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ABSTRACT

• Nucleotide binding site, Leucine-rich repeat Receptors (NLRs), are canonical resistance (R) genes in

plants,  fungi  and  animals,  functioning  as  central  (helper)  and  peripheral  (sensor)  genes  in  a

signalling network. We investigate NLR evolution during the colonisation of novel habitats in a model

tomato species, Solanum chilense.

• We used R-gene enrichment sequencing (RENSeq) to obtain polymorphism data at NLRs of 140

plants  sampled  across  14 populations  covering  the  whole  species  range.  We inferred  the  past

demographic history of habitat colonisation by resequencing whole genomes from three S. chilense

plants from three key populations, and performing Approximate Bayesian Computation using data

from the 14 populations. 

• Using these parameters we simulated the genetic differentiation statistics distribution expected under

neutral NLR evolution, and identified small subsets of outlier NLRs exhibiting signatures of selection

across populations.

• NLRs  under  selection  between  habitats  are  more  often  helper  genes,  while  those  showing

signatures of adaptation in single populations are more often sensor-NLRs. Thus,  centrality in the

NLR network does not constrain NLR evolvability, and new mutations in central genes in the network

are key for R gene adaptation during colonisation of different habitats. 
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INTRODUCTION

Antagonistic interactions can generate endless coevolution between hosts and their pathogens. The Red

Queen hypothesis  predicts  that  the genomes of  both  interacting partners  evolve to  match each other’s

changes (Van Valen, 1973): pathogens evolve infectivity to overcome defences, while hosts evolve pathogen

recognition and resistance to avoid infection. Changes in allele frequencies of different infectivity/resistance

specificities occur over tens to thousands of generations at the loci determining the outcome of interaction.

Two extreme types of  dynamics have been proposed,  which differ in  their  signatures at  the phenotypic

(Gandon  et al., 2008) and genotypic polymorphism levels  (Woolhouse  et al., 2002): the arms race model

(Bergelson  et al.,  2001) is characterised by recurrent  selective sweeps in both partners, and the trench

warfare model (Stahl et al., 1999) shows long-lasting balancing selection. These premises form the basis for

genome scans to detect the genes under coevolution/selection in hosts and pathogens (Bakker et al., 2006). 

Plant  species  exhibit  a  spatial  distribution  across  habitats,  which  influences  coevolutionary  dynamics

(Gandon et al., 2008; Parratt  et al., 2016). Diverse habitats generate differential pathogen pressure across

space due to variation in 1) disease presence or absence and prevalence, 2) disease transmission between

hosts, and 3) co-infection or competition between pathogen species. As a result, spatial heterogeneity is

observed for infectivity in pathogens and resistance in hosts (Thrall  et al., 2001; Caicedo & Schaal, 2004).

Species expansion and colonisation of  new habitats could in addition cause the host  to encounter new

pathogens  and  subsequently  promote  coevolutionary  dynamics  at  single  copy  genes  or  gene  families

compared to the original habitat. Despite the wealth of studies at the phenotypic and ecological levels (Thrall

& Burdon, 2003; Thrall  et al., 2012; Tack & Laine, 2014), we know little about the genetic basis of host-

pathogen coevolution in spatially heterogeneous populations and during the colonisation of new habitats. A

crucial issue for such studies is to disentangle the signatures of selection at a few genes from the genome-

wide effect of demography in shaping diversity. The problem is especially difficult in searches of genes under

selection (selective sweeps or balancing selection) during adaptation to new habitats, because colonisation

events generate bottlenecks resulting in an increase of the variance of the measured nucleotide diversity

over the genome (e.g. in  Arabidopsis thaliana (Lee  et al., 2017; Exposito-Alonso  et al., 2018) and  Arabis

alpina (Laenen et al., 2018)).

Resistance  genes  are  the  key  players  in  host  -  pathogen  interactions,  as  they  are  sensing  pathogen

molecules  to  activate  immune  responses.  Canonical  R  genes  are  members  of  the  NLR  family  NLR

(nucleotide  binding site,  leucine-rich repeat  containing  receptor)  that  occurs in  both  plants  and animals

(Jones et al., 2016). NLRs have a modular structure. NLRs can have a N-terminal TIR-domain (TNLs) or CC-

2

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

2

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/210559doi: bioRxiv preprint 

https://doi.org/10.1101/210559
http://creativecommons.org/licenses/by-nc/4.0/


domain (CNLs), followed by a Nucleotide Binding Site and leucine rich repeats). In A. thaliana, some NLRs

appear to show signatures of positive or balancing selection (Bakker et al., 2006) and overall NLRs seem to

show more positive selection than other defence-related gene families (Mondragón-Palomino et al., 2017).

Yet, detailed studies of NLR evolution in wild pathosystems are lacking. In most cases only few candidate

NLR genes have been studied.  For example,  in the common bean (Phaseolus vulgaris)  the NLR locus

PRLJI1 shows slightly higher overall FST and markedly different patterns of spatial differentiation within and

between populations compared to the genome-wide average (AFLP markers)  (De Meaux  et al., 2003). In

wild  emmer  wheat  (Triticum  dicoccum)  a  marker-based  analysis  shows  that  NLRs  exhibit  higher

differentiation (FST = 0.58) than other markers (FST  = 0.38)  (Sela  et al., 2009). Within a single genus the

number of NLRs can differ dramatically between species suggesting that the NLR family experiences a rapid

birth-and-death process (Michelmore & Meyers, 1998) driven by large scale gene duplication and deletion,

whereas within species variation is hypothesised to be mainly found at the nucleotide level at a few key

genes (Wu et al., 2017b) or at a few duplicated genes (Hörger et al., 2012). The evolutionary mechanism

explaining  the  latter  is  termed  as  the  recycling  of  existing  NLRs  (Holub,  2001) by  generation  of  new

specificity at a given locus entering the host-pathogen coevolutionary process.

