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Abstract

Animals can identify an odorant type across a wide range of concentrations, as well as
detect changes in concentration for individual odorant type. How olfactory
representations are structured to support these functions remains poorly understood.
Here, we studied how a full complement of ORNs in the Drosophila larva encodes a
broad input space of odorant types and concentrations. We find that dose-response
relationships across odorants and ORN types follow the Hill function with shared
cooperativity but different activation thresholds. These activation thresholds are drawn
from a power law statistical distribution. A fixed activation function and power law
distribution of activation thresholds underlie invariances in the encoding of odorant
identity and intensity. Moreover, we find similar temporal response filters of ORNs
across odorant types and concentrations. Such uniformity in the temporal filter may
allow identity invariant coding in fluctuating or turbulent odor environments. Common
patterns in ligand-receptor binding and sensory transduction across olfactory receptors
may give rise to these observed invariances in the olfactory combinatorial code.
Invariant patterns in the activity responses of individual ORNs and the ORN ensemble

may simplify decoding by downstream circuits.
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Introduction

The abilities to identify odorants across a wide range of concentrations and detect changes in
odorant concentration are essential for olfactory perception and behavior. Olfactory systems use
combinatorial codes to encode large numbers of odors with smaller numbers of olfactory
receptor neurons (ORNs) (Malnic et al., 1999). Each ORN typically expresses one of a large
repertoire of olfactory receptors (Ors) (Buck and Axel, 1991). A single Or can be activated by
many different odorants, and a single odorant can activate many different Ors (Friedrich and
Korsching, 1997). Different odorants can be discriminated by distinct activity patterns across an
ensemble of olfactory neurons (Hallem and Carlson, 2006; Kreher et al., 2005; Nara et al.,
2011). The olfactory code also conveys information about odorant intensity as higher odorant
concentrations tend to activate more ORNs (Kajiya et al., 2001; Wang et al., 2003). Different
odorants may also evoke different temporal patterns in neuronal activity, augmenting
information coding using time (Friedrich and Laurent, 2001; Laurent et al., 2001; Junek et al.,
2010; Smear et al., 2011).

Recent studies have uncovered coding properties at the single cell and population levels that
may allow for scale-invariant representation of olfactory information such as odorant type and
intensity. At the individual ORN level, ORN responses to temporal patterns in odorant
presentation may be converted into predictable activity patterns by stereotyped filters (Nagel
and Wilson, 2011; Martelli et al., 2013). At the population level, inputs to the olfactory bulb may
encode odorants in concentration invariant spatial representations (Wachowiak et al., 2002;
Cleland et al., 2007). At the statistical level, the firing rates of Drosophila ORNs appear to be
drawn from an odor invariant probability distribution (Stevens, 2016). However, a quantitative
characterization of such invariances in olfactory representation by a complete ORN ensemble is

still missing.

In this study, we characterized the ORN ensemble of the Drosophila larva to a panel of odorant
types and concentrations that spanned the selectivity of all olfactory sensory neurons. The
Drosophila larva offers the advantage of numerical simplicity for dissecting an olfactory circuit
that shares glomerular organization with adult insects and vertebrates (Vosshall and Stocker,
2007; Su et al., 2009). We find that ORN-odorant pairs share the same activation function: ORN
activity increases with concentration along the same Hill curve for any odorant type but with
odorant-specific thresholds. We find that the statistical distribution of these ORN sensitivities to

odorants across olfactory space follows a power-law. Furthermore, ORNs share a stereotyped
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temporal filter shape such that ensemble level responses may be concentration-invariant in a
fluctuating environment. Our systems-level characterization of an entire olfactory periphery
across a wide range of odorant types and concentrations has revealed individual and ensemble
level ORN patterns that allow for invariant representation of olfactory information, with

significance for downstream processing.

A microfluidic setup for in vivo calcium imaging of larval ORNs

Small size and optical transparency make the larva’s olfactory system — like that of C. elegans —
suitable for in vivo multineuronal calcium imaging with precise and flexible microfluidic control of
olfactory inputs (Chronis et al., 2007). We developed a microfluidic device for an intact, un-
anesthetized larva with up to 16 fluid delivery channels, allowing us to image olfactory
processing in single animals exposed to a broad input space (Fig 1A-D, Supp Fig 1). Fluid
delivery allows for precise control of odorant concentration, timing between stimulus delivery,
and stimulus waveform (Andersson et al., 2012). Furthermore, with the microfluidics setup we
can record from ensembles of olfactory neurons with single cell resolution while delivering
inputs that span odorant types and concentrations. Calcium imaging and genetic labeling allow
us to record the activity of any individual ORN alone or the activity of all ORNs simultaneously,
by expressing the calcium indicator GCaMP6m (Chen et al., 2013) under the control of either a

specific ORN Gal4 driver or the Orco-Gal4 driver, respectively.

Anatomical and functional identification of individual ORNs

The larva has 21 ORNSs located in each bilaterally symmetric dorsal organ ganglion (DOG). The
layout of ORN dendrites aids in segmenting and identifying all cells during multineuronal
calcium imaging. The 21 ORN sensory dendrites are organized into seven parallel bundles,
each containing three sensory dendrites, that project from an ORN soma to the dorsal organ, a
perforated dome on the animal’s head (Singh and Singh, 1984). When a larva is immobilized in
the microfluidic device, four ventral and three dorsal dendritic bundles are easily distinguished
(Fig 1E). We mapped individual ORNSs to each bundle by expressing RFP in all ORNs and GFP
in a selected ORN using a cell specific Gal4 driver (Supp Fig 2). We found that the three ORN
dendrites located in each bundle were stereotyped (confirmed in n = 5 animals for each cell
type). Thus, by following the activation of any cell body in the DOG to its corresponding dendritic

