

1 Heritability of regional brain volumes in large-scale neuroimaging
2 and genetic studies

3 Bingxin Zhao¹, Joseph G. Ibrahim^{1,6}, Yun Li^{1,2,3}, Tengfei Li⁴, Yue Wang¹,
4 Yue Shan¹, Ziliang Zhu¹, Fan Zhou¹, Jingwen Zhang¹, Chao Huang¹,
5 Huiling Liao⁵, Liuqing Yang⁶, Paul M. Thompson⁷, and Hongtu Zhu^{1,4,*}

6 ¹Department of Biostatistics, University of North Carolina at Chapel Hill,
7 Chapel Hill, NC, USA

8 ²Department of Genetics, University of North Carolina at Chapel Hill,
9 Chapel Hill, NC, USA

10 ³Department of Computer Science, University of North Carolina at Chapel
11 Hill, Chapel Hill, NC, USA

12 ⁴Department of Biostatistics, University of Texas MD Anderson Cancer
13 Center, Houston, TX, USA

14 ⁵Department of Statistics, Texas A&M University, College Station, TX,
15 USA

16 ⁶Department of Statistics and Operation Research, University of North
17 Carolina at Chapel Hill, Chapel Hill, NC, USA

18 ⁷Imaging Genetics Center, Mark and Mary Stevens Institute for
19 Neuroimaging & Informatics, University of Southern California, Los
20 Angeles, CA, USA

21 *Corresponding should be addressed to H.Z. (hzhu5@mdanderson.org)

22 Oct 23, 2017

23 **Abstract**

24 Brain genetics is an active research area. The degree to which genetic variants im-
25 pact variations in brain structure and function remains largely unknown. We examined
26 the heritability of regional brain volumes ($p \sim 100$) captured by single-nucleotide poly-
27 morphisms (SNPs) in UK Biobank ($n \sim 9000$). We found that regional brain volumes
28 are highly heritable in this study population. We observed omni-genic impact across

29 the genome as well as enrichment of SNPs in active chromatin regions. Principal com-
30 ponents derived from regional volume data are also highly heritable, but the amount
31 of variance in brain volume explained by the component did not seem to be related to
32 its heritability. Heritability estimates vary substantially across large-scale functional
33 networks and brain regions. The variation in heritability across regions was not related
34 to measurement reliability. Heritability estimates exhibit a symmetric pattern across
35 left and right hemispheres and are consistent in females and males. Our main findings
36 in UK Biobank are consistent with those in Alzheimers Disease Neuroimaging Initiative
37 ($n \sim 1100$), Philadelphia Neurodevelopmental Cohort ($n \sim 600$), and Pediatric Imaging, Neurocognition, and Genetics ($n \sim 500$) datasets, with more stable estimates
38 in UK Biobank.
39

40 **Keywords.** SNP Heritability; Regional Brain Volumes; UK Biobank

41
42 The contribution of genetic variations to brain structure and function is of great in-
43 terest. One major goal of brain imaging genetic studies is to understand the degree
44 to which genetics can explain variations in imaging phenotypes, which are usually
45 measured by the associated heritability. Heritability is the proportion of observed phe-
46 notypic variation that can be explained by the inherited genetic factors. By measuring
47 the relative size of genetic and non-genetic effects on phenotypic variance, heritability
48 can provide insight into the genetic basis of a phenotype and guide downstream anal-
49 ysis on more specific biological questions. Specifically, heritability can be measured
50 by either the proportion of total genetic variation (broad sense), or the proportion of
51 total additive genetic variation (narrow sense) (Visscher et al., 2008). One traditional
52 way to estimate narrow-sense heritability is using samples from twin/family studies
53 (Bartels et al., 2003; Visscher et al., 2006), in which the pedigree information can
54 capture the effects of all genetic variants on phenotype (Visscher et al., 2014). Then,
55 heritability can be estimated by the fraction of phenotypic variation explained by the
56 genetic relationships among these related subjects. With genome-wide genotyping data
57 on unrelated individuals, an alternative estimator of narrow-sense heritability derives
58 from the additive effects of all common SNPs on phenotype among these unrelated
59 samples, which is usually called SNP heritability (Speed et al., 2016). Instead of using
60 the expected relationship based on pedigree information, SNP heritability is estimated
61 from a genome-wide average across all common SNPs (Toro et al., 2015). Since SNP
62 heritability can capture neither non-additive genetic variation nor genetic variation
63 not covered by SNPs measured by the selected genotyping microarray, it is usually
64 viewed as a lower bound estimate for (narrow-sense) heritability. Recently, computing
65 tools such as genome-wide complex trait analysis (GCTA, Yang et al. (2011)), linkage
66 disequilibrium score regression (Bulik-Sullivan et al., 2015), BOLT-REML (Loh et al.,
67 2015), and massively expedited genome-wide heritability analysis (Ge et al. (2015))
68 have been developed for SNP heritability estimation.

