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Abstract

Genetic ancestry and admixture are critical co-factors to study phenotype-genotype
associations using cohorts of human subjects. Most publically available molecular datasets —
genomes, exomes or transcriptomes - are however missing this information or only share self-
reported ancestry. This represents a limitation to identify and re-purpose datasets to investigate
the contribution of race and ethnicity to diseases and traits. we propose an analytical framework
to enrich the meta-data from publically available cohorts with admixture information and a
resulting diversity score at continental resolution, calculated directly from the data. We illustrate
the utility and versatility of the framework using The Cancer Genome Atlas datasets indexed
and searched through the DataMed Data Discovery Index. Data repositories or data contributors
can use this framework to provide, as metadata, admixture for controlled access datasets,
minimizing the work involved in requesting a dataset that may ultimately prove inadequate for a
researcher’s purpose. With the increasingly global scale of human genetics research, research
on disease risk and susceptibility would benefit greatly from the adequate estimation and

sharing of admixture data following a framework such as the one presented.
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Introduction

In order to facilitate the identification and reuse of publicly available biomedical datasets, we
have developed the DataMed, a search engine for data’. A large number of the datasets
indexed and retrievable in DataMed are derived from human specimens (blood, cell lines,
tissues) and contain broad genetic information (genotypes, exome, genome or transcript
sequences). Using established analysis frameworks, one can extract from the raw data useful
meta-data that is not necessarily collected or known from the investigators. These can include
race, ancestry admixture, HLA haplotypes, telomere length, tumor viral load or purity, or cell-line
identity. We present here the framework we established to efficiently call admixture on
DataMed-indexed cohorts and propose to summarize and index the results through a diversity

score.

Race and ethnicity have a significant influence on health and disease etiology. Whether the
associated risks are due to socioeconomic, environmental or genetic factors varies among
diseases and, in most of them, the associations remain to be determined. When accounting for
race and ethnicity, studies generally rely on self-reporting. Self-reporting lacks accuracy to
distinguish East Asian from South Asian?, or when subjects have strong admixture (i.e., they
have 2 or more ancestries).®** The 1000 genome project has identified variants in 26 reference
populations that can be grouped into 5 continental super populations®. From this reference
dataset, one can estimate admixture in any given individual using genotypes genome-wide, or
at selected Ancestry Informative Markers (AIM)®’. Admixture can then be used as a covariate in
genetic studies, in order to account for population structure®, or to identify ancestry specific

signals®.

The availability of a uniform, genetically-based ancestry estimation for all eligible human
datasets indexed in DataMed would increase their usability, allowing the selection of diverse
cohorts, preparing ancestry specific meta-analysis, or simply monitoring diversity. The diversity
score can facilitate the identification and assembly of ancestry specific cohorts, and enable the

monitoring of racial and ethnical diversity in biomedical research datasets.
Methods

Data: We selected The Cancer Genome Atlas (TCGA)™ cohort to implement the diversity score
into DataMed. Indeed this cohort is large (N=10,878), one of the most accessed cohorts in
dbGAP and contains self-reported race and ethnicity. In addition, the cohort can be split into 33

sub-cohorts corresponding to each cancer type, providing an opportunity to contrast the various
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collections. Finally, the vast majority of samples have multiple data types (genotypes, exomes,

transcriptomes), on which we can compare admixture estimation.

A total of 10,878 TCGA subjects (individuals) have been genotyped at ~10° SNPs. We called
admixture from the 5 continental reference populations: European (EUR), African (AFR), East
Asian (EAS), South Asian (SAS) and Native American (AMR).

Data Access and Pre-processing. The data specified below were retrieved through the National

Cancer Institute (NCI) Genomic Data Commons (GDC) using the gdc-client API. We obtained

the genotyping array data in the birdseed format (the result of genotype calling by birdSuite™),

which were then converted to the plink*? format (MAP and PED flat files). To ensure the proper
alleles were reported during the conversion, we established a relational database to decode the
numeric genotype into alleles using information from the Affymetrix SNP Array 6.0 probe design
and the corresponding dbSNP (v150) rsid. The RNA-Seq reads (BAM files) from the patient
tumors were used to call variants using the following steps: (1) duplicate reads removal
(PICARD Markduplicates), (2) split intron spanning reads (GATK v3.8), and (3) variant calling

(GATK v3.8 HaplotypeCaller). We called variants from the whole exome sequence (BAM files)

from the blood using freebayes®® (v1.1.0). For both RNA-Seq and Exome Sequencing analysis,
we restricted the variant calling to known SNP (dbSNP v150) located in the exons and CDS
regions of Gencode-v25™ respectively. The variants were filtered (DP>10 and GQ>15), and

then converted to plink format using vcftools.

