota promotes an increase in the abundance
194 of pathogenic species. Moreover, the latter can occur in two primary fashions: microbiota
195 previously associated with the host increase the expression of virulent gene products or
196 microbiota initially not associated with the host dominate the microbial community. Both
197 of these changes can result in the host entering a state of dysbiosis (Egan and Gardiner
198 2016).

199 Whether dysbiosis and/or pathogenic microbes is a significant cause of death in
200 the plankton remains to be empirically measured in the field, but decades of larval
201 culturing suggest it could be a significant contributing factor to mortality. First, to
202 eliminate the environmental microbiota and to control microbial growth, cultures of
203 benthic marine invertebrate larvae are often reared in 0.22-0.45 μm filtered seawater.
204 Following the addition of exogenous nutrients to promote larval growth, incidences of
205 unexplained larval mortality are sometimes observed, of which can be halted following
206 the introduction of antibiotics (Strathmann 1987; Zhang, Chen et al. 2010); J Hodin,
207 personal communication), suggesting a likely role for pathogenic microbes. Second,
208 pathogens evading the immune system of planktotrophic larvae resulting in disease have
209 been reported for ecologically important bivalves. For example, (Jeffries 1982) isolated
210 three strains of *Vibrio* from diseased *Crassostrea gigas*, and determined that each strain
211 can collapse cultures of *C. gigas* as well as *Ostra edulis* larvae within 48 h. The two
212 examples above suggest marine bacterial pathogens can induce larval mortality, but may
213 the environment (*i.e.*, feeding regime) mediate dysbiosis and subsequently mortality for
214 marine invertebrate larvae?

215 A first attempt to determine if the feeding environment can influence larval
216 microbial communities and dysbiosis suggest the answer may be yes. We reared larvae of
217 the sea urchin *S. droebachiensis* in seawater containing the environmental microbial
218 community (5 μm filtering) under exogenous nutrient conditions reflecting the
219 chlorophyll maxima (fed *ad libitum*) and less biologically productive areas (10% *ad*
220 *libitum* treatment) of the water column. As predicted, larvae reared in a feeding regime
221 mirroring less biologically productive positions in the water column saw little to no

222 mortality. On the other hand, larvae reared in a feeding regime reflective of the
223 chlorophyll maxima exhibited high mortality over the course of development, such that
224 most or all (~3,000) larvae died. In this latter culture, we sampled healthy (as indicated
225 by active swimming and feeding) and dying (as indicated by exposed skeletal rods and
226 degrading tissues, no swimming, and no feeding) larvae and assayed for their microbial
227 communities (see caption of Figure 4 for methods).

228 In this experiment, healthy larvae associated with 42 operational taxonomic units
229 (OTUs; species of bacteria) while dying larvae associate with 61 OTUs (Supplemental
230 Figure 1), with four OTUs being found to only associate with healthy larvae, 23 OTUs to
231 only associate with dying larvae, and 38 OTUs to associate with larvae in both states
232 (Supplemental Figure 2). In focusing on associated OTUs representing $\geq 1\%$ of the
233 sequences (90.3% of healthy larvae data; 85.9% of dying larvae data), healthy larvae
234 were dominated by *Vibrio* (60.4%) and *Flexibacter* (26.9%) while dying larvae
235 associated most with *Vibrio* (25.0%) as well as nine OTUs between 4% and 13% (Figure
236 4). Most notably, in the transition from healthy to dying, *Vibrio* and *Flexibacter*
237 decreased in abundance by 2.4- and 26.9-fold, respectively, while *Colwelliaceae* and
238 *Thalassomonas* increased by 34.9- and 76.0-fold, respectively (Figure 4). Moreover, of
239 the 14 OTUs associated with healthy and dying larvae (at $\geq 1\%$ of the sequences), all
240 exhibited ≥ 2.3 -fold change in abundance, with most increasing coincident with disease
241 and projected mortality (Figure 4). This shift in the composition of larval-associated
242 microbiota in a feeding regime reflecting the chlorophyll maxima suggests that larvae
243 may enter a state of dysbiosis, which subsequently leads to mortality or leave larvae more
244 susceptible to pathogenic microbiota.

245

246 **Experimental sampling**

247 One of the most significant questions in the field of marine invertebrate life-history
248 evolution is: why are reproductive modes used by species in their ecological niche? A
249 common means to assess this question across the world's oceans has been by correlating
250 reproductive mode (*i.e.*, brooding, lecithotrophy, planktotrophy) with abiotic
251 (temperature) and/or biotic (feeding regime) environment (Thorston 1950; Mileikovsky
252 1971; Marshall, Krug et al. 2012). Empirical studies of larvae in the natural environment
253 are limited due to a number of factors, including their small size, their patchiness in the
254 environment, and the large volume of water in which they may reside. However, in order
255 to understand the intersection of larval biology, the feeding environment, and microbial
256 communities, it is necessary to study these processes in the field. Laboratory studies
257 would not accurately depict larvae physiology when feeding on complex food or the
258 diversity of microbial assemblies because many species cannot be cultured in the
259 laboratory (Carrier & Reitzel In Review). In addition, laboratory studies are not able to
260 account for larval vertical position in the water column as this may also affect their odds
261 of survival (Figure 1; Figure 2). Our understanding of the selective pressure pathogens
262 and/or environment-mediated dysbiosis have on life-history evolution cannot broadly be
263 assessed; however, proper experimental design would facilitate investigations of the
264 contribution that the environmental microbiota and pathogens has on the planktotrophic
265 life history.

