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SIGNIFICANCE STATEMENT 
 
Recent advances in synthetic biochemistry have resulted 
in a wealth of novel hypothetical enzymatic reactions that 
are not matched to protein-encoding genes, deeming 
them “orphan”. Nearly half of known metabolic enzymes 
are also orphan, leaving important gaps in metabolic 
network maps. Proposing genes for the catalysis of 
orphan reactions is critical for applications ranging from 
biotechnology to medicine. In this work, a novel 
computational method, BridgIT, identified a potential 
enzyme sequence to orphan reactions and nearly all 
theoretically possible biochemical transformations, 
providing candidate genes to catalyze these reactions to 
the research community. BridgIT online tool will allow 
researchers to fill the knowledge gaps in metabolic 
networks and will act as a starting point for designing 
novel enzymes to catalyze non-natural transformations. 
 
ABSTRACT  
 
Thousands of biochemical reactions with characterized 
activities are orphan, meaning they cannot be assigned to 
a specific enzyme, leaving gaps in metabolic pathways. 
Novel reactions predicted by pathway-generation tools 

also lack associated sequences, limiting protein 
engineering applications. Associating orphan and novel 
reactions with known biochemistry and suggesting 
enzymes to catalyze them is a daunting problem. We 
propose a new method, BridgIT, to identify candidate 
genes and protein sequences for these reactions, and this 
method introduces, for the first time, information about 
the enzyme binding pocket into reaction similarity 
comparisons. BridgIT assesses the similarity of two 
reactions, one orphan and one well-characterized, non-
orphan reaction, using their substrate reactive sites, their 
surrounding structures, and the structures of the 
generated products to suggest protein sequences and 
genes that catalyze the most similar non-orphan reactions 
as candidates for also catalyzing the orphan ones.  
We performed two large-scale validation studies to test 
BridgIT predictions against experimental biochemical 
evidence. For the 234 orphan reactions from KEGG 2011 
(a comprehensive enzymatic reaction database) that 
became non-orphan in KEGG 2018, BridgIT predicted the 
exact or a highly related enzyme for 211 of them. 
Moreover, for 334 out of 379 novel reactions in 2014 that 
were later catalogued in KEGG 2018, BridgIT predicted the 
exact or highly similar enzyme sequences.   
BridgIT requires knowledge about only three connecting 
bonds around the atoms of the reactive sites to correctly 
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identify protein sequences for 93% of analyzed enzymatic 
reactions. Increasing to six connecting bonds allowed for 
the accurate identification of a sequence for nearly all 
known enzymatic reactions. 
 
INTRODUCTION 
Genome-scale reconstructions of metabolic networks 
can be used to correlate the genome with the observed 
physiology, though this hinges on the completeness and 
accuracy of the sequenced genome annotations. Orphan 
reactions, which are enzymatic reactions without protein 
sequences or genes associated with their functionality, 
are common and can be found in the genome-scale 
reconstructions of even well-characterized organisms, 
such as Escherichia coli (1). A recent review of orphan 
reactions reported that almost half of the enzymatic 
reactions cataloged in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (2) lack an associated protein 
sequence (3). 
Problems with orphan-like reactions can also arise in 
areas such as bioremediation, synthetic biology, and drug 
discovery, where exploring the potential of biological 
organisms beyond their natural capabilities has prompted 
the development of tools that can generate de novo 
hypothetical enzymatic reactions and pathways (4–14). 
These de novo reactions are behind many success stories 
in biotechnology, and they can also be used in the gap-
filling of metabolic networks (5,11,12,14–17). While these 
enzymatic reactions have well-explained biochemistry 
that can conceivably occur in metabolism, they are 
essentially orphan reactions because they have no 
assigned enzyme or corresponding gene sequence. The 
lack of protein-encoding genes associated with the 
functionality of these de novo reactions limits their 
applicability for metabolic engineering, synthetic biology 
applications, and the gap-filling of genome scale models 
(18). A method for associating de novo reactions to 
similarly occurring natural enzymatic reactions would 
allow for the direct experimental implementation of the 
discovered novel reactions or assist in designing new 
proteins capable of catalyzing the proposed 
biotransformation. 
Computational methods for identifying candidate genes 
of orphan reactions have mostly been developed based 
on protein sequence similarity (3,19–21). The two 
predominant classes of these sequence-based methods 
revolve around gene/genome analysis (21–24) and 
metabolic information (25,26). Several bioinformatics 
methods combine different aspects of these two classes, 
such as gene clustering, gene co-expression, phylogenetic 
profiles, protein interaction data, and gene proximity, for 
assigning genes and protein sequences to orphan 
reactions (27–30). All of these methods use the concept 
of sequence similarity of the corresponding enzyme to 
determine the biochemical functions of orphan reactions.  

