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SIGNIFICANCE STATEMENT

Recent advances in synthetic biochemistry have resulted
in a wealth of novel hypothetical enzymatic reactions that
are not matched to protein-encoding genes, deeming
them “orphan”. Nearly half of known metabolic enzymes
are also orphan, leaving important gaps in metabolic
network maps. Proposing genes for the catalysis of
orphan reactions is critical for applications ranging from
biotechnology to medicine. In this work, a novel
computational method, BridgIT, identified a potential
enzyme sequence to orphan reactions and nearly all
theoretically possible biochemical transformations,
providing candidate genes to catalyze these reactions to
the research community. BridgIT online tool will allow
researchers to fill the knowledge gaps in metabolic
networks and will act as a starting point for designing
novel enzymes to catalyze non-natural transformations.

ABSTRACT

Thousands of biochemical reactions with characterized
activities are orphan, meaning they cannot be assigned to
a specific enzyme, leaving gaps in metabolic pathways.
Novel reactions predicted by pathway-generation tools

also lack associated sequences, limiting protein
engineering applications. Associating orphan and novel
reactions with known biochemistry and suggesting
enzymes to catalyze them is a daunting problem. We
propose a new method, BridglT, to identify candidate
genes and protein sequences for these reactions, and this
method introduces, for the first time, information about
the enzyme binding pocket into reaction similarity
comparisons. BridglT assesses the similarity of two
reactions, one orphan and one well-characterized, non-
orphan reaction, using their substrate reactive sites, their
surrounding structures, and the structures of the
generated products to suggest protein sequences and
genes that catalyze the most similar non-orphan reactions
as candidates for also catalyzing the orphan ones.

We performed two large-scale validation studies to test
BridglT predictions against experimental biochemical
evidence. For the 234 orphan reactions from KEGG 2011
(a comprehensive enzymatic reaction database) that
became non-orphan in KEGG 2018, BridgIT predicted the
exact or a highly related enzyme for 211 of them.
Moreover, for 334 out of 379 novel reactions in 2014 that
were later catalogued in KEGG 2018, BridgIT predicted the
exact or highly similar enzyme sequences.

BridglT requires knowledge about only three connecting
bonds around the atoms of the reactive sites to correctly
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identify protein sequences for 93% of analyzed enzymatic
reactions. Increasing to six connecting bonds allowed for
the accurate identification of a sequence for nearly all
known enzymatic reactions.

INTRODUCTION

Genome-scale reconstructions of metabolic networks
can be used to correlate the genome with the observed
physiology, though this hinges on the completeness and
accuracy of the sequenced genome annotations. Orphan
reactions, which are enzymatic reactions without protein
sequences or genes associated with their functionality,
are common and can be found in the genome-scale
reconstructions of even well-characterized organisms,
such as Escherichia coli (1). A recent review of orphan
reactions reported that almost half of the enzymatic
reactions cataloged in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (2) lack an associated protein
sequence (3).

Problems with orphan-like reactions can also arise in
areas such as bioremediation, synthetic biology, and drug
discovery, where exploring the potential of biological
organisms beyond their natural capabilities has prompted
the development of tools that can generate de novo
hypothetical enzymatic reactions and pathways (4-14).
These de novo reactions are behind many success stories
in biotechnology, and they can also be used in the gap-
filling of metabolic networks (5,11,12,14-17). While these
enzymatic reactions have well-explained biochemistry
that can conceivably occur in metabolism, they are
essentially orphan reactions because they have no
assigned enzyme or corresponding gene sequence. The
lack of protein-encoding genes associated with the
functionality of these de novo reactions limits their
applicability for metabolic engineering, synthetic biology
applications, and the gap-filling of genome scale models
(18). A method for associating de novo reactions to
similarly occurring natural enzymatic reactions would
allow for the direct experimental implementation of the
discovered novel reactions or assist in designing new
proteins capable of catalyzing the proposed
biotransformation.

Computational methods for identifying candidate genes
of orphan reactions have mostly been developed based
on protein sequence similarity (3,19-21). The two
predominant classes of these sequence-based methods
revolve around gene/genome analysis (21-24) and
metabolic information (25,26). Several bioinformatics
methods combine different aspects of these two classes,
such as gene clustering, gene co-expression, phylogenetic
profiles, protein interaction data, and gene proximity, for
assigning genes and protein sequences to orphan
reactions (27-30). All of these methods use the concept
of sequence similarity of the corresponding enzyme to
determine the biochemical functions of orphan reactions.

This can be problematic because many known enzymatic
activities are still missing an associated gene due to
annotation errors, the incompleteness of gene sequences
(31), and the fact that homology-based methods cannot
annotate orphan protein sequences with no or little
sequence similarity to known enzymes (3,32). Moreover,
sequence similarity methods can provide inaccurate
results, as small changes in key residues might greatly
alter enzyme functionality (33), and also it is a common
observation that vastly different protein sequences can
exhibit the same fold and, therefore, have similar catalytic
activity even though they look very different (34,35). In
addition, these methods are not suitable for the
annotation of de novo reactions since current pathway
prediction tools only provide information about enzyme
catalytic biotransformations and not about their
sequences.

These shortcomings motivated the development of
alternative computational methods based on the
structural similarity of reactants and products for
identifying candidate protein sequences for orphan
enzymatic reactions (30,33,36—40). The idea behind these
approaches was to assess the similarity of two enzymatic
reactions via the similarity of their reaction fingerprints,
i.e., the mathematical descriptors of the structural and
topological properties of the participating metabolites
(41), which could eliminate the problems associated with
non-matching or unassigned protein sequences. In such
methods, the reaction fingerprint of an orphan reaction is
compared with a set of non-orphan reference-reaction
fingerprints, and the genes of the most similar reference
reactions are then assigned as promising candidate genes
for the orphan reaction. Reaction fingerprints can be
generated based on different similarity metrics, such as
the bond change, reaction center, or structural similarity
(40).