Admixture analysis: For each individual, the admixture fraction for the reference population was

estimated using iAdmix tool’. The input data were individual genotypes (MAP and PED flat files
in PLINK format), and the allele frequencies from the 1000 Genomes reference populations®.
The 1000 genome reference VCF file was based on the GRCh37 human genome build and
contained allelic fractions calculated from 2,504 individuals divided into 5 super-populations:
European (EUR), African (AFR), East Asian (EAS), South Asian (SAS) and American (AMR). To
accommodate genotypes from different versions of the human genome reference, the SNP

coordinates were converted to GRCh38 using liftOver (https://genome-store.ucsc.edu/). The

output of iIAdmix was a list of five admixture fractions, each with values ranging between 0 and
1. These estimates correspond to maximum likelihood estimations (MLE) through Broyden-
Fletcher-Goldfarb and Shanno (BFGS), a widely used, quasi-Newton optimization method. The
cumulative admixture fraction was calculated as the overall fraction of the 5 ancestries after
summing up individual admixture faction across a given set of individuals. To calculate the

diversity score of each cancer specific cohort, we calculated the cumulative fraction of each
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ancestry across all individuals in the cohort. We then computed the normalized entropy from the
resulting 5 dimensional vector using R package entropy, as the empirical entropy divided by the
maximal entropy for 5 dimensions. The benchmarking study comparing admixture determination
using genotyping vs. exome vs. transcriptome was conducted on 100 subjects specifically
selected in order to have a sample that maximized diversity in self-reported race and ethnicity
(Supplementary Table 1).

Results

Admixture in TCGA data. The dominant ancestry - representing more than 80% admixture - of

each individual matches well the self-reported one: 76% White Non-Hispanic are EUR
dominant, 82% of Black are AFR dominant and 89% of Asian are either SAS or EAS dominant.
Similarly, 53 % of subjects reported as Hispanic or Latino have at least 20% of AMR ancestry.
We then determined the Cumulative Admixture Fraction (CAF) for each cancer-specific cohort
(Method). The CAF reflects, at the cohort level, the fraction of total DNA from a given ancestry,
rather than the fraction of individuals of a given race or ethnicity. While all cancer cohorts are
predominantly EUR (Figure 1A - 46% to 93%), the fraction of non-EUR ancestry varies: Renal
Cell Carcinoma (KIRP) is the cohort with highest AFR ancestry (21%), while Hepatocellular
Carcinoma (LIHC) has the highest EAS ancestry (41%). While these differences may reflect the
epidemiology of the disease, it is important to note that the TCGA cohort had significant
ascertainment bias, including enrollment sites, tumors sizes, purity and availability
requirements. Finally, in order to summarize the overall diversity of each cohort, we used the
CAF to compute a normalized diversity score (DS): O for one ancestry only, 1 for an even
fraction of all five ancestry populations. The TCGA cohorts can be ranked by decreasing
diversity, revealing that Hepatocellular Carcinoma dataset as the most diverse (DS=0.7) and
Uveal Melanoma as the least diverse (DS=0.22, Figure 1A). Both the diversity score and the

minimal admixture level of a given ancestry can be used to filter cohorts in the DataMed index.

Assessing admixture using transcriptomes or exomes. A large number of studies indexed by

DataMed may not contain readily available genotype information. This is particularly the case for
studies generating whole exome or whole transcriptome. In order to expand the utility of our
approach to these cohorts, we evaluated the admixture and diversity score estimation using
also exome and transcriptome data and compared them to results from the genotyping array.
For this comparison we selected 100 TCGA subjects representing all possible self-reported race
and ethnicities to ensure the results would be consistent across various genetic backgrounds

(Supplementary Table 1). After variant calling and filtering (Methods), we identified a median of
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21,327 and 838 usable variants in the exome and transcriptome of each subject, respectively.
The ancestries with maximum admixture were consistent across for all three methods for 82/100
subjects. The subjects with inconsistent results were more admixed based on the genotyping
array results (maximum admixture 0.89+016 vs. 0.72+022). As a result, the CAF estimated from
the exome or transcriptome variants were consistent with the ones from genotyping array
(r=0.97 for both Figure 1B) and all three diversity scores were similar - 0.93, 0.92, 0.90 for

genotyping, exome and transcriptome, respectively.
Discussion

A number of studies agree that the genetic ancestry is far more accurate and therefore superior