This can be problematic because many known enzymatic 
activities are still missing an associated gene due to 
annotation errors, the incompleteness of gene sequences 
(31), and the fact that homology-based methods cannot 
annotate orphan protein sequences with no or little 
sequence similarity to known enzymes (3,32). Moreover, 
sequence similarity methods can provide inaccurate 
results, as small changes in key residues might greatly 
alter enzyme functionality (33), and also it is a common 
observation that vastly different protein sequences can 
exhibit the same fold and, therefore, have similar catalytic 
activity even though they look very different (34,35). In 
addition, these methods are not suitable for the 
annotation of de novo reactions since current pathway 
prediction tools only provide information about enzyme 
catalytic biotransformations and not about their 
sequences. 
These shortcomings motivated the development of 
alternative computational methods based on the 
structural similarity of reactants and products for 
identifying candidate protein sequences for orphan 
enzymatic reactions (30,33,36–40). The idea behind these 
approaches was to assess the similarity of two enzymatic 
reactions via the similarity of their reaction fingerprints, 
i.e., the mathematical descriptors of the structural and 
topological properties of the participating metabolites 
(41), which could eliminate the problems associated with 
non-matching or unassigned protein sequences. In such 
methods, the reaction fingerprint of an orphan reaction is 
compared with a set of non-orphan reference-reaction 
fingerprints, and the genes of the most similar reference 
reactions are then assigned as promising candidate genes 
for the orphan reaction. Reaction fingerprints can be 
generated based on different similarity metrics, such as 
the bond change, reaction center, or structural similarity 
(40). 
One class of reaction-fingerprint computational methods 
compares all of the compounds participating in reactions 
(40), which includes both reactants and cofactors. The 
application of this group of methods is restricted to 
specific enzymatic reactions that do not involve large 
cofactors (30,33,36–40). This is because the structural 
information of the large cofactors overwhelmingly 
contributes to the corresponding reconstructed reaction-
fingerprint, and consequently, reactions with similar 
cofactors will inaccurately be classified as similar (35–38).  
Another class of reaction-fingerprint methods uses the 
chemical structures of reactant pairs for comparison (38). 
While these methods can be applied to all classes of 
enzymatic reactions, they neglect the crucial role of 
cofactors in the reaction mechanism. Moreover, neither 
of these two classes of methods have been employed for 
assigning protein sequences to de novo reactions (38).  
In this study, we introduce a novel computational 
method, BridgIT, that links orphan reactions and de novo 
reactions, predicted by pathway design tools such as 
BNICE.ch (15), Retropath2 (14), DESHARKY (9), and 
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SimPheny (11), with well-characterized enzymatic 
reactions and their associated genes. BridgIT uses reaction 
fingerprints to compare enzymatic reactions and is 
inspired by the “lock and key” principle that is used in 
protein docking methods (42) wherein the enzyme 
binding pocket is the “lock” and the ligand is a “key”. If a 
molecule has the same reactive sites and a similar 
surrounding structure as the native substrate of a given 
enzyme, it is then rational to expect that the enzyme will 
catalyze the same biotransformation on this molecule. 
Following this reasoning, BridgIT uses the structural 
similarity of the reactive sites of participating substrates 
together with their surrounding structure as a metric for 
assessing the similarity of enzymatic reactions. BridgIT 
introduces an additional level of specificity into reaction 
fingerprints by capturing critical information about the 
enzyme binding pocket. More precisely, BridgIT is 
substrate-reactive-site centric, and its reaction 
fingerprints reflect the specificities of biochemical 
reaction mechanisms that arise from the type of enzymes 
catalyzing those reactions.  
Through several studies, we demonstrated the 
effectiveness of utilizing the BridgIT fingerprints for 
mapping novel and orphan reactions to the known 
biochemistry. These reactions are mapped according to 
the enzyme commission (EC) (43) number, which is an 
existing numerical classification scheme for enzyme-
based reactions. The EC number can classify enzymes at 
up to four levels, with a one-level classification being the 
most general and a four-level classification being the most 
specific, and these enzyme-based reactions are then 
represented by four numbers, one for each level, 
separated by periods (e.g. 1.1.1.11). We show that BridgIT 
is capable of correctly predicting enzymes with an 
identical third-level EC number, indicating a nearly 
identical type of enzymatic reaction, for 94% of orphan 
reactions from KEGG 2011 that became non-orphan in 
KEGG 2016. This result validates the consistency of the 
sequences predicted by BridgIT with the experimental 
observations, and it further suggests that BridgIT can 
provide enzyme sequences for catalyzing nearly all orphan 
reactions. We also studied how the size of the BridgIT 
fingerprint impacts the BridgIT predictions. We show that 
BridgIT correctly identifies protein sequences using 
fingerprints that describe the neighborhood up to six 
bonds away from the atoms of the reactive site. Strikingly, 
we also find that it is sufficient to use the information of 
only three bonds around the atoms of the reactive sites of 

substrates to accurately identify protein sequences for 
93% of the analyzed reactions.  
Finally, to indicate the power of this computational 
technique, we applied BridgIT to the study of all of the 
137,000 novel reactions from the ATLAS of biochemistry, 
a database of all theoretically possible biochemical 
reactions (44), most of which have no current route to 
their synthesis or development. Using our technology, we 
provide candidate enzymes that can potentially catalyze 
the biotransformation of these reactions to the research 
community, which should provide a basis for the 
engineering and development of novel enzyme-catalyzed 
biotransformations. 
  
RESULTS AND DISCUSSION 
BridgIT method. The BridgIT workflow together with an 
example of its application on an orphan reaction is 
demonstrated in Fig. 1. BridgIT is organized into four main 
steps (see Methods for more details): 1) reactive site 
identification, 2) reaction fingerprint construction, 3) 
reaction similarity evaluation, and 4) scoring, ranking, and 
gene assignment. The inputs of the workflow are (i) an 
orphan or a novel reaction and (ii) the collection of 
BNICE.ch generalized enzyme reaction rules. These 
reaction rules assemble biochemical knowledge distilled 
from the biochemical reaction databases, and they are 
used to discover de novo enzymatic reactions as well as 
predict all possible pathways from known compounds to 
target molecules (15,44,45). Here, we used the 
generalized enzyme reaction rules to extract information 
about the reactive sites of substrates participating in an 
orphan or a novel reaction, and we integrated it into the 
BridgIT reaction fingerprints (Fig. 1, panels 1 and 2). We 
then compared the obtained BridgIT reaction fingerprints 
to the ones from the reference reaction database based 
on the Tanimoto similarity scores (Fig. 1, panel 3). A 
Tanimoto score near 0 designates reactions with no or low 
similarity, whereas a score near 1 designates reactions 
with high similarity. We used these scores to rank the 
assigned reactions from the reference reaction database, 
and we identified the enzymes associated with the 
highest-ranked reference reactions as candidates for 
catalyzing the analyzed orphan or novel reaction (Fig. 1, 
panel 4). In the next sections, we discuss the 
reconstructions and testing of the various components of 
BridgIT as well as the results of our main analyses. A web-
tool of BridgIT can be consulted at http://lcsb-
databases.epfl.ch/pathways/Bridgit  upon subscription.
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Fig. 1. Main steps of the BridgIT workflow: (1) reactive site recognition for an input reaction (de novo or orphan); (2) reaction 
fingerprint construction; (3) reaction similarity evaluation; and (4) sorting, ranking and gene assignment. Panels 1.a to 1.c illustrate 
the procedure of the identification of reactive sites for the orphan reaction R02763. Panel 1.a: Two candidate reactive sites of 3-
Carboxy-2-hydroxymuconate semialdehyde (substrate A) that were recognized by the rules 4.1.1. (green) and 1.13.11 (red). Panel 
1.b: Both rules recognized the connectivity of atoms within two candidate reactive sites. Panel 1.c: Only reaction rule 4.1.1. can 
explain the transformation of substrate A to products. Panel 2.a shows the fragmentation of reaction compounds, whereas panel 2.b 
illustrates the mathematical representations of the corresponding BridgIT reaction fingerprints. 
 