bundle, its possible identity is narrowed to one of three ORNSs.
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To further aid in the identification of individual ORNs, we used a set of odorants, termed private
odorants, that activate single ORNs at low concentrations. Mathew et al. (2013) assembled a
panel of 18 private odorants for each larval ORN by expressing a single functional larval
olfactory receptor (Or) in a mutant adult ORN devoid of the endogenous Ors, and recorded its
electrical activity in response to olfactory cues. We delivered these private odorants to larvae in
our microfluidic setup and found that 18 of the 21 ORNSs, in each DOG, are responsive to these
odorants: none of the private odorants in the panel activate the Or33a or Or63a ORNSs and the
Or49a ORN is only activated by a wasp pheromone (Ebrahim et al., 2015). We found that 13 of
the private odorants are sufficient to identify all ORNs when examined in conjunction with
dendritic bundle location (Fig 1F). Together, the anatomical map and functional responses to
this subset of private odorants provides a comprehensive means of identifying and segmenting

the ORNSs responsive to any olfactory input during multineuronal imaging.

ORN ensemble responses across odorant identities and intensities

The panel of 18 private odorants provides a maximally decorrelated set of stimuli that spans the
larval olfactory system. To characterize the olfactory representation of these stimuli, we
exposed larvae to all 18 private odorants across the concentration range of olfactory sensitivity.
We measured the response amplitude of every cell to step stimuli across five orders of
magnitude in concentration, from 107 dilution (where all private odorants were at or below
threshold of ORN detection) to 10 dilution (where many ORNs had reached saturation). We
used five second step pulses interleaved with 20-60 seconds of water, a protocol that allowed

us to measure peak responses and allowed for full recovery of neural activity (Supp Fig 3).

We verified that all private odorants were highly selective for their target ORNs at low
concentrations, with activity expanding to additional ORNs at higher concentrations. For
example, 1-pentanol was identified as a private odorant for the Or35a-expressing ORN. At 107
dilution, 1-pentanol slightly evoked activity specifically in the Or35a-ORN. Higher concentrations
of 1-pentanol gradually saturated the Or35a-ORN, while also activating four other ORNs
expressing either Or67b, Or85c, O13a, or Or1a (Movie 1). Interestingly, each additional ORN
recruited by 1-pentanol corresponded to a private odorant that is also a long chain alcohol
(Mathew et al., 2013). We next examined the ensemble-wide dose-response curves for these
additional private alcohol odorants. Low concentrations of each private alcohol specifically
activated its target ORN. Higher concentrations reliably activated the Or35a-ORN, Or13a-ORN,
Or67b-ORN, and Or85c-ORNs to varying degrees (Supp Fig 4). Furthermore, we performed
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the dose-response analysis across the entire ORN ensemble for all 18 private odorants (Fig.
2A). We found a similar pattern of overlapping activation for ORNs sharing an odorant with a
similar molecular structure. Thus, as odorant concentration increases, a family of molecules with
similar structure will cross-activate the subgroup of ORNSs that are particularly selective for

molecules within the same family.

As in other animals, the olfactory code changes with increasing odorant intensity (Malnic et al.,
1999), but with a pattern of ORN recruitment that is correlated with molecular selectivity. To
discern this pattern, we used principal component analysis (PCA) of the responses of all ORNs
measured against all private odorants across all concentrations. We visualized the data by
projecting the ORN activity responses in the space of the first three principal components (PCs)
(Fig 2B), which account for 60% of the variance in the data (Supp Fig 5A). At the lowest
concentrations, olfactory representations at or below the detection threshold across odorants
were tightly clustered at a central point in the PCA space. At higher concentrations, olfactory
representations diverged, increasing distance monotonically from the central point (Fig 2B,
Supp Fig 5B). Interestingly, the trajectory of each odorant tended to follow its own direction in
PCA space. This pattern is particularly clear for aliphatic and aromatic odorants. Aliphatic
odorants with long carbon chains form trajectories projecting in a similar direction of PCA space,
since higher concentrations of these odorants tend to selectively recruit the other ORNs with
aliphatic private odorants. The same was true for aromatic odorants and the corresponding
group of ORNSs with private odorants of this type (Fig 2B). The vectors corresponding to
structurally similar molecules were separated by small angles (Fig 2B, Supp Fig 5C). Thus,
visualization of ORN responses in PCA space reveals structure in the ensemble representation
of odorant identity over a large range of intensities. The population wide response maintains a

fixed direction in the representation of each odorant as concentration rises.

Dose-response curves share the same steepness but vary in threshold concentrations
We uncovered additional invariant structure when we analyzed the dose-response relationship
of individual odorant-ORN pairs. We found that the subset of all pairs that reached saturation

(n= 21 of 324 pairs) were well described by a Hill function:
y - :Vmax Cn+EC50n ’
where y,,,., is the maximum response amplitude measured by the calcium indicator, c is the

odorant concentration, n is the Hill coefficient or steepness of the linear portion of the curve, and
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165  ECs is the half-maximal effective concentration. The Hill function canonically describes binding
166  affinities in ligand-receptor interactions such as that between odorants and olfactory receptors.
167  Here, we find that the Hill equation describes a common concentration dependent nonlinearity in
168 each dose-response relationship. After normalizing each dose-response curve by y,,,, and
169  aligning by the ECs,, all 21 dose-response curves collapsed onto a single Hill function with n =
170 1.5+ 0.1 (Fig 3A). This common Hill coefficient suggests a similar degree of cooperativity in
171 odorant binding and signal transduction across the ORN repertoire. Assuming the same

172  cooperativity applies to the other odorant-ORN pairs, we estimated the ECz, value for all

173  remaining pairs. The complete ECg, matrix reveals the distribution of sensitivities across the
174  ORN ensemble to each odorant (Fig 3B).

