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Abstract 35 

Multiple tools have been developed to identify copy number variants (CNVs) from whole 36 

exome (WES) and whole genome sequencing (WGS) data. Current tools such as 37 

XHMM for WES and CNVnator for WGS identify CNVs based on changes in read depth. 38 

For WGS, other methods to identify CNVs include utilizing discordant read pairs and 39 

split reads and genome-wide local assembly with tools such as Lumpy and SvABA, 40 

respectively. Here, we introduce a new method to identify deletion CNVs from WES and 41 

WGS trio data based on the clustering of Mendelian errors (MEs). Using our Mendelian 42 

Error Method (MEM), we identified 127 deletions (inherited and de novo) in 2,601 WES 43 

trios from the Pediatric Cardiac Genomics Consortium, with a validation rate of 88% by 44 

digital droplet PCR. MEM identified additional de novo deletions compared to XHMM, 45 

and also identified sample switches, DNA contamination, a significant enrichment of 46 

15q11.2 deletions compared to controls and eight cases of uniparental disomy. We 47 

applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified 48 

deletions with 97% specificity. MEM provides a robust, computationally inexpensive 49 

method for identifying deletions, and an orthogonal approach for verifying deletions 50 

called by other tools.  51 

 52 

Keywords: copy number variant identification, whole exome sequencing, whole 53 

genome sequencing, UPD 54 

 55 
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 58 

Introduction 59 

 60 

Structural variation (SV), particularly de novo deletions, has been implicated in many 61 

human diseases including autism spectrum disorders, developmental delay, 62 

schizophrenia and congenital heart disease (Weischenfeldt et al., 2013; Gilissen et al., 63 

2014; Glessner et al., 2014; Szatkiewicz et al., 2014; Brandler et al., 2015). Previously 64 

identified using microarrays, many tools have been developed in the past ten years to 65 

identify SV from next generation sequencing (NGS) data (Tattini et al., 2015). These 66 

tools utilize three main lines of evidence to detect SV: changes in read depth, 67 

discordant read pairs and split reads. Assembly methods including genome-wide local 68 

assembly and de novo assembly are also available (Weisenfeld et al., 2014; Wala et al., 69 

2017).  70 

 71 

With respect to whole exome sequencing (WES) data, one tool to identify copy number 72 

variants (CNVs) is XHMM, which identifies changes in normalized read depth within a 73 

cohort (Fromer and Purcell, 2014). Although widely used for identifying CNVs from WES 74 

data, XHMM has several limitations, including a minimum cohort size and the 75 

requirement that CNVs must include at least three exons. Typically, ~20% of putative 76 

CNVs identified by XHMM fail to be confirmed, and its sensitivity is limited (Glessner et 77 

al., 2014). For example, one study that used both XHMM and SNP arrays to identify de 78 

novo CNVs found that XHMM failed to detect 63% of CNVs identified by the SNP array 79 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209478doi: bioRxiv preprint 

https://doi.org/10.1101/209478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

(Glessner et al., 2014). The limited sensitivity of XHMM stems from the limitations of 80 

WES, some of which can be overcome with whole genome sequencing (WGS). 81 

 82 

Multiple tools have been developed to identify SV from WGS data including CNVnator 83 

and Lumpy (Abyzov et al., 2011; Layer et al., 2014). While CNVnator identifies CNVs 84 

based on changes in normalized read depth (Abyzov et al., 2011), Lumpy utilizes 85 

discordant read pairs and split reads to identify deletions, duplications and other types 86 

of SVs (Layer et al., 2014). Lumpy is often used in combination with CNVnator to take 87 

into account changes in read depth. In order to estimate the sensitivity and false 88 

discovery rate (FDR), SVs identified by CNVnator and Lumpy were both compared to 89 

SVs identified in the 1000 Genomes Project by other SV callers (e.g., Delly, Pindel). 90 

Although both tools are reported to have a low FDR (0.4 – 3%) and high sensitivity (60 – 91 

90%) (Abyzov et al., 2011; Layer et al., 2014), the accuracy of these tools diminishes 92 

when used for identifying de novo SV (Kloosterman et al., 2015). This problem results 93 

from a lack of sensitivity when identifying SVs: false negatives in parental samples lead 94 

to a high false positive rate for calling de novo SV, creating a significant challenge when 95 

attempting to identify de novo events that are potentially pathogenic.  96 

 97 

Here, we describe a novel approach called the Mendelian Error Method (MEM) to 98 

identify and/or validate deletion SV in trios with WES and WGS data. MEM is based on 99 

the principle described in McCarroll et al. 2006 (McCarroll et al., 2006), where the 100 

presence of a heterozygous deletion reduces the underlying genotype to a hemizyous 101 

state. As genotype callers such as GATK assign diploid genotypes to autosomal loci, 102 
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regions of heterozygous deletion are erroneously assigned homozygous genotypes. In 103 

the context of a trio design, variants within heterozygous deletions frequently display 104 

Mendelian errors as a result of this genotype mis-assignment (illustrated in Figure 1). 105 