Reference reaction database. The BridgIT reference 
reaction database is an essential component of the 
BridgIT workflow (Fig. 1). It consists of well-characterized 
reactions with associated genes and protein sequences, 
and it was built based on the KEGG 2016 reaction 
database (Methods). The KEGG database is the most 
comprehensive database of enzymatic reactions, and it 
provides information about biochemical reactions 
together with their corresponding enzymes and genes. 
However, half of KEGG reactions lack associated genes 
and protein sequences, and they are hence considered to 
be orphan reactions. The BridgIT reference database was 
built using the KEGG reactions that (i) can be 
reconstructed by the existing BNICE.ch generalized 
reaction rules and are elementally balanced (5,270 
reactions) and (ii) are non-orphan (5,049 reactions). This 
restriction removes reactions that lack characterized 
substrate reactive sites, meaning that they cannot be used 
in our comparisons. As a result, the reference reaction 

database contains information for 5,049 out of 9,556 
KEGG reactions (SI Dataset, Table S1).  
 
Sensitivity analysis of the BridgIT fingerprint size. The 
defining characteristic of the BridgIT reaction fingerprint 
is that it is centered around the reactive site of the 
reaction substrate(s). The number of description layers in 
the BridgIT fingerprint, i.e., the fingerprint size, defines 
how large of a chemical structure around the reactive site 
we consider when evaluating the similarity (Methods). To 
investigate to what extent the fingerprint size affects the 
similarity results, we performed a sensitivity analysis 
where we varied the fingerprint size between 0 to 10. 
For this analysis, we considered the 5,049 non-orphan 
KEGG reactions that existed in the BridgIT reference 
reaction database. We started by forming reaction 
fingerprints that contained only the description layer 0 
(fingerprint size 0) and evaluated how many of 5,049 non-
orphan reactions BridgIT could correctly identify. We next 
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formed the reaction fingerprints using only the 
description layers 0 and 1 (fingerprint size 1), and we 
performed the evaluation again. We repeated this 
procedure until the final step, where we formed the 
reaction fingerprints with ten description layers 
(fingerprint size 10).  
As expected, the increase in the fingerprint size, i.e., 
specificity, led to a decrease in the average number of 
similar reactions assigned to the studied reactions. 
Moreover, the more description layers that were 

incorporated into the BridgIT fingerprint, the more 
accurately BridgIT matched the analyzed reactions (Table 
1). Already for a fingerprint size 7, BridgIT correctly 
mapped 100% of the analyzed reactions, i.e., each of the 
5,049 non-orphan reactions was matched to itself in the 
reference reaction database. This indicated that the 
information about six atoms along with their connecting 
bonds around the reactive sites was sufficient for BridgIT 
to correctly match all non-orphan KEGG reactions, and we 
chose the fingerprint size 7 for our further studies. 

Table 1. Percent of correctly mapped reactions as a function of the size of the BridgIT fingerprint. 

 
 

 

 
Fig. 2. Comparison of the results obtained with the BridgIT and standard fingerprint on two example KEGG reactions. (A) The input 
reaction R00722 (left) and the most similar reactions (right) identified with the BridgIT and standard fingerprints. Note that the 
standard fingerprinting method failed to find a similar reaction to R00722 due to cancellations inside all fingerprint description layers.  
(B) The input reaction R00691 (left) and the most similar reactions (right) identified with the BridgIT and standard fingerprints.
 
BridgIT reaction fingerprints offer improved predictions. 
We repeated the analysis from the previous section using 
the standard reaction difference fingerprint (Methods), 
which is used in structure similarity methods such as 
RxnSim (36) and RxnFinder (37), to assess the benefits of 
introducing the information about the reactive site of 
substrates into the reaction fingerprints. A comparison of 
the two sets of predictions on 5,049 non-orphan reactions 
showed that the predictions obtained with BridgIT-
modified fingerprints were significantly better than the 
standard ones. BridgIT identified 100% of non-orphan 

reactions correctly versus the 71% success rate for the 
standard fingerprint method. Furthermore, BridgIT 
correctly matched 93% of the analyzed enzymatic 
reactions using the information about only three 
connecting bonds around the atoms of the reactive sites 
(fingerprint size 4), which exceeds the 71% of matched 
reactions when using the standard reaction fingerprints 
(fingerprint size 7) (Table 1). 
The inferior performance of the standard reaction 
fingerprint method arose from three main sources. First, 
fragments from the substrate and product sets were 

