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Abstract

The limited supply of fossil fuels and the establishment of new environmental policies
shifted research in industry and academia towards sustainable production of the 2™
generation of biofuels, with Methyl Ethyl Ketone (MEK) being one promising fuel
candidate. MEK is a commercially valuable petrochemical with an extensive
application as a solvent. However, as of today, a sustainable and economically viable
production of MEK has not yet been achieved despite several attempts of introducing
biosynthetic pathways in industrial microorganisms. We used BNICE.ch as a
retrobiosynthesis tool to discover all novel pathways around MEK. Out of 1’325
identified compounds connecting to MEK with one reaction step, we selected 3-
oxopentanoate, but-3-en-2-one, but-1-en-2-olate, butylamine, and 2-hydroxy-2-
methyl-butanenitrile for further study. We reconstructed 3°679°610 novel biosynthetic
pathways towards these 5 compounds. We then embedded these pathways into the
genome-scale model of E. coli, and a set of 18622 were found to be most biologically
feasible ones based on thermodynamics and their yields. For each novel reaction in
the viable pathways, we proposed the most similar KEGG reactions, with their gene
and protein sequences, as candidates for either a direct experimental implementation
or as a basis for enzyme engineering. Through pathway similarity analysis we
classified the pathways and identified the enzymes and precursors that were
indispensable for the production of the target molecules. These retrobiosynthesis
studies demonstrate the potential of BNICE.ch for discovery, systematic evaluation,
and analysis of novel pathways in synthetic biology and metabolic engineering

studies.
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Limited reserves of oil and natural gas and the environmental issues associated with
their exploitation in the production of chemicals sparked off current developments of
processes that can produce the same chemicals from renewable feedstocks using
microorganisms.’~ A fair amount of these efforts focuses on a sustainable production
of the 2" generation biofuels.

Compared to the currently used fossil fuels and bioethanol, these 2" generation
biofuels should provide lower carbon emissions, higher energy density, and should be
less corrosive to engines and distribution infrastructures. Recently, a large number of
potential candidates for the 2" generation biofuels has been proposed such as n-
butanol?, isobutanol?, 2-methyl-1-butanol?, 3-methyl-1-butanol?, C13 to C17 mixtures
of alkanes and alkenes’, fatty esters, fatty alcohols!, and Methyl Ethyl Ketone
(MEK)".

While some of these compounds were detected in living cells, none was produced by
native organisms in appreciable quantities.” For chemicals whose natural microbial
producers are not known, the feasibility of their bioproduction has to be assessed and
potential novel biosynthetic pathways for production of these chemicals are yet to be
discovered.® * Even when production pathways for target chemicals are known, it is
important to find alternatives in order to further reduce cost and greenhouse gas
emissions, and as well to avoid possible patent issues.

Computational approaches provide valuable assistance in the design of novel
biosynthetic pathways because they allow exhaustive generation of alternative novel
biosynthetic pathways and evaluation of their properties and prospects for producing
target chemicals.” For instance, computational tools can be used to assess, prior to
experimental pathway implementation, the performance of a biosynthetic pathway

operating in one organism across other host organisms.
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There are different computational tools for pathway prediction available in the
literature.® 1% An important class of these tools is based on the concept of
generalized enzyme reaction rules, which were introduced by Hatzimanikatis and co-
workers.?” 2! These rules emulate the functions of enzymes, and they can be used to
predict in silico biotransformations over a wide range of substrates.” Most of the
implementations of this concept appear in the context of retrobiosynthesis, where the
algorithm generates all possible pathways by starting from a target compound and

moving backward towards desired precursors.> 8-10. 14 16, 19-23

In this study, we used the retrobiosynthesis framework of BNICE.ch® /% 20-29 to
explore the biotransformation space around Methyl Ethyl Ketone (MEK). Besides
acetone, MEK is the most commercially produced ketone with broad applications as a
solvent for paints and adhesives and as a plastic welding agent.? MEK shows
superior characteristics compared to conventional gasoline and ethanol in terms of its
thermo-physical properties, increased combustion stability at low engine load, and
cold boundary conditions, while decreasing particle emissions.?” There is no known
native microbial producer of MEK, but in the recent studies this molecule was

28, 29

produced in E. coli and S. cerevisiae® by introducing novel biosynthetic

1'30

pathways. To convert 2,3-butanediol to MEK, Yoneda et al.’’ introduced into E. coli

a B-12 dependent glycerol dehydratase from Klebsiella pneumoniae. Srirangan et al.?’
expressed in E. coli a set of promiscuous ketothiolases from Cupriavidus necator to
form 3-ketovaleryl-CoA, and they further converted this molecule to MEK by
expressing acetoacetyl-CoA:acetate/butyrate:CoA transferase and acetoacetate
decarboxylase from Clostridium acetobutylicum. In S. cerevisiae, Ghiaci et al.’

expressed a B12-dependent diol dehydratase from Lactobacillus reuteri to convert

2,3-butanediol to MEK. Alternatively, hybrid biochemical/chemical approaches were
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proposed where precursors of MEK were biologically produced through
fermentations and then catalytic processes were used to produce MEK.3% 3/

We used the BNICE.ch algorithm to generate a network of potential biochemical
reactions around MEK, and we identified 159 biochemical and 1°166 chemical
compounds one reaction step away from MEK (Table S1 - Supporting Information).
We considered as biochemical compounds the ones that we found in the KEGG?? 3
database, and as chemical compounds the ones that we found in the PubChem?# 3’ but
not in the KEGG database. A set of 154 compounds appeared in both databases. Out
of these 1°325 compounds, 2-hydroxy-2-methyl-butanenitrile (MEKCNH) was the
only KEGG compound connected to MEK through a KEGG reaction (KEGG
R09358). For further study, we chose MEKCNH along with three KEGG compounds:
3-oxopentanoate (3OXPNT), but-3-en-2-one (MVK) and butylamine (BuNH), and
one PubChem compound: I-en-2-olate (1B20T). The latter four compounds were
chosen based on two important properties: (i) their simple chemical conversion to
MEK, e.g., 30XPNT spontaneously decarboxylates to MEK; and (ii) their potential
use as precursor metabolites to further produce a range of other valuable chemicals.?%
38 MVK can be converted to MEK by a 2-enoate reductase from Pseudomonas putida,
Kluyveromyces lactis or Yersinia bercovieri,’® however, these reactions are not
catalogued in KEGG. Similarly, 30XPNT can be decarboxylated to MEK by
acetoacetate decarboxylase from Clostridium acetobutylicum.’’ In contrast, there are
no known enzymes that can convert 1B20T and BuNH; to MEK.

We have reconstructed all possible novel biosynthetic pathways (3°679°610 in total)
up to a length of 4 reaction steps from the central carbon metabolites of E. coli
towards the 5 compounds mentioned above. We evaluated the feasibility of these

3°679°610 pathways with respect to the mass and energy balance, and we found
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18’622 thermodynamically feasible pathways which we further ranked with respect to
their carbon yields. We identified the metabolic subnetworks that were carrying
fluxes when the optimal yields were attained, and we determined the minimal sets of
precursors and the common routes and enzymes for production of the target

compounds.