We, therefore, hypothesized that clusters of Mendelian errors could be used as a robust 106 

signal for the presence of underlying deletions in sequencing data from trios. We 107 

applied MEM to both WES and WGS trio data from the Pediatric Cardiac Genomic 108 

Consortium (PCGC) and compared results to deletions identified by XHMM, CNVnator 109 

and Lumpy. Overall, our results show that MEM identifies both inherited and de novo 110 

deletions with a positive predictive value (PPV) exceeding 90%, and identifies additional 111 

de novo deletions that are missed by other SV callers. 112 

 113 

Methods 114 

 115 

WES and WGS in cases with CHD 116 

Probands were recruited from 10 centers in the United States and United Kingdom as 117 

part of the Congenital Heart Disease Genetic Network study of the PCGC as described 118 

previously (Homsy et al., 2015). Cases (n=2,601) were subject to WES at the Yale 119 

Center for Genome Analysis as described previously (Homsy et al., 2015), with a mean 120 

depth of 107x.  All genomic coordinates quoted are based on human genome 121 

hg19/build 37. Variants were called following the n+1 protocol from GATK.  122 

 123 

Three hundred and fifty probands and their parents from the PCGC were selected for 124 

WGS; of note 332 also have WES data. Cases were sequenced at the Broad Institute 125 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209478doi: bioRxiv preprint 

https://doi.org/10.1101/209478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

(n=25), New York Genome Center (n=25) and Baylor College of Medicine Human 126 

Genome Sequencing Center (n=300). Samples were sequenced with PCR-free library 127 

preparation (n=325) or with SK2-IES (n=25) to a mean depth of 30x on Illumina HiSeq X 128 

Ten sequencers. Variants were called by GATK HaplotypeCaller (version 3.3.2) 129 

following GATK best practices for n+1 joint calling 130 

(https://software.broadinstitute.org/gatk/best-practices/).  131 

 132 

WES and WGS of healthy population cohort 133 

Trios representing a typical population cohort (n=1,683) were provided by the Simons 134 

Foundation Autism Research Initiative Simplex Collection. Simplex families (two 135 

unaffected parents, one child with autism spectrum disorder, and one unaffected sibling) 136 

underwent WES using DNA extracted from peripheral blood cells, with a mean depth of 137 

117x (O’Roak et al., 2011; Sanders et al., 2012; Iossifov et al., 2014). Trios of 138 

unaffected siblings and parents served as a typical population cohort for comparison. 139 

 140 

Five hundred and nineteen quartet families selected from the Simons Simplex 141 

Collection (SSC) underwent WGS at the New York Genome Center. Samples were 142 

sequenced with either a PCR-based library preparation on an Illumina Hi-Seq 2000 143 

(n=39) or PCR-free library preparation on an Illumina HiSeq X Ten (n=480). Sequencing 144 

was performed with 150-bp paired reads with median coverage of 37.8x per individual. 145 

Detailed information regarding this cohort can be found in Werling et al. (Werling et al., 146 

2017)  147 

 148 
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Variants were called using GATK HaplotypeCaller (version 3.1-1-g07a4bf8, n=19, 149 

version 3.2-2-gec30ce, n=21, version 3.4-0-g7e26428, n=479). GATK best practices 150 

(https://software.broadinstitute.org/gatk/best-practices/) were followed. Trios comprising an 151 

unaffected sibling and their parents were used as a typical population cohort for 152 

comparison in this study with permission from the SSC. 153 

 154 

Genome in a Bottle (GIAB) WGS with Illumina 155 

The GIAB Ashkenazi Jewish (AJ) trio was subject to WGS using both short and long 156 

read methodologies. 148-bp paired-end reads were generated with an Illumina Hiseq 157 

instrument. Reads were aligned with BWA-mem (details in Zook et al., 2016) (Zook et 158 

al., 2016). Variants were called by GATK HaplotypeCaller (version 3.3.2) following 159 

GATK best practices using n+1 joint calling. 160 

 161 

GIAB deletions for AJ trio 162 

GIAB provided draft benchmark structural variants (SVs) for the AJ trio (v0.3.0a). SVs 163 

from 119 different tools were compared and merged using the tool SURVIVOR (Jeffares 164 

et al., 2017), which required the breakpoints to be within 1000 bp. Deletions identified 165 

by a minimum of two tools were compared to deletions identified by MEM using 166 

bedtools and required a 20% reciprocal overlap.  167 

 168 

Mendelian Error Method (MEM) Pipeline – Figure 2 169 

 170 

1. Extract Mendelian errors (MEs) from WES and WGS VCFs 171 
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MEs were extracted based on genotypes reported in the joint VCF produced by GATK 172 

best practices, using in-house perl scripts or vcftools. Table S1 includes the eight 173 

scenarios considered as MEs that could represent a deletion.   174 

 175 

2. Filtering 176 

Variants in PCGC, GIAB and SSC trios were filtered using the following criteria: read 177 

depth ≥10, genotype quality >60 for WES and >30 for WGS (Table S2). B allele 178 

frequency (BAF, defined as the alternate allele depth/total depth) was calculated for 179 

heterozygous SNVs, and those with a BAF <0.25 or >0.75 were excluded. Regions 180 

overlapping segmental duplications obtained from the UCSC Genome Browser track 181 

were excluded. CNVs with a minor allele frequency ≥0.05 in European, African or East 182 