These theoretical expectations are based on the evolution of NLRs as single genes “sensing” the presence

of pathogens (either directly or indirectly, Kourelis & Hoorn, 2018). It has now been found that NLRs form a

complex multi-layer signalling network (Wu et al., 2018) to recognise pathogens and transduct the signal into

the appropriate defence response. A major recent finding is that members of the NRC (NLR required for cell

death) clade are for example central in the network and are required as “helpers” for the functioning of other,

“sensor” NLRs (Wu et al., 2017a, 2018). The sensor NLRs are more peripheral in the network and have less

connectivity to other genes. Expanding on the previous questions, we want to investigate if all NLRs in the

network  have  the  same  evolutionary  potential  when  colonising  new  habitats  and  encountering  new

pathogens.

We designed our study to address the following questions. How many NLR genes are involved in coevolution

with pathogens across populations? What is the time scale of coevolution in newly colonised habitats and

which  genes  are  involved?  We  are  particularly  interested  in  finding  how  many  genes  exhibit  different

selection pressures between the original and the newly colonised habitat, namely genes evolving neutrally in

the original habitat and being under (positive or balancing) selection in the derived one. Finally, we also want
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to know whether there are differences in evolutionary changes for the various annotated NLR classes. For

example, are genes central in the network showing more evolutionary constraints? 

We answer these questions by studying the sequence evolution of NLR genes in a wild tomato species,

Solanum  chilense.  This  species  is  particularly  amenable  to  this  approach:  it  exhibits  a  high  effective

population size (Ne), high nucleotide diversity (heterozygosity), and high recombination rates (Arunyawat et

al., 2007). These features are due to outcrossing, spatial structuring of populations linked by gene flow and

the presence of seed banks (Arunyawat et al., 2007; Tellier et al., 2011). S. chilense occurs in southern Peru

and northern Chile. Local adaptation to abiotic and biotic stresses in  S. chilense or its sister species is

indicated by 1) signatures of positive selection in genes involved in cold and drought stress response (Xia et

al., 2010; Fischer et al., 2013; Nosenko et al., 2016; Böndel et al., 2018), 2) balancing selection in several

genes of the Pto resistance pathway providing resistance to Pseudomonas sp.  (Rose et al., 2011), and 3)

variable  resistant  phenotypes against  filamentous pathogens across populations  (Stam  et  al.,  2017).  S.

chilense is  also  an  established  source  of  fungal  and  viral  R  genes  used  in  breeding  programmes

(Tabaeizadeh  et al., 1999; Verlaan  et al., 2013).  S. chilense consists of four clearly defined geographical

groups. The central group, considered the centre of origin of the species, is found in the mesic part of its

range in southern Peru and northern Chile. Two southern groups likely result from two distinct southward

colonisation events around the Atacama desert, one towards the coastal part of northern Chile (southern

coast group), and other through high altitudes of the Chilean Andes (southern mountain group) (Böndel et al.,

2015). The northern group (southern Peru) was derived from the central one and is found in sympatry with its

sister species S. peruvianum. The bottlenecks during these colonisation events have been relatively mild, so

that this species still exhibits high genetic diversity (and adaptive potential) after the range expansions. The

southward colonisation events provide two independent replicates of the process of adaptation to new abiotic

and  biotic  stresses.  In  a  recent  study,  we  sequenced  the  ~915  Mb  reference  genome  and  de  novo

transcriptome of S. chilense (Stam et al., 2019). We annotated 25,885 high confidence gene models, 71% of

them are supported by transcriptome data.  Our annotation yielded 236 NLRs in S. chilense, 201 can be

considered high quality annotations, and all previously identified NLR functional clades  (Jupe  et al., 2013;

Andolfo et al., 2014) can be found , albeit some with different numbers compared to other tomato species.

Additionally,  we identified two newly expanded clades.  Overal,  the  S. chilense  NLR complement looked

similar to that of S. pennellii, a wild tomato species for which we have previously shown that NLR sequence

diversity is maintained within a single population (Stam et al., 2016).
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We  derive  a  three-pronged  approach  to  examine  the  adaptation  of  S.  chilense NLR  genes  between

populations of different habitats. We re-sequence all NLRs in 14 populations for ten plants per population.

Then, we infer the colonisation and demographic history based on three full genomes representative of the

three major habitat groups [central (centre of origin), southern coastal and southern mountain (derived)] and

use these data to infer expected NLR diversity in all fourteen populations. Lastly we combine these data to

identify NLRs under different selection in the derived groups compared to the original one. We conclude by

discussing  the  selective  pressures  acting  on  and  the  evolvability  of  the  host  defence  network  when

colonising new habitats in the light of the functional classes to which the NLRs belong.

Methods

Plant material and accessions

We grew ten plants  for  each of  the 14 populations of  S. chilense in  our  glasshouse (20°C,  16h light).