266 Planktotrophic larvae develop from small, energy-poor eggs with only enough
267 maternal input to complete embryogenesis and develop feeding structures, requiring an

268 energetic contribution from exogenous resources to reach competency for
269 metamorphosis. Planktotrophs require longer periods in the water column, primarily
270 because of the relatively large quantity of energy needed to complete development, thus
271 resulting in an extensive dispersal often 10s to 100s of kilometers (Thorston 1950;
272 Mileikovsky 1971; Strathmann 1985; Shanks 2009). Many groups of benthic marine
273 invertebrates primarily reproduce via planktotrophy due to the low energetic investment
274 per offspring to facilitate a broad geographical distribution, increase gene flow, limit the
275 likelihood of exposure to benthic predators and local extinction (Signor and Vermeij
276 1994; Pechenik 1999). These benefits are mostly offset by high rates of mortality,
277 primarily from inadequate food conditions, temperature, offshore transport, and the
278 inability to locate a suitable habitat for settlement (Thorston 1950; Young and Chia 1987;
279 Rumrill 1990; Morgan 1995).

280 A source of mortality in the plankton not mentioned in seminal syntheses
281 (Thorston 1950; Young and Chia 1987; Rumrill 1990; Morgan 1995) is microbe-induced
282 mortality, whether directly by pathogen(s) or by dysbiosis. Our combined evaluation of
283 the literature and empirical data suggest that feeding environment may mediate microbe-
284 induced mortality in larvae through dysbiosis, and other studies suggest pathogen
285 (*Vibrio*)-induced mortality. This is not to say, however, that microbes may not contribute
286 to other sources of mortality in the plankton. For example, in the face of temperature
287 stress larvae of the Great Barrier Reef sponge *Rhopaloeides odorabile* shift upwards of
288 ~34% of their associated microbiota (Webster, Botte et al. 2011; Carrier and Reitzel In
289 Review), but whether this results in *R. odorabile* larvae being more susceptible to
290 pathogens or entering a state of dysbiosis remains unknown. This may be answered by

291 rearing *R. odorabile* larvae (or larvae from other species) to elevated temperatures,
292 exposing them to known larval pathogens, and assaying for mortality.

293 For a majority of species, we suggest ship-based field work would be necessary
294 for environmentally relevant studies of larvae-microbes interactions (Figure 5). The
295 physical, chemical, biological, and microbial parameters of the water column are
296 characterized (e.g., CTD), and larvae are subsequently sampled at the chlorophyll
297 maximum as well as in less productive surface and bottom waters (Figure 5). To best
298 preserve the larval hologenome, samples would be preserved (e.g., RNAlater)
299 immediately at sea, then the genomic DNA is extracted, 16S rRNA gene is amplified and
300 sequenced (e.g., MiSeq and 454-pyrosequencing), and microbiota are classified using
301 bioinformatic programs (e.g., QIIME and mothur) (Figure 5) (Williams and Carrier
302 2017).

303 This proposed fieldwork would aim to determine if vertical position in the water
304 column and relative feeding regime would be an important initial step to determine
305 whether oceanographic features of the sea influence the biology and ecology of marine
306 invertebrate larvae and their associated microbiota, and further how this then contributes
307 to mortality in the plankton. Going forward, it remains paramount to compliment current
308 endeavors in larval ecology and life-history evolution with the study of associated
309 microbiota towards a holistic effort to understand the evolutionary ecology of benthic
310 marine invertebrates and their larvae. Approaches that address these questions may be
311 best served at the intersection of oceanography and life sciences (Theis, Dheilly et al.
312 2016; Carrier and Reitzel In Review).

313

314 **Acknowledgements**

315 We thank Colette Feehan and Richard Strathmann for provoking discussions, and
316 members of the Reitzel Lab and Richard Strathmann for providing comments on an
317 earlier version of this manuscript. This work was funded by the National Science
318 Foundation (TJC, AMR), the National Institute of Health (AMR), the Human Frontiers
319 Science Program (AMR), North Carolina Sea Grant (TJC, AMR), the Charles Lambert
320 Memorial Endowment at the Friday Harbor Laboratories (TJC), and Sigma Xi (TJC).

321

322

323 **Figure Legends**

324

325 **Figure 1.** Predicted encounters between environmental microbiota and larval types by
326 feeding. Predicted encounters were calculated as the product of maximum clearance rates
327 of larvae reported by Strathmann (1987b) and mean bacterial abundance in the sea
328 reported by Azam and Malfatti (2007). Here, each data point represents a species of
329 benthic marine invertebrate orginally presented in Strathmann (1987b) that was
330 reproduced and summarized in Supplemental Table 1.

331

332 **Figure 2.** Metabolic-immune trade-off faced by larvae. Within the water column, larvae
333 likely face two contrasting environments: high particulate exogenous nutrients and high
334 microbial load with pathogenic characteristics, or low particulate exogenous nutrients and
335 low microbial load. In the former environment, larvae would require an elevated
336 metabolism for growth and development, and an elevated immunity to defend against
337 pathogenic bacteria (bottom right). On the other hand, because both food and pathogens
338 are lacking, the latter environment would require relatively much less investment in
339 metabolism and immunity (top left). Because animals face a trade-off between
340 investment in metabolism and immunity, the former environment is more likely to see
341 incidences of mortality while the latter does not.

342

343 **Figure 3.** Differential gene expression and Gene Ontology (GO) analysis for
344 *Strongylocentrotus droebachiensis* larvae in high nutrient (*ad libitum* feeding) and low
345 nutrient (restricted diet) environments. Bubble size corresponds to differential in average

346 GO expression (TPM) for each condition, with some of the more highly expressed GO
347 groups labeled. REVIGO coordinates for GO groups correspond with semantic
348 terminology with similar functional groups closer together (Supek, Bošnjak et al. 2011).
349 (A) Transcripts associated with metabolism GO groups were significantly higher in
350 larvae experiencing *ad libitum* feeding, with transcripts associated with diverse metabolic
351 processes (lipid, lipoprotein, glutathione, etc.) having the highest expression. (B) Even
352 though transcripts associated with the innate immune response were high for the
353 restricted diet treatment, there were other immune related GO groups also expressed at
354 high levels in *ad libitum* feeding environment. Although the experimental design for the
355 data presented here (from Carrier et al. 2015) was not designed using the proposed
356 hypothesis, the gene expression profiles of the host larvae follow similar predictive
357 patterns as outlined by our hypothesis. For raw transcriptomic data see Supplemental File
358 1.