Asian ancestry as identified in Conrad et al. were excluded (Conrad et al., 2012). For 183 

WGS, SNVs with a mappability score <1 were excluded, based on the UCSC Genome 184 

Browser track “Alignability of 100mers by GEM from ENCODE/CRG(Guigo)”. Regions 185 

with tandem repeats, taken from the UCSC Genome Browser track “Simple Repeats” 186 

and expanded ±5 bp, were excluded. The Hardy Weinberg equilibrium (HWE) statistic 187 

was calculated using vcftools for SNVs with a minimum allele frequency of 0.01 in 188 

parents. Any SNVs with a HWE p-value equal to zero were removed.  189 

 190 

3. Sliding window analysis 191 

We generated 2-Mb windows with 95% overlap for WES analysis and 100-kb windows 192 

with 90% overlap for WGS analysis using Bedtools (version 2.26.0) makewindows. In 193 

house bash scripts utilizing Bedtools intersect were used to calculate the number of 194 
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MEs for each window. This was applied to each sample in the PCGC and SSC cohorts 195 

separately.  196 

 197 

For each unique window, the number of probands with MEs, the minimum number of 198 

MEs, the maximum number of MEs and the average number of MEs per proband were 199 

calculated for PCGC and SSC probands. We filtered for windows where the average 200 

number of MEs per proband was >2 MEs. 201 

 202 

4. Comparison to population cohort 203 

Windows with MEs in PCGC cases were compared to corresponding windows in the 204 

SSC population cohort. Windows with a ME cluster in three or more SSC probands 205 

were excluded, except if the maximum number of MEs in cases was >5.   206 

 207 

5. Merge windows 208 

For each sample overlapping windows with MEs were merged to identify putative 209 

deletion regions. The minimum, maximum and average number of MEs per window was 210 

calculated for each region. The number of MEs in each putative deletion region was 211 

calculated in SSC probands and regions with ME clusters as described in Step 4 were 212 

removed from further analysis. 213 

 214 

6. Filter for ME clusters 215 
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Finally, we filtered for regions with an average number of MEs per window >2 in cases. 216 

We identified the first and last ME within each region and used these as the coordinates 217 

for the putative deletions.  218 

 219 

Visualization  220 

1. XHMM  221 

For putative deletions identified with MEM from the PCGC WES cohort, we extracted z-222 

scores of the PCA-normalized read depth for each exon from XHMM (Fromer and 223 

Purcell, 2014). Putative deletions were inspected visually (Figure S1) and exons with z-224 

scores <-2 were considered candidates for deletions. 225 

 226 

2. IGV 227 

Integrated Genomics Viewer (IGV, version 2.3.34) pileup visualization was used as one 228 

method for deletion validation. Variants were visualized in the proband and parents. 229 

Deletions were excluded if any of the following aspects were detected: multiple reads 230 

with quality scores of zero in child or parents, no clear drop of coverage in the proband, 231 

or the presence of heterozygous SNVs in the proband.  232 

 233 

CNVnator 234 

CNVnator identifies CNVs in WGS data based on changes in normalized read depth 235 

(Abyzov et al., 2011). Deletions were called for each case proband and the GIAB 236 

proband with CNVnator (version 0.3.2) and genotyped for putative copy number within 237 

the CNV regions on a scale from 0 – 3. We considered scores between 0.7 – 1.4 as 238 
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indicating a heterozygous deletion. De novo deletions were identified by filtering for a 239 

score <1.4 in the child and >1.4 in the parents. We overlapped putative deletions in 240 

WGS cases identified using MEM with de novo deletions identified by CNVnator using 241 

Bedtools intersect, requiring a 25% reciprocal overlap. In the AJ trio, we overlapped 242 

putative deletions identified with MEM with both inherited (proband genotype <1.4) and 243 

de novo deletions called by CNVnator, and considered all intersections with at least 1 244 

bp of overlap. 245 

 246 

Lumpy  247 

Lumpy identifies SVs based on discordant read pairs and split-reads (Layer et al., 248 

2014). Deletions were called for each case proband and the GIAB proband with Lumpy 249 

(version 0.2.13) and genotyped using SVtyper (version 0.0.4). De novo deletions were 250 

identified based on proband and parent genotypes. We overlapped PCGC WGS MEM 251 

deletions with Lumpy de novo deletions in the same manner as CNVnator. In the AJ 252 

trio, we overlapped putative deletions identified with MEM with both inherited and de 253 

novo deletions by Lumpy, and considered all intersections with at least 1 bp of overlap.  254 

 255 

SvABA 256 

Deletions were called with SvABA from 350 WGS trios based on genome-wide local 257 

assembly (Wala et al., 2017). Default parameters were employed to identify putative 258 

copy number variants, which were further validated by IGV visualization prior to digital 259 

droplet PCR analyses.  260 

 261 
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Deletion validation 262 

Digital droplet PCR (ddPCR) was used to validate MEM WES deletions and WGS de 263 

novo deletions identified by CNVnator and Lumpy, as previously reported (Mazaika and 264 

Homsy, 2014) with the following modification.  PCR primers that amplified a portion of 265 

the putative CNV were designed to avoid homopolymer runs or probes that begin with 266 