Accession  numbers:  LA3111,  LA4330,  LA2932,  LA1958,  LA1963,  LA2747,  LA2755,  LA2931,  LA3784,

LA3786, LA2750, LA4107, LA4117(A), LA4118. (Supplementary Notes, S1)

Pooled R gene enrichment sequencing and SNP analysis (RENSeq)

Genomic DNA was extracted from ten mature plants per population and pooled. Sequencing was done at

NGS@TUM. We performed the library  preparation,  read mapping and SNP calling as described before

(Stam  et al.,  2016) and (Supplementary Notes S2).  The NLR probes were based on known R-genes in

solanaceae and A. thaliana and have successfully been used before (Stam et al., 2016). Mapping was done

using Stampy (Lunter & Goodson, 2011), SNP calling using two callers: GATK (McKenna et al., 2010) and

Popoolation (Kofler et al., 2011). We previously found 236 NLRs in S. chilense and focus here on 201 high

quality ones (Stam et al., 2019). To verify the stringency of the filters and the cut-off values, we compared the

merged  SNP calls  to  Sanger  sequence  data  for  three  genes for  all  ten  plants  for  several  populations

(Supplementary data 3). After comparison, cut-offs were adjusted to obtain the best true SNP calls and both

callers were run again. The combined results of the last round were used. Summary statistics π, θW, πN and

πS were calculated with SNPGenie (Nelson et al., 2015) FST values were calculated for pairs of populations

using  the  Hudson  et  al.  (Hudson  et  al.,  1992) estimator:  FST =  (πbetween  -  πwithin)/  πbetween.  We  assure

robustness of the  FST  calculations by using only 91 NLR genes with high and even coverage between all

compared populations.  Significant  differences  were  tested using ANOVA, with  the  Tukey HSD test  and

recorded when p < 10-5, unless stated otherwise. 

In addition, we sequenced 14 reference loci (hereafter CT loci), used in previous studies in S. chilense and

S. peruvianum (e.g.  Arunyawat  et  al.,  2007; Böndel  et  al.,  2015).  The CT loci  summary statistics were
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compared to the results by Böndel et al.  (2015) who used an overlapping set of populations (but not the

same plants).  Due  to  known  difficulty  to  reliably  assess  allele  frequencies  in  pooled  data  (Futschik  &

Schlotterer, 2010), our analyses are based on the nucleotide diversity statistics. These seem well estimated

by our SNP call procedure when we compare at the CT loci our results to a previous study (see results

below).

Full Genome Resequencing

Accessions LA4330 and LA2932,  representing southern mountain and southern coast, respectively,  were

sequenced at Eurofins Genomics on a Illumina HiSeq 2500 with standard library size of 300bp. We mapped

the sequenced reads of  the three sequenced plants  (our  reference genome (LA3111),  representing the

central region and resequence data from LA4300 and LA2932 representing the southern mountain and

southern coast populations, respectively),  against our  S. chilense reference genome (Stam  et al.,  2019)

using BWA (mem, call -M with default parameters). SNPCalling was done using samtools (mpileup -q 20 -Q

20 -C 50). 

Demographic inferences with MSMC, ABC and simulation of summary statistics

We inferred the demographic history of three  S. chilense populations LA3111, LA2932 and LA4330 using

whole genome sequence data and the MSMC method (Schiffels & Durbin, 2014). MSMC relies on long

genomic  fragments,  thus  we restrict  the  variant  calling  to  the  200  largest  scaffolds  of  the  S.  chilense

reference genome: ~79.6Mb of sequence (mean length=398Kb, min=294Kb, max=1.12Mb). We estimate the

past changes in effective population (Ne) size per population and cross-coalescence rates, assuming a per

site mutation rate of 5x10-8 and generation time of 5 years. (full details on data preparation and settings are

given in Supplementary Notes S3). The latter rates compare the frequency at which the most recent common

ancestor  is  found  either  within  individual  (diploid)  genomes  or  between  two  individuals  of  different

populations, and thus indicate the time of population split. To check robustness of the inference we simulated

independent  scenarios  of  demography  and  divergence  using  ms  (Hudson,  2002).  We  tested  the

demographic estimation with simulated sequences of the same length as the S. chilense reference genome

and  same  estimated  values  of  the  population  mutation  rate  (based  on  θW  values)  and  the  population

recombination  rate  (based  on  ρ  values).  We  assessed  the  ability  of  MSMC  to  estimate  the  correct

demographic parameters (population sizes, time of split) for simple demographic models, and a model of

population splits mimicking the southward colonisation events. Using the two simulated scenarios that better

resembled the MSMC estimations obtained with the observed data, we simulated sequences with the same
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features as our empiric NLR dataset to obtain neutral distributions of the summary statistics (gene length

=2149). 

Given that the estimates obtained with MSMC do not assume migration between populations, a feature of

many wild plant species which likely occurs between populations of S. chilense (Tellier et al., 2011; Böndel et

al., 2015) we additionally implemented a more comprehensive demographic inference via an Approximate

Bayesian Computation (ABC) approach (Beaumont  et al., 2002). This allows us to take into account post-

split gene flow between populations and test for the most likely divergence scenario (Supplementary Notes

S4). Three demographic models of geographic group divergence were tested to assess the order of the

splits. We then estimated  Ne, divergence times and migration rates under the best supported model. The

data used for the ABC consist of synonimous sites of the 91 high quality NLRs and 14 CT reference loci at

the 14 populations. The ABC is conducted with ms (Hudson, 2002) and the R package abc (Csilléry et al.,

2012). From the ABC posterior parameter estimations we generated a set of neutral distributions of  FST

values for all population pairwise comparisons which, based on 30,000 loci defined by the average length of

our NLRs and genomic population recombination rate estimated with MSMC (4.5x10 -9 – 1.1x10-8 per site per

generation).