One class of reaction-fingerprint computational methods
compares all of the compounds participating in reactions
(40), which includes both reactants and cofactors. The
application of this group of methods is restricted to
specific enzymatic reactions that do not involve large
cofactors (30,33,36—40). This is because the structural
information of the large cofactors overwhelmingly
contributes to the corresponding reconstructed reaction-
fingerprint, and consequently, reactions with similar
cofactors will inaccurately be classified as similar (35-38).
Another class of reaction-fingerprint methods uses the
chemical structures of reactant pairs for comparison (38).
While these methods can be applied to all classes of
enzymatic reactions, they neglect the crucial role of
cofactors in the reaction mechanism. Moreover, neither
of these two classes of methods have been employed for
assigning protein sequences to de novo reactions (38).

In this study, we introduce a novel computational
method, BridglIT, that links orphan reactions and de novo
reactions, predicted by pathway design tools such as
BNICE.ch (15), Retropath2 (14), DESHARKY (9), and
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SimPheny (11), with well-characterized enzymatic
reactions and their associated genes. BridgIT uses reaction
fingerprints to compare enzymatic reactions and is
inspired by the “lock and key” principle that is used in
protein docking methods (42) wherein the enzyme
binding pocket is the “lock” and the ligand is a “key”. If a
molecule has the same reactive sites and a similar
surrounding structure as the native substrate of a given
enzyme, it is then rational to expect that the enzyme will
catalyze the same biotransformation on this molecule.
Following this reasoning, BridgIT uses the structural
similarity of the reactive sites of participating substrates
together with their surrounding structure as a metric for
assessing the similarity of enzymatic reactions. BridgIT
introduces an additional level of specificity into reaction
fingerprints by capturing critical information about the
enzyme binding pocket. More precisely, BridgIT is
substrate-reactive-site  centricc, and its reaction
fingerprints reflect the specificities of biochemical
reaction mechanisms that arise from the type of enzymes
catalyzing those reactions.

Through several studies, we demonstrated the
effectiveness of utilizing the BridglT fingerprints for
mapping novel and orphan reactions to the known
biochemistry. These reactions are mapped according to
the enzyme commission (EC) (43) number, which is an
existing numerical classification scheme for enzyme-
based reactions. The EC number can classify enzymes at
up to four levels, with a one-level classification being the
most general and a four-level classification being the most
specific, and these enzyme-based reactions are then
represented by four numbers, one for each level,
separated by periods (e.g. 1.1.1.11). We show that BridgIT
is capable of correctly predicting enzymes with an
identical third-level EC number, indicating a nearly
identical type of enzymatic reaction, for 94% of orphan
reactions from KEGG 2011 that became non-orphan in
KEGG 2016. This result validates the consistency of the
sequences predicted by BridgIT with the experimental
observations, and it further suggests that BridgIT can
provide enzyme sequences for catalyzing nearly all orphan
reactions. We also studied how the size of the BridgIT
fingerprint impacts the BridgIT predictions. We show that
BridgIT correctly identifies protein sequences using
fingerprints that describe the neighborhood up to six
bonds away from the atoms of the reactive site. Strikingly,
we also find that it is sufficient to use the information of
only three bonds around the atoms of the reactive sites of

substrates to accurately identify protein sequences for
93% of the analyzed reactions.

Finally, to indicate the power of this computational
technique, we applied BridgIT to the study of all of the
137,000 novel reactions from the ATLAS of biochemistry,
a database of all theoretically possible biochemical
reactions (44), most of which have no current route to
their synthesis or development. Using our technology, we
provide candidate enzymes that can potentially catalyze
the biotransformation of these reactions to the research
community, which should provide a basis for the
engineering and development of novel enzyme-catalyzed
biotransformations.

RESULTS AND DISCUSSION

BridgIT method. The BridgIT workflow together with an
example of its application on an orphan reaction is
demonstrated in Fig. 1. BridgIT is organized into four main
steps (see Methods for more details): 1) reactive site
identification, 2) reaction fingerprint construction, 3)
reaction similarity evaluation, and 4) scoring, ranking, and
gene assignment. The inputs of the workflow are (i) an
orphan or a novel reaction and (ii) the collection of
BNICE.ch generalized enzyme reaction rules. These
reaction rules assemble biochemical knowledge distilled
from the biochemical reaction databases, and they are
used to discover de novo enzymatic reactions as well as
predict all possible pathways from known compounds to
target molecules (15,44,45). Here, we used the
generalized enzyme reaction rules to extract information
about the reactive sites of substrates participating in an
orphan or a novel reaction, and we integrated it into the
BridgIT reaction fingerprints (Fig. 1, panels 1 and 2). We
then compared the obtained BridgIT reaction fingerprints
to the ones from the reference reaction database based
on the Tanimoto similarity scores (Fig. 1, panel 3). A
Tanimoto score near 0 designates reactions with no or low
similarity, whereas a score near 1 designates reactions
with high similarity. We used these scores to rank the
assigned reactions from the reference reaction database,
and we identified the enzymes associated with the
highest-ranked reference reactions as candidates for
catalyzing the analyzed orphan or novel reaction (Fig. 1,
panel 4). In the next sections, we discuss the
reconstructions and testing of the various components of
BridglT as well as the results of our main analyses. A web-
tool of BridglT can be consulted at http://Icsb-
databases.epfl.ch/pathways/Bridgit upon subscription.
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Fig. 1. Main steps of the BridgIT workflow: (1) reactive site recognition for an input reaction (de novo or orphan); (2) reaction
fingerprint construction; (3) reaction similarity evaluation; and (4) sorting, ranking and gene assignment. Panels 1.a to 1.c illustrate
the procedure of the identification of reactive sites for the orphan reaction R02763. Panel 1.a: Two candidate reactive sites of 3-
Carboxy-2-hydroxymuconate semialdehyde (substrate A) that were recognized by the rules 4.1.1. (green) and 1.13.11 (red). Panel
1.b: Both rules recognized the connectivity of atoms within two candidate reactive sites. Panel 1.c: Only reaction rule 4.1.1. can
explain the transformation of substrate A to products. Panel 2.a shows the fragmentation of reaction compounds, whereas panel 2.b
illustrates the mathematical representations of the corresponding BridgIT reaction fingerprints.