G.  PCR-positive droplets were identified by EvaGreen dye (DNA-bound emission at 267 

500/533 nm).  CNV product positive droplets were EvaGreen dye positive, VIC 268 

negative. A VIC probe targeting the RPP30 gene was used as reference. Reaction 269 

mixtures of 20μL volume comprising ddPCR Master Mix (Bio-Rad), relevant forward and 270 

reverse primers and probe(s) and 50ng of DNA were prepared, ensuring that<40% of 271 

the 5000-10000 droplets ultimately produced were positive for Evagreen dye and/or VIC 272 

signal. For de novo CNV confirmations, DNA from the subject with CHD and parents 273 

was used. After thermal cycling, plates were transferred to a droplet reader (Bio-Rad) 274 

that flows droplets single-file past a 2-color fluorescence detector. Differentiation 275 

between droplets that contain target and those that did not was achieved by applying a 276 

global fluorescence amplitude threshold in QuantaSoft (Bio-Rad). The threshold was set 277 

manually based on visual inspection at approximately the mid-point between the 278 

average fluorescence amplitude of positives and negative droplet clusters on each of 279 

the EvaGreen dye and VIC channels. Confirmed CNV duplications had ≈ 50% increase 280 

in the ratio of positive to negative droplets, as did the reference channel. Conversely, 281 

confirmed CNV deletions had approximately half the ratio of positive to negative 282 

droplets, as did the reference channel. CNVs that were called, but were unable to be 283 
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confirmed or rejected due to ddPCR technical failure or DNA unavailability were 284 

excluded from analysis. 285 

 286 

Results 287 

 288 

MEM identifies inherited and de novo deletions from WES trios 289 

The MEM pipeline was used to analyze WES data from 2,601 PCGC trios and 1,683 290 

healthy trios from the SSC. Windows with ME clusters in SSC probands were removed 291 

as described in Methods in order to limit our findings to those of likely relevance to the 292 

pathogenesis of congenital heart disease (CHD). MEM identified a final set of 171 293 

merged and filtered regions containing putative deletions in the PCGC probands (Table 294 

S3). We used the location of the first and the last ME in each region with a ME cluster to 295 

define the minimal coordinates for the deletion. We utilized XHMM read depth data to 296 

perform an initial assessment of the accuracy of our MEM deletion calls. The proband’s 297 

normalized XHMM z-scores for each exon within the deletion identified by MEM were 298 

compared to the rest of the cohort (Figure S1). The presence of outlier negative z-299 

scores in the proband suggested a deletion. The parents’ z-scores were also compared 300 

to the rest of the cohort to determine if the deletion was inherited or de novo. In this 301 

manner, 58 deletions were determined to be de novo, and 79 were noted to be 302 

inherited. Of note, the exons in 13 ME clusters did not have negative normalized z-303 

scores, and seven ME clusters showed inconsistent scores, with some exons showing 304 

reduced XHMM z-scores, while other exons were within the normal range (z-score >-2), 305 

suggesting that these 20 calls could be false positives.  306 
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 307 

We directly compared the performance of MEM for the detection of de novo deletions 308 

with that of XHMM. Fifty deletions were called by both tools, 46 by XHMM alone, and 25 309 

by MEM alone (Figure 3A). Of note, the 25 MEM-exclusive deletions included 13 that 310 

showed no reduction in z-scores with XHMM for proband or parents and, thus, could 311 

represent either de novo deletions or false positives. We considered the size of the 312 

deletions that MEM did and did not identify. For deletions ≥200 kb, MEM identified 313 

100% of deletions, however for deletions <200 kb MEM identified 24% of deletions 314 

(Figure 3B). The 46 XHMM-exclusive deletions had a mean size of 35 kb and, therefore 315 

due to an insufficient number of SNPs within them, could not be identified by MEM with 316 

high recall.  317 

 318 

From the 171 MEM deletions, 36 overlapped with deletions previously confirmed by 319 

digital droplet PCR (ddPCR). For the remaining 135 deletions, we performed ddPCR, 320 

which was successful for 109 deletions. Ninety-six out of 109 were confirmed as true 321 

deletions, achieving a positive predictive value (PPV) of 88.1%. Surprisingly, the results 322 

from ddPCR indicated that five of the regions with the ME cluster were inherited 323 

duplications. Thus, overall 137/145 (94.5%) of ME clusters identified by MEM were 324 

confirmed as true CNVs. Deletions identified as inherited by inspection of XHMM z-325 

score plots confirmed with a PPV of 86% (49/57 inherited, 3/57 de novo). From the 326 

possible false positives, two out of eight deletion regions without negative normalized z-327 

scores in XHMM were confirmed, and four of six regions with inconsistent loss of exons 328 
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confirmed. Finally, 26 de novo deletions were confirmed, four exclusively identified by 329 

MEM.   330 

 331 

Enrichment of deletions on chromosome 15q11.2 332 

With MEM, we identified 15 deletions (13 inherited, 2 de novo) ranging from 11 kb to 1 333 