359
360 **Figure 4.** Bacterial communities associated with healthy and dying *Strongylocentrotus*
361 *droebachiensis* larvae. Here, larvae of *Strongylocentrotus droebachiensis* larvae were fed
362 *Rhodomonas ad libitum* in the presence of the environmental microbiota (5 μ m filtered
363 seawater), upon which high incidence of mortality was observed following two weeks of
364 rearing. Both healthy and dying larvae were collected and stored in RNAlater. The larval
365 hologenome was extracted and the V3/V4 region of 16S rRNA gene was amplified and
366 sequenced. Forward and reverse raw read files were combined using PEAR (Zhang,
367 Kobert et al. 2014), sequences in combined raw read files were trimmed using
368 Trimmomatic (Bolger, Lohse et al. 2014), Fastq to Fasta using custom code, and

369 taxonomically characterized using QIIME 1.9.1 (Caporaso, Kuczynski et al. 2010), with
370 an OTU cutoff of 97%. Bar charts presented here, at the genus level, represent the
371 microbiota associated with pools of approximately 50 healthy and dying *S.*
372 *droebachiensis* larvae from the same culture.

373

374 **Figure 5.** Experimental approach to characterize the intersection and dynamics of the
375 environmental metagenome and larval microbiome. The hypothesis proposed here
376 suggests that a life-history trade-off exists between feeding environment (and, therefore,
377 larval growth and time spent in the plankton) and exposure to virulent microbes. Being
378 that the microbial load, with particular species being more virulent in that setting, is
379 elevated in areas of high biological productivity and thus for larval growth, avoidance of
380 microbial-mediated diseases is higher in areas of reduced productivity (*i.e.*, surface or
381 deep waters). As such, to avoid microhabitats with elevated microbial load and
382 subsequent virulence, larvae may have adopted different mechanisms to cope with this
383 trade off, including behavioral avoidance, changes in expression of the immune system,
384 or shifts from dependence on exogenous food. Empirically testing these hypotheses
385 requires an interdisciplinary approach that combines profiling the water column for
386 oceanographic properties (*i.e.*, CTD), sampling larvae in different portions of the water
387 column (*i.e.*, plankton tows), identifying and comparing the microbial community with
388 metagenomics (*e.g.*, Illumina MiSeq, QIIME) and experimentally testing larval
389 performance and survival in laboratory cultures. This type of approach would test
390 whether larvae in areas of high chlorophyll exhibit dysbiosis and a subsequent microbial-
391 mediated mortality.

392

393 **Figure S1.** Alpha rarefaction of observed number of operational taxonomic units (OTUs)
394 in each larval sample with diamonds representing dying larvae and squares representing
395 healthy larvae. This analysis was completed using the alpha_rarefaction.py script in
396 QIIME 1.9.1 (Caporaso, Kuczynski et al. 2010), with the rarefaction curves being
397 recreated in Adobe Illustrator CS6.

398

399 **Figure S2.** Shared and unique host-associated microbiota of healthy and dying
400 *Strongylocentrotus droebachiensis* larvae. Healthy *S. droebachiensis* larvae associated
401 with 42 operational taxonomic units (OTUs) while dying larvae associate with 61 OTUs,
402 with four OTUs being found to only associate with healthy larvae, 23 OTUs to only
403 associate with dying larvae, and 38 OTUs to associate with larvae in both states. OTU
404 summaries were generated using the summarize_taxa_through_plots.py script in QIIME
405 1.9.1 (Caporaso, Kuczynski et al. 2010) and the shared and unique OTUs were then
406 counted by hand. This Venn diagram summary was created using Adobe Illustrator CS6.

407

408

409 **References**

410 Alberdi, A., O. Aizpurau, et al. (2016) Do vertebrate gut metagenomes confer rapid
411 ecological adaptation. *Trends in Ecology & Evolution*, **31**(9), 689-699.

412 Arellano, S.M., A.M. Reitzel, et al. (2012) Variation in vertical distribution of sand dollar
413 larvae relative to haloclines, food, and fish cues. *Journal of Experimental Marine
414 Biology and Ecology*, **414-415**, 28-37.

415 Azam, F. (1998) Microbial control of oceanic carbon flux: the plot thickens. *Science*,
416 **280**(5364), 694-696.

417 Azam, F., F. Malfatti (2007) Microbial structuring of marine ecosystems. *Nature Reviews
418 Microbiology*, **5**, 782-791.

419 Bolger, A., M. Lohse, et al. (2014) Trimmomatic: a flexible trimmer for Illumina
420 sequence data. *Bioinformatics*, **30**, 2114-2120.

421 Bordenstein, S.R., K.R. Theis (2015) Host Biology in Light of the Microbiome: Ten
422 Principles of Holobionts and Hologenomes. *PLoS Biology*, **13**(8), e1002226.

423 Brum, J.R., J.C. Ignacio-Espinoza, et al. (2015) Patterns and ecological drivers of ocean
424 viral communities. *Science*, **348**(6237), 1261498.

425 Burgess, S.C., M.L. Baskett, et al. (2015) When is dispersal for dispersal? Unifying
426 marine and terrestrial perspectives. *Biological Reviews*, **91**(3), 867-882.

427 Caporaso, J.G., J. Kuczynski, et al. (2010) QIIME allows analysis of high-throughput
428 community sequencing data. *Nature Methods*, **7**(5), 335-336.

429 Carrier, T.J., B.L. King, et al. (2015) Gene expression changes associated with the
430 developmental plasticity of sea urchin larvae in response to food availability.
431 *Biological Bulletin*, **228**, 171-180.