Reference reaction database. The BridgIT reference
reaction database is an essential component of the
BridgIT workflow (Fig. 1). It consists of well-characterized
reactions with associated genes and protein sequences,
and it was built based on the KEGG 2016 reaction
database (Methods). The KEGG database is the most
comprehensive database of enzymatic reactions, and it
provides information about biochemical reactions
together with their corresponding enzymes and genes.
However, half of KEGG reactions lack associated genes
and protein sequences, and they are hence considered to
be orphan reactions. The BridgIT reference database was
built using the KEGG reactions that (i) can be
reconstructed by the existing BNICE.ch generalized
reaction rules and are elementally balanced (5,270
reactions) and (ii) are non-orphan (5,049 reactions). This
restriction removes reactions that lack characterized
substrate reactive sites, meaning that they cannot be used
in our comparisons. As a result, the reference reaction

database contains information for 5,049 out of 9,556
KEGG reactions (SI Dataset, Table S1).

Sensitivity analysis of the BridgIT fingerprint size. The
defining characteristic of the BridgIT reaction fingerprint
is that it is centered around the reactive site of the
reaction substrate(s). The number of description layers in
the BridglT fingerprint, i.e., the fingerprint size, defines
how large of a chemical structure around the reactive site
we consider when evaluating the similarity (Methods). To
investigate to what extent the fingerprint size affects the
similarity results, we performed a sensitivity analysis
where we varied the fingerprint size between 0 to 10.

For this analysis, we considered the 5,049 non-orphan
KEGG reactions that existed in the BridgIT reference
reaction database. We started by forming reaction
fingerprints that contained only the description layer 0
(fingerprint size 0) and evaluated how many of 5,049 non-
orphan reactions BridgIT could correctly identify. We next
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formed the reaction fingerprints using only the
description layers 0 and 1 (fingerprint size 1), and we
performed the evaluation again. We repeated this
procedure until the final step, where we formed the
reaction fingerprints with ten description layers
(fingerprint size 10).

As expected, the increase in the fingerprint size, i.e.,
specificity, led to a decrease in the average number of
similar reactions assigned to the studied reactions.
Moreover, the more description layers that were

incorporated into the BridgIT fingerprint, the more
accurately BridgIT matched the analyzed reactions (Table
1). Already for a fingerprint size 7, BridgIT correctly
mapped 100% of the analyzed reactions, i.e., each of the
5,049 non-orphan reactions was matched to itself in the
reference reaction database. This indicated that the
information about six atoms along with their connecting
bonds around the reactive sites was sufficient for BridgIT
to correctly match all non-orphan KEGG reactions, and we
chose the fingerprint size 7 for our further studies.

Table 1. Percent of correctly mapped reactions as a function of the size of the BridgIT fingerprint.

Fingerprint size 0 1 2 3 4 5 6 7 8 9 10
% correctly mapped reactions 4.3 352 60.5 72.1 927 97.8 986 100 100 100 100
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Fig. 2. Comparison of the results obtained with the BridglIT and standard fingerprint on two example KEGG reactions. (A) The input
reaction R00722 (left) and the most similar reactions (right) identified with the BridgIT and standard fingerprints. Note that the
standard fingerprinting method failed to find a similar reaction to R0O0722 due to cancellations inside all fingerprint description layers.
(B) The input reaction R00691 (left) and the most similar reactions (right) identified with the BridgIT and standard fingerprints.

BridgIT reaction fingerprints offer improved predictions.
We repeated the analysis from the previous section using
the standard reaction difference fingerprint (Methods),
which is used in structure similarity methods such as
RxnSim (36) and RxnFinder (37), to assess the benefits of
introducing the information about the reactive site of
substrates into the reaction fingerprints. A comparison of
the two sets of predictions on 5,049 non-orphan reactions
showed that the predictions obtained with BridgIT-
modified fingerprints were significantly better than the
standard ones. BridgIT identified 100% of non-orphan

reactions correctly versus the 71% success rate for the
standard fingerprint method. Furthermore, BridgIT
correctly matched 93% of the analyzed enzymatic
reactions using the information about only three
connecting bonds around the atoms of the reactive sites
(fingerprint size 4), which exceeds the 71% of matched
reactions when using the standard reaction fingerprints
(fingerprint size 7) (Table 1).