Fingerprint size 0 1 2 3 4 5 6 7 8 9 10 

% correctly mapped reactions 4.3 35.2 60.5 72.1 92.7 97.8 98.6 100 100 100 100 
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cancelled out upon algebraic summation inside the 
fingerprint description layers (Methods), in which 
description layers 0 and 1 define the single atoms and the 
connected pairs of atoms of the reactive site, and layers 2 
to 7 include information about the chemical structure 
around the reactive site that contains up to eight atoms 
and seven bonds (Fig. 1). This cancellation occurred in all 
description layers (fingerprint size 7) for 246 non-orphan 
reactions, i.e., their standard fingerprints were empty (SI 
Dataset, Table S3). As an example, Fig. 3A shows the 
standard reaction fingerprint of KEGG reaction R00722 
that was empty for the standard fingerprint method. The 
information about reactive sites introduced in the BridgIT 
reaction fingerprints prevents such cancellations, since 
BridgIT does not include the atoms of the reactive site(s) 
in the process of the algebraic summation of the substrate 
and product set fragments (Methods). As a result, BridgIT 
mapped R00722 to itself and identified R00330 as the 
most similar reaction to R00722 (Fig. 2A). Indeed, 
according to the KEGG database, the enzyme 2.7.4.6 
catalyzes both reactions. 
Second, the performance of the standard reaction 
fingerprint suffered because the first description layer of 
the standard fingerprint was empty for an additional 
1,129 reactions, which indicated that these fingerprints 
did not represent the bond changes during the reaction 
(SI Dataset, Table S4). 
Third, the remaining 89 mismatched non-orphan 
reactions had partial cancellations in the fingerprint 
description layers. For example, the standard fingerprint 
method incorrectly identified R03132 as the most similar 
to R00691, whereas BridgIT identified R00691 and R01373 
as the most similar to R00691 (Fig. 2B), which matches the 
KEGG reports indicating that both R00691 and R01373 can 
be catalyzed by either EC 4.2.1.51 or EC 4.2.1.91. 
 
From reaction chemistry to detailed enzyme 
mechanisms. Approximately 15% of KEGG reactions 
(1,532 reactions) are assigned to more than one enzyme 
and EC number, i.e., multiple enzymes can catalyze a 
specific biotransformation through different enzymatic 
mechanisms. For example, KEGG reaction R00217 is 
assigned to three different EC numbers, 4.1.1.3 
(oxaloacetate carboxy-lyase), 1.1.1.40, and 1.1.1.38 (both 
malate dehydrogenases), and the corresponding 
reactions involve different mechanisms (Fig. 3). For the 
4.1.1.3 enzyme, the reaction mechanism is well 
understood, as this enzyme belongs to the carboxy-lyases, 
where a carbon-carbon bond is broken and a molecule of 
CO2 is released. In contrast, for the corresponding 
enzymes 1.1.1.40 and 1.1.1.38, there is ambiguity about 
their detailed mechanisms. As discussed in Swiss-Prot 
(46), these two enzymes are both NAD-dependent 
dehydrogenases that also have the ability to 
decarboxylate oxaloacetate. They are found in bacteria 
and insects (1.1.1.38) or in fungi, animals, and plants 
(1.1.1.40). In addition, BNICE.ch identifies multiple 

alternative reactive sites for 42% of the KEGG reactions 
that have a single enzyme assigned to them. 
Consequently, multiple reaction fingerprints can describe 
the biotransformation of these reactions. 
We applied the BridgIT algorithm to R00217 in order to 
see how well BridgIT matched this reaction to its known 
enzymes, and we obtained two distinct reaction 
fingerprints that corresponded to the two different 
enzyme mechanisms mentioned above. More precisely, 
the BNICE.ch generalized reaction rules 1.1.1.- and 4.1.1.- 
identified two different reactive sites of oxaloacetate to 
break the carbon-carbon bond and release CO2 and 
pyruvate (Fig.  3). The 1.1.1.- rule recognized a larger, i.e., 
more specific, reactive site compared to the one 
recognized by 4.1.1.- (Fig. 3). 
Therefore, a single reaction from KEGG was translated 
into more than one fingerprint in the BridgIT reference 
database. This way, by preserving the information about 
enzyme binding pockets, the reconstructed BridgIT 
reference reaction database expands from 5,049 
reactions to 17,657 reaction fingerprints corresponding to 
17,657 detailed reaction mechanisms. 

 
Fig 3. A multi-enzyme reaction such as R00217 can be catalyzed 
by more than one enzyme. BridgIT identified two distinct 
fingerprints for this reaction that correspond to two reactive 
sites of oxaloacetate. The reactive site recognized by the 1.1.1.- 
rule is more specific (blue substructure) than the one recognized 
by the 4.1.1.- rule (green substructure). 
 
