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Abstract 12 

 13 

Animals can identify an odorant type across a wide range of concentrations, as well as 14 

detect changes in concentration for individual odorant type. How olfactory 15 

representations are structured to support these functions remains poorly understood. 16 

Here, we studied how a full complement of ORNs in the Drosophila larva encodes a 17 

broad input space of odorant types and concentrations. We find that dose-response 18 

relationships across odorants and ORN types follow the Hill function with shared 19 

cooperativity but different activation thresholds. These activation thresholds are drawn 20 

from a power law statistical distribution. A fixed activation function and power law 21 

distribution of activation thresholds underlie invariances in the encoding of odorant 22 

identity and intensity. Moreover, we find similar temporal response filters of ORNs 23 

across odorant types and concentrations. Such uniformity in the temporal filter may 24 

allow identity invariant coding in fluctuating or turbulent odor environments. Common 25 

patterns in ligand-receptor binding and sensory transduction across olfactory receptors 26 

may give rise to these observed invariances in the olfactory combinatorial code. 27 

Invariant patterns in the activity responses of individual ORNs and the ORN ensemble 28 

may simplify decoding by downstream circuits. 29 

30 
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Introduction 31 

The abilities to identify odorants across a wide range of concentrations and detect changes in 32 

odorant concentration are essential for olfactory perception and behavior. Olfactory systems use 33 

combinatorial codes to encode large numbers of odors with smaller numbers of olfactory 34 

receptor neurons (ORNs) (Malnic et al., 1999). Each ORN typically expresses one of a large 35 

repertoire of olfactory receptors (Ors) (Buck and Axel, 1991). A single Or can be activated by 36 

many different odorants, and a single odorant can activate many different Ors (Friedrich and 37 

Korsching, 1997). Different odorants can be discriminated by distinct activity patterns across an 38 

ensemble of olfactory neurons (Hallem and Carlson, 2006; Kreher et al., 2005; Nara et al., 39 

2011). The olfactory code also conveys information about odorant intensity as higher odorant 40 

concentrations tend to activate more ORNs (Kajiya et al., 2001; Wang et al., 2003). Different 41 

odorants may also evoke different temporal patterns in neuronal activity, augmenting 42 

information coding using time (Friedrich and Laurent, 2001; Laurent et al., 2001; Junek et al., 43 

2010; Smear et al., 2011). 44 

 45 

Recent studies have uncovered coding properties at the single cell and population levels that 46 

may allow for scale-invariant representation of olfactory information such as odorant type and 47 

intensity. At the individual ORN level, ORN responses to temporal patterns in odorant 48 

presentation may be converted into predictable activity patterns by stereotyped filters (Nagel 49 

and Wilson, 2011; Martelli et al., 2013). At the population level, inputs to the olfactory bulb may 50 

encode odorants in concentration invariant spatial representations (Wachowiak et al., 2002; 51 

Cleland et al., 2007). At the statistical level, the firing rates of Drosophila ORNs appear to be 52 

drawn from an odor invariant probability distribution (Stevens, 2016). However, a quantitative 53 

characterization of such invariances in olfactory representation by a complete ORN ensemble is 54 

still missing. 55 

 56 

In this study, we characterized the ORN ensemble of the Drosophila larva to a panel of odorant 57 

types and concentrations that spanned the selectivity of all olfactory sensory neurons. The 58 

Drosophila larva offers the advantage of numerical simplicity for dissecting an olfactory circuit 59 

that shares glomerular organization with adult insects and vertebrates (Vosshall and Stocker, 60 

2007; Su et al., 2009). We find that ORN-odorant pairs share the same activation function: ORN 61 

activity increases with concentration along the same Hill curve for any odorant type but with 62 

odorant-specific thresholds. We find that the statistical distribution of these ORN sensitivities to 63 

odorants across olfactory space follows a power-law. Furthermore, ORNs share a stereotyped 64 
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temporal filter shape such that ensemble level responses may be concentration-invariant in a 65 

fluctuating environment. Our systems-level characterization of an entire olfactory periphery 66 

across a wide range of odorant types and concentrations has revealed individual and ensemble 67 

level ORN patterns that allow for invariant representation of olfactory information, with 68 

significance for downstream processing. 69 

 70 

A microfluidic setup for in vivo calcium imaging of larval ORNs 71 

Small size and optical transparency make the larva’s olfactory system – like that of C. elegans – 72 

suitable for in vivo multineuronal calcium imaging with precise and flexible microfluidic control of 73 

olfactory inputs (Chronis et al., 2007). We developed a microfluidic device for an intact, un-74 

anesthetized larva with up to 16 fluid delivery channels, allowing us to image olfactory 75 

processing in single animals exposed to a broad input space (Fig 1A-D, Supp Fig 1). Fluid 76 

delivery allows for precise control of odorant concentration, timing between stimulus delivery, 77 

and stimulus waveform (Andersson et al., 2012). Furthermore, with the microfluidics setup we 78 

can record from ensembles of olfactory neurons with single cell resolution while delivering 79 

inputs that span odorant types and concentrations. Calcium imaging and genetic labeling allow 80 

us to record the activity of any individual ORN alone or the activity of all ORNs simultaneously, 81 

by expressing the calcium indicator GCaMP6m (Chen et al., 2013) under the control of either a 82 

specific ORN Gal4 driver or the Orco-Gal4 driver, respectively. 83 

 84 

Anatomical and functional identification of individual ORNs 85 

The larva has 21 ORNs located in each bilaterally symmetric dorsal organ ganglion (DOG). The 86 

layout of ORN dendrites aids in segmenting and identifying all cells during multineuronal 87 

calcium imaging. The 21 ORN sensory dendrites are organized into seven parallel bundles, 88 

each containing three sensory dendrites, that project from an ORN soma to the dorsal organ, a 89 

perforated dome on the animal’s head (Singh and Singh, 1984). When a larva is immobilized in 90 

the microfluidic device, four ventral and three dorsal dendritic bundles are easily distinguished 91 

(Fig 1E). We mapped individual ORNs to each bundle by expressing RFP in all ORNs and GFP 92 

in a selected ORN using a cell specific Gal4 driver (Supp Fig 2). We found that the three ORN 93 

dendrites located in each bundle were stereotyped (confirmed in n ≥ 5 animals for each cell 94 

type). Thus, by following the activation of any cell body in the DOG to its corresponding dendritic 95 

bundle, its possible identity is narrowed to one of three ORNs. 96 

 97 
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To further aid in the identification of individual ORNs, we used a set of odorants, termed private 98 

odorants, that activate single ORNs at low concentrations. Mathew et al. (2013) assembled a 99 

panel of 18 private odorants for each larval ORN by expressing a single functional larval 100 

olfactory receptor (Or) in a mutant adult ORN devoid of the endogenous Ors, and recorded its 101 

electrical activity in response to olfactory cues. We delivered these private odorants to larvae in 102 

our microfluidic setup and found that 18 of the 21 ORNs, in each DOG, are responsive to these 103 

odorants: none of the private odorants in the panel activate the Or33a or Or63a ORNs and the 104 