MB in the chromosome region 15q11.2 in PCGC probands. These deletions fall in a 334 

known microdeletion region between breakpoints (BP) 1 and 2, with a population 335 

frequency of 0.25% (Cafferkey et al., 2014). Deletions in this region occurred at a 336 

frequency of 0.58% (15/2,601) in the PCGC cohort, and are therefore enriched 337 

compared to the reported population frequency (binomial, p=0.004) and to SSC 338 

probands, which had a deletion frequency of 0.24% (4/1,683) deletions in this region 339 

(binomial, p=0.002).   340 

 341 

Identification of uniparental disomy (UPD) in WES trios by MEM 342 

Following ME extraction and applying quality filters (Table S1), the majority of trios had 343 

between 0.6 – 2% of loci that were scored as MEs (Figure 4A).  We identified eight 344 

probands with an elevated rate of MEs distributed across an entire chromosome, 345 

suggestive of possible uniparental disomy (UPD). Prior microarray experiments noted 346 

UPD of chromosome 15 for one proband, and an extended region of homozygosity on 347 

chromosome 16 for a second proband. However, there was no prior indication of UPD 348 

in the other six cases. 349 

 350 
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All eight instances of UPD were classified as maternal heterodisomy, based on the 351 

presence of heterozygous maternal SNPs. The heterodisomic inheritance was for 352 

chromosomes 4 (x2), 8, 9, 14, 15 and 16 (x2). UPD was not found in any SSC 353 

probands, and was therefore enriched in cases (binomial, p=0.026).  354 

 355 

MEs identify irregularities in WES trios 356 

We identified two other distinct ME patterns that were informative. Twenty trios had a 357 

dramatically higher rate of MEs (~50% of all SNVs), which were distributed across every 358 

chromosome (Figure 4D). Nearly all of the MEs were attributable to lack of inheritance 359 

from one parent, suggesting either a sample switch or incorrect paternity. 360 

 361 

Similarly, we observed an elevated, but lower, rate (20-30%) of MEs distributed across 362 

the entire genome in six other probands (Figure 4C). We hypothesized that this pattern 363 

might be due to DNA contamination, which was confirmed with the program 364 

VerifyBamID (Jun et al., 2012).  365 

 366 

All samples with likely sample mix-ups, DNA contamination or UPD were excluded from 367 

further analysis.  368 

 369 

ME clusters are non-random in the genome 370 

Before applying MEM to WGS data, we first needed to determine if the increased SNV 371 

density in WGS data relative to WES data could lead to ME clusters by chance alone. 372 

To test this, we generated a null model of SNV clusters across the genome. We only 373 
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considered heterozygous SNVs, and also applied additional filters for genotypes 374 

generated from WGS as shown in Table 1. After applying these quality filters, the 375 

median number of MEs per proband among the 350 PCGC WGS trios was 317. We 376 

then ran 1000 permutations of selecting 317 informative SNV positions from one trio, 377 

assuming those were MEs, and implemented MEM with a 100-kb window and 10-kb 378 

slide. We calculated the number of windows with SNV clusters divided by the number of 379 

windows with at least 1 SNV.  The null model had a mean of 0.3% of windows with a 380 

SNV cluster (Figure S2). In contrast, 21.4% of windows with at least 1 ME among the 381 

PCGC WGS probands had a ME cluster and they were infrequent across the genome 382 

(Figure S2). From these results, we inferred that ME clusters in WGS were likely non-383 

random and were likely identifying underlying deletions. 384 

 385 

Mendelian error clusters identify deletions from GIAB Ashkenazi trio 386 

To test the robustness of MEM for calling deletions from WGS, we identified putative 387 

deletions using MEM based on genotypes generated using Illumina short read WGS 388 

data for an Ashkenazi Jewish (AJ) trio sequenced by the GIAB consortium (Zook et al., 389 

2016). We processed filtered SNV genotypes from the Illumina WGS data in this trio 390 

using the parameters listed in Table 1 and searched for ME clusters. Using the MEM 391 

pipeline we identified 32 putative deletions (Table S3) that contained an average of 9.4 392 

MEs, with a mean size of 31.5 kb.  393 

 394 

To determine the accuracy of the MEM deletion calls, we intersected them with draft 395 

benchmark deletions provided by GIAB. Requiring a 20% reciprocal overlap between 396 
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deletions, 27/32 MEM deletions overlapped with those from GIAB. After removing the 397 

20% overlap requirement 31/32 MEM deletions overlapped. The five deletions that did 398 

not overlap by 20% were visualized in IGV, where we found evidence for a deletion in 399 

4/5. Therefore, MEM identified deletions with 97% precision from WGS for the GIAB AJ 400 

proband. Of note, one 215-kb MEM deletion overlapped two GIAB deletions. 401 

Visualization in IGV confirmed the presence of two separate deletion events at this 402 

locus, which the distribution of MEs also supports (Figure S3).  403 

 404 

Next, we looked at the deletions identified by GIAB that MEM did not identify 405 

(n=24,090). These do not include deletions in segmental duplication regions but do 406 

include 14,690 deletions at tandem repeat loci. Due to the challenges of sequencing 407 

tandem repeats with short read sequencing we would not expect MEM to accurately 408 

identify deletions with tandem repeats, as variant calling is unreliable in these regions. 409 