175

176 A simple coding scheme emerges. A common Hill function, with the ECs, value as the only free
177  parameter, describes the dose-response relationship for any odorant-ORN interaction. This
178  model, using the complete matrix of estimated ECs, values, accounts for 98% of the variance in
179  the original dataset (Supp Fig 6A). For each odorant, the vector of ECg, values (a row in the
180  matrix in Fig 3B) specifies the identity and threshold of each activated ORN with increasing
181 odorant concentration. A corollary of having a unique ECs, vector for each odorant is having a
182  unique direction for the trajectory of population responses across concentrations (Fig 2B).

183

184  To study structure in the distribution of ORN sensitivities, we applied PCA to the matrix of

185 In(1/ECs,) (see Methods). We found that the first principal component (PC) explains a

186  significant portion of the variance (Supp Fig 6B). We projected the vector of In(1/ECs,) values
187  associated with each private odorant onto this first PC, and found that this projection strongly
188  correlated with aromaticity index (Supp Fig 6C), one of the major quantitative metrics of odorant
189  molecular structure that has been linked to olfactory discrimination across animals (Haddad et
190 al., 2008). This observation explains why the trajectories of aromatic and aliphatic odorant

191 representations point in opposite directions in Fig. 2B.

192

193 Power law distribution of ORN ensemble sensitivities

194  Next, we examined the properties of the EC5, values themselves. We extracted all measured

195 elements from the EC5y matrix and constructed a cumulative density function (Fig. 3C). The

196 data closely follows a line in the log-log plot, indicating a power law: P(ﬁ) « (%)"1‘1 , A=
50 50

197  0.35.


https://doi.org/10.1101/208538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/208538; this version posted October 25, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

aCC-BY-NC-ND 4.0 International license.

A power law distribution of olfactory sensitivities means that a relative change of concentration
will trigger the same mean relative change in the number of activated ORNSs, irrespective of
odorant type. A power law distribution of olfactory sensitivities, together with a common Hill
function, should give rise to ensemble-wide activity that follows a power law relationship with
respect to concentration and has an exponent 1 (See Methods). We confirmed this prediction in
our experimental data (Fig 3D). The mean activity of the olfactory ensemble grows with odorant
concentration following a power law with an exponent of 0.38+0.06, which is close to the 0.35
exponent found from fitting the EC5, matrix (Fig 3C). Thus, on average, activity expands across
the ORN ensemble at the same rate with increasing relative concentration, irrespective of

odorant type (as shown in Fig. 2).

ORN-odorant responses share similar temporal characteristics

An additional challenge to olfactory coding of a wide variety of odorant types across
concentrations arises from complex temporal dynamics due to physical fluctuations, such as
turbulence or convection, in the stimulus itself. To examine how such fluctuations affect ORN
responses, we compared the conversion of temporal patterns of olfactory input for different
odorant-ORN pairs across odorant intensities. To do this, we used reverse-correlation analysis,
subjecting larvae to “white noise” olfactory input by stochastically switching between odorant
and water delivery and seeking the temporal filter that best maps olfactory inputs into calcium
dynamics (Geffen et al., 2009; Kato et al., 2014). We found that random olfactory input could
evoke fluctuating calcium activity in an ORN, and repeated presentation of the same input
pattern would evoke consistent responses from trial to trial (Supp Fig 7A). The systematic
conversion of the stimulus to response waveform is well characterized by a linear-nonlinear (LN)
model. A linear transfer function estimates the relative weight of each time point in stimulus
history to determine the time-varying response amplitude (Supp Fig 7B). The convolution of the
linear transfer function with stimulus history is then passed through a static nonlinearity to
correct for saturation (Supp Fig 7C). We verified the LN model by predicting the response to a

novel random input using a filter calculated from different random inputs (Supp Fig 7D).

We measured the linear transfer function for 3-octanol, the private odorant for the Or85¢c-ORN,
across the concentration range used to characterize the ECs, matrix. At the lowest
concentrations of 3-octanol, a filter describing ORN activity only emerges for the Or85¢c-ORN

(Fig 4A). At higher concentrations, filters begin to emerge for additional ORNs. These filters for
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232  each ORN, when normalized for response amplitude, were virtually identical in their temporal
233  response profiles as single lobed functions with similar peak and decay times (Fig 4B, Supp
234  Fig 8B-C). The shapes of the filters for different odorants activating the same ORN are also
235  virtually indistinguishable, on the order of ~100 ms (Fig 4C, Supp Fig 8A-C). This result is

236  constrained by the calcium indicator, which has a time constant associated with calcium binding
237 to GCaMP6m, making it difficult to resolve differences in ORN temporal filters on a shorter time
238 scale. Nonetheless, recent electrophysiological measurements of odorant-evoked activity in the
239 ORNSs of adult Drosophila, under the same LN model, also report remarkable similarity in the
240 temporal pattern of filters across odorant-receptor pairs, within ~10-20 ms (Martelli et al., 2013).
241

242 A common temporal filter across ORNs could simplify the olfactory code in an environment with
243  fluctuating odorant concentrations. A constant filter in conjunction with uniform scaling of ORN
244  activity over concentration could allow the ensemble of responsive neurons to maintain the

245  same relative amplitudes of activation over time. These relative amplitudes would be correlated
246  with the ORN ensemble EC5, values for any odorant, regardless of whether an animal is in a
247  static or fluctuating odorant environment.