Or49a ORN is only activated by a wasp pheromone (Ebrahim et al., 2015). We found that 13 of 105 

the private odorants are sufficient to identify all ORNs when examined in conjunction with 106 

dendritic bundle location (Fig 1F). Together, the anatomical map and functional responses to 107 

this subset of private odorants provides a comprehensive means of identifying and segmenting 108 

the ORNs responsive to any olfactory input during multineuronal imaging.  109 

 110 

ORN ensemble responses across odorant identities and intensities 111 

The panel of 18 private odorants provides a maximally decorrelated set of stimuli that spans the 112 

larval olfactory system. To characterize the olfactory representation of these stimuli, we 113 

exposed larvae to all 18 private odorants across the concentration range of olfactory sensitivity. 114 

We measured the response amplitude of every cell to step stimuli across five orders of 115 

magnitude in concentration, from 10-8 dilution (where all private odorants were at or below 116 

threshold of ORN detection) to 10-4 dilution (where many ORNs had reached saturation). We 117 

used five second step pulses interleaved with 20-60 seconds of water, a protocol that allowed 118 

us to measure peak responses and allowed for full recovery of neural activity (Supp Fig 3).  119 

 120 

We verified that all private odorants were highly selective for their target ORNs at low 121 

concentrations, with activity expanding to additional ORNs at higher concentrations. For 122 

example, 1-pentanol was identified as a private odorant for the Or35a-expressing ORN.  At 10-7 123 

dilution, 1-pentanol slightly evoked activity specifically in the Or35a-ORN. Higher concentrations 124 

of 1-pentanol gradually saturated the Or35a-ORN, while also activating four other ORNs 125 

expressing either Or67b, Or85c, O13a, or Or1a (Movie 1). Interestingly, each additional ORN 126 

recruited by 1-pentanol corresponded to a private odorant that is also a long chain alcohol 127 

(Mathew et al., 2013). We next examined the ensemble-wide dose-response curves for these 128 

additional private alcohol odorants. Low concentrations of each private alcohol specifically 129 

activated its target ORN. Higher concentrations reliably activated the Or35a-ORN, Or13a-ORN, 130 

Or67b-ORN, and Or85c-ORNs to varying degrees (Supp Fig 4). Furthermore, we performed 131 
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the dose-response analysis across the entire ORN ensemble for all 18 private odorants (Fig. 132 

2A). We found a similar pattern of overlapping activation for ORNs sharing an odorant with a 133 

similar molecular structure. Thus, as odorant concentration increases, a family of molecules with 134 

similar structure will cross-activate the subgroup of ORNs that are particularly selective for 135 

molecules within the same family. 136 

 137 

As in other animals, the olfactory code changes with increasing odorant intensity (Malnic et al., 138 

1999), but with a pattern of ORN recruitment that is correlated with molecular selectivity. To 139 

discern this pattern, we used principal component analysis (PCA) of the responses of all ORNs 140 

measured against all private odorants across all concentrations. We visualized the data by 141 

projecting the ORN activity responses in the space of the first three principal components (PCs) 142 

(Fig 2B), which account for 60% of the variance in the data (Supp Fig 5A). At the lowest 143 

concentrations, olfactory representations at or below the detection threshold across odorants 144 

were tightly clustered at a central point in the PCA space. At higher concentrations, olfactory 145 

representations diverged, increasing distance monotonically from the central point (Fig 2B, 146 

Supp Fig 5B). Interestingly, the trajectory of each odorant tended to follow its own direction in 147 

PCA space. This pattern is particularly clear for aliphatic and aromatic odorants. Aliphatic 148 

odorants with long carbon chains form trajectories projecting in a similar direction of PCA space, 149 

since higher concentrations of these odorants tend to selectively recruit the other ORNs with 150 

aliphatic private odorants. The same was true for aromatic odorants and the corresponding 151 

group of ORNs with private odorants of this type (Fig 2B). The vectors corresponding to 152 

structurally similar molecules were separated by small angles (Fig 2B, Supp Fig 5C). Thus, 153 

visualization of ORN responses in PCA space reveals structure in the ensemble representation 154 

of odorant identity over a large range of intensities. The population wide response maintains a 155 

fixed direction in the representation of each odorant as concentration rises. 156 

 157 

Dose-response curves share the same steepness but vary in threshold concentrations 158 

We uncovered additional invariant structure when we analyzed the dose-response relationship 159 

of individual odorant-ORN pairs. We found that the subset of all pairs that reached saturation 160 

(n= 21 of 324 pairs) were well described by a Hill function: 161 

𝑦 = 𝑦#$%
&'

&'()*+,'
 , 162 

where 𝑦#$% is the maximum response amplitude measured by the calcium indicator, 𝑐 is the 163 

odorant concentration, 𝑛 is the Hill coefficient or steepness of the linear portion of the curve, and 164 
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𝐸𝐶12 is the half-maximal effective concentration. The Hill function canonically describes binding 165 

affinities in ligand-receptor interactions such as that between odorants and olfactory receptors. 166 

Here, we find that the Hill equation describes a common concentration dependent nonlinearity in 167 

each dose-response relationship. After normalizing each dose-response curve by 𝑦#$% and 168 

aligning by the 𝐸𝐶12, all 21 dose-response curves collapsed onto a single Hill function with 𝑛 =169 

1.5 ± 0.1 (Fig 3A). This common Hill coefficient suggests a similar degree of cooperativity in 170 

odorant binding and signal transduction across the ORN repertoire. Assuming the same 171 

cooperativity applies to the other odorant-ORN pairs, we estimated the 𝐸𝐶12 value for all 172 

remaining pairs. The complete 𝐸𝐶12 matrix reveals the distribution of sensitivities across the 173 