The MEM false negatives (FNs) had a median size of 39 bp and a mean size of 306 bp 410 

and were attributable to inadequate number of MEs in those deletions as 93.5% did not 411 

include any MEs before filtering. Only 1% of the MEM FNs were related, at least in part, 412 

to the filtering of MEs, having >2 MEs prior to filtering.  413 

 414 

We also compared the MEM calls for the AJ trio to calls from CNVnator and Lumpy. Of 415 

the 32 MEM deletion calls, 27 (84%) and 23 (72%) overlapped with calls from CNVnator 416 

and Lumpy, respectively. There were many calls from CNVnator and Lumpy that were 417 

not made by MEM, however most of them contained no MEs. ME filtering accounted for 418 

21% of FNs from CNVnator calls and 6% of FNs from Lumpy calls. 419 
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 420 

MEM identifies deletions from WGS trios 421 

Based on the promising results from GIAB, we proceeded to apply the MEM pipeline to 422 

identify deletions from 350 WGS case trios from the PCGC, and 517 healthy trios from 423 

the SSC. From the PCGC trios, MEM identified 6,645 regions with ME clusters 424 

(mean=19.1/proband) that ranged in size from 3 bp to 9 Mb, with a median size of 2.9 425 

kb and a mean size of 20 kb (Table S3). Eleven percent of regions included exons. We 426 

used the first and last MEs as coordinates for the putative deletions. For 332 PCGC 427 

trios that have both WES and WGS data we compared the deletions identified by MEM 428 

from both data sets. MEM identified 11 deletions from WES, all of which were detected 429 

by MEM with WGS. All of the deletions were the same size or larger when detected by 430 

WGS except for one. This is expected as the increased SNP density of WGS provides 431 

more informative sites for MEM, thus facilitating a better estimate of the deletion size. 432 

 433 

To determine if the ME clusters in WGS data identified true deletions, we integrated 434 

normalized read depth data from CNVnator. Each region was labeled with a CNVnator 435 

score where 0 corresponds to a homozygous deletion, 0.7-1.5 to a heterozygous 436 

deletion, 1.5-2.4 to being normally diploid and >2.4 to a duplication. The vast majority 437 

(97%) of MEM deletions had a CNVnator score between 0.7 – 1.5 suggesting MEM was 438 

identifying true heterozygous deletions (Figure S4). We visualized MEM deletion calls 439 

with a CNVnator score >1.5 in IGV. Based on this manual curation, we concluded that 440 

the majority (66%) were false positives, but 34% were heterozygous deletions: 10% 441 

covering the entire region and 24% being either a deletion of a portion of the region or 442 
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two smaller deletions located close together. In addition, we visualized in IGV a test set 443 

of MEM deletions with a range of CNVnator scores. The vast majority of false positives 444 

(93.5%) had a score of 1.5 or greater, while 100% of the true or possible deletions had 445 

a score between 0.7 and 1.5 (Figure S5). Overall, our comparison with read depth data 446 

supports a PPV of 92% (Supplementary Formula 1) for identifying heterozygous 447 

deletions from WGS with MEM.  448 

  449 

Next, we identified which MEM deletions were de novo based on the proband and 450 

parents’ CNVnator scores. We used two sets of filters (Table S4) and identified 37 451 

putative de novo deletion calls (mean = 0.12 de novo deletions/proband) After 452 

visualization in IGV, we determined that 20/37 represented likely true de novo deletions, 453 

while 17 were inherited. We compared these to de novo deletions identified by 454 

CNVnator, Lumpy and a third WGS tool called SvABA that uses genome-wide local 455 

assembly to identify SV (Wala et al., 2017). The deletions called by the other SV tools 456 

were confirmed by ddPCR. Of the 20 de novo deletions found by MEM, five were also 457 

identified by CNVnator, Lumpy, and SvABA, three were identified by CNVnator and 458 

SvABA but not Lumpy, and 12 were not found by the three other tools. Thirteen 459 

additional de novo deletions were identified with a combination of CNVnator, Lumpy and 460 

SvABA: all three tools but not MEM (n=7), CNVnator and SvABA (n=2), CNVnator and 461 

Lumpy (n=1), CNVnator only (n=2), and SvABA only (n=1). None of these deletions, 462 

which had a median size of 6.5 kb, included any MEs, suggesting MEM is less sensitive 463 

for deletions smaller than ~10 kb in WGS.  464 

 465 
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MEM is computationally efficient 466 

We compared the computational resources required for MEM and the other CNV 467 

detection tools used in this study for deletion identification in one trio (Table 1). Runtime 468 

and memory for all tools were based on the use of an Intel Haswell 2.4 GHz processor 469 

with 64 GB memory and Cray nodes. We did not utilize parallelization for any of the 470 

tools. Runtime and memory for MEM was calculated for Step 1 of the MEM pipeline (ME 471 

extraction). All other steps in the MEM pipeline can be performed on the command line 472 

and do not require significant time or memory. Of note, resources required for the 473 

preliminary steps for all tools (DepthOfCoverage for XHMM, Samblaster for Lumpy, and 474 

variant calling for MEM) were not included.  475 

 476 

For WES, MEM required 5.5 sec and an average of 12 MB of memory per trio. XHMM 477 

required 453 sec and on average 81 MB of memory. For WGS, MEM required 407 sec 478 

and an average of 7 MB of memory per trio. CNVnator required 77,629 sec and, on 479 

average, 709 MB of memory. Lumpy/SVTyper required 4,238 sec and an average of 480 