248

249 Discussion

250  Previous efforts at a systems-level characterization of ORNs necessarily focused analysis on
251 particular cell types, odorants, or odorant concentrations (Hallem and Carlson, 2006; Mathew et
252 al., 2013; Nagel and Wilson, 2013; Martelli et al., 2013; Asahina et al., 2009). The small size of
253  the Drosophila larva, combined with multineuronal imaging and new microfluidic tools, has

254  allowed us to characterize the responses of a complete ORN ensemble to a panel of odorant
255  types and concentrations that spans the selectivity of olfactory sensory neurons. This broad
256  characterization has uncovered regular patterns in the response of individual ORNs and of the
257 ORN ensembile. First, each ORN response to odorants exhibits the same activation function
258  shape with variant sensitivity levels. Furthermore, consistent temporal filters that convert

259  different stimulus waveforms into ORN calcium activity patterns will make the relative activities
260  of different ORNs robust despite fluctuating inputs. Second, the ORN ensemble across all

261  tested odorants exhibits a constant rate of increase in activity with increasing concentration.
262  Underlying this effect, we have identified a power-law distribution in the sensitivities of odorant-
263  ORN interactions. The power law distribution may allow downstream circuits to estimate the
264  relative concentrations of any odorant by the relative extent of ORN activity using the same

265 quantitative relationship for any odorant. Invariant quantitative patterns in single and ensemble-
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266 level ORN activities could allow shared mechanisms to extract olfactory features, even in

267  fluctuating environments, across olfactory space.

268

269 Different neurons are required to sense odorants in different regimes of odorant concentration
270 needed for long-range chemotaxis in the Drosophila larva (Asahina et al., 2009). Encoding a
271 broad concentration range requires a distribution of ORNs with varying sensitivities. Our

272  analysis reveals that olfactory sensitivities follow an invariant statistical distribution across

273  odorants and ORN types. This power law distribution implies a fixed ratio between the relative
274  change in ORN ensemble activity for a fixed change in odorant concentration. Detection of
275 relative change in stimulus intensities has been observed in psychophysical studies of diverse
276  sensory modalities. A notable example is Stevens’s Law in human psychophysics, where

277  response magnitudes have been shown to scale with the logarithm of stimulus intensities across
278  sensory modalities including olfaction (Stevens, 1957). Our results reveal that a phenomenon
279 analogous to Stevens’s Law can be attributed to the olfactory sensory periphery itself, a direct
280 outcome of the statistical distribution of response sensitivities across an ensemble.

281

282 A combinatorial olfactory code will arise from a distribution of ORN sensitivities to different
283  odorant molecules. Changes in concentration necessarily lead to changes in the combinatorial
284  code, but with correlated changes depending on the odorant. The basis of this correlation is a
285  unique vector of sensitivities across ORNs for each odorant. This constraint allows each

286  odorant’s identity to be coded in a concentration-independent manner as a direction in an

287  olfactory coding space. It has been suggested that extracting relative glomerulus activity across
288  odorant concentrations may allow the concentration-invariant coding of different odorant types
289 (Wachowiak et al., 2002; Cleland et al., 2007). For animals that sniff, the change in

290 concentration through inhalation generates a reliable temporal sequence of ORN activity that
291 could represent the vector of ORN sensitivity (Smear et al., 2011). As we have found in

292  Drosophila, a common activation function and temporal filter — which may arise from

293  stereotyped receptor cooperativities and shared transduction dynamics among ORNs — would
294  facilitate the decoding that takes place by such mechanisms to extract concentration invariant
295 representations of odorant identity.

296

297  To our knowledge, a power law distribution of olfactory sensitivities has not yet been described
298 in any animal. One possibility for the power law in olfactory sensitivity is to match the

299  distributions of odorant concentrations found in natural olfactory environments. Natural odors

10
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are mixed by convection and turbulence, physical processes that are rich in power law
dynamics (Catrakis and Dimotakis, 1996). Power laws appear in the statistics of other natural
stimuli as well. Natural visual scenes exhibit a power law relationship between spectral power
and spatial frequency (Field, 1987; Simoncelli and Olshausen, 2001). The loudness of natural
sounds across frequencies are distributed by power laws (Theunissen and Elie, 2014). Sensory
systems, in general, may adapt the statistical distribution of their sensitivities to their natural

environments.

Another possibility is that the observed power law distribution represents an optimization of the
olfactory code. It has recently been proposed that the olfactory code maximizes informational
entropy (Stevens, 2015). Given the constraint of fixed mean firing rates among ORNSs, this
model leads to an exponential distribution of ORN firing rates evoked by odorants measured in
the adult Drosophila antenna (Stevens, 2016). Interestingly, another prediction of this
optimization is that the overall activity of the olfactory ensemble should increase as a power law
of odor concentration, as we have also experimentally observed in the Drosophila larva and, in

our case, connected to the statistical distribution of olfactory sensitivities across ORNSs.

Finally, the molecular recognition mechanism of olfactory receptors may themselves give rise to
a power law distribution in ORN sensitivities. Lancet et al., 1993 proposed a molecular
recognition system in which a receptor has multiple selective binding sites. Each binding site
contributes in a combinatorial manner to the binding strength between a receptor and molecule.
This simple quantitative model generates a power law sensitivity distribution for receptors with
random sets of binding sites. The statistics of an olfactory code using such a molecular
recognition system would be robust to expansion of the ORN periphery, as occurs with
Drosophila in which the adult has nearly triple the number of receptor types as that found in the
larva. Furthermore, a conserved statistical structure in the olfactory code would allow

downstream circuitry to employ similar decoding mechanisms across an animal’s lifetime.
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342  Figure 1. Anatomical and functional identification of individual ORNs within the ORN

343  population. A. Schematic of the setup for confocal imaging of a larva in a microfluidic device
344  during odorant delivery. B. 16 channel microfluidic device (* indicates stimulus delivery channels,
345  arrowhead marks larva loading inlet, arrow marks fluid outlet). C and D. Zoomed-in view of an
346  immobilized larva in the loading channel. Red indicates RFP labeling of ORN dendrites and cell
347  bodies. E. Larval ORN sensory dendrites are organized into seven parallel bundles (numbered).
348  All ORNs shown in red, Or35-ORN shown in green, using Or35a>GFP; Orco>RFP genotype.
349 Dashed line in lateral view marks separation between ventral and dorsal bundles. F. Each of 13
350 odorants at low concentrations primarily activates only one ORN within each bundle. Size of