Using  forward  simulations  (Supplementary  Notes,  S5)  we  tested  that  genes  under  different  selective

pressures  in  different  populations  can  be  revealed  by  outlier  high  FST  values  compared  to  the  neutral

expected distributions  from our  neutral  demographic  scenario.  For  that,  we  ran simulations using SLiM

(Haller & Messer, 2019) assuming genes evolving neutrally in all populations, and changing from neutral to

either positive or balancing selection in the southward colonisation processes. 

Definition of outlier NLR 

For  each  pairwise  comparison  between the  populations,  we  conservatively  selected  the  NLRs  that  fell

outside the  maximum simulated  value (out  of  30,000  simulations).  Main  habitat  adaptation genes were

defined by selecting the genes that occur as outlier in at least one third of the possible pairwise population

comparisons between two groups. To test whether the relative abundance of the NLR classes in the main

and local adaptation groupings could arise by chance, we randomised the FST values within 1) the whole data

set,  and  2)  the  total  set  of  selected  outlier  NLRs,  and  subsequently  reran  our  analyses.  Using  these

randomisation outputs we calculated the average number of major genes that can be identified (under 1,000

whole dataset randomisation) or the mean number of NRC genes that are classified as major genes (in

1,000 randomisations following procedure 2 within outliers).  We estimated the confidence interval for the

number of major genes to be found from the random sampling (mean ±2σ). (Supplementary Notes, S6)
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Results 

Enrichment sequencing provides high coverage and reliable summary statistics

Polymorphism data at NLRs were obtained by targeted enrichment sequencing of pooled DNA of ten plants

for each of the 14 populations (Figure 1A). For each population one to two million read pairs passed trimming

and quality controls (Supplemental Data 01). For all pooled samples, the coverage exceeds 100x for 80% of

the targeted NLRs. To evaluate the short-read data quality, we also enriched and sequenced the set of 14 CT

genes, which showed a coverage of more than 100x in most pooled samples (S Figure 1A). We called SNPs

per gene against our LA3111 reference genome (Stam et al., 2019) for the 201 high quality NLRs (out of 236

identified  genes)  and  all  14  CT genes  in  each  population.  We  calculated  the  statistic  π,  summarising

nucleotide diversity, and πN and πS as the nucleotide diversity for non-synonymous or synonymous sites only

(Supplemental Data 2). No significant correlation was found between the number of mapped reads or bases

and the number of SNPs per population (R² = 0.46 and p = 0.1) or π per population (for read pairs: R² = 0.30,

p = 0.30, for bases: 0.35 and 0.2) (S Figure 1B). Thus, our data is not biased for coverage differences

between the samples.

To confirm our calculations, we computed the correlations for π, πs and FST at the CT loci between our data

and a previous study, which used different plants from the same populations (Böndel et al., 2015). There is a

strong and significant correlation for π (R² = 0.95, p = 3.7*10 -6), πS (R² = 0.95, p = 5.8*10-6) and pairwise FST

between populations (R² = 0.94, p = 2.2*10-16; S Figure 1C-D). We could finally confirm the majority of SNPs

in a subset of genes using Sanger sequencing (Supplemental Data 1), demonstrating the robustness of our

SNP call approach and computation of diversity statistics for our pooled data.

NLR genes show a wide range of diversity statistics

We find between 2,748 and 7,653 SNPs within each of the 14 sequenced populations. Across the set of 201

NLRs, 63.8 (± 0.48)% of SNPs are found on average to be non-synonymous, contrary to only 34 (± 3.26)%

of non-synonymous SNPs at the CT genes. PCA analyses of the NLR SNPs show that most variation can be

explained  using  the  first  two  principal  components,  which  reflect  the  geographical  locations  of  the

populations (Figure 1B). For each group, the median π is significantly higher for NLR than for CT genes

(Figure 3A, p< 10-5). The reduced π values observed for the CT and NLR genes in southern mountain and

coastal populations are indicative of the demographic consequences of the colonisation events that occurred

during the species expansion southwards.

The πN/πS  values for most genes remain below one, indicative of purifying selection. However, NLR genes

have significantly higher πN/πS than CT genes (Figure 2B). Such higher πN/πS  values could indicate the
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occurrence of weak positive or balancing selection but  also relaxed constraints at the NLRs. Mean and

median π values are similar between CT loci and NLRs, but the variance is larger in NLRs. Six NLR genes

show very large (median >0.02) π, and 15 genes show high πN/πS (median > 1) (S Figure 2A). 

To compare the signatures of selection at the short time scale (polymorphisms within a species) with those at

the longer time scale of divergence (between species), we compare, respectively, the πN/πS within LA3111 to

dN/dS calculated for our reference genome (LA3111) against  S. pennellii  LA0716.  The dN/dS distribution

over the NLRs does not differ from that at the CT loci  (Böndel  et al.,  2015) (t-test p = 0.17), nor when

comparing between the different functional NLR clades (ANOVA, p = 0.6) (S Figure 3A).  In the CT genes,

which all have orthologs in S. pennellii, πN/πS values are correlated to dN/dS (corr 0.65, p-value 0.02). This

correlation is weaker at the NLRs for which orthologs in S. pennellii can be found (corr 0.33, p-value 0.004).