4,898 MB of memory. SVTyper produced genotypes for deletions only and not other 481 

types of SV (duplications, translocations, inversions). For both WES and WGS, MEM 482 

performed significantly faster and required significantly less memory compared to other 483 

CNV detection tools. Of note, ME extraction execution time grows sub-linearly based on 484 

the number of trios present in the VCF, however average memory required does not 485 

increase significantly.  486 

 487 

Discussion 488 
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A variety of tools have been developed to identify CNVs including XHMM and CoNIFER 489 

for WES, and CNVnator, Lumpy and SvABA for WGS. Each of these tools has 490 

limitations such as a requirement for 50 samples, the need for extensive computational 491 

resources, or that up to 20% of CNVs will fail to confirm. In addition, false negative calls 492 

in parents lead to a high false positive rate for de novo deletion CNV calls, making the 493 

identification of true de novo CNVs difficult and time intensive. As documented in this 494 

report, we developed a novel method, MEM: the Mendelian Error Method, to identify 495 

deletion CNVs based on ME clustering. This orthogonal method identifies deletions with 496 

a PPV >90% for both WES and WGS, and identifies additional de novo deletions 497 

compared to other SV callers.   498 

 499 

When used with WES, we demonstrate that MEM has several advantages compared to 500 

XHMM. First, MEM can be used on a single trio, while XHMM requires a minimum of 50 501 

samples to accurately normalize read depth and calculate z-scores. Second, MEM 502 

requires substantially less memory and runtime compared to XHMM. Third, MEM can 503 

be used as a method for quality control, as it can identify UPD, sample mix-ups and 504 

DNA contamination. MEM is also a worthwhile complementary tool to XHMM as MEM 505 

identified additional de novo deletions that XHMM missed due to spurious evidence of 506 

inheritance or seemingly inconsistent loss of exons. In addition, MEM identified 507 

deletions with less than 3 exons with high precision, albeit with low sensitivity. The 508 

combination of evidence from both XHMM and MEM can increase our ability to identify 509 

smaller deletions with high precision and increased sensitivity, as well as reducing the 510 

need for PCR-based validation, which is expensive and time-consuming.  511 
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 512 

CNV identification from WGS data is still under development. We propose MEM as a 513 

worthwhile addition to the WGS CNV identification toolbox as it can be efficiently 514 

implemented in less than a day and identifies deletions with a >90% PPV. It can be 515 

implemented on a large cohort without significantly increasing the computational 516 

requirements, and identifies additional de novo deletions compared to CNVnator, 517 

Lumpy and SvABA. While there are other SV tools for WGS data (e.g., Delly, Pindel), 518 

the methods utilized by CNVnator, Lumpy and SvABA, represent three primary ways to 519 

identify CNVs: changes in read depth, discordant/split reads and local assembly, yet 520 

MEM identified additional de novo deletions. Equally helpful is the orthogonal nature of 521 

MEM, which may reduce the need for PCR validation for deletions identified by MEM 522 

and a second tool. 523 

 524 

MEM’s primary limitation is the need for a complete trio, as many cohorts only recruit 525 

singletons. The trio design is necessary in order to identify MEs and, therefore, cannot 526 

be avoided. MEM is also limited regarding the size of the deletions it can detect with 527 

high recall, which is a function of the SNV density in NGS data. WES deletions <200 kb 528 

are identified with 24% recall, while deletions >200 kb are identified with 100% recall. Of 529 

note, although the smaller deletions are not identified with high sensitivity, the PPV 530 

remains high when they are called (78%). Based on deletions identified in GIAB AJ trio, 531 

MEM identifies deletions from WGS with a range of sizes (100 – 660,000 bp); however, 532 

we estimate that MEM has ~1% recall for deletions smaller than 3 kb and only 18% 533 

recall for deletions 3-10 kb. Deletions >10 kb are identified with 45% recall. For this 534 
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reason MEM applied to WGS is particularly valuable as a secondary and orthogonal 535 

method to confirm deletions identified by other tools, as the PPV is 92 - 97% with WGS 536 

data.  537 

 538 

MEM’s sensitivity was also reduced by ME filtering, which accounted for ~5% of the 539 

false negatives. Filtering is necessary in order to remove MEs caused by poor 540 

genotyping or other errors and to achieve a high PPV. We suggest noting the number of 541 

filtered MEs when verifying deletions identified with other tools, as even the presence of 542 

1 or 2 MEs after filtering is evidence for a deletion in 88% of calls (data not shown). 543 

 544 

Interestingly, 3.5% of regions with ME clusters identified with MEM were scored as 545 

inherited duplications by ddPCR. Although ME genotypes are not indicative of a 546 

duplication, it is has been noted that some CNVs are complex events with multiple 547 

breakpoints comprising both deletions and duplications in close proximity (Quinlan et 548 

al., 2010). We hypothesize that this phenomenon likely underlies our observations, and 549 

that in these few cases the primer placement for ddPCR targeted a region of duplication 550 

rather than the deletion found my MEM. 551 

 552 

The pursuit of disease-causing CNVs in family trios often focuses on the identification of 553 

de novo or rare CNVs. MEM identifies both inherited and de novo deletions, however 554 

one is unable to distinguish between inherited and de novo deletions without the use of 555 

a secondary tool that identifies deletions in parents. In order to identify rare CNVs from 556 

a large cohort, one must eliminate regions with deletions in the general population. This 557 
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is included in the MEM pipeline in Steps 4 and 5. If population data are not available, 558 

one could determine the number of samples with deletions in each region identified by 559 