The inferior performance of the standard reaction
fingerprint method arose from three main sources. First,
fragments from the substrate and product sets were
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cancelled out upon algebraic summation inside the
fingerprint description layers (Methods), in which
description layers 0 and 1 define the single atoms and the
connected pairs of atoms of the reactive site, and layers 2
to 7 include information about the chemical structure
around the reactive site that contains up to eight atoms
and seven bonds (Fig. 1). This cancellation occurred in all
description layers (fingerprint size 7) for 246 non-orphan
reactions, i.e., their standard fingerprints were empty (S|
Dataset, Table S3). As an example, Fig. 3A shows the
standard reaction fingerprint of KEGG reaction R00722
that was empty for the standard fingerprint method. The
information about reactive sites introduced in the BridgIT
reaction fingerprints prevents such cancellations, since
BridglIT does not include the atoms of the reactive site(s)
in the process of the algebraic summation of the substrate
and product set fragments (Methods). As a result, BridgIT
mapped R0O0722 to itself and identified RO0330 as the
most similar reaction to R00722 (Fig. 2A). Indeed,
according to the KEGG database, the enzyme 2.7.4.6
catalyzes both reactions.

Second, the performance of the standard reaction
fingerprint suffered because the first description layer of
the standard fingerprint was empty for an additional
1,129 reactions, which indicated that these fingerprints
did not represent the bond changes during the reaction
(SI Dataset, Table S4).

Third, the remaining 89 mismatched non-orphan
reactions had partial cancellations in the fingerprint
description layers. For example, the standard fingerprint
method incorrectly identified R03132 as the most similar
to R00691, whereas BridgIT identified R0O0691 and R01373
as the most similar to R0O0691 (Fig. 2B), which matches the
KEGG reports indicating that both R00691 and R01373 can
be catalyzed by either EC4.2.1.51 or EC 4.2.1.91.

From reaction chemistry to detailed enzyme
mechanisms. Approximately 15% of KEGG reactions
(1,532 reactions) are assigned to more than one enzyme
and EC number, i.e., multiple enzymes can catalyze a
specific biotransformation through different enzymatic
mechanisms. For example, KEGG reaction R00217 is
assigned to three different EC numbers, 4.1.1.3
(oxaloacetate carboxy-lyase), 1.1.1.40, and 1.1.1.38 (both
malate dehydrogenases), and the corresponding
reactions involve different mechanisms (Fig. 3). For the
4.1.1.3 enzyme, the reaction mechanism is well
understood, as this enzyme belongs to the carboxy-lyases,
where a carbon-carbon bond is broken and a molecule of
CO; is released. In contrast, for the corresponding
enzymes 1.1.1.40 and 1.1.1.38, there is ambiguity about
their detailed mechanisms. As discussed in Swiss-Prot
(46), these two enzymes are both NAD-dependent
dehydrogenases that also have the ability to
decarboxylate oxaloacetate. They are found in bacteria
and insects (1.1.1.38) or in fungi, animals, and plants
(1.1.1.40). In addition, BNICE.ch identifies multiple

alternative reactive sites for 42% of the KEGG reactions
that have a single enzyme assigned to them.
Consequently, multiple reaction fingerprints can describe
the biotransformation of these reactions.

We applied the BridgIT algorithm to R00217 in order to
see how well BridglT matched this reaction to its known
enzymes, and we obtained two distinct reaction
fingerprints that corresponded to the two different
enzyme mechanisms mentioned above. More precisely,
the BNICE.ch generalized reaction rules 1.1.1.- and 4.1.1.-
identified two different reactive sites of oxaloacetate to
break the carbon-carbon bond and release CO, and
pyruvate (Fig. 3). The 1.1.1.- rule recognized a larger, i.e.,
more specific, reactive site compared to the one
recognized by 4.1.1.- (Fig. 3).

Therefore, a single reaction from KEGG was translated
into more than one fingerprint in the BridglIT reference
database. This way, by preserving the information about
enzyme binding pockets, the reconstructed BridgIT
reference reaction database expands from 5,049
reactions to 17,657 reaction fingerprints corresponding to
17,657 detailed reaction mechanisms.

A
3 enzymes catalyze R00217

R00217 N N

2

Oxaloacetate Pyruvate

Fig 3. A multi-enzyme reaction such as R00217 can be catalyzed
by more than one enzyme. BridgIT identified two distinct
fingerprints for this reaction that correspond to two reactive
sites of oxaloacetate. The reactive site recognized by the 1.1.1.-
rule is more specific (blue substructure) than the one recognized
by the 4.1.1.- rule (green substructure).

Comparison of BridgIT and BLAST predictions. As a means
to relate reaction structural similarity obtained using
BridgIT with reaction sequence similarity obtained using
BLAST (47), we applied these two techniques in parallel
on a subset of reactions and their corresponding protein
sequences from the reference reaction database. We
compared the similarity results of BridgIT with those of
BLAST, and we statistically assessed BridglIT performance
using receiver operating characteristic (ROC) curve
analysis (SI Fig. 1).

We chose E. coli BW29521 (EBW) as our benchmark
organism for this analysis. We extracted all of the non-
orphan reactions of EBW from the BridgIT reference
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database together with their associated protein
sequences (S| Dataset, Table S2). There were 531 non-
orphan reactions in EBW associated with 413 protein
sequences. In total, there were 731 reaction-gene
associations (S| Dataset, Table S2), as there were reactions
with more than one associated gene and genes associated
with more than one reaction. We then used BridgIT to
assess the structural similarity of the 531 EBW reactions
to the BridgIT reference reactions using the Tanimoto
score, and we also applied BLAST to quantify the similarity
of the 413 EBW protein sequences to the KEGG protein
sequence database using e-values. We provided a list of
BridgIT reaction-reaction comparisons together with
BLAST sequence-sequence comparisons (Sl Dataset, Table
S2).