ORN ensemble to each odorant (Fig 3B).  174 

 175 

A simple coding scheme emerges. A common Hill function, with the 𝐸𝐶12 value as the only free 176 

parameter, describes the dose-response relationship for any odorant-ORN interaction. This 177 

model, using the complete matrix of estimated 𝐸𝐶12 values, accounts for 98% of the variance in 178 

the original dataset (Supp Fig 6A). For each odorant, the vector of 𝐸𝐶12 values (a row in the 179 

matrix in Fig 3B) specifies the identity and threshold of each activated ORN with increasing 180 

odorant concentration. A corollary of having a unique 𝐸𝐶12 vector for each odorant is having a 181 

unique direction for the trajectory of population responses across concentrations (Fig 2B).  182 

 183 

To study structure in the distribution of ORN sensitivities, we applied PCA to the matrix of 184 

ln(1/𝐸𝐶12) (see Methods). We found that the first principal component (PC) explains a 185 

significant portion of the variance (Supp Fig 6B). We projected the vector of ln(1/𝐸𝐶12)	values 186 

associated with each private odorant onto this first PC, and found that this projection strongly 187 

correlated with aromaticity index (Supp Fig 6C), one of the major quantitative metrics of odorant 188 

molecular structure that has been linked to olfactory discrimination across animals (Haddad et 189 

al., 2008). This observation explains why the trajectories of aromatic and aliphatic odorant 190 

representations point in opposite directions in Fig. 2B. 191 

 192 

Power law distribution of ORN ensemble sensitivities 193 

Next, we examined the properties of the 𝐸𝐶12 values themselves. We extracted all measured 194 

elements from the 𝐸𝐶12 matrix and constructed a cumulative density function (Fig. 3C). The 195 

data closely follows a line in the log-log plot, indicating a power law: 𝑃( ?
)*+,

) ∝ ( ?
)*+,

)ABA? , 𝜆 =196 

0.35.  197 
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 198 

A power law distribution of olfactory sensitivities means that a relative change of concentration 199 

will trigger the same mean relative change in the number of activated ORNs, irrespective of 200 

odorant type. A power law distribution of olfactory sensitivities, together with a common Hill 201 

function, should give rise to ensemble-wide activity that follows a power law relationship with 202 

respect to concentration and has an exponent 𝜆 (See Methods). We confirmed this prediction in 203 

our experimental data (Fig 3D). The mean activity of the olfactory ensemble grows with odorant 204 

concentration following a power law with an exponent of 0.38±0.06, which is close to the 0.35 205 

exponent found from fitting the 𝐸𝐶12 matrix (Fig 3C). Thus, on average, activity expands across 206 

the ORN ensemble at the same rate with increasing relative concentration, irrespective of 207 

odorant type (as shown in Fig. 2).  208 

 209 

ORN-odorant responses share similar temporal characteristics 210 

An additional challenge to olfactory coding of a wide variety of odorant types across 211 

concentrations arises from complex temporal dynamics due to physical fluctuations, such as 212 

turbulence or convection, in the stimulus itself. To examine how such fluctuations affect ORN 213 

responses, we compared the conversion of temporal patterns of olfactory input for different 214 

odorant-ORN pairs across odorant intensities. To do this, we used reverse-correlation analysis, 215 

subjecting larvae to “white noise” olfactory input by stochastically switching between odorant 216 

and water delivery and seeking the temporal filter that best maps olfactory inputs into calcium 217 

dynamics (Geffen et al., 2009; Kato et al., 2014). We found that random olfactory input could 218 

evoke fluctuating calcium activity in an ORN, and repeated presentation of the same input 219 

pattern would evoke consistent responses from trial to trial (Supp Fig 7A). The systematic 220 

conversion of the stimulus to response waveform is well characterized by a linear-nonlinear (LN) 221 

model. A linear transfer function estimates the relative weight of each time point in stimulus 222 

history to determine the time-varying response amplitude (Supp Fig 7B). The convolution of the 223 

linear transfer function with stimulus history is then passed through a static nonlinearity to 224 

correct for saturation (Supp Fig 7C). We verified the LN model by predicting the response to a 225 

novel random input using a filter calculated from different random inputs (Supp Fig 7D). 226 

 227 

We measured the linear transfer function for 3-octanol, the private odorant for the Or85c-ORN, 228 

across the concentration range used to characterize the 𝐸𝐶12 matrix. At the lowest 229 

concentrations of 3-octanol, a filter describing ORN activity only emerges for the Or85c-ORN 230 

(Fig 4A). At higher concentrations, filters begin to emerge for additional ORNs. These filters for 231 
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each ORN, when normalized for response amplitude, were virtually identical in their temporal 232 

response profiles as single lobed functions with similar peak and decay times (Fig 4B, Supp 233 

Fig 8B-C). The shapes of the filters for different odorants activating the same ORN are also 234 

virtually indistinguishable, on the order of ~100 ms (Fig 4C, Supp Fig 8A-C). This result is 235 

constrained by the calcium indicator, which has a time constant associated with calcium binding 236 

to GCaMP6m, making it difficult to resolve differences in ORN temporal filters on a shorter time 237 

scale. Nonetheless, recent electrophysiological measurements of odorant-evoked activity in the 238 

ORNs of adult Drosophila, under the same LN model, also report remarkable similarity in the 239 

temporal pattern of filters across odorant-receptor pairs, within ~10-20 ms (Martelli et al., 2013).  240 

 241 

A common temporal filter across ORNs could simplify the olfactory code in an environment with 242 

fluctuating odorant concentrations. A constant filter in conjunction with uniform scaling of ORN 243 

activity over concentration could allow the ensemble of responsive neurons to maintain the 244 

same relative amplitudes of activation over time. These relative amplitudes would be correlated 245 

with the ORN ensemble 𝐸𝐶12 values for any odorant, regardless of whether an animal is in a 246 

static or fluctuating odorant environment.  247 

 248 

Discussion  249 

Previous efforts at a systems-level characterization of ORNs necessarily focused analysis on 250 

particular cell types, odorants, or odorant concentrations (Hallem and Carlson, 2006; Mathew et 251 

al., 2013; Nagel and Wilson, 2013; Martelli et al., 2013; Asahina et al., 2009). The small size of 252 

the Drosophila larva, combined with multineuronal imaging and new microfluidic tools, has 253 

allowed us to characterize the responses of a complete ORN ensemble to a panel of odorant 254 

types and concentrations that spans the selectivity of olfactory sensory neurons. This broad 255 

characterization has uncovered regular patterns in the response of individual ORNs and of the 256 

ORN ensemble. First, each ORN response to odorants exhibits the same activation function 257 

shape with variant sensitivity levels. Furthermore, consistent temporal filters that convert 258 

different stimulus waveforms into ORN calcium activity patterns will make the relative activities 259 

of different ORNs robust despite fluctuating inputs. Second, the ORN ensemble across all 260 

tested odorants exhibits a constant rate of increase in activity with increasing concentration. 261 