Results and Discussion

Generated metabolic network around Methyl Ethyl Ketone

We used the retrobiosynthesis algorithm of BNICE.ch to reconstruct the biochemical
network around MEK. BNICE.ch® /% 20-27 jg a computational framework that takes
advantage of the biochemical knowledge derived from the thousands of known
enzymatic reactions to predict all possible biotransformation pathways from known
compounds to desired target molecules. We applied BNICE.ch and generated all
compounds and reactions that were up to five reaction steps away from MEK (Figures
la and 1b).

To start the reconstruction procedure, we provided the initial set of compounds that
contained 26 cofactors along with MEK (Table S2 - Supporting Information). In the
first BNICE.ch generation, we produced 6 biochemical and 25 chemical compounds
connected through 48 reactions to MEK. Interestingly, among these reactions were
also the ones proposed by Yoneda ef al.?’, Srirangan et al.?’ and Ghiaci et al.’

After five generations, a total of 13’498 compounds were generated (Figure 1a). Out
of these, 749 were biochemical and the remaining 12’749 were chemical compounds.
We could also find 665 out of the 749 biochemical compounds in the PubChem
database. All generated compounds were involved in 65’644 reactions, out of which
560 existed in the KEGG database and the remaining 65’084 were novel reactions

(Figure 1b). A large majority of the predicted reactions (67%) were oxidoreductases,
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15.4% were lyases, 8.6% were hydrolases, 4.3% transferases, 3.6% isomerases and
only 0.72% ligases (Figure 1c). Out of 361 bidirectional generalized enzyme reaction
rules of BNICE.ch, 369 were required to generate the metabolic network around
MEK with the size of 5 reaction steps. As expected from the statistics on the predicted
reactions, most of these rules (38%) described the oxidoreductase biotransformation
(Figure 1d).

Though MEK participated in a total of 1°551 reactions (Supporting information —
Table S3) only one reaction, which connected MEK to MEKCNH, was catalogued in
the KEGG database (KEGG R09358). These 1°551 reactions connected MEK to
1’325 compounds (159 biochemical and 1’166 chemical), which could be potentially
used as MEK precursors (Table S1 - Supporting Information). Reaction steps for a
biochemical production of MEK from the five precursors (30XPNT, MVK, BuNH,,
1B20T, and MEKCNH) together with their most similar KEGG reactions can be

consulted in Table S4 - Supporting information.

Figure 1. The growth of the generated metabolic network over 5 generations. (a) The
BNICE.ch retrobiosynthesis algorithm generated 749 biochemical (blue) and 12’749
chemical (red) compounds. (b) Generated compounds participated in 560 KEGG
(blue) and 65’084 novel (red) reactions. Categorization of the predicted reactions (c¢)
and utilized generalized enzyme reaction rules (d) on the basis of their Enzymatic

Commission?’, EC, classification.

Pathway reconstruction towards five target compounds
In the pathway reconstruction process, we used as starting compounds 157

metabolites selected from the generated network, which were identified as native E.
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coli metabolites using the E. coli genome-scale model iJO1366*" (Table S5 -
Supporting Information). We performed an exhaustive pathway search on the
generated metabolic network, and we reconstructed 3°679°610 pathways towards
these five target compounds with pathway lengths ranging from 1 up to 4 reaction
steps (Table 1). The reconstructed pathways combined consist of 37’448 reactions,
i.e., 57% of the 65’644 reactions reproduced from the BNICE.ch generated metabolic
network.

More than 58% of the discovered pathways were towards BuNH,, while only 3.8% of
the reconstructed pathways were towards 1B20OT, which was the only PubChem
target compound (Table 1). Only 33 reconstructed pathways were of length one, and
28 out of them were towards BuNH> and none towards 1B2OT. The majority of
reconstructed pathways (> 97%) were of length four. These results suggest that the
biochemistry of enzymatic reactions favors smaller changes of a molecule structure

over several steps.

Table 1. Reconstructed pathways towards five target compounds.

Target Reconstructed Reaction steps Feasible pathways
compounds pathways 1 2 3 4 FBA TFA
3-oxopentanoate , , ) ) )
(30XPNT) 641°493 1 198 12°222 629°072 361’187 11’145
but-3-en-2-one (MVK) 438’889 1 136 7’554 431°198 57’173 4117
Butylamine 1146 ) ) 1009° )
(BuNH>) 2°146°890 28 1’236 53’573 2°092°053 27°211 916
but-1-en-2-olate , ) ) ) )
(1B20T) 140°779 0 53 2’905 137°821 30°689 1’826
2-hydroxy-2-methyl-
butanenitrile 311°559 3 94 6’546 304°916 117151 658
(MEKCNH)
3°679°610 33 1’717 82’800 3°595°060 | 487°411 18’622

Evaluation of reconstructed pathways
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We performed a series of studies of the 3°679°610 generated pathways to assess their
biological feasibility and performance (Methods). The feasibility of the pathways
depends on the metabolic network of the chassis organism. Therefore, we embedded
each of the reconstructed pathways in the E. coli genome-scale model 1JO1366 and
performed flux balance analysis (FBA)* and thermodynamics-based flux analysis
(TFA)*#. The directionality of the reactions is an important factor in FBA and
TFA?, and in our studies, unless stated otherwise, for FBA and TFA we applied the
C1 constraints on reaction directionalities where we constrained the reactions that
involve COz to operate in the decarboxylation direction (Methods).

Flux balance analysis. We used FBA as a prescreening method to reject pathways
that were incompatible with the host organism (Methods). If an FBA model formed
by embedding a pathway in iJO1366 can produce the target compound, then the
pathway is considered as FBA feasible. Out of all reconstructed pathways, only
13.24% (487°411) were FBA feasible (Table 1). Though the largest number of
reconstructed pathways were towards BuNH», only 1.27% (27°211) of these were
FBA feasible. The number of FBA feasible pathways for MEKCNH was also low
(3.59%). In contrast, more than 56% of pathways towards 30XPNT were FBA
feasible.

Thermodynamics-based flux analysis. We used TFA to identify 18622
thermodynamically feasible pathways (0.5% of all generated pathways, or 3.8% of the
FBA feasible pathways). A pathway is considered TFA feasible if a TFA model
formed by embedding the pathway in 1JO1366 can produce the target compound
under thermodynamic constraints. The set of TFA feasible pathways involved 3’166
unique reactions. These results demonstrate that TFA is important for pathway

evaluation and screening.

10
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We found BuNH> to have the lowest rate of TFA feasible pathways with 0.04% of
reconstructed pathways being TFA feasible (Table 1). The highest rate of TFA
feasible pathways was again for 30XPNT (1.74 %). The shortest TFA feasible
pathways consisted of 2 reaction steps (21 pathways), whereas a majority of TFA
feasible pathways had length 4 (Table 2). All pathways contained novel reaction
steps, and only 19 pathways had one novel reaction step (Table 2). All of these 19
pathways were towards MVK, and they all had as intermediates 2-acetolactate and

acetoin. The final reaction step converting acetoin to MVK was novel in all of them.