69 Heritability is not a fixed property of a phenotype, and analysis of different datasets
70 can result in different estimates of heritability. The estimation of heritability depends
71 on the relative contribution of genetic factors, non-genetic factors and possibly their
72 interaction. People from different ethnic groups can have different genetic backgrounds
73 and be subject to different non-genetic factors. Moreover, methodological factors, such
74 as the sample size of the study and reliability of the phenotype measurement, can also
75 impact the estimation. For these reasons, the United Kingdom (UK) Biobank (Sudlow
76 et al., 2015; Satizabal et al., 2017) provides a unique opportunity to comprehensively
77 study the genetic contributions to many brain phenotypes in one single large-scale,
78 relatively homogeneous population. It is an open-access, large prospective study with
79 over 500,000 participants of middle or elderly age. Around 10,000 of these subjects
80 have brain imaging data available.

81 Here, we used all common (minor allele frequency [MAF] > 0.01) autosomal SNPs
82 to estimate the heritability for 101 regional brain volumes, including the total brain
83 volume (BV), total grey matter (GM), white matter (WM) and cerebrospinal fluid
84 (CSF). We partitioned genetic variation into individual chromosomes to examine the
85 distribution of heritability across the genome. To assess whether functional annotation
86 (Hu et al., 2017a,b) is associated with genetic effects, we partitioned genetic variation
87 according to cell-type-specific annotations. In addition, we estimated the heritability
88 of principal components (PCs) derived from the regional volume data and evaluated
89 the variability of heritability estimations across brain regions and functional networks.
90 Furthermore, we estimated gender-specific heritability in each region. We compared the
91 findings from the UK Biobank with those from the Alzheimers Disease Neuroimaging
92 Initiative (ADNI, Weiner et al. (2013); $n \sim 1100$), Philadelphia Neurodevelopmental
93 Cohort (PNC, Satterthwaite et al. (2014); $n \sim 600$), and Pediatric Imaging, Neurocog-
94 nition, and Genetics (PING, Jernigan et al. (2016); $n \sim 500$), which demonstrated that
95 more stable estimates can be obtained from the UK Biobank.

96 RESULTS

97 Heritability estimates by all common autosomal SNPs

98 We first estimated the proportion of variation in regional brain volumes that can be
99 explained by all common autosomal SNPs, using linear mixed-effect models (LMMs,
100 see Section Online Methods). Genetic similarity among individuals was captured by
101 the genetic relationship matrix (GRM). We used GCTA tools (Yang et al., 2011) for
102 heritability estimation, adjusting for baseline age, gender, top 10 PCs, as well as BV
103 (to remove scaling effects for other regions).

104 **Supplementary Tables 1 and 2** display the heritability estimates, standard er-
105 rors, and p-values from the one-sided likelihood ratio test in each brain region. We
106 found that a large proportion of variation in regional volume is explained by additive
107 genetic effects. The heritability estimates vary across the brain (**Fig. 1**). The top
108 10 regions with high heritability estimates are the brain stem (82.7%), cerebellar ver-
109 mal lobules VIII.X (68.3%), cerebellar vermal lobules I.V (68.0%), BV (65.9%), left

110 cerebellum exterior (64.1%), right cerebellum exterior (63.2%), WM (62.8%), right
111 ventral diencephalon (DC) (62.4%), left ventral DC (58.8%), and right cerebellum
112 WM (58.1%), in descending order of heritability point estimate. Noticeable evidence
113 of symmetry in heritability estimates is observed in many brain regions. In **Figure 1**,
114 many left/right pairs of regions (such as R/L 07, R/L 44, R/L 08, R/L 19) are located
115 next to each other. Since we have a sufficiently large sample size, p-values for most
116 regions are highly significant even after controlling the false discovery rate at 0.05 by
117 Benjamini and Hochberg (1995) procedure.

118 We investigated whether the observed considerable variability in heritability esti-
119 mates across brain regions is due to varying levels of reliability underlying the mea-
120 surements of these regional brain volumes. **Supplementary Figure 1(a)** shows the
121 relationship between the SNP heritability estimate and the average volume of each
122 brain region, with the latter as a metric to gauge the level of measurement reliability
123 underlying regional brain volumes. While two regions with low heritability estimates
124 also have low average volume size, we observe that high reliability does not necessarily
125 lead to high heritability estimates. Genetic contributions are different among regions
126 with comparable average volume sizes.