351 shaded circles indicates normalized neural activity (AF/F) of the specified ORN to an odorant. *

352 indicates that location of Or33a-ORN was inferred from vacancy in bundle 2 (Supp Fig 2).
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354  Figure 2. ORN population responses to different odorants and concentrations. A.
355  Averaged peak responses of 18 ORNSs to a panel of 18 odorants, each delivered at five

356  concentrations (n = 5 for each odorant type and concentration; odorant pulse = 5 s). B. ORN
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population responses visualized in PCA space. Each dot represents the projection of ORN
population activity onto the first three principal components. Size and color of dots correspond
to odorant concentration and type, respectively. Dots from the same odorant are linked and the
molecular structure of the odorant is shown adjacent to each trajectory. Aromatic versus

aliphatic odorants cluster in separate regions of PCA space.
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Figure 3. Scaling laws for individual and ensemble ORN activity. A. Normalized ORN
responses for various odorant-ORN pairs across relative odorant concentration (actual
concentration divided by ECs,). Individual curves for plotted odorant-ORN pairs collapse onto a
single curve described by a Hill equation with a shared Hill coefficient of 1.45. Black line
indicates the fitted Hill equation, different colored and shaped points represent data from unique
odorant-ORN pairs. B. Matrix of ECs, values fit to dose-response data from each odorant-ORN
pair (* for black squares indicates that odorant-ORN pair had no response within the tested
concentration range). C. Log-log plot of the cumulative distribution function of 1/ECs, values.
The dashed line is a linear fit to the data and has a slope of -0.35. D. Log-log plot of average
neuron activity across all odorant-ORN pairs for each concentration. The error bars represent

the standard error. Least-squares fit line has a slope of 0.38+0.06 (R? = 0.99).
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375 Figure 4. Temporal filters of ORN response. A. Linear filters of 7 ORNs responding to 3-

376  octanol across five concentrations. Black curve indicates the averaged filter from data across

377  multiple animals (individual filters shown in gray). B and C. Comparison of filter waveforms for
378  the same odorant (10™ dilution of 3-octanol) activating different ORNs (B), and the same ORN
379  (Or85c¢c-ORN) responding to different odorants and concentrations (C). All filters were

380 normalized by their peak amplitude.
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Methods

Fly stocks

Flies were reared at 22°C under a 12:12 hour light/dark cycle in vials containing conventional
yeast agar medium. Adult flies were transferred to a larvae collection cage (Genesee Scientific)
containing a grape juice agar plate and a dime-sized amount of fresh yeast paste. Flies could
lay eggs on the grape juice agar plate for two days and then the plate was removed for
collection of first instar larvae. The following fly lines were used in this study: UAS-
mCherry.NLS; UAS-GCaMP6m, UAS-mCD8::GFP; Orco::RFP, Orco-Gal4 (BL23292), Or1a-
Gal4 (BL9949), Or13a-Gal4 (BL9945), Or22c-Gal4 (BL9953), Or24a-Gal4 (BL9958), Or30a-
Gal4 (BL9960), Or33b-Gal4 (BL9963), Or35a-Gal4 (BL9968), Or42a-Gal4 (BL9970), Or42b-
Gal4 (BL9971), Or45a-Gal4 (BL9976), Or45b-Gal4 (BL9977), Or47a-Gal4 (BL9982), Or49a-
Gal4/Cyo; Dr/TM3 (qgift from John Carlson lab), Or59a-Gal4 (BL9990), Or63a-Gal4 (BL9992),
Or67b-Gal4 (BL9995), Or74a-Gal4 (BL23123), Or82a-Gal4 (BL23125), Or83a-Gal4 (BL23128),
Or85c-Gal4 (BL23913), Or94b-Gal4 (BL23916).

Microfluidic device design, fabrication, and calibration

Odorant stimuli were delivered using a microfluidic device (Fig 1A) designed with a 300 um
wide and 70 ym high larva loading channel. The channel tapered to a width of 60 pm in order to
immobilize the larva. The tapered end was positioned perpendicular to a stimulus delivery
channel to allow for odorant flow past larval ORNs. The device was designed with a “shifting-
flow strategy”, similar to that described in Chronis et al, 2007. The 16-channel device included
two control channels located at the periphery, 13 odorant channels in the middle, and one water
channel to remove odorant residue. Each channel was of equal length to ensure equal
resistance. During an experiment, a combination of three channels was always open: the water
channel, one of the 13 odorant delivery channels, and one of the control channels. The 13
odorant channels could be sequentially opened to deliver any odorant. Switching between the
two control channels directed either water or an odorant to flow past the larva’s ORNs, as

demonstrated in Supp Fig 1.

Fluorescein dye was used to measure the switching time between water and odorants as well
as to verify the spatial odorant profile in the device during stimulus delivery. Our standard air
pressure for stimulus delivery was 6 psi, which led to a flow rate of 0.5 mL/min in the microfluidic
device. With these conditions, the switching time between water and odorant was ~20 ms
(Supp Fig 1A).
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The microfluidic device pattern was designed using AutoCAD. The design pattern was then
transferred onto a silicon wafer using photolithography. The wafer was used to fabricate
microfluidic devices using polydimethylsiloxane (PDMS) and following the standard soft
lithography approach (Anderson et al, 2000). The resulting PDMS molds were cut and bonded
to glass cover slips. Each microfluidic device was used for only a single panel of odorants in

order to prevent contamination.