Comparison of BridgIT and BLAST predictions. As a means 
to relate reaction structural similarity obtained using 
BridgIT with reaction sequence similarity obtained using 
BLAST (47), we applied these two techniques  in parallel 
on a subset of reactions and their corresponding protein 
sequences from the reference reaction database. We 
compared the similarity results of BridgIT with those of 
BLAST, and we statistically assessed BridgIT performance 
using receiver operating characteristic (ROC) curve 
analysis (SI Fig. 1).  
We chose E. coli BW29521 (EBW) as our benchmark 
organism for this analysis. We extracted all of the non-
orphan reactions of EBW from the BridgIT reference 
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database together with their associated protein 
sequences (SI Dataset, Table S2). There were 531 non-
orphan reactions in EBW associated with 413 protein 
sequences. In total, there were 731 reaction-gene 
associations (SI Dataset, Table S2), as there were reactions 
with more than one associated gene and genes associated 
with more than one reaction. We then used BridgIT to 
assess the structural similarity of the 531 EBW reactions 
to the BridgIT reference reactions using the Tanimoto 
score, and we also applied BLAST to quantify the similarity 
of the 413 EBW protein sequences to the KEGG protein 
sequence database using e-values. We provided a list of 
BridgIT reaction-reaction comparisons together with 
BLAST sequence-sequence comparisons (SI Dataset, Table 
S2). 
Comparing reaction (BridgIT) and sequence (BLAST) 
similarity scores. We considered two sequences to be 
similar if BLAST reported an e-value of less than 10-10 for 
their alignment. For a chosen discrimination threshold 
(DT) of the global Tanimoto score (TG) we considered the 
BridgIT prediction of similarity between an EBW reaction 
and a BridgIT reference reaction with a Tanimoto score of 
TG as: 
(i) True Positive (TP) if TG > DT and their associated 
sequence(s) were similar (e-value < 10-10); 
(ii) True Negative (TN) if not similar for both BridgIT (TG < 
DT) and BLAST+ (e-value > 10-10); 
(iii) False Positive (FP) if similar for BridgIT (TG > DT) but 
not similar for BLAST+ (e-value > 10-10); 
(iv) False Negative (FN) if not similar for BridgIT (TG < DT) 
but similar for BLAST+ (e-value < 10-10). 
We then counted the number of TPs, TNs, FPs, and FNs for 
all 531 reactions, and we summed these quantities to 
obtain the total number of TPs, TNs, FPs, and FNs per 
chosen DT. We repeated this procedure for a set of DT 
values varying across the interval between 0 and 1. Finally, 
we used the total number of TPs, TNs, FPs, and FNs to 
compute the true positive and false positive rates for the 
ROC curve analysis (SI Fig. 1A). The ROC curve indicated 
that the reaction comparison based on reaction structural 
similarity (BridgIT) was comparable to the one based on 

reaction sequence similarity (BLAST). Indeed, the obtained 
area under the ROC curve (AUC) score for the BridgIT 
classifier was 0.91, indicating that the similarities between 
the two methods were very high (SI Fig. 1A). We next 
studied if the type of compared reactions affected the 
accuracy of BridgIT predictions by categorizing reactions 
according to their first-level EC class, which indicates the 
broadest category of enzyme functionality, and then 
performing the ROC analysis for each class separately (SI 
Fig. 1A). The analysis revealed that BridgIT performed well 
with all major enzyme classes, as represented by the high 
AUC scores, ranging from 0.88 (EC 1) to 0.96 (EC 5).  
We next analyzed the accuracy of BridgIT classification as 
a function of the DT of the Tanimoto score (SI Fig. 1B). The 
accuracy ranged from 43% for DT = 0.01 to 85% for 
DT = 0.30. For values of DT > 0.30, the accuracy 
monotonically decreased toward a value of 62% for 
DT = 1. The classifier was overly conservative for values of 
DT > 0.30, and it was rejecting true positives (SI Fig. 1B). 
More specifically, for DT = 0.30, the TP percentage was 
38%, whereas, for DT = 1, it was reduced to 3%. In 
contrast, the TN percentage increased very slightly for the 
values of DT > 0.30, where for DT = 0.30, it was 46%, and 
for DT = 1, it was 57% (SI Fig. 1B). Based on this analysis, 
we have chosen a DT of 0.30 as an optimal threshold value 
for further studies. 
 
BridgIT analysis of known reactions with common 
enzymes. The 5,049 reactions in the reference database 
were catalyzed by only 2,983 enzymes, i.e., there were 
promiscuous enzymes that catalyzed more than one 
reaction. Out of the 2,983 enzymes, 844 of them were 
promiscuous, catalyzing 2,432 of the reactions (SI Dataset, 
Table S5). Interestingly, BridgIT correctly assigned more 
than 80% of these 2,432 reactions to their corresponding 
promiscuous enzyme. An example of such a group is given 
in Table 2. This table shows the same enzymes listed 
across the top and down the size of the grid, with the 
corresponding Tanimoto scores indicating the accuracy of 
BridgIT’s classifications. The overall high scores in this grid 
indicate the accuracy of the enzyme assignments. 

Table 2. A group of five reactions catalyzed by enzyme 1.1.1.219, wherein the Tanimoto score is given for the comparison 
between the reaction listed across the top and the reaction listed down the side. 
 

Catalyzed 

reactions 
R03123 R03636 R05038 R07999 R07998 

R03123 1 0.96 0.93 0.93 0.98 

R03636 0.96 1 0.96 0.94 0.95 

R05038 0.93 0.96 1 0.97 0.91 

R07999 0.93 0.94 0.97 1 0.91 

R07998 0.98 0.95 0.91 0.91 1 
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Fig. 4. Multi-functional enzymes can catalyze reactions with two different reactive sites. (A) R03539 and (B) R03208 are catalyzed 
by the same enzyme, 1.11.1.8. However, the reactive sites of these substrates are completely different. 

We investigated the remaining 20% of reactions in depth, 
and we observed that the Tanimoto scores of the first two 
description layers (Methods) indicated a very low 
similarity between the reactions catalyzed by the same 
enzyme. This result suggested that such enzymes were 
either multi-functional, i.e., they had more than one 
reactive site (Fig. 4), or were incorrectly classified in the 
EC classification system. 
 