Comparing reaction (BridglT) and sequence (BLAST)
similarity scores. We considered two sequences to be
similar if BLAST reported an e-value of less than 107 for
their alignment. For a chosen discrimination threshold
(DT) of the global Tanimoto score (Tg) we considered the
BridglT prediction of similarity between an EBW reaction
and a BridglIT reference reaction with a Tanimoto score of
Tg as:

(i) True Positive (TP) if T¢ > DT and their associated
sequence(s) were similar (e-value < 101%);

(ii) True Negative (TN) if not similar for both BridgIT (T¢ <
DT) and BLAST+ (e-value > 107%9);

(iii) False Positive (FP) if similar for BridgIT (Tg > DT) but
not similar for BLAST+ (e-value > 1019);

(iv) False Negative (FN) if not similar for BridgIT (T < DT)
but similar for BLAST+ (e-value < 10'19).

We then counted the number of TPs, TNs, FPs, and FNs for
all 531 reactions, and we summed these quantities to
obtain the total number of TPs, TNs, FPs, and FNs per
chosen DT. We repeated this procedure for a set of DT
values varying across the interval between 0 and 1. Finally,
we used the total number of TPs, TNs, FPs, and FNs to
compute the true positive and false positive rates for the
ROC curve analysis (SI Fig. 1A). The ROC curve indicated
that the reaction comparison based on reaction structural
similarity (BridgIT) was comparable to the one based on

reaction sequence similarity (BLAST). Indeed, the obtained
area under the ROC curve (AUC) score for the BridgIT
classifier was 0.91, indicating that the similarities between
the two methods were very high (SI Fig. 1A). We next
studied if the type of compared reactions affected the
accuracy of BridglT predictions by categorizing reactions
according to their first-level EC class, which indicates the
broadest category of enzyme functionality, and then
performing the ROC analysis for each class separately (S|
Fig. 1A). The analysis revealed that BridgIT performed well
with all major enzyme classes, as represented by the high
AUC scores, ranging from 0.88 (EC 1) to 0.96 (EC 5).

We next analyzed the accuracy of BridgIT classification as
a function of the DT of the Tanimoto score (S| Fig. 1B). The
accuracy ranged from 43% for DT =0.01 to 85% for
DT=0.30. For values of DT>0.30, the accuracy
monotonically decreased toward a value of 62% for
DT = 1. The classifier was overly conservative for values of
DT > 0.30, and it was rejecting true positives (SI Fig. 1B).
More specifically, for DT = 0.30, the TP percentage was
38%, whereas, for DT =1, it was reduced to 3%. In
contrast, the TN percentage increased very slightly for the
values of DT > 0.30, where for DT = 0.30, it was 46%, and
for DT =1, it was 57% (Sl Fig. 1B). Based on this analysis,
we have chosen a DT of 0.30 as an optimal threshold value
for further studies.

BridgIT analysis of known reactions with common
enzymes. The 5,049 reactions in the reference database
were catalyzed by only 2,983 enzymes, i.e., there were
promiscuous enzymes that catalyzed more than one
reaction. Out of the 2,983 enzymes, 844 of them were
promiscuous, catalyzing 2,432 of the reactions (SI Dataset,
Table S5). Interestingly, BridgIT correctly assigned more
than 80% of these 2,432 reactions to their corresponding
promiscuous enzyme. An example of such a group is given
in Table 2. This table shows the same enzymes listed
across the top and down the size of the grid, with the
corresponding Tanimoto scores indicating the accuracy of
BridglT’s classifications. The overall high scores in this grid
indicate the accuracy of the enzyme assignments.

Table 2. A group of five reactions catalyzed by enzyme 1.1.1.219, wherein the Tanimoto score is given for the comparison
between the reaction listed across the top and the reaction listed down the side.

Catalyzed
R03123 R03636 R05038 R07999 R07998
reactions
R03123 1 0.96 0.93 0.93 0.98
R03636 0.96 1 0.96 0.94 0.95
R05038 0.93 0.96 1 0.97 0.91
R07999 0.93 0.94 0.97 1 0.91
R07998 0.98 0.95 0.91 0.91 1
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A multi-functional enzyme: EC 1.11.1.8
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Fig. 4. Multi-functional enzymes can catalyze reactions with two different reactive sites. (A) R03539 and (B) R03208 are catalyzed

by the same enzyme, 1.11.1.8. However, the reactive

We investigated the remaining 20% of reactions in depth,
and we observed that the Tanimoto scores of the first two
description layers (Methods) indicated a very low
similarity between the reactions catalyzed by the same
enzyme. This result suggested that such enzymes were
either multi-functional, i.e., they had more than one
reactive site (Fig. 4), or were incorrectly classified in the
EC classification system.

BridgIT validation against biochemical assays. To assess
BridgIT’s performance using biochemically confirmed
reactions, we performed two validation studies on sets of
(I) orphan and (ll) novel reactions. Since the known
reactions in KEGG are all experimentally confirmed using
biochemical assays, we could use this pooled
experimental data from hundreds of laboratories to
demonstrate BridglT’s ability to identify the activity of
biologically relevant orphan reactions on a large scale.
Study I: We compared the number of orphan reactions in
the two versions of the KEGG reaction database, KEGG
2011 and KEGG 2018. We found that 234 orphan reactions
from KEGG 2011 were later associated with enzymes in
KEGG 2018, meaning they became non-orphan reactions
(SI Dataset, Tables S6-8). Since these newly classified
reactions have been experimentally confirmed, we used
these 234 reactions as a benchmark to evaluate BridgIT
performance.