Odorant delivery setup

Odorants were obtained from Sigma-Aldrich, diluted in deionized (DI) water (Millipore) and
stored for no more than 2 days. To prevent contamination, each odorant concentration was
stored in a separate glass bottle and delivered through its own syringe and tubing set. Panels of
odorants were delivered using a 16-channel pinch valve perfusion system (AutoMate Scientific,
Inc.). Each syringe and tubing set contained a 30 mL luer lock glass syringe (VWR) connected
to Tygon FEP-lined tubing (Cole-Parmer), which in turn was connected to silicone tubing
(AutoMate Scientific. Inc.). The silicone tubing was placed through the pinch valve region of the
perfusion system as its flexibility could allow for the passage or blockage of fluid flow to the
microfluidics device. The silicone tubing was then connected to PTFE tubing (Cole-Parmer),
which was then inserted into the microfluidic device. A microcontroller and custom written
Matlab code were used to control the on/off sequence of the valves and to synchronize valve

control with the onset of recording in the imaging software (NIS Elements).

During the entire recording, the larva experienced continuous fluid flow, with a flow rate of
0.5mL/min or 0.2m/s. In the dose-response experiments, the stimuli sequences consisted of five
seconds of odorant pulses followed by a washout period using water. The duration of odorant
pulses was chosen such that ORN responses reached maximum amplitude. The washout time
was adjusted to allow for ORN recovery back to baseline activity levels, and thus ensured that
measurements of ORN responses were independent of stimulus sequence (Supp Fig 3 and
Movie 1). For the white noise experiments, a 1024-step m-sequence of odorant stimulus and

water was delivered with a time step of 0.2 s (Movie 2).

Calcium imaging
A first instar larva was loaded into a microfluidic device using a 1 mL syringe filled with 0.1%
triton-water solution. Using the syringe, a larva was pushed towards the end of the channel,

where the 60 ym wide opening mechanically trapped further larval movement. Each larva was
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536  positioned such that its dorsal organ (nose) was exposed to the stimulus delivery channel and
537 its dorsal side (where ORN cell bodies are located) was closest to the objective. Larvae were
538 imaged using an inverted Nikon Ti-e spinning disk confocal microscope with a 60X water

539 immersion objective (NA 1.2). A charged-coupled device (CCD) microscope camera (Andor

540 iXon EMCCD) captured images at 30 frames/sec. ORN cell bodies were recorded by scanning
541  the entire volume (~20 slices with a step size of 1.5 ym) of the dorsal organ ganglion (Movie 1),
542  while ORN axon terminals were recorded from a single slice of the antennal lobe (Movie 2).
543  Dose-response experiments (data shown in Fig 1-2, Supp Fig 3-4 and Movie 1) were

544  performed using larvae of the Orco>GCaMP6m, Orco>mCherry.NLS genotype and recording
545  from ORN cell bodies. White noise experiments (data shown in Fig 4, Supp Fig 7-8 and Movie
546  2) were performed using larvae expressing GCaMP6m in a single ORN (e.g. Or42a>GCaMP6m
547  used in Supp Fig 7) and recording from ORN axon terminals.

548

549  Dose response analysis

550  Custom code written in ImagedJ was used to track and identify each ORN as well as its

551  responses to odorant stimuli. Slight movement artifacts were corrected by aligning frames using
552  mCherry NLS labeling of ORN cell bodies and the ImageJ TurboReg plugin (Thevenaz et al,
553  1998). Each ORN activated in response to an odorant stimulus was visually identified using both
554  the anatomical location of its dendritic bundle and the functional map of cognate odorant to

555  ORN activation (Fig 1 E, F, Supp Fig 2). ORN identification was performed independently by
556  two experimenters to ensure accuracy. Changes in fluorescence were then quantified

557  as (Fpeax — Fo)/Fo, Where F, was the average ORN intensity sampled from the frames

558  immediately preceding odorant delivery and F,.q; was the highest intensity in ORN

559  fluorescence during odorant delivery. Each odorant stimulus was repeated with at least 5 trials.
560 The raw response data is summarized in Supp Table 1.

561

562 The heatmap in Fig 2A was generated by directly averaging the peak responses across trials.
563  Simulated annealing was used to optimize the order of ORNs and odorants presented in this
564  heatmap, such that it minimized a loss function in which cost increased linearly with the distance
565 that activated odorant-ORN pairs were from the matrix diagonal. The response data was

566  normalized by the highest response level within each trial, averaged across trials, and then Z-
567  scored prior to performing PCA. The distance and direction of vectors shown in Supp Fig 5

568  were calculated for each data point in Fig 2B using the standard formulae for cartesian to polar

569 coordinate transformation.
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Dose-response curve fitting
A Hill equation with a unique set of parameter values was fit to the dose-response curve for

each odorant-ORN pair in our data set. The general form of the Hill equation is as follows:

n

Y = Ymax Equation 1

+ECsy"
where y,,,., is the maximum ORN response level across concentrations, c is the odorant
concentration, ECs, is the half-maximal effective concentration, and n is the Hill coefficient.
In the calcium imaging experiment, the maximum fluorescence intensity y,,,could be affected
by the detailed experimental settings and it is differently fitted for the curve of each odorant-
ORN pair. Here, the absolute value of y,,,, is not considered a coding feature, so in the

following analysis, we normalized the responses using Yax-

There were 21 odorant-ORN pairs saturated within the concentration range we studied. We
started by fitting these 21 curves using the Hill equation. We normalized the responses using
the ynqx for each odorant-ORN pair and shifted the x-axis using its ECs,. A scatter plot of the

normalized and shifted dose-response data for the 21 odorant-ORN pairs is shown in Fig 3A.

Next, we used a Hill equation function with y,,,, = 1 and EC5, = 0 to fit all 105 data points from
the 21 different odorant-ORN pairs. The resulting equation had a Hill coefficient n = 1.45, with
R? > 0.99. Next, we applied this Hill coefficient to fit odorant-ORN data pairs that did not
saturate in the concentration range we had tested. There were 19 additional odorant-ORN pairs

that were close to saturation and we could therefore estimate their y,,,,, and ECs, values well.