Table 2. Number of known reaction steps versus all reaction steps in the predicted
pathways. Table should be read as follows: e.g., among the predicted pathways of
length 3 towards 30XPNT, there were 371 pathways with all novel reaction steps (no
known steps), 118 pathways with 1 known and 2 novel reaction steps, and no
pathways with 2 known and 1 novel reaction steps. Pathways with one novel reaction

step are marked in red. All shown pathways are TFA feasible.

Total reaction steps Feasibility
2 3 4 TFA

0 14 371 7°059 7’444
>
2
§ 1 118 27956 37074 3-oxopentanoate
(="
® (30XPNT)
E 2 627 627
=
]
£ 0 4 72 3’196 3’272
=
g 1 1 13 703 717
g but-3-en-2-one
£ 2 2 110 112 (MVK)
=]
=
% 3 16 16
5 0 2 27 752 781
E
S 1 7 108 115 Butylamine
z (BuNH>)

2 20 20

11
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0 23 1’576 1’599
1 10 196 206 but-1-en-2-olate
(1B20T)
2 21 21
0 50 380 430
| 2 202 204 2-hydroxy-2-
methyl-
butanenitrile
(MEKCNH)3
2 24 24
21 695 17°946 18°622

Yield analysis. We used TFA to assess the production yield of the feasible pathways
from glucose to the target compounds (Table S6 - Supporting Information). We
identified pathways for all target compounds that could operate without a loss of
carbon from glucose. More than a half of the pathways towards 3OXPNT (57%)
could operate with the maximum theoretical yield of 0.774 g/g, i.e., ICmol/1Cmol
(Figure 2). In contrast, only 4% (25 out of 658) pathways towards MEKCNH could
operate with the maximal theoretical yield of 0.66 g/g (Table S6 - Supporting
Information). We found that pathway yields were distributed into several distinct sets
rather than being more spread and continuous, i.e., we obtained eleven sets for
30XPNT, four sets for MEKCNH, 11 sets for BuNH;, nine sets for 1B2OT and ten
sets for MVK (Table S6 - Supporting Information). Interestingly, a discrete pattern in
pathway yields was also observed in a similar retrobiosynthesis study for the
production of mono-ethylene glycol in Moorella thermoacetica and Clostridium

ljungdahlii.*

Analysis of alternative assumptions on reaction directionalities. Since we found

that the directionality of reactions in the network impacts yields, we investigated how

12
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the type of alternative constraints C2 affected the yield distribution (Methods). The
C2 constraints contain the preassigned reaction directionalities from the 1JO1366
model together with the C/ constraints. As expected, these additional constraints
reduced flexibility of the metabolic network and some pathways even became
infeasible (Table S7 - Supporting Information). With the C2 constraints, the yields
were in general reduced and their distribution was more spread compared to the one
obtained using the C/ constraints. For example, we found with both sets of constraints
three alternative pathways for the production of 30OXPNT from acetate via two
intermediate compounds: 2-ethylmalate and (3S)-3-hydroxypentanoate. The three
alternative pathways had three different cofactor pairs in the final reaction step that
converts (3S)-3-hydroxypentanoate to 3OXPNT (Figure F1 - Supporting
Information). With the C/ constraints, the three pathways had an identical yield of
0.642 g/g. In contrast, with the C2 constraints, the pathway with NADH/NAD
cofactor pair in the final step had a yield of 0.537 g/g, the one with NADPH/NADP
had a yield of 0.542 g/g, and the one with H>O»/H>0 had a yield of 0.495 g/g. These
differences in yields are a consequence of the different costs of cofactor production
upon adding supplementary constraints.

These results highlight the importance of the choice of constraints in FBA and TFA as
they can influence our conclusions on reaction directionalities. Besides, the reaction
directionalities have a critical impact on network properties such as gene essentiality
or yields.” This suggests that particular caution should be exercised when using “off-
the-shelf” models as some of them have ad hoc pre-assigned directionalities.?#’
Additionally, this indicates that there is a need for revisiting assumptions on reaction
directionalities in the current genome-scale reconstructions. This task can be

performed by integrating thermodynamic constraints in metabolic networks and thus

13
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allowing for systematical assigning of reaction directionalities.” However, for an
accurate estimation of the reaction directionalities using thermodynamics, it is crucial
to consider the contribution of metabolite activities to the Gibbs free energy of
reactions instead of using only the standard values.”>?” Since metabolite activities are
proportional to metabolite concentrations,” this further emphasizes the importance of

integrating metabolomics data.

BridgIT analysis. For each novel reaction from the feasible pathways, we identified
the most similar KEGG reaction whose gene and protein sequences were assigned to
the novel reaction (Methods). The BridgIT?’ results can be consulted at http://lcsb-

databases.epfl.ch/GraphList/ProjectList upon subscription.

Identification and analysis of anabolic subnetworks capable of synthesizing
target molecules

In pathway reconstruction, we identified the sequence of the main reactions required
to produce the target molecules from precursor metabolites in the core network.
However, these reactions require additional co-substrates and cofactors that should
become available from the rest of the metabolism. In addition, these reactions produce
also side products and cofactors that must be recycled by the genome-scale metabolic
network in order to have a biologically feasible and balanced subnetwork for the
production of the target molecules. Therefore, we identified the active metabolic
subnetworks required to synthesize the corresponding target molecule (Methods). The
active metabolic subnetworks were then divided into the core metabolic network,

51, 52

which included central carbon metabolism pathways , and the active anabolic

subnetwork (Figure 2a, and Methods). On average there were more than three
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alternative anabolic subnetworks per pathway due to the redundant topology of
metabolism (Table 3). For example, we identified 35’013 alternative anabolic
subnetworks for 11°145 feasible pathways towards 30XPNT. Overall, for the 18’622

TFA feasible pathways, 55’788 active anabolic subnetworks were identified.

Figure 2. Alternative ways of producing 30XPNT from glucose. (a) Schematic
representation of the metabolic network producing 30XPNT from glucose. Reactions
pertaining to the core metabolic (black) and the active anabolic (red) subnetworks.
Metabolites of the core metabolic (green) and the active anabolic (orange)
subnetworks together with core precursors (yellow), i.e., metabolites that connect the
core and active anabolic subnetworks. (b) Alternative pathways connecting ribose-5-
phosphate, r5p, with 2-deoxy-D-ribose-1-phosphate, 2drlp. (¢) Alternative pathways

connecting the core metabolites with propanal, Ppal.

Table 3. Alternative anabolic subnetworks for 5 target compounds together with their

lumped reactions and precursors.

Target Feasible Alternat.lve Unique Overlapping Uy
compounds athways LELL I Ui G LR O recursors
P P Y subnetworks  reactions precursors P
3-oxopentanoate s s s
(30XPNT) 11°145 35°013 4’517 281 40
but-3-en-2-one s s s
(MVK) 4’117 10’162 1’762 126 32
Butylamine )
(BuNH>) 916 2’858 974 102 30
but-1-en-2-olate s , ,
(1B20T) 1’826 5’339 1’536 97 30
2-hydroxy-2-methyl-
butanenitrile 658 2’416 792 37 17
(MEKCNH)

18°622 55788 9°581
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Next, we computed a lumped reaction for each of the alternative subnetworks
(Methods). Similar to previous findings from the analysis of the biomass building
blocks in E. coli,”® only 9581 out of the 55’788 computed lumped reactions were
unique (Table 3). This result suggests that the overall chemistry and the cost to
produce the corresponding target molecule are the same for many different pathways.
Since the cost of producing a target molecule depends of the host organism, this
implies that the choice of the host organism is important. On the other hand, the
multiple alternative options could also provide useful degrees of freedom for synthetic
biology and metabolic engineering design.