We formed the reference reaction database using the
reactions from KEGG 2011 (Methods), and we compared

sites of these substrates are completely different.

the BridglT results with the KEGG 2018 enzyme
assignments up to the third EC level. Remarkably, BridgIT
and KEGG 2018 assigned enzymes matched to the third EC
level for 211 out of 234 (90%) reactions (SI Dataset, Tables
S6 and S7). This means that BridgIT accurately predicted
the enzyme mechanism and provided highly related
protein sequences for enzymes that have been
biochemically confirmed to catalyze a large majority of
the orphan reactions in 2011.

The 234 reactions are catalyzed by 168 enzymes with
specified fourth-level EC numbers in KEGG 2018.
However, only 29 out of these 168 enzymes were
cataloged in KEGG 2011, and the remaining 139 enzymes
had new fourth-level EC classes assigned in KEGG 2018 —
meaning BridgIT only had access to the 29 enzymes that
were classified in KEGG 2011 from which the reference
reaction database was built. The 29 enzymes catalyzed 35
out of the 234 studied reactions. For 29 out of these 35
(83%) orphan reactions, the BridgIT algorithm predicted
the same sequences that KEGG 2018 assigned to these
reactions (S| Dataset, Table S9). A higher matching score
when comparing up to the third EC level rather than the
fourth EC level is likely because BridgIT uses BNICE.ch
generalized reaction rules, which describe the
biotransformations of reactions with specificities up to
the third EC level.


https://doi.org/10.1101/210039
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/210039; this version posted June 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

An example reaction: novel in 2014 and catalogued in KEGG 2018\
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Fig. 5. Details of the BridglIT verification procedure that was performed on ATLAS reaction rat132341, which was novel in KEGG 2014
and later experimentally identified and catalogued in KEGG 2018 — i.e., it became a non-orphan reaction (R10392). (A) rat132341
catalyzes the conversion of (R)-(Homo)2-citrate to cis-(Homo)2-aconitate. (B) Using the biochemical knowledge of KEGG 2014, BridgIT
predicts the KEGG reaction R03444, which is catalyzed by a 4.2.1.114-class enzyme, as the most similar known reaction to rat132341.
Remarkably, the same enzyme is later assigned to R10392 in KEGG 2018 with the corresponding biochemical confirmation. (C) The
identified EC number (4.2.1.114) can be used to extract the corresponding protein sequences along with their crystal structures.

Study IlI: The ATLAS of biochemistry (44) provides a
comprehensive catalog of theoretically possible bio-
transformations between KEGG compounds, and it can be
mined for novel biosynthetic routes for a wide range of
applications in metabolic engineering, synthetic biology,
drug target identification, and bioremediation (40). We
studied the 379 reactions from the ATLAS of Biochemistry
that were novel in KEGG 2014 and were later
experimentally identified and catalogued in KEGG 2018.

We formed the reference reaction database using the
reactions from KEGG 2014 and applied BridgIT to these
379 reactions. For 334 out of these 379 reactions, BridgIT
proposed similar known reactions with a Tanimoto score

higher than 0.3, thus providing promising protein
sequences for enzymes catalyzing these reactions (Sl
Dataset, Table S10). For 14 of these novel reactions,
BridglT assigned the same sequences that were assigned
in KEGG 2018 (S| Dataset, Table S11). An example of such
a reaction is rat132341, which was a novel reaction in
2014 and later was catalogued as R10392 in KEGG 2018
(Fig. 5A). The BridgIT analysis of this reaction revealed that
R03444, which is catalyzed by enzyme 4.2.1.114, is the
structurally closest reaction to this novel one, suggesting
that protein sequences from EC4.2.1.114 can catalyze this
novel reaction. This was later confirmed by experimental
biochemical evidence, as R10392 is associated with the
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same EC 4.2.1.114 enzyme in KEGG 2018. There are 243
available protein sequences for enzyme 4.2.1.114, and
one sequence already has a confirmed protein structure
(Fig. 5C). This represents the first computational method
for predicting protein sequences for orphan and novel
reactions whose results were validated using
experimental biochemical evidence on a large scale.

BridgIT predictions for KEGG 2018 orphan reactions. We
applied BridgIT to the 810 orphan KEGG 2018 reactions
that could be reconstructed using the BNICE.ch
generalized reaction rules. Remarkably, BridgIT identified
corresponding reference reactions with Tanimoto scores
higher than the optimal threshold value of 0.30 for 97% of
the orphan reactions. The remaining 3% of orphan
reactions had a low similarity with the reference
reactions. This result and the fact that BridglT correctly
mapped 100% of non-orphan KEGG reactions suggested
that, as our knowledge of biochemistry expands, the
annotation of novel and orphan reactions using tools such
as BridgIT will also improve.

BridgIT predictions for ATLAS novel reactions. We further
utilized BridgIT to identify candidate enzymes for all the
137,000 de novo, orphan-like, ATLAS reactions. These
candidate enzymes can either be used directly in systems
biology designs if the matched enzymes perform the
desired catalysis, or their amino acid sequences can be
optimized through protein engineering to achieve the
desired results. We found that 7% of novel ATLAS
reactions were matched to known KEGG reactions with a
Tanimoto score of 1 (perfect match), while 88% were
similar to KEGG reactions with a Tanimoto score higher
than the optimal threshold value of 0.3. Therefore, BridgIT
could identify promising enzyme sequences for catalyzing
95% of novel ATLAS reactions. The remaining 5% of these
reactions were not similar to any of the well-
characterized, known enzymatic reactions.