Underlying this effect, we have identified a power-law distribution in the sensitivities of odorant-262 

ORN interactions. The power law distribution may allow downstream circuits to estimate the 263 

relative concentrations of any odorant by the relative extent of ORN activity using the same 264 

quantitative relationship for any odorant. Invariant quantitative patterns in single and ensemble-265 
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level ORN activities could allow shared mechanisms to extract olfactory features, even in 266 

fluctuating environments, across olfactory space. 267 

 268 

Different neurons are required to sense odorants in different regimes of odorant concentration 269 

needed for long-range chemotaxis in the Drosophila larva (Asahina et al., 2009). Encoding a 270 

broad concentration range requires a distribution of ORNs with varying sensitivities. Our 271 

analysis reveals that olfactory sensitivities follow an invariant statistical distribution across 272 

odorants and ORN types. This power law distribution implies a fixed ratio between the relative 273 

change in ORN ensemble activity for a fixed change in odorant concentration. Detection of 274 

relative change in stimulus intensities has been observed in psychophysical studies of diverse 275 

sensory modalities. A notable example is Stevens’s Law in human psychophysics, where 276 

response magnitudes have been shown to scale with the logarithm of stimulus intensities across 277 

sensory modalities including olfaction (Stevens, 1957). Our results reveal that a phenomenon 278 

analogous to Stevens’s Law can be attributed to the olfactory sensory periphery itself, a direct 279 

outcome of the statistical distribution of response sensitivities across an ensemble. 280 

 281 

A combinatorial olfactory code will arise from a distribution of ORN sensitivities to different 282 

odorant molecules. Changes in concentration necessarily lead to changes in the combinatorial 283 

code, but with correlated changes depending on the odorant. The basis of this correlation is a 284 

unique vector of sensitivities across ORNs for each odorant. This constraint allows each 285 

odorant’s identity to be coded in a concentration-independent manner as a direction in an 286 

olfactory coding space. It has been suggested that extracting relative glomerulus activity across 287 

odorant concentrations may allow the concentration-invariant coding of different odorant types 288 

(Wachowiak et al., 2002; Cleland et al., 2007). For animals that sniff, the change in 289 

concentration through inhalation generates a reliable temporal sequence of ORN activity that 290 

could represent the vector of ORN sensitivity (Smear et al., 2011). As we have found in 291 

Drosophila, a common activation function and temporal filter – which may arise from 292 

stereotyped receptor cooperativities and shared transduction dynamics among ORNs – would 293 

facilitate the decoding that takes place by such mechanisms to extract concentration invariant 294 

representations of odorant identity.  295 

 296 

To our knowledge, a power law distribution of olfactory sensitivities has not yet been described 297 

in any animal. One possibility for the power law in olfactory sensitivity is to match the 298 

distributions of odorant concentrations found in natural olfactory environments. Natural odors 299 
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are mixed by convection and turbulence, physical processes that are rich in power law 300 

dynamics (Catrakis and Dimotakis, 1996). Power laws appear in the statistics of other natural 301 

stimuli as well. Natural visual scenes exhibit a power law relationship between spectral power 302 

and spatial frequency (Field, 1987; Simoncelli and Olshausen, 2001). The loudness of natural 303 

sounds across frequencies are distributed by power laws (Theunissen and Elie, 2014). Sensory 304 

systems, in general, may adapt the statistical distribution of their sensitivities to their natural 305 

environments. 306 

 307 

Another possibility is that the observed power law distribution represents an optimization of the 308 

olfactory code. It has recently been proposed that the olfactory code maximizes informational 309 

entropy (Stevens, 2015). Given the constraint of fixed mean firing rates among ORNs, this 310 

model leads to an exponential distribution of ORN firing rates evoked by odorants measured in 311 

the adult Drosophila antenna (Stevens, 2016). Interestingly, another prediction of this 312 

optimization is that the overall activity of the olfactory ensemble should increase as a power law 313 

of odor concentration, as we have also experimentally observed in the Drosophila larva and, in 314 

our case, connected to the statistical distribution of olfactory sensitivities across ORNs.  315 

 316 

Finally, the molecular recognition mechanism of olfactory receptors may themselves give rise to 317 

a power law distribution in ORN sensitivities. Lancet et al., 1993 proposed a molecular 318 

recognition system in which a receptor has multiple selective binding sites. Each binding site 319 

contributes in a combinatorial manner to the binding strength between a receptor and molecule.  320 

This simple quantitative model generates a power law sensitivity distribution for receptors with 321 

random sets of binding sites. The statistics of an olfactory code using such a molecular 322 

recognition system would be robust to expansion of the ORN periphery, as occurs with 323 

Drosophila in which the adult has nearly triple the number of receptor types as that found in the 324 

larva. Furthermore, a conserved statistical structure in the olfactory code would allow 325 

downstream circuitry to employ similar decoding mechanisms across an animal’s lifetime.  326 

 327 
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Figures: 338 

 339 

 340 
 341 

Figure 1.  Anatomical and functional identification of individual ORNs within the ORN 342 

population.  A. Schematic of the setup for confocal imaging of a larva in a microfluidic device 343 

during odorant delivery. B. 16 channel microfluidic device (* indicates stimulus delivery channels, 344 

arrowhead marks larva loading inlet, arrow marks fluid outlet). C and D. Zoomed-in view of an 345 

immobilized larva in the loading channel. Red indicates RFP labeling of ORN dendrites and cell 346 

bodies. E. Larval ORN sensory dendrites are organized into seven parallel bundles (numbered). 347 

All ORNs shown in red, Or35-ORN shown in green, using Or35a>GFP; Orco>RFP genotype. 348 

Dashed line in lateral view marks separation between ventral and dorsal bundles. F. Each of 13 349 

odorants at low concentrations primarily activates only one ORN within each bundle. Size of 350 

shaded circles indicates normalized neural activity (DF/F) of the specified ORN to an odorant. * 351 

indicates that location of Or33a-ORN was inferred from vacancy in bundle 2 (Supp Fig 2).  352 
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 353 
Figure 2. ORN population responses to different odorants and concentrations.  A. 354 