The largest diversity in alternative subnetworks per lumped reaction was found for
3O0XPNT, where on average more than seven alternative subnetworks had the same
lumped reaction (Table 3). In contrast, we observed the smallest diversity for BuNH»
with approximately three alternative subnetworks per lumped reaction (Table 3). An
illustrative example of multiple pathways with the same lumped reaction is provided
in Figure F2 in the Supporting Information.

Interestingly, the 35’013 active anabolic networks towards the production of
3O0XPNT were composed of only 394 unique reactions. Out of these 394 reactions,
132 were common with the pathways leading towards the production of all biomass
building blocks (Table S8 - Supporting information) except chorismate,
phenylalanine, and tyrosine. This finding suggests that biomass building blocks could
be competing for resources with 30XPNT and that they could affect the production of

this compound.

Origins of diversity of alternative anabolic subnetworks. To better understand the
diversity in alternative anabolic subnetworks, we performed an in-depth analysis of

the two-step pathway from acetyl-CoA and propanal to 30XPNT, which presented
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the largest number of alternative anabolic networks (185) among all reconstructed
pathways (Figure 2a). The smallest anabolic subnetwork of the 185 alternatives
consisted of 14 enzymes, whereas the largest one comprised 22 enzymes (Table S9 -
Supporting Information). All 185 subnetworks shared five common enzymes: the two
enzymes from the reconstructed pathway converting propanal via (3S)-3-
hydroxypentanoate to 30XPNT (with the BNICE.ch assigned third level Enzymatic
Commission*’, EC, numbers 2.3.3.- and 1.1.1.-), two enzymes involved in acetyl-CoA
production (phosphopentomutase deoxyribose (PPM2), and deoxyribose-phosphate
aldolase (DRPA)), and aldehyde dehydrogenase (ALDD3y) that converts propionate
to propanal (Figure 2).

The multiplicity of ways to produce acetyl-CoA and propionate contributed to a large
number of alternative subnetworks: there were 102 alternative ways of producing
acetyl-CoA from ribose-5-phosphate (r5p) via 2-deoxy-D-ribose-1-phosphate (2dr1p)
(Figure 2b) and 9 different ways of producing propionate (Figure 2c).

There were two major routes to produce 2drlp within the 102 alternatives. In the first
route with 50 alternatives, rSp is converted either to ribose-1-phosphate (in 31
alternatives) or to D-ribose (in 19 alternatives), which are intermediates in producing
nucleosides such as adenosine, guanosine, inosine and uridine. These nucleosides are
further converted to deoxyadenosine (dad), deoxyguanosine (dgsn) and deoxyuridine
(duri) that are ultimately phosphorylated to 2drlp. In 26 of the remaining 52
alternatives of the second route, rSp is converted to phosphoribosyl pyrophosphate
(prpp), which is followed by a transfer of its phospho-ribose group to nucleotides
such as AMP, GMP, IMP and UMP. These nucleotides are then converted to 2dr1p by
downstream reaction steps. In the remaining alternatives for the second route, r5p is

first converted to AMP in one reaction step, and then to 2drlp via dad and dgsn.
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There were 9 alternative routes to produce propionate. In 4 of these, this compound
was produced from pyruvate and succinate (Figure 2a and 2c), in 3 routes it was
produced from aspartate (Figure 2c), and in 2 routes it was produced from 3-

phosphoglycerate and glutamate.

Core precursors of five target compounds. An abundant availability of precursor
metabolites is crucial for an efficient production of target molecules.’? Here, we
defined as core precursors the metabolites that connect the core to the active anabolic
subnetworks (Figure 2a). We analyzed the different combinations of core precursors
that appeared in the alternative subnetworks. Our analysis revealed that the majority
of subnetworks were connected to the core network through a limited number of core
precursors. We found that all 35’013 alternative subnetworks for the production of
3O0XPNT were connected to the core network by 281 sets of different combinations
among 40 unique core precursors (Table 3). We ranked these sets based on their
number of appearances in the alternative networks. The top ten sets appeared in
24°210 subnetworks, which represented 69% of all identified subnetworks for this
compound (Table 4). Moreover, the metabolites from the top set (acetyl-CoA,
propionyl-CoA, pyruvate, ribose-5-phosphate, and succinate) were the precursors in
8’510 (24.3%) subnetworks for 30XPNT (Table 4). Ribose-5-phosphate appeared in
9 out of the top ten sets, and it was a precursor in 32°237 (92%) 30XPNT producing

subnetworks.

Table 4. Top ten core precursor combinations for the production of 30XPNT. Core

precursors: acetate (ac), acetyl-CoA (acCoA), aspartate (asp-L), dihydroxyacetone
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phosphate (dhap), propionyl-CoA (ppCoA), pyruvate (pyr), ribose-5-phosphate (r5p),

succinate (succ), succinyl-CoA (succCoA).

No. of sub- W Gt
ac acCoA asp-LL. dhap ppCoA pyr r5p succ succCoA ’ feasible
networks
pathways
v v v v v 8’510 624
v v v 5’409 2790
v v v v 3’463 920
v v v 1’344 672
v v v 1’049 382
v v v 965 191
v v v 956 478
v v v 915 460
v v v 834 419
v v 765 387
24’210 7323

Clustering of feasible pathways

The repeating occurrences of core precursors and lumped reactions in the alternative
anabolic subnetworks motivated us to identify common patterns in core precursors,
enzymes, and intermediate metabolites required to produce the target molecules. To
this end, we used the feasible pathways from acetate to 30XPNT as the test study,
and we performed two types of clustering on these 115 pathways (File M1 —
Supporting information).

Clustering based on core precursors and byproducts of lumped reactions. We
identified 242 alternative anabolic networks for 115 pathways from the test study, and
we computed the corresponding 242 lumped reactions (File M1 — Supporting

information). We chose the first lumped reaction returned by the solver for each of the
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115 pathways, and we clustered the pathways based on the structural similarity
between the core precursors and byproducts of the lumped reactions (Methods).

The clustering separated the 115 pathways in eleven groups, B1-B11 (Figure 3a and
3b, Supporting information — Table S10). The main clustering condition among the
115 pathways was the presence or absence of thioesters, such as AcCoA, in the set of
core precursors. There were 56 pathways with CoA-related precursors (groups B1-
B5) and 59 pathways that did not require CoA (groups B6-B11). The pathways from
groups B1-B5 were further clustered subject to the presence of: the precursor
succCoA and the byproduct CO, (group B1); the precursor succCoA and the
byproduct malonate (group B2); the precursor ppCoA (group B3); the precursors
acCoA and ppCoA (group B4); and the precursor acCoA (group BS5). The pathways
that did not require CoA were further clustered depending on if they had as precursors
dhap (groups B6 and B7) or formate (B8) or not (B9-B11). The clustering results for
the complete set of 242 lumped reactions are provided in the Supporting information

(Figure F3).