127 We also estimated gender-specific heritability in each region (**Fig. 2**). The top
128 regions with largest gender disparity, as measured by absolute difference in point her-
129 itability estimates are listed in **Supplementary Table 3**. Although there are several
130 regions showing strong evidence of gender difference (such as right/left putamen), the
131 distribution of heritability is largely consistent among all, female and male subjects.

132 Partitioning genetic variation by chromosome

133 To examine the distribution of heritability across the genome, we partitioned genetic
134 variation into individual chromosomes. Specifically, we estimated GRM using SNPs on
135 each chromosome and estimated heritability separately for each chromosome on each
136 regional brain volume (22 analyses per region, 2222 analyses in total).

137 **Supplementary Figure 2(a)** shows the heritability estimates by chromosome.
138 The chromosomes are ordered from left to right by their lengths. We found that longer
139 chromosomes tend to have larger heritability estimates than shorter ones. We then
140 calculated the aggregate heritability across all of the 101 regions and found that the
141 aggregated heritability explained by each chromosome is also highly correlated with
142 chromosome length (**Fig. 3(a)**, $R^2 = 69.0\%$, $p\text{-value} = 1.67 \times 10^{-6}$). These findings
143 are consistent with a highly polygenic, or omni-genic model (Lee et al., 2012; Boyle
144 et al., 2017) and indicate that SNPs contributing to variations in regional brain volumes
145 are spread nearly uniformly across the genome.

146 Partitioning genetic variation by functional annotation

147 We explored whether functional annotation of SNPs can explain the amount of genetic
148 variation. Following Finucane et al. (2015), we used 220 cell-type-specific annota-
149 tions. Specifically, SNPs were divided into seven groups according to their activeness

150 among 10 cell groups, namely adrenal gland and pancreas, central nervous system
151 (CNS), cardiovascular system, connective tissue and bone, gastrointestinal, immune
152 and hematopoietic systems, kidney, liver, skeletal muscle and other. In our analysis,
153 we particularly focused on SNPs active in the CNS cell group (see Section Online
154 Methods). We found strong evidence that SNPs residing in chromatin regions inactive
155 across all cell groups contributed less to heritability than SNPs residing in chromatin
156 regions active in at least one cell group. Moreover, SNPs in chromatin regions particu-
157 larly active in the CNS cell group contributed slightly more to heritability than SNPs
158 in chromatin regions inactive in the CNS cell group (but active in other cell groups).
159 On average, SNPs residing in chromatin regions active in both the CNS cell group and
160 broadly active in other cell groups explain most of the variation in regional volumes
161 (**Fig. 4**).

162 Heritability pattern across brain function networks

163 To investigate the heritability pattern across large-scale brain functional networks, we
164 clustered 97 brain regions into 18 functional communities (Buckner et al., 2008; Sporns
165 and Betzel, 2016; Huang et al., 2017). We found that the heritability estimates vary
166 substantially across these functional communities, while the degree of gene control on
167 these functional communities is comparable (**Fig. 5**). Communities with complex
168 functions tend to have large regional variance in heritability. For example, communi-
169 ties C1 and C5 are involved in several networks, including default mode, somatomotor,
170 visual, attention, and language. Regions within the two communities have large vari-
171 ance in heritability estimates. Other clusters linked to simpler functions (with smaller
172 cluster size as well) tend to have smaller regional variance in heritability estimates.
173 The heritability estimates cluster rather tightly together for regions within communi-
174 ties C9 (default mode, motion), C11 (visual), C13 (auditory, language), C14 (memory)
175 and C15 (somatosensory).

176 Heritability analysis after dimension reduction

177 We performed principal component analysis (PCA) on the regional brain volumes and
178 obtained the top 10 PCs. **Supplementary Table 4** lists the heritability estimates
179 for the top 10 PCs with and without adjusting for BV. We found that the first PC
180 has a high heritability estimate without adjusting for BV (68.7%), but the heritability
181 estimate is zero after adjusting for BV. These estimates indicate that the first PC fully
182 captured the variance of BV. The Pearson correlation between the first PC and BV
183 is 0.979. As the PCs are orthogonal, adjusting for BV did not affect the heritability
184 estimates of other PCs.