Averaged peak responses of 18 ORNs to a panel of 18 odorants, each delivered at five 355 

concentrations (n ≥ 5 for each odorant type and concentration; odorant pulse = 5 s). B. ORN 356 
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population responses visualized in PCA space. Each dot represents the projection of ORN 357 

population activity onto the first three principal components. Size and color of dots correspond 358 

to odorant concentration and type, respectively. Dots from the same odorant are linked and the 359 

molecular structure of the odorant is shown adjacent to each trajectory. Aromatic versus 360 

aliphatic odorants cluster in separate regions of PCA space.  361 
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 362 
Figure 3. Scaling laws for individual and ensemble ORN activity. A. Normalized ORN 363 

responses for various odorant-ORN pairs across relative odorant concentration (actual 364 

concentration divided by 𝐸𝐶12). Individual curves for plotted odorant-ORN pairs collapse onto a 365 

single curve described by a Hill equation with a shared Hill coefficient of 1.45. Black line 366 

indicates the fitted Hill equation, different colored and shaped points represent data from unique 367 

odorant-ORN pairs. B. Matrix of 𝐸𝐶12 values fit to dose-response data from each odorant-ORN 368 

pair (* for black squares indicates that odorant-ORN pair had no response within the tested 369 

concentration range). C. Log-log plot of the cumulative distribution function of 1/𝐸𝐶12 values. 370 

The dashed line is a linear fit to the data and has a slope of -0.35. D. Log-log plot of average 371 

neuron activity across all odorant-ORN pairs for each concentration. The error bars represent 372 

the standard error. Least-squares fit line has a slope of 0.38±0.06 (𝑅F = 0.99).  373 
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 374 
Figure 4. Temporal filters of ORN response. A. Linear filters of 7 ORNs responding to 3-375 

octanol across five concentrations. Black curve indicates the averaged filter from data across 376 

multiple animals (individual filters shown in gray). B and C. Comparison of filter waveforms for 377 

the same odorant (10-4 dilution of 3-octanol) activating different ORNs (B), and the same ORN 378 

(Or85c-ORN) responding to different odorants and concentrations (C). All filters were 379 

normalized by their peak amplitude.  380 
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Methods 468 

Fly stocks 469 

Flies were reared at 22°C under a 12:12 hour light/dark cycle in vials containing conventional 470 

yeast agar medium. Adult flies were transferred to a larvae collection cage (Genesee Scientific) 471 

containing a grape juice agar plate and a dime-sized amount of fresh yeast paste. Flies could 472 

lay eggs on the grape juice agar plate for two days and then the plate was removed for 473 

collection of first instar larvae. The following fly lines were used in this study: UAS-474 

mCherry.NLS; UAS-GCaMP6m, UAS-mCD8::GFP; Orco::RFP, Orco-Gal4 (BL23292), Or1a-475 

Gal4 (BL9949), Or13a-Gal4 (BL9945), Or22c-Gal4 (BL9953), Or24a-Gal4 (BL9958), Or30a-476 

Gal4 (BL9960), Or33b-Gal4 (BL9963), Or35a-Gal4 (BL9968), Or42a-Gal4 (BL9970), Or42b-477 

Gal4 (BL9971), Or45a-Gal4 (BL9976), Or45b-Gal4 (BL9977), Or47a-Gal4 (BL9982), Or49a-478 

Gal4/Cyo; Dr/TM3 (gift from John Carlson lab), Or59a-Gal4 (BL9990), Or63a-Gal4 (BL9992), 479 

Or67b-Gal4 (BL9995), Or74a-Gal4 (BL23123), Or82a-Gal4 (BL23125), Or83a-Gal4 (BL23128), 480 

Or85c-Gal4 (BL23913), Or94b-Gal4 (BL23916).  481 

 482 

Microfluidic device design, fabrication, and calibration 483 

Odorant stimuli were delivered using a microfluidic device (Fig 1A) designed with a 300 µm 484 

wide and 70 µm high larva loading channel. The channel tapered to a width of 60 µm in order to 485 

immobilize the larva. The tapered end was positioned perpendicular to a stimulus delivery 486 

channel to allow for odorant flow past larval ORNs. The device was designed with a “shifting-487 

flow strategy”, similar to that described in Chronis et al, 2007. The 16-channel device included 488 

two control channels located at the periphery, 13 odorant channels in the middle, and one water 489 

channel to remove odorant residue. Each channel was of equal length to ensure equal 490 

resistance. During an experiment, a combination of three channels was always open: the water 491 

channel, one of the 13 odorant delivery channels, and one of the control channels.  The 13 492 

odorant channels could be sequentially opened to deliver any odorant. Switching between the 493 

two control channels directed either water or an odorant to flow past the larva’s ORNs, as 494 

demonstrated in Supp Fig 1.  495 

 496 

Fluorescein dye was used to measure the switching time between water and odorants as well 497 

as to verify the spatial odorant profile in the device during stimulus delivery.  Our standard air 498 

pressure for stimulus delivery was 6 psi, which led to a flow rate of 0.5 mL/min in the microfluidic 499 

device.  With these conditions, the switching time between water and odorant was ~20 ms 500 

(Supp Fig 1A). 501 
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The microfluidic device pattern was designed using AutoCAD. The design pattern was then 502 

transferred onto a silicon wafer using photolithography. The wafer was used to fabricate 503 

microfluidic devices using polydimethylsiloxane (PDMS) and following the standard soft 504 

lithography approach (Anderson et al, 2000). The resulting PDMS molds were cut and bonded 505 

to glass cover slips. Each microfluidic device was used for only a single panel of odorants in 506 

order to prevent contamination. 507 

 508 

Odorant delivery setup 509 

Odorants were obtained from Sigma-Aldrich, diluted in deionized (DI) water (Millipore) and 510 

stored for no more than 2 days. To prevent contamination, each odorant concentration was 511 

stored in a separate glass bottle and delivered through its own syringe and tubing set. Panels of 512 

odorants were delivered using a 16-channel pinch valve perfusion system (AutoMate Scientific, 513 

Inc.). Each syringe and tubing set contained a 30 mL luer lock glass syringe (VWR) connected 514 

to Tygon FEP-lined tubing (Cole-Parmer), which in turn was connected to silicone tubing 515 

(AutoMate Scientific. Inc.). The silicone tubing was placed through the pinch valve region of the 516 

perfusion system as its flexibility could allow for the passage or blockage of fluid flow to the 517 

microfluidics device. The silicone tubing was then connected to PTFE tubing (Cole-Parmer), 518 

which was then inserted into the microfluidic device. A microcontroller and custom written 519 

Matlab code were used to control the on/off sequence of the valves and to synchronize valve 520 

control with the onset of recording in the imaging software (NIS Elements). 521 

 522 

During the entire recording, the larva experienced continuous fluid flow, with a flow rate of 523 