Finding well-characterized reactions that are similar to
novel ones is crucial for evolutionary protein engineering
as well as computational protein design, and methods like
BridglT can be instrumental in moving from a concept to
the experimental implementation of de novo reactions.
Additionally, to facilitate the experimental
implementation of novel ATLAS reactions in metabolic
engineering, systems and synthetic biology, and
bioremediation studies, we can use the BridgIT similarity
scores as confidence measures for evaluating the
feasibility.

The results of the BridgIT analysis of the KEGG 2018
orphan and novel ATLAS reactions are available on the
website http://lcsb-databases.epfl.ch/atlas/.
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METHODS

In BridgIT, the Tanimoto score is used to quantify the
similarity of reaction fingerprints. BridgIT allows us to do
the following: (i) compare a given novel or orphan
reaction to a set of reactions that have associated
sequences, subsequently referred to as the reference
reactions; (ii) rank the identified similar reactions based
on the computed Tanimoto scores; and (iii) propose the
sequences of the highest ranked reference reactions as
possible candidates for encoding the enzyme of the given
de novo or orphan reaction.

Reactive site identification. An enzymatic reaction occurs
when its substrate(s) fits into the binding site of an
enzyme. Since the structure and geometry of the binding
sites of enzymes are complex and most of the time not
fully characterized, we proposed focusing on the similarity
of the reactive sites of their substrates. Following this, we
used the expert-curated, generalized reaction rules of
BNICE.ch to identify the reactive sites of substrates. These
reaction rules have third-level EC identifiers, e.g., EC1.1.1,
and they encompass the following biochemical
knowledge of enzymatic reactions: (i) the information
about atoms of the substrate’s reactive site; (ii) their
connectivity (atom-bond-atom); and (iii) the exact
information of bond breakage and formation during the
reaction. As of July 2017, BNICE.ch contains 361
bidirectional generalized reaction rules that can
reconstruct 6,528 KEGG reactions (44).

Given a novel or orphan reaction, the reactive sites of its
substrate(s) are identified in three steps. In the first step,
the BNICE.ch generalized reaction rules that can be
applied to groups of atoms from the analyzed substrates
are identified. Then, the information about the identified
rules and the corresponding groups of atoms is stored.
Subsequently, these groups of atoms are then referred to
as the candidate substrate reactive sites. In the second
step, among the identified rules, only the ones that can
recognize the connectivity between the atoms of the
candidate substrate reactive sites are kept. In the third
step, whether the biotransformation of a substrate(s) to a
product(s) can be explained by the rules retained after the
second step is tested. The candidate reactive sites
corresponding to the rules that have passed the three-
step test are validated and used for the construction of
reaction fingerprints.

We illustrate this procedure on the de novo reaction
rat132064, which catalyzes the conversion of 3,4-
dyhydroxymandelonitrile, substrate A, to
protocatechualdehyde and cyanide (Fig. 1). In the first
step, 164 rules were identified out of 361 rules that could
be applied to groups of atoms of substrate A (Fig. 1, panel
1a). Out of the 164 rules, 103 matched the connectivity
(Fig. 1, panel 1b). Finally, the 103 reaction rules were
applied to substrate A for bond breaking and formation
comparisons, and one rule could explain the
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transformation of substrate A to the products (Fig. 1,
panel 1c).

Reaction fingerprint construction. Molecular
fingerprints, which are the linear representations of the
structures of molecules, have been used in many methods
and for different applications, especially for structural
comparison of compounds (48,49). One of the most
commonly used molecular fingerprints is the Daylight
fingerprint (48), and it decomposes a molecule into eight
layers starting from layer zero that accounts only for
atoms. Layer 1 expands one bond away from all of the
atoms and accounts for atom-bond-atom connections.
This procedure is continued until layer 7, which includes
seven connected bonds from each atom. There are two
types of Daylight reaction fingerprints: (i) structural
reaction fingerprints, which are simple combinations of
reactant and product fingerprints, and (ii) reaction
difference fingerprints, which are the algebraic
summation of reactant and product fingerprints
multiplied by their stoichiometry coefficients in the
reaction. In this study, we propose a modified version of
the reaction difference fingerprint. The procedure for
formulating BridglIT reaction fingerprints is demonstrated
through an example reaction (Fig. 1, panel 2).

Starting from the atoms of the identified substrate
reactive site, eight description layers of the molecule were
formed, where different layers consisted of fragments
with different lengths. Fragments were composed of
atoms connected through unbranched sequences of
bonds. Depending on the number of bonds included in the
fragments, different description layers of a molecule were
formed as follows:

Layer O: Describes the type of each atom of the reactive
site together with its count. For example, the substrate of
the example reaction at layer O was described as 1 oxygen,
1 nitrogen, and 2 carbon atoms (Fig. 1, panel 2a).

Layer 1: Describes the type and count of each bond
between pairs of atoms in the reactive site. In the
example, the substrate at layer 1 was described with three
fragments of length 1: 1 C-O, 1 C-C, and 1 C=N bond (Fig.
1, panel 2a). Fragments are shown by their SMILES
molecular representation (50).

Layer 2: Describes the type and count of fragments with
three connected atoms. While layers 0 and 1 described
the atoms of reactive sites, starting from layer 2, atoms
that were outside of the reactive site were also described.
In the illustrated example, there were three different
fragments of this type (Fig. 1, panel 2a).