15717 To date, it is not possible to get an accurate estimation of

to self-reported race and ethnicity
the racial and ethnical diversity of a cohort before looking inside the dataset (i.e., looking at the
individual level data) and calling admixture. A low resolution, 5 super-populations admixture
estimate like the one we present here is very valuable for investigators who want to account for
admixture in their genetic studies or select patients to assemble a cohort for meta-analysis of a
given ancestry. In order to calculate the diversity score, we had to request access to the cohort
for this specific task, a step that may not be permitted for certain cohorts or that is not
necessarily scalable. However, the diversity score does not have to be generated by the
DataMed team, but could instead be computed by the data owners and shared as an additional

piece of metadata that could be used downstream for cohort selection.

The admixture and diversity score generated are well applicable on a variety of broad molecular
datasets. We demonstrated their validity from exome and transcriptome. To date, 176x10° and
201x10° human transcriptome (RNA-Seq) and exome datasets, respectively, are hosted by the
NCBI Sequence Read Archive (SRA). Among those, 82% of transcriptomes and 12% of exomes
are available without restriction, and likely none of them have associated genetic ancestry
information. Beyond transcriptome or exomes, ancestry can also be called from ChIP-seq
datasets from human sample - more than 31x10° currently available in the NCBI SRA. A typical
ChlIP-Seq dataset may cover 10° bp genome, harboring 1000 SNPs, the majority of which have
been genotyped in the 1000 genome reference populations, representing a sufficient number to

determine genetic admixture.

The same way the Gene Expression Omnibus has the ability to search and rank datasets based
on differential expression of a specific gene, one can hope that future, innovative data sharing
strategies will include as many of such data-derived features, like genetic admixture, generated

in an automated, standardized way at the time of the deposition. The relative simplicity of calling


https://doi.org/10.1101/210716
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/210716; this version posted October 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

admixture on molecular datasets may encourage more careful analytical design. While we know
that germline genetics may play a role in disease etiology or phenotypic differences, it is rarely
taken into account in pre-clinical or clinical studies. Using admixture from known continental
ancestry as a first-order surrogate for germline genetic differences, one could account for this
important co-variate and relate it to a population trait. In the past, pre-clinical studies based on a
small number of cell lines or samples could not reasonably account for inherited genetic
variation. Nowadays, pre-clinical studies are becoming larger and more systematic, such as the
Cancer Cell Line Encyclopedia’® (N=750 cell lines), but to our knowledge they still do not
account for genetic ancestry. More recently, genetically diverse sets of lymphoblastoid cell
lines® or induced pluripotent stem cells®® have been made available for research, documenting
the increasing interest in performing pre-clinical research in large sets of genetically diverse
samples and cell lines. The availability of genetic admixture as a piece of metadata in the public
datasets would therefore increase their utility to design analysis accounting for inherited genetic
background, resulting in more accurate statistical models and in a better understanding of the
contribution of genetic variation and ancestry to disease etiology or drug response. The diversity
score featured in the DataMed index provides an optimal way for researchers to select the

adequate datasets for this task, without the need to disclose individual level data.
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Figure 1: Cumulative Admixture in The Cancer Genome Atlas. (A) Cumulative
Admixture Fraction of 33 cancer specific cohorts, inferred from the 5 reference super-
populations. The cohorts are ranked by decreasing diversity score (white label) (B)
Cumulative Admixture Fraction of a selected set of 100 diverse TCGA subjects using
genotypes from genotyping array, transcriptome (RNA) or exome (WXS). Cancer Type
abbreviations: Acute Myeloid Leukemia (LAML), Adrenocortical carcinoma (ACC),
Bladder Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), Breast
invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma
(COAD), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and
Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal
clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell
carcinoma (LUSC), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC),
Mesothelioma (MESO), Ovarian serous cystadenocarcinoma (OV), Pancreatic
adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate
adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Testicular Germ Cell
Tumors (TGCT), Thymoma (THYM), Thyroid carcinoma (THCA), Uterine
Carcinosarcoma (UCS), Uterine Corpus Endometrial Carcinoma (UCEC), Uveal
Melanoma (UVM). Super-Populations abbreviations: European (EUR), African (AFR),
East Asian (EAS), South Asian (SAS), Native American (AMR).
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