Moreover, πN/πS is significantly higher in NLRs which do not have any ortholog in  S. pennellii than for the

other NLRs (p-value = 0.003, S Figure 3B). 

Spatially heterogeneous selection pressure acting on different NLR functional classes.

When NLRs are grouped by functional clades, we see that the CNL6 and NRC show very low πN/πS and the

newly  identified  clades  (CNL20  and  CNL21)  show high  values  (S  Figure  4A).  Interestingly,  contrasting

patterns appear between the geographical groups (S Figure 4B). CNL11 shows the highest πN/πS values in

the coastal populations, whereas these values are lowest for CNL2 at the coast. Genes with π N/πS > 1 differ

between groups and populations,  indicating that  genes of  the functional NLR clades are under different

evolutionary  pressures  in  the  different  geographical  regions.  NRCs appear  quite  conserved at  both  the

phylogenetic time scale (between species) (low median dN/dS ratio for the LA3111 genome compared to S.

pennellii, S Figure 3C) and at the polymorphism time scale (within species) (low median πN/πS, S Figure 4B).

We  calculated  the  fixation  index  (FST)  based  on  π  for  each  gene  between  each  pair  of  populations

(Supplemental data 3). FST can be interpreted as a measure of genetic differentiation. We assure robustness

of  the  calculations  by  using  only  91  NLR genes  with  high  and  even  coverage  between  all  compared

populations. Median FST values per NLR gene range between 0.12 and 0.7, with 17 genes having a median

FST over 0.5 (S Figure 5). As expected,  FST is lowest within geographic groups and highest between the

coastal and the southern mountain populations (Figure 3). 

Genome-wide inference of the species’ past demographic history

We inferred the demographic history of three  S. chilense populations LA3111 (central), LA2932 (southern

coast) and LA4330 (southern mountain) using whole genome sequence data. We find consistent population

expansion events for the three populations between 50 to 500 thousand years ago before reaching current
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Ne,  with  a  stronger  expansion  for  the  central  group  than  for  the  other  two  populations  (Figure  4A).

Divergence estimations support that the central group is the area of origin of the species (Figure 4B). The

species’  dispersal  towards  the  new habitats  occurred  via  two  separate  colonisation  events  around  the

Atacama desert: an older split between the central and coastal populations 0.2 to 1 million years ago, and a

more recent divergence between the central and southern mountain populations, 30 to 150 thousand years

ago. Note that the bottlenecks towards the south are relatively mild as Ne remains above 104.

We tested the power to estimate known demographic histories with our genomic data. We simulated two

(single-population) demographic scenarios for each population: one with a constant population size and one

with a recent bottleneck event (S Figure 6B-C). Subsequently, we simulated two plausible scenarios derived

from the interpretation of the observed data with both  Ne changes and population splits including all three

populations: one scenario limited to a single Ne change (i.e. bottleneck), and a more complex scenario with

several Ne changes during the divergence processes (S Figure 6D-E). MSMC estimations from the simulated

data  verified  the  ability  to  recover  known  demographic  parameters.  We  also  use  those  simulations  to

compare the obtained demographic estimates from the empirical  data.  We find that  the latter simulated

scenario showed the best fitting to observed data (S Figure 6E).

To confirm that under the inferred demography of  S. chilense, FST  statistics can be used as indicators of

different selective pressures between populations we used forward simulations to generate polymorphism

signatures of genes either under neutral,  positive or balancing selection between populations during the

population divergence with mild bottlenecks. Genes under positive or balancing selection in the southern

populations can be differentiated from the neutral genes showing high value outliers in population pairwise

FST, in spite of the mild bottleneck effect that increases variance in FST distributions (Figure 4C). Studying low

FST values for evidence of genes with similar selection pressures across populations is not powerful enough

given  our  demographic  history.  We  thus  concentrate  on  high  FST outliers  between  populations,  which

indicates novel  and heterogeneous selective pressures (positive,  balancing or relaxed constrains) in the

derived populations (Charlesworth et al., 1997).

Defining FST cut-off values in a species-wide population structure

To study selection at NLRs over the whole species range (e.g. in our 14 populations which includes also a

northern group of two populations) we additionally infer the past demographic history taking into account

post-divergence migration by means of an ABC approach. We tested three models that include different

scenarios for the divergence, while accounting for migration (Figure 5A). As observed summary statistics we
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use data at synonymous sites from all 91 NLRs and 14 CT loci to compute π per population and all pairwise

FST.  In concordance with the results obtained with the whole-genome approach, the inference from ABC

confirmed  that  the  divergence  of  coast  and  mountain  from  the  central  group  were  two  independent

processes (Model 1; Supplementary Notes S4 - Figure1). This model showed strong support in five out of six

rejection analyses performed (two rejection methods x three threshold values for simulations retained; Model

1 (Supplementary Notes S4 - Table1). As expected, posterior paramenter estimations showed higher Ne for

populations from the central region. Lowest Ne value was estimated for south coastal populations. We also

estimated higher gene-flow within the central group as well as among populations from the south mountain

with the central group (Supplementary Notes S4, Table2).