432 Carrier, T.J., A.M. Reitzel (In Review) The hologenome across environments and the
433 implications of a host-associated microbial repertoire.

434 Carrier, T.J., A.M. Reitzel, et al. (2017). *Evolutionary Ecology of Marine Invertebrate*
435 *Larvae*, Oxford University Press

436 Dekshenieks, M.M., P.L. Donaghay, et al. (2001) Temporal and spatial occurrence of thin
437 phytoplankton layers in relation to physical processes. *Marine Ecology Progress Series*
438 *Series*, **223**, 61-71.

439 Egan, S., M. Gardiner (2016) Microbial dysbiosis: rethinking disease in marine
440 ecosystems. *Frontiers in Microbiology*, **7**, 991.

441 Feehan, C.J., B.C. Grauman-Boss, et al. (In Review) Kelp detritus provides high-quality
442 food for sea urchin larvae.

443 Galac, M.R., I. Bosch, et al. (2016) Bacterial communities of oceanic sea star
444 (Asteroidea: Echinodermata) larvae. *Marine Biology*, **163**, 162.

445 Gallagher, S.M., J.B. Waterbury, et al. (1994) Efficient grazing and utilization of the
446 marine cyanobacterium *Synechococcus* sp. by larvae of the bivalve *Mercenaria*
447 *mercenaria*. *Marine Biology*, **119**(2), 251-259.

448 Gilbert, S.F., T.C.G. Bosch, et al. (2015) Eco-Evo-Devo: developmental symbiosis and
449 developmental plasticity as evolutionary agents. *Nature Reviews Genetics*, **16**(10),
450 611-622.

451 Hart, M.W., R.R. Strathmann (1994) Functional consequences of phenotypic plasticity in
452 echinoid larvae. *Biological Bulletin*, **186**(3), 291-299.

453 Harvell, C.D., C.E. Mitchell, et al. (2002) Climate warming and disease risks for
454 terrestrial and marine biota. *Science*, **296**, 2158-2162.

455 Hodin, J., M.C. Ferner, et al. (2017) I feel that! Fluid dynamics and sensory aspects of
456 larval settlement across scales. In: T.J. Carrier, A.M. Reitzel & A. Heyland (Eds).
457 *Evolutionary Ecology of Marine Invertebrate Larvae*. Oxford University Press,
458 Oxford, UK.

459 Jaeckle, W.B. (2017) Physiology of larval feeding In: T.J. Carrier, A.M. Reitzel & A.
460 Heyland (Eds). *Evolutionary Ecology of Marine Invertebrate Larvae*. Oxford
461 University Press, Oxford, UK.

462 Jeffries, V.E. (1982) Three vibrio strains pathogenic to larvae of *Crassostrea gigas* and
463 *Ostrea edulis*. *Aquaculture*, **29**, 201–226.

464 Lochmiller, R.L., C. Deerenberg (2000) Trade-offs in evolutionary immunology: just
465 what is the cost of immunity? *Oikos*, **88**, 87-98.

466 Manahan, D.T., J.P. Davis, et al. (1993) Bacteria-free sea urchin larvae: selective uptake
467 of neutral amino acids from seawater. *Science*, **220**(4593), 204-206.

468 Marshall, D.J., P.J. Krug, et al. (2012) The biogeography of marine invertebrate life
469 histories *Annual Review of Ecology, Evolution, and Systematics*, **43**, 97-114.

470 McAlister, J.S., B.G. Miner (2017) Phenotypic plasticity of feeding structures in marine
471 invertebrate larvae. In: T.J. Carrier, A.M. Reitzel & A. Heyland (Eds).
472 *Evolutionary Ecology of Marine Invertebrate Larvae*. Oxford University Press,
473 Oxford, UK.

474 McEdward, L.R. (1984) Morphometric and metabolic analysis of the growth and form of
475 an echinopluteus. *Journal of Experimental Marine Biology and Ecology*, **82**, 259-
476 287.

477 McFall-Ngai, M., M.G. Hadfield, et al. (2013) Animals in a bacterial world, a new
478 imperative for the life sciences. *Proceedings of the National Academy of Sciences*
479 *of the United States of America*, **110**(9), 3229-3236.

480 McFall-Ngai, M., E.G. Ruby (2000) Developmental biology and marine invertebrate
481 symbioses. *Current Opinion in Microbiology*, **3**, 603-607.

482 McKenny, D., D.G. Allison (1995) Effects of growth rate and nutrient limitation on
483 virulence factor production in *Burkholderia cepacia*. *Journal of Bacteriology*,
484 **177**(14), 4140-4143.

485 Metaxas, A., L.S. Mullenax, et al. (2009) Distribution of echinoderm larvae relative to
486 the halocline of a salt wedge. *Marine Ecology Progress Series*, **377**, 157-168.

487 Mileikovsky, S.A. (1971) Types of larval development in marine bottom invertebrates,
488 their distribution and ecological significance: a re-evaluation. *Marine Biology*, **10**,
489 193-213.

490 Morgan, S.G. (1995) Life and death in the plankton: larval mortality and adaptation. In:
491 L. McEdwards (Ed). *Ecology of Marine Invertebrate Larvae*. CRC Press: 279-
492 321.

493 Needham, D.M., J.A. Fuhrman (2016) Pronounced daily succession of phytoplankton,
494 archaea and bacteria following a spring bloom. *Nature Microbiology*, **1**, 16005.

495 Pechenik, J.A. (1999) On the advantages and disadvantages of larval stages in benthic
496 marine invertebrate life cycles. *Marine Ecology Progress Series*, **177**, 269-297.

497 Pespeni, M.H., E. Sanford, et al. (2013) Evolutionary change during experimental ocean
498 acidification. *Proceedings of the National Academy of Sciences of the United*
499 *States of America*, **110**(17), 6937-6942.