BridgIT validation against biochemical assays. To assess 
BridgIT’s performance using biochemically confirmed 
reactions, we performed two validation studies on sets of 
(I) orphan and (II) novel reactions. Since the known 
reactions in KEGG are all experimentally confirmed using 
biochemical assays, we could use this pooled 
experimental data from hundreds of laboratories to 
demonstrate BridgIT’s ability to identify the activity of 
biologically relevant orphan reactions on a large scale. 
Study I: We compared the number of orphan reactions in 
the two versions of the KEGG reaction database, KEGG 
2011 and KEGG 2018. We found that 234 orphan reactions 
from KEGG 2011 were later associated with enzymes in 
KEGG 2018, meaning they became non-orphan reactions 
(SI Dataset, Tables S6-8). Since these newly classified 
reactions have been experimentally confirmed, we used 
these 234 reactions as a benchmark to evaluate BridgIT 
performance.  
We formed the reference reaction database using the 
reactions from KEGG 2011 (Methods), and we compared 

the BridgIT results with the KEGG 2018 enzyme 
assignments up to the third EC level. Remarkably, BridgIT 
and KEGG 2018 assigned enzymes matched to the third EC 
level for 211 out of 234 (90%) reactions (SI Dataset, Tables 
S6 and S7). This means that BridgIT accurately predicted 
the enzyme mechanism and provided highly related 
protein sequences for enzymes that have been 
biochemically confirmed to catalyze a large majority of 
the orphan reactions in 2011.      
The 234 reactions are catalyzed by 168 enzymes with 
specified fourth-level EC numbers in KEGG 2018. 
However, only 29 out of these 168 enzymes were 
cataloged in KEGG 2011, and the remaining 139 enzymes 
had new fourth-level EC classes assigned in KEGG 2018 – 
meaning BridgIT only had access to the 29 enzymes that 
were classified in KEGG 2011 from which the reference 
reaction database was built. The 29 enzymes catalyzed 35 
out of the 234 studied reactions. For 29 out of these 35 
(83%) orphan reactions, the BridgIT algorithm predicted 
the same sequences that KEGG 2018 assigned to these 
reactions (SI Dataset, Table S9). A higher matching score 
when comparing up to the third EC level rather than the 
fourth EC level is likely because BridgIT uses BNICE.ch 
generalized reaction rules, which describe the 
biotransformations of reactions with specificities up to 
the third EC level. 
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Fig. 5. Details of the BridgIT verification procedure that was performed on ATLAS reaction rat132341, which was novel in KEGG 2014 
and later experimentally identified and catalogued in KEGG 2018 — i.e., it became a non-orphan reaction (R10392). (A) rat132341 
catalyzes the conversion of (R)-(Homo)2-citrate to cis-(Homo)2-aconitate. (B) Using the biochemical knowledge of KEGG 2014, BridgIT 
predicts the KEGG reaction R03444, which is catalyzed by a 4.2.1.114-class enzyme, as the most similar known reaction to rat132341. 
Remarkably, the same enzyme is later assigned to R10392 in KEGG 2018 with the corresponding biochemical confirmation. (C) The 
identified EC number (4.2.1.114) can be used to extract the corresponding protein sequences along with their crystal structures.   
 
Study II: The ATLAS of biochemistry (44) provides a 
comprehensive catalog of theoretically possible bio-
transformations between KEGG compounds, and it can be 
mined for novel biosynthetic routes for a wide range of 
applications in metabolic engineering, synthetic biology, 
drug target identification, and bioremediation (40). We 
studied the 379 reactions from the ATLAS of Biochemistry 
that were novel in KEGG 2014 and were later 
experimentally identified and catalogued in KEGG 2018. 
We formed the reference reaction database using the 
reactions from KEGG 2014 and applied BridgIT to these 
379 reactions. For 334 out of these 379 reactions, BridgIT 
proposed similar known reactions with a Tanimoto score 

higher than 0.3, thus providing promising protein 
sequences for enzymes catalyzing these reactions (SI 
Dataset, Table S10). For 14 of these novel reactions, 
BridgIT assigned the same sequences that were assigned 
in KEGG 2018 (SI Dataset, Table S11). An example of such 
a reaction is rat132341, which was a novel reaction in 
2014 and later was catalogued as R10392 in KEGG 2018 
(Fig. 5A). The BridgIT analysis of this reaction revealed that 
R03444, which is catalyzed by enzyme 4.2.1.114, is the 
structurally closest reaction to this novel one, suggesting 
that protein sequences from EC 4.2.1.114 can catalyze this 
novel reaction. This was later confirmed by experimental 
biochemical evidence, as R10392 is associated with the 
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same EC 4.2.1.114 enzyme in KEGG 2018. There are 243 
available protein sequences for enzyme 4.2.1.114, and 
one sequence already has a confirmed protein structure 
(Fig. 5C). This represents the first computational method 
for predicting protein sequences for orphan and novel 
reactions whose results were validated using 
experimental biochemical evidence on a large scale. 
 
BridgIT predictions for KEGG 2018 orphan reactions. We 
applied BridgIT to the 810 orphan KEGG 2018 reactions 
that could be reconstructed using the BNICE.ch 
generalized reaction rules. Remarkably, BridgIT identified 
corresponding reference reactions with Tanimoto scores 
higher than the optimal threshold value of 0.30 for 97% of 
the orphan reactions. The remaining 3% of orphan 
reactions had a low similarity with the reference 
reactions. This result and the fact that BridgIT correctly 
mapped 100% of non-orphan KEGG reactions suggested 
that, as our knowledge of biochemistry expands, the 
annotation of novel and orphan reactions using tools such 
as BridgIT will also improve. 
 
BridgIT predictions for ATLAS novel reactions. We further 
utilized BridgIT to identify candidate enzymes for all the 
137,000 de novo, orphan-like, ATLAS reactions. These 
candidate enzymes can either be used directly in systems 
biology designs if the matched enzymes perform the 
desired catalysis, or their amino acid sequences can be 
optimized through protein engineering to achieve the 
desired results. We found that 7% of novel ATLAS 
reactions were matched to known KEGG reactions with a 
Tanimoto score of 1 (perfect match), while 88% were 
similar to KEGG reactions with a Tanimoto score higher 
than the optimal threshold value of 0.3. Therefore, BridgIT 
could identify promising enzyme sequences for catalyzing 
95% of novel ATLAS reactions. The remaining 5% of these 
reactions were not similar to any of the well-
characterized, known enzymatic reactions.  
Finding well-characterized reactions that are similar to 
novel ones is crucial for evolutionary protein engineering 
as well as computational protein design, and methods like 
BridgIT can be instrumental in moving from a concept to 
the experimental implementation of de novo reactions. 
Additionally, to facilitate the experimental 
implementation of novel ATLAS reactions in metabolic 
engineering, systems and synthetic biology, and 
bioremediation studies, we can use the BridgIT similarity 
scores as confidence measures for evaluating the 
feasibility. 
The results of the BridgIT analysis of the KEGG 2018 
orphan and novel ATLAS reactions are available on the 
website http://lcsb-databases.epfl.ch/atlas/. 
 