We used the posterior distributions of the parameters based on the best supported model to simulate the

pairwise FST between 14 populations for 30,000 loci (approximately the number of genes in the genome) with

a mean gene size equal to that of our NLRs. Our inference yields a good fit to the observed values (S Figure

7). Especially when using the ABC, we were able to simulate median values that are very close to those of

the observed data (Figure 5B). We can thus use the maximum of the simulated values as a conservative cut-

off for FST based outlier detection.

Revealing genes under selection as outlier loci: specific subgroups of NLRs evolve in each habitat

We identify the outlier NLRs as those whose  FST  values are found outside the simulated ranges for each

pairwise population comparison (shown in Figure 6B for three population comparisons). We find a median of

7 NLRs to be outliers in all pairwise comparisons. In total 52 NLRs are found as outliers in at least one of the

91  possible  pairwise  comparisons  (S  Figure  8A).  How  often  a  gene  is  found  as  outlier  in  a  pairwise

comparison  differs  greatly.  For  example,  eight  NLRs  appear  as  outliers  in  more  than  15  pairwise

comparisons, whereas six are identified only once or twice (S Figure 8B). When we sum the results per

geographic  group,  we find  a  similar  number  of  genes showing  signatures  of  selection  (due  to  genetic

differentiation) in the southern coast or the southern mountain group and slightly less between the northern

and the central group (Figure 6A). We also find NLRs under selection within the central group as well as

some in the southern mountain group, but not within the northern or southern coastal groups.

Main habitat adaptation NLRs and local adaptation NLRs belong to different functional classes

We now define NLRs that  are  under strong evolutionary pressure in  multiple comparisons between the

geographical  groups  as  “main  habitat-adaptation”  genes.  They  are  found  to  exhibit  common  selective

pressure in several populations of the derived groups compared to the central group. We suggest that the

11

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

11

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/210559doi: bioRxiv preprint 

https://doi.org/10.1101/210559
http://creativecommons.org/licenses/by-nc/4.0/


pressure at these genes is shaped by global changes in habitat and/or pathogens during the early phase of

colonisation.  We analysed all  pairwise  FST comparisons between populations and find that 17 of the 52

outlier  NLRs  are  main  habitat-adaptation  genes.  These  are  outliers  in  more  than  1/3  of  the  possible

comparisons between two groups (Figure 6B). The remaining 35 genes that are under selection, only appear

in few population comparisons between groups or only within a geographical group. We define these as

“local adaptation” genes, presumably responsible for population level adaptation. These are clear outliers

based on our neutral demographic model but do not exhibit habitat specific patterns, but rather exhibit an

heterogeneous geographic mosaic of selection.

Looking at functional classes, main adaptation NLRs are more often TNLs or likely to belong to the NRC

clade. The local adaptation genes are found to contain more individual NLRs that do not belong to a clade,

belong  to  clades  not  part  of  the  NRC-network,  or  are  sensor  NLRs  (Figure  6C).  By  performing  a

randomisation procedure, we confirmed that the observed clade distribution of the NLRs under selection is

unlikely to have arisen by chance. The observed number of major genes we find (17) is much larger than the

expectation which has mean 3.5 (and C.I. [0.1-7.2]). Similarly, the observed fraction of NRC genes amongst

the main habitat adaptation genes is five and larger than the expected one NRC (CI. [0.6-2.3]). 

Discussion

NLR show sequence diversity within and between populations 

NLR genes are important in plant defence responses and some have been shown to be under selection

between different  Arabidopsis species or populations  (Mondragon-Palomino & Gaut, 2005; Bakker  et al.,

2006). We used R-gene enrichment sequencing to investigate the extent of adaptation in the NLR family

across wild populations of a non-model species, Solanum chilense. 

We calculated synonymous and non-synonymous polyphormism statistics to asses possible selection on the

NLRs. dN/dS ratios can be used to assess divergence of genes between species, and πN/πS is the preferred

statistic within species (Kryazhimskiy & Plotkin, 2008). High genetic diversity (observed as π and πS values)

is prevalent throughout the species. Between species diversity ratios (dN/dS) (S. chilense – S. pennellii)

does not correlate with diversity ratios within S. chilense (πN/πS ). This suggests recent positive selection is

acting on the NLRs. 

The πN/πS  ratio remains below 1 for the majority of the NLR genes in all populations, suggesting purifying

selection and that the function of most NLRs is conserved within and between populations. Differences in

diversity (and of the ratios) can be observed between previously defined genetic groups, with lower diversity

in the derived groups. Yet, in all groups some NLRs exhibit high (non-synonymous) diversity, indicating that

novel specitifties at NLRs appear and are picked up by natural selection as proposed in the NLR recylcing
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scenario (Holub, 2001) . Note, S. chilense exhibits two previously undefined functional clades of NLRs in the

Solanaceae (CNL 20 and CNL21),  indicating the importance of birth and death process generating new

NLRs with novel function at the phylogenic time scale (Michelmore & Meyers, 1998). 

Demographical inferences support two independent southward colinization processes in S. chilense

We  implemented  two  demographic  approaches  that  support  a  southward  colonisation  process  already

proposed by Böndel et al. (2015). This ocurred via two independent events over the last 200.000 years, one

through  the  coast  and  the  other  across  the  highlands,  resulting  in  two  new  sub-specific  lineages  in

contrasting  habitats.  We  find  some  discrepancies  between  ABC  and  MSMC  in  the  divergence  time

estimations.  These  are  expected  given  the  differences  in  the  approaches,  model  assumptions  ( i.e.

considering or not migration) and the data used (i.e. set of genes vs. genome-wide) (Beichman et al., 2017).