500 Rivkin, R.B., I. Bosch, et al. (1986) Bacterivory: a novel feeding mode for asteroid
501 larvae. *Science*, **233**, 1311-1314.

502 Rosenberg, E., G. Sharon, et al. (2009) The hologenome theory of evolution contains
503 Lamarckian aspects within a Darwinian framework. *Environmental Microbiology*,
504 **11**(12), 2959-2962.

505 Rumrill, S.S. (1990) Natural mortality of marine invertebrate larvae. *Ophelia*, **32**, 163-
506 198.

507 Shanks, A.L. (2009) Pelagic larval duration and dispersal distance revisited. *Biological
508 Bulletin*, **216**, 373-385.

509 Signor, P.W., G.J. Vermeij (1994) The plankton and the benthos: origins and early
510 history of an evolving relationship. *Paleobiology*, **20**, 297-319.

511 Starr, M., J. Himmelman, et al. (1990) Direct coupling of marine invertebrate spawning
512 with phytoplankton blooms. *Science*, **247**, 1071-1074.

513 Strathmann, M.F. (1987). *Reproduction and development of marine invertebrates of the
514 northern Pacific coast: data and methods for the study of eggs, embryos, and
515 larvae*. University of Washington Press.

516 Strathmann, R.R. (1985) Feeding and nonfeeding larval development and life-history
517 evolution in marine invertebrates. *Annual Review of Ecology and Systematics*, **16**,
518 339-361.

519 Strathmann, R.R. (1990) Why life histories evolve different in the sea. *American
520 Zoologist*, **30**(1), 197-207.

521 Strathmann, R.R., D. Grunbaum (2006) Good eaters, poor swimmers: compromises in
522 larval form. *Inegrative and Comparative Biology*, **46**, 312-322.

523 Sunagawa, S., L.P. Coelho, et al. (2015) Structure and function of the global ocean
524 microbiome. *Science*, **348**(6237), 1261359.

525 Supek, F., M. Bošnjak, et al. (2011) REVIGO summarizes and visualizes long lists of
526 gene ontology terms. *PLoS ONE*, **6**(7), e21800.

527 Theis, K.R., N.M. Dheilly, et al. (2016) Getting the hologenome concept right: An eco-
528 evolutionary framework for hosts and their microbiomes. *mSystems*, **1**(2), e00028-
529 00016.

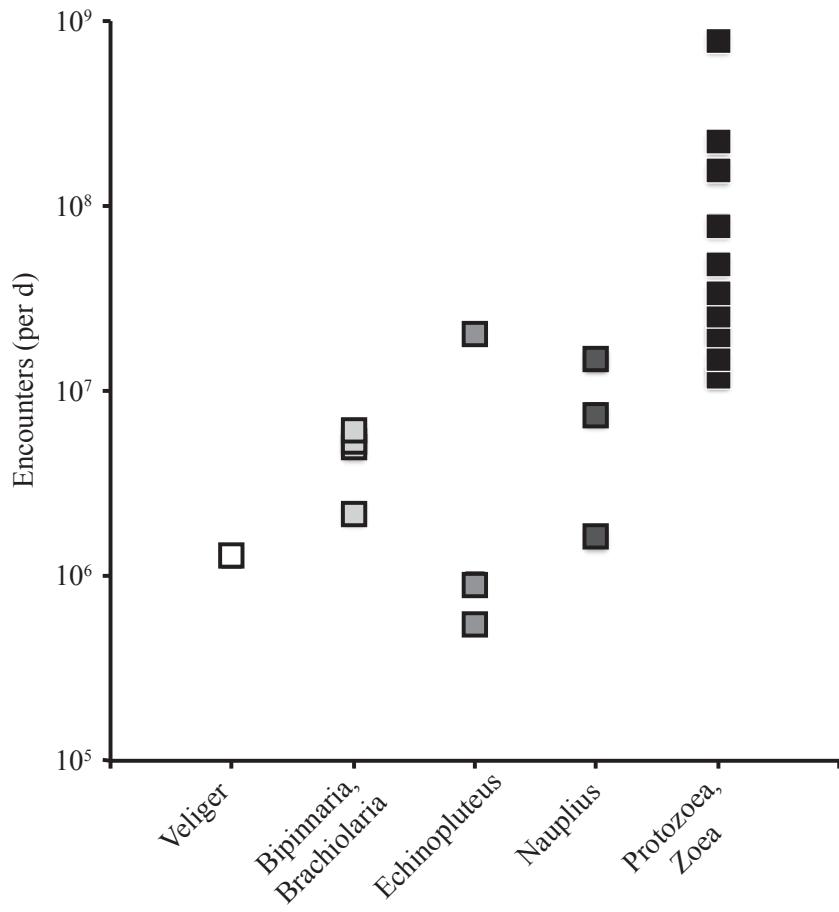
530 Thorston, G. (1950) Reproductive and larval ecology of marine bottom invertebrates.
531 *Biological Reviews*, **25**, 1-45.

532 Webster, N.S., E.S. Botte, et al. (2011) The larval sponge holobiont exhibits high thermal
533 tolerance. *Environmental Microbiology Reports*, **3**(6), 756-762.

534 Williams, E.A., T.J. Carrier (2017) An '-omics perspective on marine invertebrate larvae.
535 In: T.J. Carrier, A.M. Reitzel & A. Heyland (Eds). *Evolutionary Ecology of
536 Marine Invertebrate Larvae*. Oxford University Press, Oxford, UK.