 
 
 

METHODS 
In BridgIT, the Tanimoto score is used to quantify the 
similarity of reaction fingerprints. BridgIT allows us to do 
the following: (i) compare a given novel or orphan 
reaction to a set of reactions that have associated 
sequences, subsequently referred to as the reference 
reactions; (ii) rank the identified similar reactions based 
on the computed Tanimoto scores; and (iii) propose the 
sequences of the highest ranked reference reactions as 
possible candidates for encoding the enzyme of the given 
de novo or orphan reaction.  
 
Reactive site identification. An enzymatic reaction occurs 
when its substrate(s) fits into the binding site of an 
enzyme. Since the structure and geometry of the binding 
sites of enzymes are complex and most of the time not 
fully characterized, we proposed focusing on the similarity 
of the reactive sites of their substrates. Following this, we 
used the expert-curated, generalized reaction rules of 
BNICE.ch to identify the reactive sites of substrates. These 
reaction rules have third-level EC identifiers, e.g., EC 1.1.1, 
and they encompass the following biochemical 
knowledge of enzymatic reactions: (i) the information 
about atoms of the substrate’s reactive site; (ii) their 
connectivity (atom-bond-atom); and (iii) the exact 
information of bond breakage and formation during the 
reaction. As of July 2017, BNICE.ch contains 361 
bidirectional generalized reaction rules that can 
reconstruct 6,528 KEGG reactions (44). 
Given a novel or orphan reaction, the reactive sites of its 
substrate(s) are identified in three steps. In the first step, 
the BNICE.ch generalized reaction rules that can be 
applied to groups of atoms from the analyzed substrates 
are identified. Then, the information about the identified 
rules and the corresponding groups of atoms is stored. 
Subsequently, these groups of atoms are then referred to 
as the candidate substrate reactive sites. In the second 
step, among the identified rules, only the ones that can 
recognize the connectivity between the atoms of the 
candidate substrate reactive sites are kept. In the third 
step, whether the biotransformation of a substrate(s) to a 
product(s) can be explained by the rules retained after the 
second step is tested. The candidate reactive sites 
corresponding to the rules that have passed the three-
step test are validated and used for the construction of 
reaction fingerprints.  
We illustrate this procedure on the de novo reaction 
rat132064, which catalyzes the conversion of 3,4-
dyhydroxymandelonitrile, substrate A, to 
protocatechualdehyde and cyanide (Fig. 1). In the first 
step, 164 rules were identified out of 361 rules that could 
be applied to groups of atoms of substrate A (Fig. 1, panel 
1a). Out of the 164 rules, 103 matched the connectivity 
(Fig. 1, panel 1b). Finally, the 103 reaction rules were 
applied to substrate A for bond breaking and formation 
comparisons, and one rule could explain the 
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transformation of substrate A to the products (Fig. 1, 
panel 1c).  
 
Reaction fingerprint construction. Molecular 
fingerprints, which are the linear representations of the 
structures of molecules, have been used in many methods 
and for different applications, especially for structural 
comparison of compounds (48,49). One of the most 
commonly used molecular fingerprints is the Daylight 
fingerprint (48), and it decomposes a molecule into eight 
layers starting from layer zero that accounts only for 
atoms. Layer 1 expands one bond away from all of the 
atoms and accounts for atom-bond-atom connections. 
This procedure is continued until layer 7, which includes 
seven connected bonds from each atom. There are two 
types of Daylight reaction fingerprints: (i) structural 
reaction fingerprints, which are simple combinations of 
reactant and product fingerprints, and (ii) reaction 
difference fingerprints, which are the algebraic 
summation of reactant and product fingerprints 
multiplied by their stoichiometry coefficients in the 
reaction. In this study, we propose a modified version of 
the reaction difference fingerprint. The procedure for 
formulating BridgIT reaction fingerprints is demonstrated 
through an example reaction (Fig. 1, panel 2).  
Starting from the atoms of the identified substrate 
reactive site, eight description layers of the molecule were 
formed, where different layers consisted of fragments 
with different lengths. Fragments were composed of 
atoms connected through unbranched sequences of 
bonds. Depending on the number of bonds included in the 
fragments, different description layers of a molecule were 
formed as follows: 
Layer 0: Describes the type of each atom of the reactive 
site together with its count. For example, the substrate of 
the example reaction at layer 0 was described as 1 oxygen, 
1 nitrogen, and 2 carbon atoms (Fig. 1, panel 2a). 
Layer 1: Describes the type and count of each bond 
between pairs of atoms in the reactive site. In the 
example, the substrate at layer 1 was described with three 
fragments of length 1: 1 C-O, 1 C-C, and 1 CºN bond (Fig. 
1, panel 2a). Fragments are shown by their SMILES 
molecular representation (50). 
Layer 2: Describes the type and count of fragments with 
three connected atoms. While layers 0 and 1 described 
the atoms of reactive sites, starting from layer 2, atoms 
that were outside of the reactive site were also described. 
In the illustrated example, there were three different 
fragments of this type (Fig. 1, panel 2a). 
The same procedure was used to describe the molecules 
up to layer 7. Interestingly, and consistent with the 
previously reported result (41), we found that the 7-layer 
description was good enough to capture the structure of 
most of the metabolites in biochemical reactions, 
therefore providing a precise reaction fingerprint. Note 
that not all description layers are needed to describe less 
complex molecules. For example, product C (cyanide) was 