0.5mL/min or 0.2m/s. In the dose-response experiments, the stimuli sequences consisted of five 524 

seconds of odorant pulses followed by a washout period using water. The duration of odorant 525 

pulses was chosen such that ORN responses reached maximum amplitude. The washout time 526 

was adjusted to allow for ORN recovery back to baseline activity levels, and thus ensured that 527 

measurements of ORN responses were independent of stimulus sequence (Supp Fig 3 and 528 

Movie 1). For the white noise experiments, a 1024-step m-sequence of odorant stimulus and 529 

water was delivered with a time step of 0.2 s (Movie 2). 530 

 531 

Calcium imaging 532 

A first instar larva was loaded into a microfluidic device using a 1 mL syringe filled with 0.1% 533 

triton-water solution. Using the syringe, a larva was pushed towards the end of the channel, 534 

where the 60 µm wide opening mechanically trapped further larval movement. Each larva was 535 
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positioned such that its dorsal organ (nose) was exposed to the stimulus delivery channel and 536 

its dorsal side (where ORN cell bodies are located) was closest to the objective. Larvae were 537 

imaged using an inverted Nikon Ti-e spinning disk confocal microscope with a 60X water 538 

immersion objective (NA 1.2). A charged-coupled device (CCD) microscope camera (Andor 539 

iXon EMCCD) captured images at 30 frames/sec. ORN cell bodies were recorded by scanning 540 

the entire volume (~20 slices with a step size of 1.5 µm) of the dorsal organ ganglion (Movie 1), 541 

while ORN axon terminals were recorded from a single slice of the antennal lobe (Movie 2). 542 

Dose-response experiments (data shown in Fig 1-2, Supp Fig 3-4 and Movie 1) were 543 

performed using larvae of the Orco>GCaMP6m, Orco>mCherry.NLS genotype and recording 544 

from ORN cell bodies. White noise experiments (data shown in Fig 4, Supp Fig 7-8 and Movie 545 

2) were performed using larvae expressing GCaMP6m in a single ORN (e.g. Or42a>GCaMP6m 546 

used in Supp Fig 7) and recording from ORN axon terminals.  547 

 548 

Dose response analysis 549 

Custom code written in ImageJ was used to track and identify each ORN as well as its 550 

responses to odorant stimuli.  Slight movement artifacts were corrected by aligning frames using 551 

mCherry NLS labeling of ORN cell bodies and the ImageJ TurboReg plugin (Thevenaz et al, 552 

1998). Each ORN activated in response to an odorant stimulus was visually identified using both 553 

the anatomical location of its dendritic bundle and the functional map of cognate odorant to 554 

ORN activation (Fig 1 E, F, Supp Fig 2).  ORN identification was performed independently by 555 

two experimenters to ensure accuracy. Changes in fluorescence were then quantified 556 

as	(𝐹IJ$K − 𝐹2)/𝐹2, where 𝐹2 was the average ORN intensity sampled from the frames 557 

immediately preceding odorant delivery and 𝐹IJ$K was the highest intensity in ORN 558 

fluorescence during odorant delivery. Each odorant stimulus was repeated with at least 5 trials. 559 

The raw response data is summarized in Supp Table 1. 560 

 561 

The heatmap in Fig 2A was generated by directly averaging the peak responses across trials. 562 

Simulated annealing was used to optimize the order of ORNs and odorants presented in this 563 

heatmap, such that it minimized a loss function in which cost increased linearly with the distance 564 

that activated odorant-ORN pairs were from the matrix diagonal. The response data was 565 

normalized by the highest response level within each trial, averaged across trials, and then Z-566 

scored prior to performing PCA. The distance and direction of vectors shown in Supp Fig 5 567 

were calculated for each data point in Fig 2B using the standard formulae for cartesian to polar 568 

coordinate transformation.  569 
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 570 

Dose-response curve fitting 571 

A Hill equation with a unique set of parameter values was fit to the dose-response curve for 572 

each odorant-ORN pair in our data set.  The general form of the Hill equation is as follows:  573 

𝑦 = 𝑦#$%
&'

&'()*+,'
	      Equation 1  574 

where 𝑦#$% is the maximum ORN response level across concentrations, 𝑐 is the odorant 575 

concentration, EC12 is the half-maximal effective concentration, and 𝑛 is the Hill coefficient. 576 

In the calcium imaging experiment, the maximum fluorescence intensity 𝑦#$%could be affected 577 

by the detailed experimental settings and it is differently fitted for the curve of each odorant-578 

ORN pair. Here, the absolute value of 𝑦#$% is not considered a coding feature, so in the 579 

following analysis, we normalized the responses using 𝑦#$%. 580 

 581 

There were 21 odorant-ORN pairs saturated within the concentration range we studied. We 582 

started by fitting these 21 curves using the Hill equation. We normalized the responses using 583 

the  𝑦#$% for each odorant-ORN pair and shifted the x-axis using its 𝐸𝐶12. A scatter plot of the 584 

normalized and shifted dose-response data for the 21 odorant-ORN pairs is shown in Fig 3A.  585 

 586 

Next, we used a Hill equation function with 𝑦#$% = 1	and	𝐸𝐶12 = 0 to fit all 105 data points from 587 

the 21 different odorant-ORN pairs. The resulting equation had a Hill coefficient n = 1.45, with 588 

RF > 0.99. Next, we applied this Hill coefficient to fit odorant-ORN data pairs that did not 589 

saturate in the concentration range we had tested. There were 19 additional odorant-ORN pairs 590 

that were close to saturation and we could therefore estimate their 𝑦#$% and  𝐸𝐶12 values well.   591 

 592 

After fitting the 21 odorant-ORN pairs that had saturated as well as the 19 that were close to 593 

saturation, we had at least one parametrized Hill equation for each odorant. To fit the remaining 594 

odorant-ORN pairs that were not close to saturation within our tested concentration range, we 595 

first assumed that each odorant had approximately the same 𝑦#$% for each odorant (this was 596 

calculated by averaging the 𝑦#$% of all ORNs that shared an odorant with a parameterized 597 

logistic curve).  Given the known 𝑦#$% for each odorant and the fixed Hill coefficient, we could 598 

estimate the 𝐸𝐶12 for the remaining 100 weakly responding odorant-ORN pairs.  599 