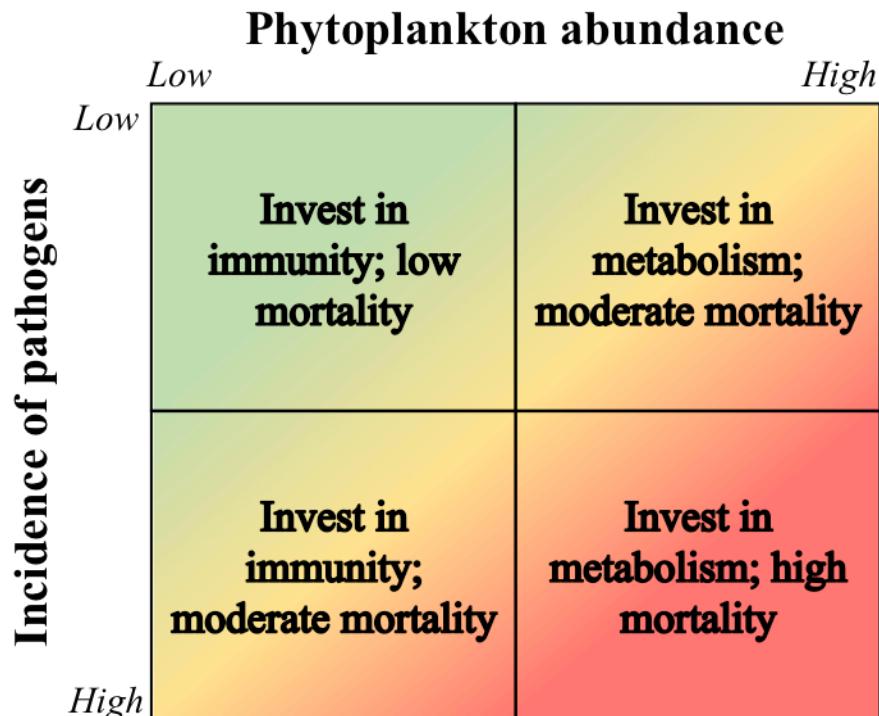
537 Young, C.M., F.-S. Chia (1987) Abundance and distribution of pelagic larvae as
538 influenced by predation, behavior, and hydrographic factors. In: A.C. Giese, J.S.
539 Pearse & V.B. Pearse (Eds). *Reproduction of Marine Invertebrates IX. General
540 aspects: seeking unity in diversity*. Blackwell Scientific Publications, Palo Alto,
541 California.

542 Zhang, C., G. Chen, et al. (2010) Etiology of rotting edges syndrome in cultured larval
543 Apostichopus japonicus at auricularia stage and analysis of reservoir of
544 pathogens. *Acta Microbiologica Sinica* **49**(5), 631-637.


545 Zhang, J., K. Kobert, et al. (2014) PEAR: a fast and accurate Illumina Paired-End reAd
546 mergeR. *Bioinformatics*, **30**, 614-620.

547 Zilber-Rosenberg, I., E. Rosenberg (2008) Role of microorganisms in the evolution of
548 animals and plants: the hologenome theory of evolution. *FEMS Microbiology
549 Reviews*, **32**(5), 723-735.