The same procedure was used to describe the molecules
up to layer 7. Interestingly, and consistent with the
previously reported result (41), we found that the 7-layer
description was good enough to capture the structure of
most of the metabolites in biochemical reactions,
therefore providing a precise reaction fingerprint. Note
that not all description layers are needed to describe less
complex molecules. For example, product C (cyanide) was
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fully described using only layer 0 and layer 1 (Fig. 1, panel
2a). For very large molecules, the description layers that
contain fragments with more than 8 connected atoms can
be used.

For each layer, the substrate set was formed by merging
all of the fragments, their type, and their count in the
substrate molecules of the reaction, and the product set
was formed by merging all of the fragments (type and
count) in the product molecules of the reaction. In both
sets, the count of each fragment was multiplied by the
stoichiometric  coefficients of the corresponding
compound in the reaction. Finally, the reaction
fingerprints were created by summing the fragments of
the substrate and product sets for each layer (Fig. 1, panel
2b).

Introducing the specificity of reactive sites into the
reaction fingerprint allows BridgIT to capitalize on the
information about enzyme binding pockets (15). To keep
this valuable information throughout the generation of
reaction fingerprints, BridgIT does not consider the atoms
of the reactive site(s) when performing the algebraic
summation of the substrate and product set fragments.
Consequently, the BridgIT algorithm enables retaining,
tracking, and emphasizing the information of the reactive
site(s) in all of the layers of the reaction fingerprint, which
distinguishes it from the existing methods.

Reaction similarity evaluation. The similarity of two
reactions was quantified using the similarity score
between their fingerprints, subsequently referred to as
reaction fingerprints A and B. In this study, the Tanimoto
score, which is an extended version of the Jaccard
coefficient and cosine similarity, was used (51). Values of
the Tanimoto scores near O indicate reactions with no or
negligible similarity, whereas values near 1 indicate
reactions with high similarity.
The Tanimoto score for each descriptive layer, Ty,
together with the global Tanimoto score, Ts; was
calculated. The Tanimoto score for the k-th descriptive
layer was defined as:
TLk_ak+bk—ck'

where ax was the count of the fragments in the k-th layer
of reaction fingerprint A; by was the count of the
fragments in the k-th layer of reaction fingerprint B; and
ck was the number of common k-th layer fragments of
reaction fingerprints A and B. Two fragments were equal
if their canonical SMILES and their stoichiometric
coefficients were identical. The global Tanimoto similarity
score, T, was defined as follows:
_ Y=o Ck

YoM + Limo bk = Zizo i
For each reaction fingerprint, its Tanimoto similarity score
was calculated against the reaction fingerprints from the
BridgIT reference database, which contained reaction
fingerprints of all known, well-characterized enzymatic
reactions (Fig. 1, panel 3).

Ck

Tg
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Sorting, ranking and gene assignment. For a given input
reaction, the reference reactions were ranked using the
computed Tg scores. The algorithm distinguished
between the identified reference reactions with the same
Te score based on the T, score of layers 0 and 1, and it also
allows the user to assign ranking weights to specified
layers. The protein sequences associated with the highest
ranked, i.e., the most similar, reference reactions were
then assigned to the input reaction (Fig. 1, panel 4).

CONCLUSIONS

We developed the computational tool, BridgIT, to
evaluate and quantify the structural similarity of
biochemical reactions by exploiting the biochemical
knowledge of BNICE.ch generalized reaction rules.
Because the generalized reaction rules can identify
reactive sites of substrates, BridglT can translate the
structural definition of biochemical reactions into a novel
type of reaction fingerprint that explicitly describes the
atoms of the substrates’ reactive sites and their
surrounding structure. Through the analysis of 5,049
known and well-defined biochemical reactions, we found
that knowledge of the neighborhood up to three bonds
away from the atoms of the reactive site can predict
biochemistry and match catalytic protein sequences. The
reaction fingerprints proposed in this work can be used to
compare all novel and orphan reactions to well-
characterized reference reactions and, consequently, to
link them with genes, genomes, and organisms. We
demonstrated  through  several examples the
improvements that the BridgIT fingerprint brings to the
field compared to the fingerprints currently existing in the
literature.

A drawback of traditional sequence similarity methods is
that they cannot identify protein sequence candidates for
de novo reactions, which we have shown BridgIT can do.
We tested BridglT predictions against experimental
biochemical evidence, within two large-scale validations
studies on sets of (i) 234 orphan and (ii) 379 de novo
reactions. The reactions from these two sets were
unknown in the previous versions of the KEGG database
but were later experimentally confirmed and catalogued
in KEGG 2018. BridgIT predicted the exact or a highly
related enzyme for 89% of these reactions.

We further applied BridgIT to the entire catalog of de novo
reactions of the ATLAS of Biochemistry database and
proposed several candidate enzymes for each of them.
The candidate enzymes for these de novo reactions are
either immediately capable of catalyzing these reactions
or can serve as initial sequences for enzyme engineering.
The obtained BridgIT similarity scores can also be used as
a confidence score to assess the feasibility of the
implementation of novel ATLAS reactions in metabolic
engineering and systems biology studies.
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The applications of BridglT go beyond merely bridging
gaps in metabolic reconstructions, as this method can be
used to identify the potential utility of existing enzymes
for bioremediation as well as for various applications in
synthetic biology and metabolic engineering. As the field
of metabolic engineering grows and metabolic
engineering applications increasingly turn towards the
production of valuable industrial chemicals such as 1,4-
butanediol (52,53), we expect that methods for the design
of de novo synthetic pathways, such as BNICE.ch (15), and
methods for identifying candidate enzymes for de novo
reactions, such as BridgIT, will grow in importance.
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