 600 

The 𝐸𝐶12 of all odorant-ORN pairs is summarized in Fig 3B. The black elements in the matrix 601 

indicate that the corresponding ORN showed no activity within the tested concentration range; 602 
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we were unable to fit an 𝐸𝐶12 value for these odorant-ORN pairs. We used the Hill equation and 603 

fitted parameters for each odorant-ORN pair to generate the activity response data and found 604 

that it was similar to the actual data (Supp Fig 6A). 605 

 606 

Analysis of the 𝑬𝑪𝟓𝟎 Matrix 607 

To perform PCA on the 𝐸𝐶12 matrix, we first transformed the values to the −𝑙𝑛(𝐸𝐶12), such that 608 

odorant-ORN pairs with a high sensitivity (small 𝐸𝐶12) were now represented by large values 609 

and those that were less sensitive (large 𝐸𝐶12) had small values. The remaining pairs that that 610 

did not have an 𝐸𝐶12value (the missing data, represented by black squares in Fig 3B), 611 

represent pairs with a much lower sensitivity and were set to zero. Supp Fig 6B shows the 612 

percentage of variance explained by each principal component (PC) once PCA was performed 613 

on the −ln	(𝐸𝐶12) matrix.  In comparison to a shuffled matrix (in which each row is randomly 614 

permuted), we found that only the first PC was significantly different (p < 0.0001 for 1000 615 

instances of shuffled data).  616 

 617 

We compared 32 descriptors of molecular structure from the E-Dragon software, which were 618 

found in Haddad et al., 2008 to be relevant for olfactory coding across animals.  We found that 619 

one metric, aromaticity index of a molecule, had the highest correlation with the first PC of the 620 

𝐸𝐶12 matrix with a coefficient of 0.8 (Supp Fig 6C). 621 

 622 

We fit the power law distribution using code from (Clauset et al., 2009). The resulting fitting 623 

index of 0.22 (large values mean better fit to the power law for this metric) is larger than the 624 

threshold (0.1) needed to accept the power law hypothesis (Clauset et al., 2009). 625 

 626 

Derivation of power law scaling of ORN ensemble responses from 𝐸𝐶12 distribution 627 

Here, we explain analytically the power law relation between odorant concentration and the 628 

ensemble response of ORNs. Under the same Hill equation we used to fit individual dose-629 

response curves (Eq. 1, here we set 𝑦#$% = 1 for simplicity), assume that (i) 𝐸𝐶12 follows a 630 

power law distribution 𝑃(1/𝐸𝐶12) ∝ (1/𝐸𝐶12)ABA? (or equivalently an exponential distribution for 631 

𝑘 = −ln	(𝐸𝐶12): 𝑃 𝑘 = 𝜆eAB(KAK,), 𝑘 ≥ 𝑘2) (ii) the Hill coefficient 𝑛 for all odorant-ORN pairs are 632 

the same and greater than 𝜆 (satisfied in the data as 1.45 vs. 0.35). If so, the ensemble 633 

response follows an approximate power law form 𝑟(𝑐) ∝ 𝑐B for concentrations 𝑐 ≤ 𝑒AK, (which 634 

means the weakest response pair in the ensemble has not reached the half level). For 635 
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convenience, we use the log scale of concentration and 𝐸𝐶12: 𝑥 = ln 𝑐 , 𝑘 = −ln	(𝐸𝐶12) and the 636 

logistic function in place of the Hill equation: 𝑦 𝑥 = ?
?(abc	(Ad(%(K))

. 637 

 638 

This result can be intuitively obtained by considering the limiting case where the logistic function 639 

is infinitely steep (large Hill coefficient) and is thus replaced by a step function. The ensemble 640 

response combining a large number of odorant-ORN pairs can be expressed as an integral: 641 

𝑟 𝑥 = 𝑦(𝑥, 𝑘)𝜆𝑒AB(KAK,)𝑑𝑘f
K,

, 𝑦 𝑥, 𝑘 = ?
?(abc	(Ad(%(K))

 is the log-concentration. When 𝑦(𝑥, 𝑘) is 642 

a step function, the integral becomes 𝑃(𝑘 ≥ −𝑥), which is essentially the cumulative density 643 

function for 𝑘.  Given the distribution of 𝑘, this is exactly an exponential function 𝑟 𝑥 = 𝑒B(%(K,) 644 

(or a power law function of 𝑐) for 𝑥 ≤ −𝑘2, and saturates at larger concentrations.  645 

 646 

For the general case of logistic activation, the integral does not have a simple form expression 647 

but involves hyper-geometric functions. However, we can derive a simple closed form 648 

approximation by approximating the logistic function 𝑓 𝑥 = 1/(1 + 𝑒Ad%) using piecewise 649 

exponential functions: 650 

𝑓 𝑥 ≈
ed% −

eFd%

2
,				𝑥 ≤ 0

1 − eAd% +
𝑒AFd%

2
, 𝑥 > 0	

 651 

Such an approximation becomes asymptotically exact when the steepness 𝑛 goes to infinity, or 652 

when the absolute value of 𝑥 goes to infinity. Substituting 𝑦(𝑥, 𝑘) with this approximation, the 653 

integral splits into segments, over which the integrand are sums of exponential functions, and 654 

therefore can be easily integrated. This gives the closed form approximation of 𝑟(𝑥): 655 

𝑟 𝑥 =
1 + FBk

dkABk
− Bk

ldkABk
𝑒B %(K, − B

dAB
𝑒d %(K, + B

F FdAB
𝑒Fd %(K, ,			𝑥 ≤ −𝑘2

1 − B
d(B

𝑒Ad %(K, + B
F Fd(B

𝑒AFd %(K, , 𝑥 > −𝑘2
   656 

For small concentrations, 𝑥 ≤ −𝑘2, the leading term in the above expression is 𝑒B(%(K,), since 657 

𝜆 < 𝑛. This explains that the ensemble response is approximated by an exponential function 658 

with exponent 𝜆. Furthermore, the theory also predicts the magnitude (vertical shift in the log-log 659 

plot of ensemble response as in Fig 3C), that is, 𝑟 𝑥 ≈ (1 + n
l
Bk

dk
)𝑒B(%(K,), which explains how 660 

the Hill coefficient affect the ensemble response. 661 

 662 

Reverse-correlation analysis  663 
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White noise experiments were performed in a manner similar to those described in Kato, et. al, 664 

(2014).  Briefly, we used custom code written in MATLAB to control odorant and water switching 665 

such that it followed an m-sequence. Calcium imaging was performed on the axon terminal of 666 

individual ORNs at ~30 frames per second. Calibration and an example of such a recording is 667 

shown in Movie 2. We then used a linear-nonlinear model to compare the m-sequence input to 668 