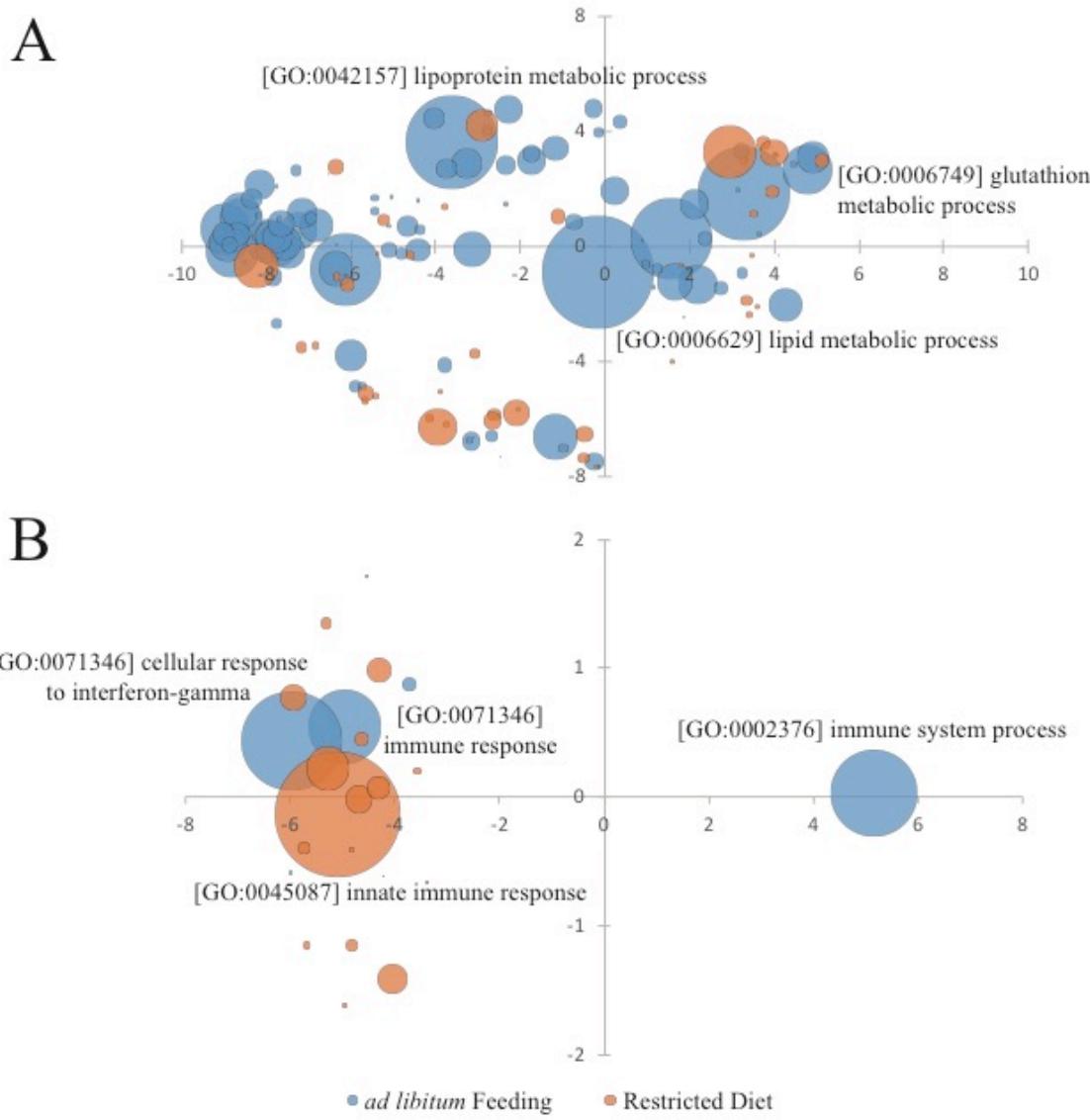
550


1 **Figure 1.**

2

6 **Figure 2.**

7

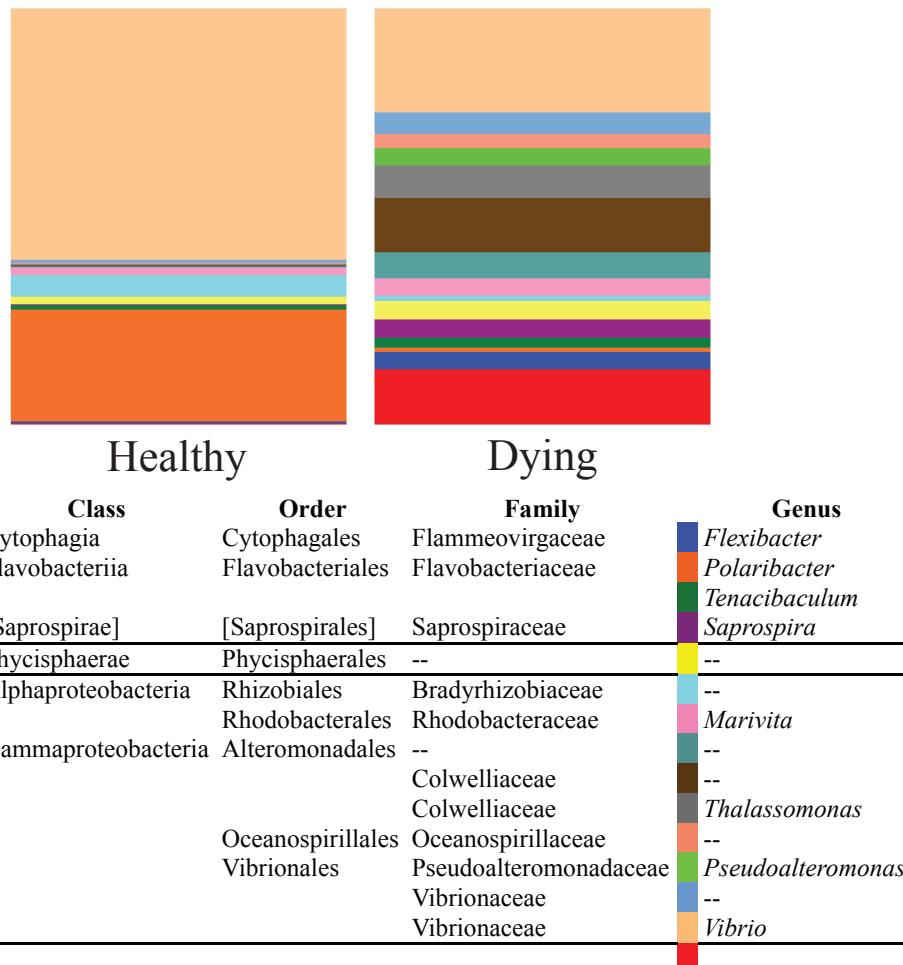

8

9

10

11 **Figure 3.**

12

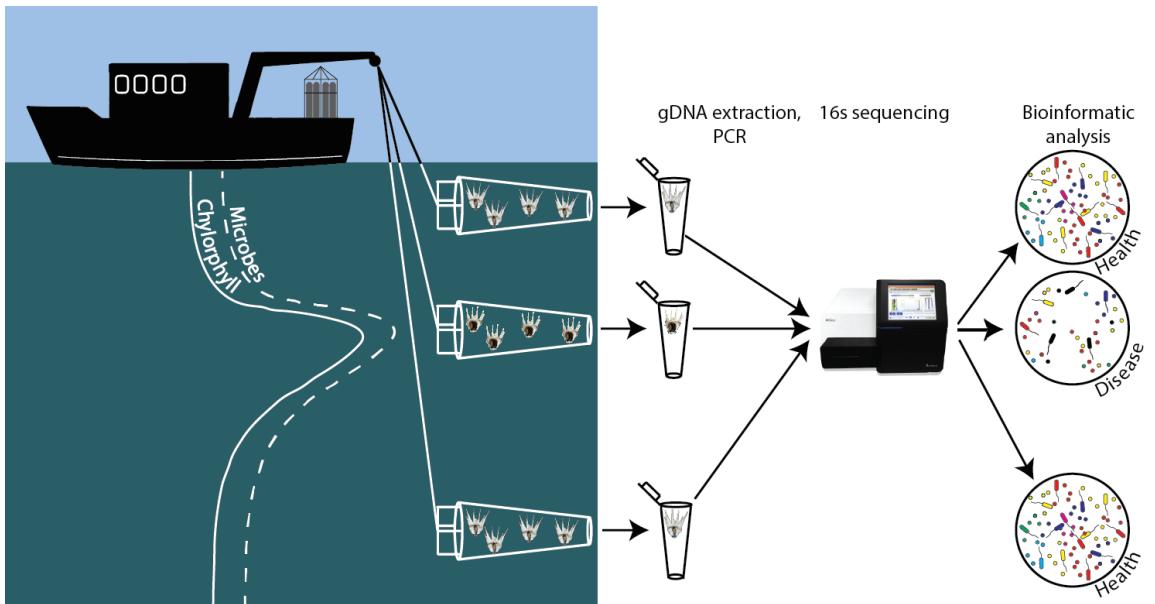

13

14

15

16 **Figure 4.**

17

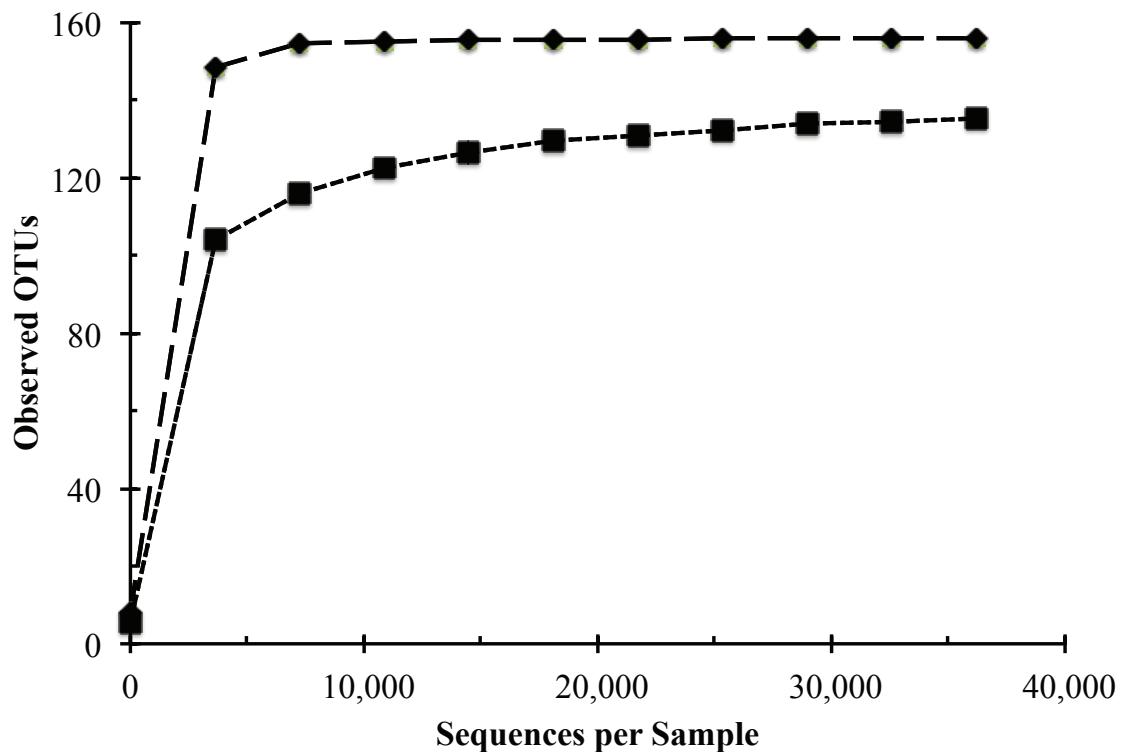


19

20

21 **Figure 5.**

22

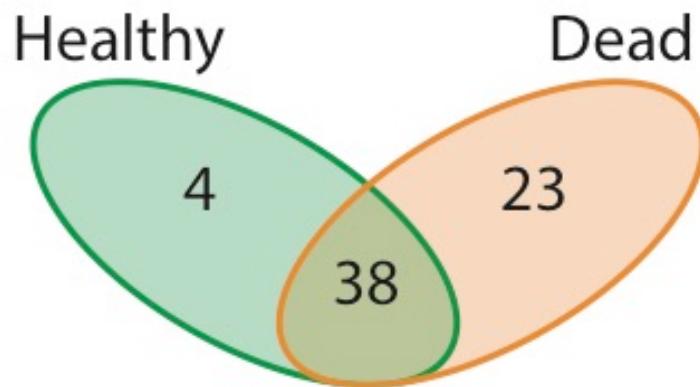


23

24

1 **Supplemental Figure 1.**

2


3

4

5

6 **Supplemental Figure 2.**

7

8

9

Species	Stage	Clearance (mL/d)	Encounters (per d)
Veliger			
<i>Mytilus edulis</i>		1.3	1.3×10^6
<i>Crassostrea gigas</i>		0.1	1.3×10^5
<i>Ostrea edulis</i>		0.9	9.0×10^5
<i>Teredo navalis</i>		4.1	4.1×10^6
<i>Illyanassa obsoleta</i>		1.8	1.8×10^6
Bipinnaria, Brachiolaria			