In addition, gene exchange during divergence leads to an increment of variance of coalescence time among

genes (Wakeley & Hey, 1997) causing discrepancies between population divergence and gene coalescence

time estimations, especially for scenarios of small divergence times compared to Ne (Slatkin et al., 2002). 

Even  taking  into  account  intrinsic  bias  to  the  methods  used,  we  consider  that  the  two  demographic

approaches provide complementary evidences.  We were able  to  generate a wide neutral  distribution of

genetic differentiation which is conservative enough to avoid false positives in the identification genes under

selection. When using the ABC, we were able to simulate median values that are very close to those of the

observed data. Furthermore, we provide evidence of the good fit of the demographic estimations to our data.

For the MSMC method, we demonstrate using simulations that the high amount of nucleotide diversity and

recombination rate found in S. chilense (Roselius et al., 2005). 

NLR change selection within and between habitats

We used demographic inference to establish a neutral distribution of the genetic differentiation to define

outlier NLRs that change selective pressure between populations. We found that during the intra-specific

differentiation NLRs not  only change selection between different  geographical  groups,  but  also regularly

between populations within the same region, especially in the Central group.  Böndel et al. (2015) already

found the central group to be genetically more diverse and noted that it should maybe not be treated it as a

single panmictic  unit  because its relative  high climatic heterogenity.  We postulated that  the coastal  and

southern environments differ in their biotic factors from the central region (Stam et al., 2017). In the Coastal

region, we expected to observe a lack of selection on NLRs as we assumed the arid environment would be

void of phytopathogens. Contrary to our hypothesis, our data show selection towards the coast and thus

indicate that pathogens are historically present. This could for example be due to seasonally running rivers

13

386

387

388

389
390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

13

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/210559doi: bioRxiv preprint 

https://doi.org/10.1101/210559
http://creativecommons.org/licenses/by-nc/4.0/


as well  as a regularly  occurring sea-fog phenomenon in the  early  morning  (Cereceda & Schemenauer,

1991).

Major and local adaptation NLR.

Our results allowed us to separate major habitat adaptation NLRs from local adaptation NLRs. The 17 major

habitat adaptation show changes of selection throughout the species‘ distribution, with different major genes

between each geographical group. Habitat adaptation NLRs more often belong to the class of helper-NLRs,

called NRC (Wu et al., 2017a), as well as to the TNL. NRCs are hypothesised to be under strong purifying

selection due to their  central  role  (hub) in  the NLR-signaling network  (Wu  et  al.,  2018). Indeed,  NRCs

showed low dN/dS values and overall, πN/πS is low in the NRCs. High fixation (FST) for between populations

for some NRC, indicates that minor changes in individual hub proteins could also be under strong selection. 

In  A. thaliana RPW8-like NLRs, ARD1 and NRG1, function as helper NLRs for TNLs and are required for

functioning of NLRs against several well studied pathogens (Brendolise et al., 2018; Qi et al., 2018; Castel et

al., 2019). In our study, RPW8-like genes are not detected as outliers. This could be explained by the fact

that ARD1 and NRG1 have no clear homologues in the Solanum genus and thus that TNL signaling in this

genus is likely to function differently, possibly with a subclade of TNLs taking over the function of hubs. 

Local adaptation NLRs are more often not assigned to known functional clusters, or smaller clades, like the

newly defined CNL20, suggesting that new clades are involved in local fine tuning of the defence responses,

generating  a  geographic  mosaic  (Thompson,  2005) of  NLR  variants  that  have  co-evolved  with  local

pathogens. It is know that the NRC-dependent R-gene Pto (and other genes of the Pto signalling network),

indeed  shows  such  large  allelic  variation  and  is  under  balancing  selection  within  different  wild  tomato

species, including S. chilense (Rose et al., 2007, 2011). 

Scenarios leading to two-tiered selection of NLR in new habitats

Changes in the NRC-clade dependent defence response thus rely on co-evolution of both the sensor and the

helper NLR, rather than the evolution of the sensor alone. We hypothesize that within S. chilense each NRC

co-evolves as a helper NLR with a specific set of sensor NLRs. In experimental evolution in yeast, major

evolutionary and functional novelty has been shown to occur by changes in the hubs of a gene network

(Koubkova-Yu et al., 2018). The main genes underlying habitat adaptation are often “helpers” and do not on

their own provide a specific recognition of the newly encountered pathogens (new species or genera), but

improve signalling processes. Several single non-synonymous mutations have been shown to result in gain

of function of NRC1 for downstream signalling activity  (Sueldo  et al., 2015). Moreover, NLR functioning is

known to be dependent on temperature (Cheng et al., 2013) and other abiotic stresses (Ariga et al., 2017). In
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S. chilense different NRCs could, for example be responding to different temperatures between the coast

and the mountains.