After fitting the 21 odorant-ORN pairs that had saturated as well as the 19 that were close to
saturation, we had at least one parametrized Hill equation for each odorant. To fit the remaining
odorant-ORN pairs that were not close to saturation within our tested concentration range, we
first assumed that each odorant had approximately the same y,,,, for each odorant (this was
calculated by averaging the y,,,, Of all ORNs that shared an odorant with a parameterized
logistic curve). Given the known y,,,, for each odorant and the fixed Hill coefficient, we could

estimate the EC5, for the remaining 100 weakly responding odorant-ORN pairs.

The EC5, of all odorant-ORN pairs is summarized in Fig 3B. The black elements in the matrix

indicate that the corresponding ORN showed no activity within the tested concentration range;
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we were unable to fit an ECg, value for these odorant-ORN pairs. We used the Hill equation and
fitted parameters for each odorant-ORN pair to generate the activity response data and found

that it was similar to the actual data (Supp Fig 6A).

Analysis of the EC5, Matrix

To perform PCA on the ECs, matrix, we first transformed the values to the —In(ECs,), such that
odorant-ORN pairs with a high sensitivity (small ECs,) were now represented by large values
and those that were less sensitive (large ECs,) had small values. The remaining pairs that that
did not have an ECs,value (the missing data, represented by black squares in Fig 3B),
represent pairs with a much lower sensitivity and were set to zero. Supp Fig 6B shows the
percentage of variance explained by each principal component (PC) once PCA was performed
on the —In (ECs,) matrix. In comparison to a shuffled matrix (in which each row is randomly
permuted), we found that only the first PC was significantly different (p < 0.0001 for 1000

instances of shuffled data).

We compared 32 descriptors of molecular structure from the E-Dragon software, which were
found in Haddad et al., 2008 to be relevant for olfactory coding across animals. We found that
one metric, aromaticity index of a molecule, had the highest correlation with the first PC of the

ECs, matrix with a coefficient of 0.8 (Supp Fig 6C).

We fit the power law distribution using code from (Clauset et al., 2009). The resulting fitting
index of 0.22 (large values mean better fit to the power law for this metric) is larger than the

threshold (0.1) needed to accept the power law hypothesis (Clauset et al., 2009).

Derivation of power law scaling of ORN ensemble responses from EC;, distribution
Here, we explain analytically the power law relation between odorant concentration and the
ensemble response of ORNs. Under the same Hill equation we used to fit individual dose-
response curves (Eq. 1, here we set y,,,,, = 1 for simplicity), assume that (i) ECs, follows a
power law distribution P(1/ECs,) o (1/ECso)~*~! (or equivalently an exponential distribution for
k = —In (ECsp): P(k) = e~ *(k=ko) [ > k) (i) the Hill coefficient n for all odorant-ORN pairs are
the same and greater than A (satisfied in the data as 1.45 vs. 0.35). If so, the ensemble
response follows an approximate power law form r(c) « c? for concentrations ¢ < e %0 (which

means the weakest response pair in the ensemble has not reached the half level). For
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636  convenience, we use the log scale of concentration and ECsy: x = In(c) , k = —In (EC5p) and the

637 logistic function in place of the Hill equation: y(x) = m.
638

639  This result can be intuitively obtained by considering the limiting case where the logistic function
640 s infinitely steep (large Hill coefficient) and is thus replaced by a step function. The ensemble

641 response combining a large number of odorant-ORN pairs can be expressed as an integral:

1

642 1(x) = [,y ARk, y(x k) = s

is the log-concentration. When y(x, k) is

643  a step function, the integral becomes P(k = —x), which is essentially the cumulative density
644  function for k. Given the distribution of k, this is exactly an exponential function r(x) = e*(**ko)
645  (or a power law function of ¢) for x < —k,, and saturates at larger concentrations.

646

647  For the general case of logistic activation, the integral does not have a simple form expression
648  butinvolves hyper-geometric functions. However, we can derive a simple closed form

649  approximation by approximating the logistic function f(x) = 1/(1 + e™™¥) using piecewise

650 exponential functions:

ean
e — 5 x<0
651 flx) = —onx
1—e ™ + , x>0

652  Such an approximation becomes asymptotically exact when the steepness n goes to infinity, or
653  when the absolute value of x goes to infinity. Substituting y(x, k) with this approximation, the
654  integral splits into segments, over which the integrand are sums of exponential functions, and

655 therefore can be easily integrated. This gives the closed form approximation of r(x):

222 2\ Alxtko) _ A nx+ko) A 2n(r+ko) _
656 T'(x) — (1 n2-72 47’12—12) € ° n-A2 € ° + 2(27’1—1) € ° » X S kO
_ L -n(x+kg) A —2n(x+kg) _
1 min € ° 2(2n+1) € o x>~k

657  For small concentrations, x < —k,, the leading term in the above expression is e***+*0)  since

658 1 < n. This explains that the ensemble response is approximated by an exponential function

659  with exponent A. Furthermore, the theory also predicts the magnitude (vertical shift in the log-log
2

660 plot of ensemble response as in Fig 3C), that is, r(x) = (1 + %i—z)e’“x*ko), which explains how

661 the Hill coefficient affect the ensemble response.
662

663 Reverse-correlation analysis
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White noise experiments were performed in a manner similar to those described in Kato, et. al,
(2014). Briefly, we used custom code written in MATLAB to control odorant and water switching
such that it followed an m-sequence. Calcium imaging was performed on the axon terminal of
individual ORNs at ~30 frames per second. Calibration and an example of such a recording is
shown in Movie 2. We then used a linear-nonlinear model to compare the m-sequence input to
ORN responses during a 150second interval (from 60 - 210 sec). An 18 second time window
was used for the linear filter, of which 15 seconds represented stimulus history in order to
ensure extraction of the full filter dynamics (Supp Fig 7B). Next, we applied the linear filter to
the data and compared this to the output in order to capture the nonlinear function. We found
that a sigmoidal function fits the nonlinear function well (Supp Fig 7C). We applied novel m-
sequences to validate the linear-nonlinear model (Supp Fig 7D) and found that they fit the data
well. Peak and decay times for each filter were found by extracting the time points
corresponding to the maximum amplitude and half maximum amplitude of the decay phase,
respectively. 454 filters were calculated from the recording of 138 larvae responding to various
m-sequence stimuli. Each of the 31 filters quantified in Supp Fig 7, are averaged across 10

trials.