Figure 3. Clustering of the 115 reconstructed pathways from acetate to 30XPNT. (a)
Pathways were classified in eleven groups (B1-B11) based on core precursors and
byproducts of their lumped reactions. The byproducts are denoted with an asterisk (*).
The pathway yields were consistent within each of the groups and distinctly separated
between them. The color-coding of the groups corresponds to the yields of the
involved pathways. (R)-CoA denotes the group of thioesters. Abbreviations: 2-
oxoglutarate (akg), acetyl-CoA (acCoA), aspartate (asp), dihydroxyacetone phosphate
(dhap), formate (for), glycolate (glyclt), malate (mal), malonate (maln), propionyl-
CoA (ppCoA), pyruvate (pyr), succinyl-CoA (succCoA). (b) Nine out of eleven

groups of reconstructed pathways (B1-B2 and B4-B10) are characterized by the core
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precursors and their co-substrates in the first reaction step of the pathways. Group B3
is characterized by intermediate metabolites acetaldehyde and propionyl-CoA
involved in the novel reaction step EC 2.3.1.-. Group B11 pathways have as an

intermediate 2-methylcitrate.

In general, we expect the set of precursors and byproducts to affect the pathway yield.
Interestingly, the clustering based on core precursors and byproducts of lumped
reactions also separated distinctly the pathways based on their yields (Figure 3a).
Pathways that have ppCoA, acCoA, dhap, and for as precursors (groups B3-B8) have
a maximal theoretical yield of 0.774 g/g. Despite sharing the first reaction step in
which acetate reacted with 2-oxoglutarate to create 2-hydroxybutane 1-2-4-
tricarboxylate, the pathways from group B9 were split in two groups with different
yields (Figure 3a). These two groups differed in the sequences of reactions involved
in the reduction of 2-hydroxybutane 1-2-4-tricarboxylate, a 7-carbon compound, to
3O0XPNT. In 11 pathways, the yield was 0.483 g/g due to a release of two CO»
molecules, whereas in one pathway the yield was 0.644 g/g due to malate being
created as a side-product and recycled back to the system. The pathway from group
B2, with succCoA as a precursor and maln as a byproduct, together with the 11
pathways from group B9 had the lowest yield (0.483 g/g) from the set of examined
pathways (Figure 3a).

The clustering also provided insight into the different chemistries behind the analyzed
pathways. For most of the pathways, i.e., the ones classified in groups B1-B2 and B4-
B10, there was a clear link between the core precursors and co-substrates of acetate in
the first reaction step of the pathways (Figure 3b). For example, the pathways from

the group B1 have a common first reaction step (EC 2.8.3.-) that converts acetate and
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3-oxoadipyl-CoA to 3-oxoadipate (Figure 3b). The clustering grouped these pathways
together because succCoA was the core precursor of 3-oxoadipyl-CoA through 3-
oxoadipyl-CoA thiolase (3-OXCOAT). Moreover, 3-oxoadipate, a 6-carbon
compound, was converted in downstream reaction steps to 30XPNT, a 5-carbon
compound, and one molecule of CO: through 18 alternative routes. Similarly, in the
single pathway of group B2 the co-substrate in the first reaction step was (S)-
methylmalonyl-CoA, which was produced from succCoA through methylmalonyl-
CoA mutase (MMM). This enzyme, also known as sleeping beauty mutase, is a part
of the pathway converting succinate to propionate in E. coli.” Malonate (maln), a 2-
carbon compound, was released in the first reaction step, which resulted in a low yield
of this pathway (Figures 3a and 3b).

Pathways from group B3 utilized different co-substrates, such as ATP and crotonoyl-
CoA, along with acetate to produce acetaldehyde in the first reaction step. All these
pathways shared a common novel reaction step with acetaldehyde and propionyl-CoA
as substrates (EC 2.3.1.-).

Finally, group B11 contained the pathways with the intermediate 2-methylcitrate,
which was produced from pyruvate (pyr).

The presented clustering analysis has been shown to be very powerful in identifying
the features of the large number of pathways. The classification can further guide us
to identify the biochemistry responsible for the properties of pathways. Such deeper
understanding can provide further assistance for the design and analysis of novel

synthetic pathways.

Clustering based on involved enzymes. Although the clustering based on the core

precursors and byproducts provided an insight of the chemistry underlying the
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production of 30XPNT from acetate, lumped reactions conceal the identity of the
enzymes involved in the active anabolic subnetworks. We analyzed the 115 active
subnetworks corresponding to 115 pathways (File M1 — Supporting information), and
we found that five enzymes were present in all of them: AMP nucleosidase (AMPN),
5’-nucleotidase (NTD6), purine-nucleoside phosphorylase (PUNP2), PPM2 and
DRPA, which participated in the production of acetaldehyde from r5p (Figure 4b).

To find common enzyme routes in these subnetworks, we performed a clustering
based on the structural similarity between their constitutive reactions (Methods). The
clustering separated 115 subnetworks in two groups depending on the existence (47
subnetworks) or not (68 subnetworks) of a sequence of six enzymes starting with
aspartate kinase (ASPK) and ending with L-threonine deaminase (THRD L), whose

product 2-oxobutanoate was converted downstream to 30XPNT (Figures 4a and 4b).

Figure 4. Clustering of 115 active subnetworks corresponding to 115 reconstructed
pathways from acetate to 3OXPNT. (a) Subnetworks were clustered based on
enzymes they involved. The groups BI-B11 are color-coded as in Figure 3a. (b)
Structure of 47 subnetworks containing a sequence of six enzymes starting with
aspartate kinase (ASPK) and ending with L-threonine deaminase (THRD L) (groups
Brand Brp in a). The core metabolites are marked in green, the core precursors in
yellow, while the metabolites from the active anabolic networks are marked in

orange.

Both groups were further clustered based on a set of enzymes required to produce

deoxyadenosine and the downstream metabolite acetaldehyde (Figures 4a and 4b).

The first subgroup of enzymes, i.e. ribonucleoside-diphosphate reductase (RNDRI),
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deoxyadenylate kinase (DADK) and NTD6, converted adp to deoxyadenosine. In the
second subgroup, atp was transferred to deoxyadenosine via ribonucleoside-
triphosphate reductase (RNTRI1c2), nucleoside triphosphate pyrophosphorylase
(NTPPS) and NTD6 (Figure 4b). Then, for both subgroups, deoxyadenosine was
converted to 2-deoxy-D-ribose 5-phosphate (2dr5p) that was further transformed to
acetaldehyde via PPM2 and DRPA (Figures 2 and 4b).