MEM as an alternative. Deletion regions found in multiple samples are less likely to be 560 

disease-causing.  561 

 562 

We applied MEM to trios from the PCGC to identify deletions that are causal for CHD 563 

that had not been seen with previous studies (Glessner et al., 2014). With MEM, we 564 

identified and quantified two genetic mechanisms associated with CHD; BP1-BP2 565 

deletions in 15q11.2 and UPD. Deletions in the region 15q11.2 BP1-BP2 account for 566 

~0.3% of CHD cases in the PCGC cohort. Although 15q11.2 deletions are associated 567 

with a wide range of phenotypic anomalies, CHD have been reported in ~9% of carriers 568 

(Cox and Butler, 2015), which explains the presence of an inherited mutation present in 569 

both a proband with CHD and their apparently unaffected parent. 570 

 571 

Using MEM, we also identified whole-chromosome maternal heterodisomy in ~0.3% of 572 

CHD cases in the PCGC cohort. The likely genetic mechanism for maternal 573 

heterodisomic UPDs is non-disjunction and subsequent trisomy rescue. Thus, there is a 574 

possibility that probands with UPD may be mosaic for trisomy of the UPD chromosome, 575 

and this mosaic trisomy could be the underlying cause of the probands’ CHD. UPD 576 

could also lead to CHD due to changes in methylation of imprinted genes. One example 577 

from the chromosomes affected in PCGC probands is chromosome 8, which harbors 578 

the known CHD gene CHD7 (MIM:608892) that is maternally methylated (Joshi et al., 579 
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2016). Maternal heterodisomy would lead to hypermethylation and altered expression of 580 

CHD7.  581 

 582 

In conclusion, MEM is an orthogonal tool that identifies deletion CNVs with over 90% 583 

PPV and is a valuable addition to CNV detection pipelines for both WES and WGS. As 584 

NGS data becomes more accessible, the need to identify CNVs from WES and WGS 585 

data will only increase. This is particularly true with relation to disease causing CNVs as 586 

CNVs have been implicated in a number of different human diseases including 587 

congenital heart disease, schizophrenia, developmental delay and autism spectrum 588 

disorders. MEM helps overcome some of the challenges associated with identifying 589 

pathogenic CNVs due to limited specificity of current SV tools.  590 
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Figure Legends 718 

Figure 1: Schematic of MEM principle. Diagram of trio where proband inherited a 719 

deletion from parent 1. Tools report homozygous genotypes (red) that violate Mendelian 720 

laws of segregation in the case of hemizygosity due to a heterozygous deletion. 721 

Adapted from McCarroll et al. 2006 (McCarroll et al., 2006). 722 

 723 

Figure 2: MEM pipeline for WES and WGS data.  724 

 725 

Figure 3: A) Comparison of de novo deletions called by XHMM and MEM. B) Size 726 

distribution of de novo deletions called by XHMM. Colors in stacked histogram indicate 727 

which tools detected the deletion (red = MEM and XHMM detected, green = MEM 728 

detected and not XHMM, blue = XHMM detected and not MEM).  729 

 730 

Figure 4: MEs plotted by chromosome A) MEs in a trio after quality filtering. B) 731 

Sample with UPD on chromosome 9. C) Trio with DNA contamination. D) Trio with a 732 

sample mix.  733 

 734 
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Data 

•  WES: 2601 case trios, 1683 control trios 
•  WGS: 350 case trios, 517 control trios 

Filter data 

•  Depth ≥ 10 
•  Genotype quality ≥ 60 (WES) 30 (WGS) 
•  Exclude common CNVs 
•  Exclude segmental duplication regions 
•  BAF 0.25 – 0.75 
•  Additional filters for WGS listed in Table 1 

 
Sliding 
window 
analysis 

•  WES: 2 Mb window, 100 kb slide 
•  WGS: 100kb window, 10kb slide 

Compare 
to controls 

•  Remove windows with 3 or more MEs in 3 or more control probands 
•  Kept windows if the maximum number of MEs in cases was greater than 5 

 
Merge and 
identify ME 

clusters 

•  For each sample merge overlapping windows to identify putative deletion region 
•  Filter for regions with ≥ 3 MEs 

Visualize 
and validate 

•  WES: XHMM, ddPCR 
•  WGS: IGV, CNVnator GT 

Figure 2 
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Tables 

Table 1: Computational resources required for NGS CNV detection tools 

Tool 
Runtime 

(seconds) 
Max Memory 

(MB) 
Average Memory 

(MB) 
MEM WES 5.5 21 12 

XHMM 453 278 81 
MEM WGS 407 21 7 
CNVnator 77,629 7,674 709 

Lumpy/SVTyper 4,238 12,876 4,898 
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