Data, code and software can be found at: https://github.com/samuellab/larval olfaction

Microfluidic device pattern design can be found at:

https://metafluidics.org/devices/larval olfaction/
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684
685 Supplementary Figure 1. Validation of temporal and spatial odorant profiles in

686 microfluidics device, using a fluorescent dye. A. Change in fluorescence intensity during
687  delivery of 5 sec step pulses of increasing concentration of fluorescein dye, each followed by 5
688  second of water. Inset shows zoom-in of dashed box, indicating stimulus transition time is ~20
689 ms. B. Combination of valve states required to generate the stimulation sequence in shaded
690 area of panel A; 1 and 0 indicate valve is open or closed, respectively. Cy represents water
691 channel, C¢q and Cc; represent control channels that allow stimulus switching, and C;and Cg
692  represent odorant delivery channels and only open prior to and during stimulus delivery. C.
693 Images of fluorescein dye, representing an odorant stimulus, in the microfluidics device during
694  each state shown in panel B (water, stimulus 7, stimulus 8). Cross mark indicates closed

695 channels, star marks the location of the larva’s “nose”. Scale bar is 300 pm.
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Supplementary Figure 2. Anatomical map of ORN dendritic organization. A. Image of each
ORN'’s dendritic location using GFP to label a specific ORN and RFP to label all ORNs. Larvae
expressing OrX>GFP, Orco>RFP, where OrX is a specific olfactory receptor. We infer the
vacancy in bundle 2 is Or33a. During functional imaging, there were no strong signals from this
neuron. No expression of Or2a and Or7a were observed in first instar larvae. B. Summary

schematic of stereotyped ORN position in each dendritic bundle for left and right dorsal organs.
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704  Supplementary Figure 3. Effect of stimulus duration and sequence on ORN response. A.
705 Or35a-ORN responses to 0.5, 1, 2, 5 and 10 seconds of 107 dilution of 3-octanol. The

706  maximum response saturates when odorant pulse is longer than 5 seconds. B. Or35a-ORN

707  response to increasing (top panel), primarily decreasing (middle panel), and random (bottom
708  panel) concentration sequences of 3-octanol pulses, delivered at 5 seconds each. The response

709  amplitude to each concentration level is history independent.
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710
711 Supplementary Figure 4. Coactivation of ORNs with similar cognate odorants at high

712  concentrations. Heatmap of peak responses of four ORNs to four alcohol odorants, across
713  four concentrations of each odorant. Activities normalized by maximum response amplitude.
714 Neural images show responsive ORNs in dorsal organ ganglion during calcium imaging at the

715  highest odorant concentrations.
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718  Supplementary Figure 5. PCA analysis of ORN dose-response data. A. Percentage of
719  variance explained by each principal component. B. and C. Transform of odorant vectors in
720  PCA space (Fig 2B) to spherical coordinates (inset of B). Odorant vector length increases
721 monotonically with increasing concentration. Angular direction of different odorants (represented
722 by dot color) separate, but aggregate for direction of different concentrations of the same
723  odorant (dot size).
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Supplementary Figure 6. Aromaticity index highly correlated to major PC of EC5s, matrix.
A. Actual neural activity data is highly correlated with simulated data generated using the Hill
equation and fitted parameters. Scatter plot includes all non-zero data in Fig 2A. Dashed line
indicates y = x.R? is 0.98. B. Percentage of variance explained by each PC of the PCA on the
—In (ECs5,). Data compared with the corresponding results from 1000 randomly shuffled data. C.
Correlation plot between each odorants projection on the 1% PC of —In (ECs,) matrix and its

aromaticity index.
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733  Supplementary Figure 7. Linear-nonlinear model of ORN temporal dynamics. A. Multiple
734  trial responses of Or42a-ORN to the same m-sequence of 107 dilution of 3-pentanol. B. The

735 linear filter calculated from reverse correlation of the input-output from the first trial of panel A. C.
736  Non-linear transfer function calculated by comparing measured and predicted responses using
737  the linear filter. D. Validation of the linear-nonlinear model by comparing predicted and

738  measured responses to novel m-sequence stimuli.
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740  Supplementary Figure 8. Comparison of ORN temporal filters. A. Normalized filters of three
741 ORNSs responding to various odorant stimuli. B. and C. Distribution of peak time (B.) and decay
742  time (C.) of 31 filters measured from various ORN and odorant stimuli. Distributions of peak and
743  decay times were fit to Gaussian distributions with mean and variance labeled below histogram.
744

745  Movie 1. Dose-dependent activation of ORNs. Left: Calcium imaging of 21 pairs of larval

746  ORNSs in response to increasing concentrations of the 1-pentanol odorant, from 107 to 107

747  dilutions. Movie starts by scanning through the imaging volume to identify ORNs activated at the
748  highest concentration level. Three ORNSs are responsive on the left side and five on the right
749  side. ORN identity was confirmed from the dendrite location and response to panel of 13

750  cognate odorants (not shown in the movie). Right: Responses of ORNs to step pulses of

751 odorant stimuli.

752

753  Movie 2. ORN responses to pseudorandom white noise stimulus. Top left, stimulus delivery
754 marked by fluorescence. Bottom left, axon terminal of Or45a-ORN responding to the white noise
755  stimulus using 107 dilution of 2-nonanone. Top and bottom right, real time plots of the input

756  stimulus and ORN response during an experiment.

757
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758  Supplementary Table 1. Raw activity data of 21 ORNs responding to 19 odorants at five

759  concentration levels collected from 122 recordings.
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