The clustering based on enzymes allowed us to identify enzymatic routes
corresponding to different yields (Figure 4a, and Supporting information — Table S6).
For example, all pathways that include ASPK and novel reaction steps with the third
level EC class 2.3.1.- and 1.2.1.- (group B3), would provide the maximal theoretical
yield of 0.774 g/g (Figure 4a). Similarly, pathways that contain ALDD3Y (group B4),
methylglyoxal synthase (MGSA) (groups B6 and B7), and ASPK, RNDRI, and
methylisocitrate lyase (MCITL2) (group BS5), would also provide the maximal
theoretical yield. In contrast, the clustering also permitted us to identify key enzymes
participating in pathways with a reduced yield. For example, pathways that contained
3-OXCOAT had a yield of 0.644 g/g.

Furthermore, the clustering based on enzymes allowed us to clarify the link between
the precursors and the corresponding sequence of enzymes that needed to be active
for producing the target molecule. For example, pathways from group B1, which had
succCoA as a core precursor and CO; as a byproduct, had the common reaction step
3-OXCOAT (Figure 4a). Similarly, all pathways from group B4 with core precursors

ppCoA and acCoA contained ALDD3Y.

Ranking of biosynthetic pathways and recommendations
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We further ranked the corresponding feasible pathways according to number of
reaction steps and enzymes that could be directly implemented or needed to be
engineered, their yield, and the BridgIT score of the novel reaction steps (Methods).
As we saw earlier (e.g. in Supporting information, Table S6), there are several distinct
maximum yield values that can be achieved with all these alternatives rather than a
continuous distribution of yields. The clustering analysis suggests that the reason for
the discreet distribution is the loss of the carbon atoms in specific steps along the
pathways. We obtained the top candidate pathways for each of the target molecules
that were likely to produce these compounds with economically viable yields
(Supporting information — Tables S11-S15). For each of the target molecules, the
highest ranked candidate pathways could operate with their maximum theoretical
yields (Figure 5). Furthermore, the BridgIT results suggest that the novel reactions
appearing in these pathways can be catalyzed by the known enzymes (Figure 5). The
highest ranked candidate pathway among all feasible pathways was from pyruvate to
30XPNT, and it consisted of two novel reactions of the third level EC class 2.3.3-
and 1.1.1.- (Figure 5a). The BridgIT*? analysis identified KEGG R00472 as the most
similar reaction to 2.3.3.-. KEGG reports that R00472 can be catalyzed by EC 2.3.3.9.
Similarly, KEGG R01361 was identified as the most similar to 1.1.1-, and according
to the KEGG database this reaction is catalyzed by EC 1.1.1.30. Interestingly, there is
a reaction that involves CO; in the top pathways for MVK and MEKCNH (Figure 5b
and 5e). Although in the literature this reaction is reported to operate in the
decarboxylation direction, TFA allows it to operate in the opposite direction as well.
Without TFA this information would stay hidden.

The pathways were visualized and can be consulted at http:/lcsb-

databases.epfl.ch/GraphList/ProjectList upon subscription.
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Figure 5. The highest ranked candidate pathways for the production of (a) 30XPNT,
(b) MVK, (¢) BuNH, (d) 1B20OT and (¢) MEKCNH. Known non-orphan KEGG
reactions are the black and novel reactions the red boxes. KEGG compounds are
denoted as the green and PubChem compounds as the red circles. For each of the
novel reactions, the KEGG IDs, catalyzing enzyme, and the BridgIT similarity scores

of the two most similar non-orphan KEGG reactions are provided.

Further experimental implementation and pathway optimization

After ranking of the top candidate pathways, the experts can choose the most
amenable ones for experimental implementation in the host organism. The
implemented pathways typically need to be optimized further for economically viable

production titers and rates. The optimization is performed through the Design-Built-

56-58 59-61

Test-(Learn) cycle of metabolic engineering where stoichiometric and kinetic

62-69

models??-%’, genome editing’® 7/ and phenotypic characterization’? are combined to

improve recombinant strains for production of biochemicals.

Methods

The BNICE.ch framework? /%2> was employed to generate biosynthetic pathways
towards 5 precursors of Methyl Ethyl Ketone: 3-oxopentanoate (30OXPNT), 2-
hydroxy-2-methyl-butanenitrile (MEKCNH), but-3-en-2-one (MVK), I-en-2-olate
(1B20T) and butylamine (BuNH). We tested the set of reconstructed pathways
against thermodynamic feasibility and mass balance constraints, and discarded the
pathways that were not satisfying these requirements.” Next, the pruned pathways

were ranked based on the several criteria, such as yield, number of known reaction
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steps and pathway length. The steps of the employed workflow are discussed further

(Figure 6).

Figure 6. Computational pipeline for discovery, evaluation and analysis of

biosynthetic pathways.

Metabolic network generation

The retrobiosynthesis algorithm of BNICE.ch® # was applied to generate a
biosynthetic network that contains all theoretically possible compounds and reactions
that are up to 5 reaction steps away from MEK. The BNICE.ch network generation
algorithm utilizes the expert-curated generalized enzyme reaction rules?” 2> 73 for
identifying all potential compounds and reactions that lead to the production of the
target molecules. The most recent version of BNICE.ch includes 361 bidirectional
generalized reaction rules capable of reconstructing more than 6’500 KEGG
reactions.? Starting from MEK and 26 cofactors required for the generalized enzyme
reaction rules (Table S2 - Supporting Information), we identified the reactions that
lead to MEK along with its potential precursors.”

Note that for studies where we need to generate a metabolic network that involves
only KEGG compounds, mining the ATLAS of Biochemistry?? is a more efficient
procedure than using BNICE.ch retrobiosynthesis algorithm. The ATLAS of

Biochemistry is a repository that contains all KEGG reactions and over 130’000 novel

enzymatic reactions between KEGG compounds.

Pathway reconstruction
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The generated metabolic network was represented as a graph where the compounds
were graph nodes and the reactions graph edges. A graph-based pathway search
algorithm was then used to reconstruct all possible linear pathways up to the length of
4 reaction steps that connect the five target molecules with the set of 157 native E.
coli metabolites (Table S3 - Supporting Information).” The search algorithm was
employed as follows. Starting from a given native E. coli metabolite, we first
searched for the shortest pathways toward a target molecule. Then, we searched for
the pathways that are one reaction step longer than the shortest ones. We continued
the search by gradually reconstructing the pathways of increased length, and we
stopped with the 4 reaction step pathways. This procedure was repeated for all
combinations of native E. coli metabolites and target molecules.

Note: If we were interested in pathways containing only KEGG reactions, we would
perform a graph-based search over the network mined from the ATLAS of

Biochemistry.?

Pathway evaluation

It is crucial to identify and select, out of a vast number of generated pathways, the
ones that satisfy physico-chemical constraints, such as mass balance and
thermodynamics, or the ones that have an economically viable production yield of the
target compounds from a carbon source. Evaluation of pathways is context-
dependent, and it is important to perform it in an exact host organism model and
under the same physiological conditions as the ones that will be used in the
experimental implementation. Both Flux Balance Analysis (FBA)* and

)43-47

Thermodynamic-based Flux Analysis (TFA were performed to evaluate the

pathways. We have also used BridgIT”? to identify candidate sequences for protein
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and evolutionary engineering in implementing the pathways. The availability of such
sequences for the novel reactions and the ability to engineer them should also serve as

a metric in ranking the feasibility of the pathways.