<i>Acanthaster planci</i>		5.0	5.0×10^6
<i>Luidia foliolata</i>		6.3	6.3×10^6
<i>Evasterias troscheli</i>		2.2	2.2×10^6
<i>Pisaster ochraceus</i>		5.3	5.3×10^6
Echinoplateus			
<i>Paracentrotus lividus</i>		0.9	9.0×10^5
<i>Arbacia lixula</i>		0.5	5.4×10^5
<i>Dendraster excentricus</i>		20.2	2.0×10^7
Nauplius			
<i>Calanus pacificus</i>	N3	1.6	1.6×10^6
	N4	7.5	7.5×10^6
	N5	15.0	1.5×10^7
	N6	15.0	1.5×10^7
Protozoea, Zoea			
<i>Penaeus indicus</i>	P1	12.0	1.2×10^7
	P2	12.0	1.2×10^7
	P3	26.0	2.6×10^7
	Z1	34.0	3.4×10^7
	Z2	20.0	2.0×10^7
	Z3	20.0	2.0×10^7
<i>Sergestes similis</i>	P1	14.7	1.5×10^7
	P2	49.0	4.9×10^7
	P3	157.0	1.6×10^8
	P3	79.0	7.9×10^7
	Z2	800.0	8.0×10^8
<i>Chionoecetes bairdi</i>	Z2	221.5	2.2×10^8