ORN responses during a 150second interval (from 60 - 210 sec).  An 18 second time window 669 

was used for the linear filter, of which 15 seconds represented stimulus history in order to 670 

ensure extraction of the full filter dynamics (Supp Fig 7B). Next, we applied the linear filter to 671 

the data and compared this to the output in order to capture the nonlinear function.  We found 672 

that a sigmoidal function fits the nonlinear function well (Supp Fig 7C).  We applied novel m-673 

sequences to validate the linear-nonlinear model (Supp Fig 7D) and found that they fit the data 674 

well. Peak and decay times for each filter were found by extracting the time points 675 

corresponding to the maximum amplitude and half maximum amplitude of the decay phase, 676 

respectively. 454 filters were calculated from the recording of 138 larvae responding to various 677 

m-sequence stimuli.  Each of the 31 filters quantified in Supp Fig 7, are averaged across 10 678 

trials. 679 

 680 

Data, code and software can be found at: https://github.com/samuellab/larval_olfaction 681 

Microfluidic device pattern design can be found at: 682 

https://metafluidics.org/devices/larval_olfaction/  683 
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 684 
Supplementary Figure 1.  Validation of temporal and spatial odorant profiles in 685 

microfluidics device, using a fluorescent dye. A. Change in fluorescence intensity during 686 

delivery of 5 sec step pulses of increasing concentration of fluorescein dye, each followed by 5 687 

second of water. Inset shows zoom-in of dashed box, indicating stimulus transition time is ~20 688 

ms.  B. Combination of valve states required to generate the stimulation sequence in shaded 689 

area of panel A; 1 and 0 indicate valve is open or closed, respectively. CW represents water 690 

channel, CC1 and CC2 represent control channels that allow stimulus switching, and C7 and C8 691 

represent odorant delivery channels and only open prior to and during stimulus delivery. C. 692 

Images of fluorescein dye, representing an odorant stimulus, in the microfluidics device during 693 

each state shown in panel B (water, stimulus 7, stimulus 8). Cross mark indicates closed 694 

channels, star marks the location of the larva’s “nose”. Scale bar is 300 µm.  695 
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 696 
Supplementary Figure 2.  Anatomical map of ORN dendritic organization. A. Image of each 697 

ORN’s dendritic location using GFP to label a specific ORN and RFP to label all ORNs.  Larvae 698 

expressing OrX>GFP, Orco>RFP, where OrX is a specific olfactory receptor. We infer the 699 

vacancy in bundle 2 is Or33a. During functional imaging, there were no strong signals from this 700 

neuron. No expression of Or2a and Or7a were observed in first instar larvae. B. Summary 701 

schematic of stereotyped ORN position in each dendritic bundle for left and right dorsal organs.   702 
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 703 
Supplementary Figure 3. Effect of stimulus duration and sequence on ORN response. A. 704 

Or35a-ORN responses to 0.5, 1, 2, 5 and 10 seconds of 10-5 dilution of 3-octanol. The 705 

maximum response saturates when odorant pulse is longer than 5 seconds. B. Or35a-ORN 706 

response to increasing (top panel), primarily decreasing (middle panel), and random (bottom 707 

panel) concentration sequences of 3-octanol pulses, delivered at 5 seconds each. The response 708 

amplitude to each concentration level is history independent.  709 
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 710 
Supplementary Figure 4. Coactivation of ORNs with similar cognate odorants at high 711 

concentrations.  Heatmap of peak responses of four ORNs to four alcohol odorants, across 712 

four concentrations of each odorant. Activities normalized by maximum response amplitude. 713 

Neural images show responsive ORNs in dorsal organ ganglion during calcium imaging at the 714 

highest odorant concentrations.   715 
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 716 

 717 
Supplementary Figure 5. PCA analysis of ORN dose-response data. A. Percentage of 718 

variance explained by each principal component. B. and C. Transform of odorant vectors in 719 

PCA space (Fig 2B) to spherical coordinates (inset of B). Odorant vector length increases 720 

monotonically with increasing concentration. Angular direction of different odorants (represented 721 

by dot color) separate, but aggregate for direction of different concentrations of the same 722 

odorant (dot size). 723 
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 724 
Supplementary Figure 6. Aromaticity index highly correlated to major PC of EC50 matrix. 725 

A. Actual neural activity data is highly correlated with simulated data generated using the Hill 726 

equation and fitted parameters. Scatter plot includes all non-zero data in Fig 2A. Dashed line 727 

indicates 𝑦 = 𝑥.𝑅F is 0.98. B. Percentage of variance explained by each PC of the PCA on the 728 

−ln	(𝐸𝐶12). Data compared with the corresponding results from 1000 randomly shuffled data. C. 729 

Correlation plot between each odorants projection on the 1st PC of −ln	(𝐸𝐶12) matrix and its 730 

aromaticity index.  731 
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 732 
Supplementary Figure 7. Linear-nonlinear model of ORN temporal dynamics. A. Multiple 733 

trial responses of Or42a-ORN to the same m-sequence of 10-7 dilution of 3-pentanol. B. The 734 

linear filter calculated from reverse correlation of the input-output from the first trial of panel A. C. 735 

Non-linear transfer function calculated by comparing measured and predicted responses using 736 

the linear filter. D. Validation of the linear-nonlinear model by comparing predicted and 737 

measured responses to novel m-sequence stimuli. 738 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/208538doi: bioRxiv preprint 

https://doi.org/10.1101/208538
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

 739 
Supplementary Figure 8. Comparison of ORN temporal filters. A. Normalized filters of three 740 

ORNs responding to various odorant stimuli. B. and C. Distribution of peak time (B.) and decay 741 

time (C.) of 31 filters measured from various ORN and odorant stimuli. Distributions of peak and 742 

decay times were fit to Gaussian distributions with mean and variance labeled below histogram.  743 

 744 

Movie 1. Dose-dependent activation of ORNs. Left: Calcium imaging of 21 pairs of larval 745 

ORNs in response to increasing concentrations of the 1-pentanol odorant, from 10-7 to 10-3 746 

dilutions. Movie starts by scanning through the imaging volume to identify ORNs activated at the 747 

highest concentration level. Three ORNs are responsive on the left side and five on the right 748 

side. ORN identity was confirmed from the dendrite location and response to panel of 13 749 

cognate odorants (not shown in the movie). Right:  Responses of ORNs to step pulses of 750 

odorant stimuli. 751 

 752 

Movie 2. ORN responses to pseudorandom white noise stimulus. Top left, stimulus delivery 753 

marked by fluorescence. Bottom left, axon terminal of Or45a-ORN responding to the white noise 754 

stimulus using 10-7 dilution of 2-nonanone. Top and bottom right, real time plots of the input 755 

stimulus and ORN response during an experiment. 756 

 757 
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Supplementary Table 1. Raw activity data of 21 ORNs responding to 19 odorants at five 758 

concentration levels collected from 122 recordings.   759 
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