fully described using only layer 0 and layer 1 (Fig. 1, panel 
2a). For very large molecules, the description layers that 
contain fragments with more than 8 connected atoms can 
be used. 
For each layer, the substrate set was formed by merging 
all of the fragments, their type, and their count in the 
substrate molecules of the reaction, and the product set 
was formed by merging all of the fragments (type and 
count) in the product molecules of the reaction. In both 
sets, the count of each fragment was multiplied by the 
stoichiometric coefficients of the corresponding 
compound in the reaction. Finally, the reaction 
fingerprints were created by summing the fragments of 
the substrate and product sets for each layer (Fig. 1, panel 
2b).  
Introducing the specificity of reactive sites into the 
reaction fingerprint allows BridgIT to capitalize on the 
information about enzyme binding pockets (15). To keep 
this valuable information throughout the generation of 
reaction fingerprints, BridgIT does not consider the atoms 
of the reactive site(s) when performing the algebraic 
summation of the substrate and product set fragments. 
Consequently, the BridgIT algorithm enables retaining, 
tracking, and emphasizing the information of the reactive 
site(s) in all of the layers of the reaction fingerprint, which 
distinguishes it from the existing methods.   
 
Reaction similarity evaluation. The similarity of two 
reactions was quantified using the similarity score 
between their fingerprints, subsequently referred to as 
reaction fingerprints A and B. In this study, the Tanimoto 
score, which is an extended version of the Jaccard 
coefficient and cosine similarity, was used (51). Values of 
the Tanimoto scores near 0 indicate reactions with no or 
negligible similarity, whereas values near 1 indicate 
reactions with high similarity.  
The Tanimoto score for each descriptive layer, TLk, 
together with the global Tanimoto score, TG, was 
calculated. The Tanimoto score for the k-th descriptive 
layer was defined as: 

𝑇"# =
𝑐#

𝑎# + 𝑏# − 𝑐#
	, 

where ak was the count of the fragments in the k-th layer 
of reaction fingerprint A; bk was the count of the 
fragments in the k-th layer of reaction fingerprint B; and 
ck was the number of common k-th layer fragments of 
reaction fingerprints A and B. Two fragments were equal 
if their canonical SMILES and their stoichiometric 
coefficients were identical. The global Tanimoto similarity 
score, TG, was defined as follows: 

𝑇, =
	∑ 𝑐#.

#/0
∑ 𝑎# + ∑ 𝑏#.

#/0 − ∑ 𝑐#.
#/0

.
#/0

	. 

For each reaction fingerprint, its Tanimoto similarity score 
was calculated against the reaction fingerprints from the 
BridgIT reference database, which contained reaction 
fingerprints of all known, well-characterized enzymatic 
reactions (Fig. 1, panel 3). 
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Sorting, ranking and gene assignment. For a given input 
reaction, the reference reactions were ranked using the 
computed TG scores. The algorithm distinguished 
between the identified reference reactions with the same 
TG score based on the TL score of layers 0 and 1, and it also 
allows the user to assign ranking weights to specified 
layers. The protein sequences associated with the highest 
ranked, i.e., the most similar, reference reactions were 
then assigned to the input reaction (Fig. 1, panel 4).  
 
CONCLUSIONS 
We developed the computational tool, BridgIT, to 
evaluate and quantify the structural similarity of 
biochemical reactions by exploiting the biochemical 
knowledge of BNICE.ch generalized reaction rules. 
Because the generalized reaction rules can identify 
reactive sites of substrates, BridgIT can translate the 
structural definition of biochemical reactions into a novel 
type of reaction fingerprint that explicitly describes the 
atoms of the substrates’ reactive sites and their 
surrounding structure. Through the analysis of 5,049 
known and well-defined biochemical reactions, we found 
that knowledge of the neighborhood up to three bonds 
away from the atoms of the reactive site can predict 
biochemistry and match catalytic protein sequences. The 
reaction fingerprints proposed in this work can be used to 
compare all novel and orphan reactions to well-
characterized reference reactions and, consequently, to 
link them with genes, genomes, and organisms. We 
demonstrated through several examples the 
improvements that the BridgIT fingerprint brings to the 
field compared to the fingerprints currently existing in the 
literature. 
A drawback of traditional sequence similarity methods is 
that they cannot identify protein sequence candidates for 
de novo reactions, which we have shown BridgIT can do.  
We tested BridgIT predictions against experimental 
biochemical evidence, within two large-scale validations 
studies on sets of (i) 234 orphan and (ii) 379 de novo 
reactions. The reactions from these two sets were 
unknown in the previous versions of the KEGG database 
but were later experimentally confirmed and catalogued 
in KEGG 2018. BridgIT predicted the exact or a highly 
related enzyme for 89% of these reactions. 
We further applied BridgIT to the entire catalog of de novo 
reactions of the ATLAS of Biochemistry database and 
proposed several candidate enzymes for each of them. 
The candidate enzymes for these de novo reactions are 
either immediately capable of catalyzing these reactions 
or can serve as initial sequences for enzyme engineering. 
The obtained BridgIT similarity scores can also be used as 
a confidence score to assess the feasibility of the 
implementation of novel ATLAS reactions in metabolic 
engineering and systems biology studies.  

The applications of BridgIT go beyond merely bridging 
gaps in metabolic reconstructions, as this method can be 
used to identify the potential utility of existing enzymes 
for bioremediation as well as for various applications in 
synthetic biology and metabolic engineering. As the field 
of metabolic engineering grows and metabolic 
engineering applications increasingly turn towards the 
production of valuable industrial chemicals such as 1,4-
butanediol (52,53), we expect that methods for the design 
of de novo synthetic pathways, such as BNICE.ch (15), and 
methods for identifying candidate enzymes for de novo 
reactions, such as BridgIT, will grow in importance. 
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