In a fixed habitat, genes that are well connected in the defence gene network would be expected to be under

strong functional constraints (purifying selection). Such selection has, for example been described for the

NRC-independent I2 gene in S. pimpinellifolium (Couch et al., 2006). In newly colonised habitats, selection at

these genes could be resulting from two possible scenarios.  1) The new mutations at the main habitat-

adaptation genes enable their binding with different and previously unbound sensors or new binding abilities

under different abiotic conditions. This scenario would explain the occurrence of new positive or balancing

selection at the helper genes in the derived habitats, and that different NRC genes are under selection in the

three new habitats. 2) The helper genes are under relaxed constraint because the associated sensor genes

are not necessary as their specific associated pathogens are absent in the new habitat. The sensor could

become non-functional, so that helper genes are free to evolve neutrally or even develop novel beneficial

functions (neo-functionalisation), that are selected for in subseqtent generations. In both scenarios sensors

NLR can freely evolve to optimizing the detection of the newly encountered pathogens in specific localities

and  would  coevolve  rapidly  with  the  pathogens.  Together,  this  would  lead  to  the  observed  two-tiered

selection process.

Conclusions

Our work represents a first step in studying the dynamics of NLR evolution across space and across the

gene/plant defence network at the population level. Our results strengthen the view that NLRs do not evolve

on their own to sense/recognise pathogen molecules, but their evolution is constrained by their interaction

with other genes in the network. Future work on reliable identification of functional R genes, as well as the

effectors of  natural  pathogens present  in  the different  populations,  will  allow us to  study the population

genetics of direct effector-target interactions  (Terauchi & Yoshida, 2010) and thus provide insight into the

molecular factors shaping the different plant-pathogen coevolutionary dynamics in nature.
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Figure 1

Figure 1
Overview of the studied populations and structuring of species-wide NLR diversity across the 14 populations.
A)  Map  of  the  studied  populations  (colored  by  genotype  group)  compared  to  all  reported  S.  chilense
populations from the TGRC database, UC Davis, USA (grey dots). B) Principal component analysis of all
SNPs in all sequenced NLR genes. First two components are shown and explain respectively 18 and 12% of
the variance.
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Figure 2

Figure 2
Population genetic statistics for NLR and CT loci
A)  Nucleotide  diversity  (π)  for  each  gene,  plotted  per  geographic  group.  B)  Non-synonymous  over
synonymous nucleotide diversity (πN/πS) for each gene, plotted per group. Box plot colours match those of
the geographic groups on Figure 1.  Each dot represents a single gene, colours are assigned randomly. 
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Figure 3

Figure 3
NLR Fixation index
Fixation index (FST, y-axis), for each gene in each pairwise comparison between populations (x-axis). Colours
of the boxes indicate the pairwise group comparisons. Each dot represents a single gene.
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Figure 4

Figure 4
Historical  demography reconstructions based on whole genome data of one individual from each of the
central, southern coast and southern mountain populations. 
A) Effective population size (Ne)  through time estimations for central  (LA3111; red line),  southern coast
(LA2932; green line) and southern mountain (LA4330; blue line) populations obtained with MSMC. Y-axis
indicates the Ne, x-axis the time in years ago (top)
B)  Estimation  of  the  genetic  divergence  between  pairs  of  populations  through  time:  central-mountain
(LA3111-LA4330;  salmon  line),  central-coast  (LA3111-LA2932;  olive  line)  and  mountain-coast  (LA4330-
LA2932;  yellow  line).  The  measures  are  based  on  the  ratio  between  the  cross-population  and  within-
population  coalescence  rates  (y-axis)  as  a  function  of  time  (x-axis).  A rate  of  one  indicates  panmictic
populations and rates of zero indicate fully separated populations.
C)  Genetic  differentiation  distributions  (FST)  among  the  central,  southern  coast  and  southern  mountain
populations. Simulated genes evolve under neutrality in the central group and under either neutral, positive
or  balancing  selection  regimes  in  both  southern  populations  following  the  colonization  scenario  and
demography  inferred  with  MSMC.  FST    (x-axis)is  plotted  against  the  observed  density  (y-axis),  The
comparisons are coloured as in B. 
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Figure 5

Figure 5
Coalescent simulations to identify FST cut-off values
A) Coalescent model simulated for parameter estimation through the Approximate Bayesian Computation
(ABC) approach. The model presents the same sampling for the empirical dataset with 14 populations from
four regions (solid circles), as well  as three unsampled “ghost” populations from the central  region from
which the populations of the other groups diverge. To illustrate that they also contribute to genetic diversity in
the central population at present time they are presented twice in the figure (dashed circles). Populations
evolve under the island model where migration among groups is smaller than migration within groups.
B) Boxplots indicating the similarity between the observed data (grey) and our simulations based on ABC
inference (dark blue) or the MSMC inference (turquoise). The black horizontal bars (and dotted extension)
indicate  the  maximum simulated values.  The simulations  are based on 30,000  genes under  the  model
inferred by MSMC or ABC. The maximum values obtained under the ABC model (top lines), are used as FST

cut-offs for outlier selection.
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Figure 6

Figure 6
NLR genes under selection can be divided in main “habitat adaptation” and local “fine tuning “ adaptation
NLRs.
A) Number of genes under selection (FST outliers) found between the four main geographical groups (straight

arrows) as well as within each of the groups (circular arrows),  when summing all individual outliers. NLRs
under selection between the north and mountain or north and coast are indicated in the box. In total 53
genes can be identified, many are common to several geographic groups.
B) Maps showing the number of main “habitat adaptation” NLRs between the different geographical groups.
Habitat adaptation NLRs are defined as those that occur in more than one third of the possible population
comparisons between the examined geographic groups.
C) Functional clade assignment (as fraction) of the main adaptation and local  fine tuning NLRs. Clades
marked with an * are expected to be NRC-dependent
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