Flux balance and thermodynamic-based flux balance analysis. The generated
pathways were embedded one at the time in the genome-scale model of E. coli,
iJO1366* (File M1 — Supporting information) and FBA and TFA were performed for
each the resulting models. In these analyses, we distinguished the following types the
reactions: (R/) known and novel reactions for which have no information about their
directionality; (R2) reactions that have preassigned directionality in 1JO1366; and
(R3) reactions that involve CO; as a metabolite. It was assumed that the only carbon
source was glucose and the following two types of constraints on reaction
directionalities were applied:
(CI) The preassigned reaction directionalities”” from the iJO1366 model (R2
reactions) were removed with the exception of ATP maintenance (ATPM), and it
was assumed that the reactions that involve CO; (R3 reactions) are operating in
the decarboxylation direction. The lower bound on ATPM was set to 8.39
mmol/gDCW/hr. The remaining reactions (R/ reactions) were assumed to be bi-
directional for FBA, whereas for TFA the directionality of these reactions was
imposed by thermodynamics. The purpose of removing preassigned reaction
directionalities was to investigate alternative hypotheses about the catalytic
reversibility of the enzymes. The catalytic reversibility or irreversibility of
enzymes could be altered through protein and evolutionary engineering and

enzyme screening.”’
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(C2) The preassigned directionalities of the R2 reactions were kept and the

directionality of the R3 reactions was fixed towards decarboxylation.
Since FBA is computationally less expensive than TFA, we first performed FBA as a
prescreening method to identify and discard the pathways: (i) that are not satisfying
the mass balance, e.g., pathways that need co-substrates not present in the model; and
(i1) that have a yield from glucose to the target compounds lower than a pre-specified
threshold. In this work we used the pre-specified threshold of 0.1 mol/mol, however,
this value can be chosen based on various criteria such as the economic viability of
pathways. TFA was then performed on the reduced set of pathways to identify the
pathways that are bio-energetically favorable and their yields from glucose to 5 target

compounds were computed under thermodynamic constraints.

BridgIT analysis. We used BridgIT*’ to associate genes to novel reactions appearing
in the feasible pathways. BridgIT compares the similarity of a novel reaction to
known reactions using the information about the structures of their substrates and
products, and then assigns genes of the most similar known reactions as candidates
for catalyzing the novel one. BridgIT integrates the information about the structures
of substrates and products of a reaction into reaction difference fingerprints.”® These
reaction fingerprints contain the information about chemical groups in substrates and
products that were modified in the course of a reaction. BridglT compares the
reaction fingerprints of novel reactions to the ones of known reactions and quantifies
this comparison with the Tanimoto similarity score. The Tanimoto score of 1 signifies
that two compared reactions had a high similarity, whereas the Tanimoto score values
close to 0 signify that there was no similarity. This score was used to rank the

reactions identified as similar to each of the novel reactions. The gene and protein
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sequences of the highest ranked reactions were proposed as candidates for either a

direct experimental implementation or enzyme engineering.

Subnetwork reconstruction analysis

Once the biologically feasible pathways were identified and ranked, the parts of the
metabolism that carry fluxes when the target compounds are produced from glucose
were analyzed. We considered that the active parts of metabolism consisted of: (i) the
core metabolic network (Figure 2a), which included the central carbon pathways, such
as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, electron transport
chain; and (ii) the active anabolic subnetworks (Figure 2a), which contain the
reactions that would carry fluxes when a target molecule is produced but did not
belong to the core metabolic network. We also defined the core precursors as
metabolites that are connecting the core and the active anabolic subnetworks (Figure
2a).

The core metabolic network was derived from the genome-scale reconstruction
iJO1366*" using the redGEM algorithm’’, and the lumpGEM” algorithm was then
used to identify active anabolic subnetworks and to compute their lumped reactions.
The analysis of lumped reactions allowed us to identify core precursors of the target
chemicals. We then performed clustering to uncover core precursors, common
enzymes, and intermediate metabolites of the anabolic subnetworks leading to the

production of the target chemicals.

Identification and lumping of active anabolic subnetworks. The lumpGEM algorithm
was applied to identify the comprehensive set of smallest metabolic subnetworks that
were stoichiometrically balanced and capable of synthesizing a target compound from

a defined set of core metabolites. The set of core metabolites belongs to the core
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metabolic network, and it includes also cofactors, small metabolites, and inorganic
metabolites (Table S16 - Supporting Information). Then, for each target compound
and for each identified subnetwork, we used lumpGEM to generate a corresponding
lumped reaction. Within this process, the stoichiometric cost of core metabolites for

the biosynthesis of these target compounds was also identified.

Clustering of subnetworks. To better understand the chemistry that leads towards the
target compounds, we performed two types of clustering on the identified
subnetworks:

e C(Clustering based on the structural similarity between the core precursors and

byproducts of the lumped reactions. For each lumped reaction, we removed all
non-carbon compounds, such as H», O2, and phosphate, and the cofactor pairs,
such as ATP and ADP, NAD" and NADH, NADP* and NADPH, flavodoxin
oxidized and reduced, thioredoxin oxidized and reduced, ubiquinone and
ubiquinol. This way, a set of substrates (core precursors) and byproducts of
interest was created for each lumped reaction. We then used the msim algorithm
from the RxnSim”® tool to compare the lumped reactions based on individual
similarities of their core precursors and byproducts. We finally used the obtained
similarity scores to perform the clustering.

e C(Clustering based on the structural similarity between reactions that constitute the

anabolic subnetworks. BridgIT was used to compute structural fingerprints of

reactions that constitute the anabolic subnetworks, and we then performed a
pairwise comparison of the anabolic subnetworks as follows.
For a given pair of anabolic subnetworks, a pairwise comparison of their reactions

was carried out. As a comparison metric we used the Tanimoto distance of the
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reaction fingerprints.”” Based on this comparison, the pair of the most similar
reactions in two subnetworks was found and the corresponding distance score was
stored. This pair of reactions was then removed from comparison, and the next
pair of the most similar reactions was found and their distance score was stored.
We continued with this procedure until all pairs of reactions in two subnetworks
were found. Whenever the number of reactions in two subnetworks was unequal,
the unmatched reactions were ignored. The distance score between two compared
subnetworks was formed as the sum of the distance scores of compared pairs of
reactions. This procedure was repeated for all pairs of subnetworks.

We then used the computed distance scores to perform the subnetworks

clustering.

Ranking and visualization of in silico pathways

In this step, we identified the pathways that were most likely to produce the target
molecules. We defined the following criteria: (i) minimal number of reaction steps
without promising candidate enzymes for catalyzing them; we consider that a novel
reaction step has a promising candidate enzyme if the BridgIT algorithm has found its
most similar known reactions with the similarity score higher than 0.3;°? (ii) minimal
number of novel reaction steps in a pathway; (iii) maximal yield from glucose to the
target molecules; (iv) minimal number of reaction steps in the production pathways;
and (v) highest average similarity scores of novel reaction steps from BridgIT. For
scoring and ranking the biologically meaningful pathways, we used criterion (i) as the
primary ranking. Then, equally ranked pathways from the primary ranking were
further ranked based on criterion (ii). Analogously, we performed the tertiary,

quaternary and quinary ranking based on criteria (iii), (iv) and (v), respectively.
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An expert opinion is important in choosing the pathways for implementation. One can
use other ranking criteria or a different prioritization of the criteria. For example, the
pathways can be first ranked based on a maximum yield and then based on a minimal
number of novel reactions. The complete set of pathways is provided on http://lcsb-

databases.epfl.ch/GraphList/ProjectList, and the readers can rank the pathways

according to their own criteria.

Experimental implementation and pathway optimization
The highest ranked candidate pathways can then be experimentally implemented in
the host organism and can further be optimized through the Design-Built-Test-(Learn)

cycle of metabolic engineering.’%¢

Conclusions

In this work, we used BNICE.ch to reconstruct, evaluate and analyze more than 3.6
million biosynthetic pathways from the central carbon metabolites of E. coli towards
five precursors of Methyl Ethyl Ketone (MEK), a 2"¢ generation biofuel candidate.
Our evaluation and analysis showed that more than 18’000 of these pathways are
biologically feasible. We ranked these pathways based on process- and physiology-
based criteria, and we identified gene and protein sequences of the structurally most
similar KEGG reactions to the novel reactions in the feasible pathways, which can be
used to accelerate their experimental realization. Implementation of the discovered
pathways in E. coli will allow the sustainable and efficient production of five
precursors of MEK (3OXPNT, MVK, 1B20T, BuNH,, and MEKCNH), which can

also be used as precursors for the production of other valuable chemicals.35-33

34


https://doi.org/10.1101/209569
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/209569; this version posted June 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The pathway analysis methods developed and used in this work offer a systematic
way for classifying and evaluating alternative ways for the production of target
molecules. They also provide a better understanding of the underlying chemistry and
can be used to guide the design of novel biosynthetic pathways for a wide range of
biochemicals and for their implementation into host organisms.

The present study shows the potential of computational retrobiosynthesis tools for
discovery and design of novel synthetic pathways for complex molecules, and their
relevance for future developments in the area of metabolic engineering and synthetic

biology.
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S5: List of the starting compounds used in the pathway reconstruction.
S6: Yield histograms for 5 MEK precursors obtained with C1 constraints.

S7: Yield histograms for 5 MEK precursors obtained with C2 constraints.
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S8: List of biomass building blocks in the genome-scale model of E. coli
1JO1366.

S9: List of 185 alternative pathways from AcCoA and PpCoA to 30XPNT.
S10: List of 115 pathways from acetate to 30XPNT together with their
classification in groups B1-B11.

S11. Top 5 ranked pathways toward 30XPNT together with the BridgIT
results for novel reaction steps.

S12. Top 5 ranked pathways toward MVK together with the BridgIT results
for novel reaction steps.

S13. Top 5 ranked pathways toward BuNH> together with the BridgIT results
for novel reaction steps.

S14. Top 5 ranked pathways toward 1B2OT together with the BridgIT results
for novel reaction steps.

S15. Top 5 ranked pathways toward MEKCNH together with the BridgIT
results for novel reaction steps.

S16: List of metabolites in the core metabolic network.

Figures F1-F3 (PDF)
F1: Three alternative ways to produce 30XPNT from acetate through 2
intermediate metabolites: 2-ethylmalate and 3-hydroxypentanoate.
F2: Three different pathways from acetate to 30XPNT sharing the same
lumped reaction.

F3: Clustering of all 242 alternatives for production of 30XPNT from acetate.

File M1 (Matlab .mat file)
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M1: Genome-scale model of E. coli 1JO1366 and 242 active anabolic
subnetworks connecting the core metabolism with 115 pathways from acetate

to 30XPNT together with their lumped reactions and stoichiometry.

Abbreviations
Abbreyviation Reaction EC number
30XCOAT 3-oxoadipyl-CoA thiolase 2.3.1.174
ACACTIr Acetyl-CoA C-acetyltransferase 2.3.1.9
ALDD3y Aldehyde dehydrogenase (propanal, NADP) 1.2.1.4
AMPN AMP nucleosidase 3224
ASPK Aspartate kinase 2.7.2.4
DADK Deoxyadenylate kinase 2.743
DRPA Deoxyribose-phosphate aldolase 4.12.4
FTHFLi Formate-tetrahydrofolate ligase 6.3.4.3
LALDO3 L-Lactaldehyde:NADP+ 1-oxidoreductase 1.1.1.283,1.2.1.49
MCITD 2-methylcitrate dehydratase 4.2.1.79
MCITL2 Methylisocitrate lyase 4.1.3.30
MGSA Methylglyoxal synthase 4233
MMM Methylmalonyl-CoA mutase 5.4.99.2
NTD6 5'-nucleotidase (AAMP) 3.1.3.89
NTTP5 Nucleoside triphosphate pyrophosphorylase 3.6.1.19
PPM2 Phosphopentomutase 2 (deoxyribose) 5.4.2.7
PUNP2 Purine-nucleoside phosphorylase 2.4.2.1
RNDRI1 Ribonucleoside-diphosphate reductase (ADP) 1.17.4.1
RNTRI1c2 Ribonucleoside-triphosphate reductase (ATP) 1.17.4.2
THRD L L-threonine deaminase 4.1.1.19
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. Database IDs
Abbreviation Compound UG
LT KEGG PubChem
30XPNT 3-Oxopentanoate 3-Oxopentanoic acid C02233 5297
MVK But-3-en-2-one Methyl Vinyl Ketone C20701 172232421
BuNHz Butylamine Butanamine C18706 124489380
1B20T But-1-en-2-olate 1-Butene-2-olate X 54444500
2-Hydroxy-2- Methyl Ethyl Ketone
MEKCH methylbutanenitrile Cyanohydrin C18796 124489470
2-deoxy-D-ribose-1- 2-Deoxy-alpha-D-ribose
2drlp phosphate 1-phosphate 00672 3941
2-deoxy-D-ribose 5- 2-Deoxy-alpha-D-ribose
2drdp phosphate 5-phosphate 00673 3942
dad Deoxyadenosine 2'-Deoxyadenosine C00559 3839
dgsn Deoxyguanosine 2'-Deoxyguanosine C00330 3624
duri Deoxyuridine 2'-Deoxyuridine C00526 3809
Phosphoribosyl 5-Phospho-alpha-D-
pIpPp pyrophosphate ribose 1-diphosphate CO0119 3419
ac Acetate Acetic acid C00033 3335
acCoA Acetyl-CoA Acetyl coenzyme A C00024 3326
akg 2-oxoglutarate 2-Ketoglutaric acid C00026 3328
asp-L Aspartate L-Aspartic acid C00049 3351
Dihydroxyacetone 3-Hydroxy-2-
dhap phosphate oxopropyl phosphate CO0111 3411
ppCoA Propionyl-CoA Propionyl coenzyme A C00100 3400
pyr Pyruvate 2-Oxopropanoate C00022 3324
. alpha-D-Ribose 5-
5p Ribose-5-phosphate phosphate C03736 6499
succ Succinate Butanedionic acid C00042 3344
succCoA Succinyl-CoA Succinyl coenzyme A C00091 3391
References:
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