185 Although the top 10 PCs are highly heritable, the amount of phenotypic variation
186 explained by each PC does not seem to be related to the heritability of the PC. For
187 example, the heritability of the second PC was much smaller than that of the other top
188 10 components. This result may indicate that although the gene had a large influence
189 on the brain volumes, these phenotypes were not fully genetically controlled by all SNPs

190 in this population. Non-genetic factors, non-additive genetic effects and even batch
191 effects may also contribute to variation in brain volumes. We also calculated heritability
192 estimates by each chromosome (**Supplementary Fig. 3(a)**) for these top 10 PCs and
193 found that the sum of the heritability values explained by each chromosome is again
194 highly correlated with chromosome length (**Supplementary Fig. 4(a)**, $R^2 = 49.6\%$,
195 $p\text{-value} = 2.48 \times 10^{-04}$).

196 Similar to brain functional community analysis, we grouped the brain regions into
197 10 modules according to their loadings for the top 10 PCs. That is, we classified the
198 regions corresponding to the top 10 loadings of each component into one module. Each
199 region therefore can fall into more than one module. In our analysis, most regions
200 fell only into one (44 regions) or two (25 regions) modules. **Supplementary Figure**
201 **5** shows the distribution of heritability estimates across these 10 modules. Again,
202 regions classified in modules corresponding to PCs that explain more volume variation
203 do not necessarily have higher heritability estimates. As expected, regions in modules
204 corresponding to PCs with higher heritability estimates also have higher heritability
205 estimates.

206 Comparing UK Biobank results with results from other datasets

207 The same analyses presented above in the UK Biobank were conducted in three other
208 datasets, namely ADNI, PNC and PING datasets. Due to smaller sample sizes or
209 less reliable brain imaging data, heritability estimates from these three datasets have
210 much larger variance than those from the UK Biobank (**Fig. 6, Supplementary**
211 **Figs. 6 and 7**). After multiple testing adjustment, we found few regions or PCs to
212 be significant at a false discovery rate of 0.05 in the three studies (**Supplementary**
213 **Tables 5-7**).

214 However, some findings are indeed consistent. For example, from each dataset, we
215 observed the linear relationship between chromosome length and the variance explained
216 by each chromosome. But the association tends to be weaker as the sample size de-
217 creases (**Fig. 3 and Supplementary Fig. 4**). In addition, heritability estimates of
218 regional brain volumes are not related to their reliability (**Supplementary Fig. 1**).

219 DISCUSSION

220 In summary, our extensive analyses across four imaging genetic datasets support the
221 following five important findings. First, regional volumes are generally heritable. The
222 majority of brain regions are similarly heritable among females and among males.
223 Study samples used in this work vary from young (PING, PNC) to middle-age/elderly
224 participants (ADNI, UK Biobank). Second, we observe omni-genic patterns where
225 genetic variants contributing to variations in brain volumes are widely spread across
226 the genome with one major evidence being the significant positive linear relationship
227 between chromosome-specific heritability estimates and chromosome length. Third, we
228 found that genetic variants residing in active chromatin regions, particularly those ac-
229 tive specifically in the CNS cell group, tend to explain more variation in brain volumes.

230 Fourth, through PCA, we demonstrated that the top PCs are also highly heritable, but
231 the amount of brain volume variation explained by the PCs does not seem to be related
232 to the heritability estimates of these PCs. Fifth, the genetic influences are not uni-
233 formly distributed across the brain regions or brain functional communities. Similar
234 genetic control can be found among regions within a small community and on pairs of
235 regions in the left and right hemispheres. Results from the four independent cohorts
236 are largely consistent. Compared to ADNI, PNC and PING, UK Biobank can provide
237 more stable estimates of heritability with smaller standard errors.

238 We found that 65.9% of BV variability can be explained by genetic variation of
239 all common autosomal SNPs for UK Biobank subjects. Adjusting for BV, 39.3% of
240 CSF volume variability is explained by genetic variation. Without BV adjustment,
241 the heritability estimates for GM (67.5%) are similar to the estimates for BV (65.9%);
242 after adjusting for BV, the heritability estimates for GM are zero, suggesting that BV
243 and GM share the same or very similar genetic bases. For WM, however, heritability
244 estimates remain almost unchanged before and after adjusting for BV (62.8% and
245 62.0%, respectively), indicating that genes underlying WM are not general brain growth
246 genes, but rather more likely to be genes that specific control this particular brain
247 structure and sub-regions. Our heritability estimates are similar to those reported in
248 (Pol et al., 2006; Kremen et al., 2010; Carmelli et al., 1998; Bryant et al., 2013). We
249 have more clearly illustrated the different genetic bases behind BV/GM volume and
250 WM volume.

251 In regional volume analysis, we obtained the heritability estimates of 97 regions,
252 showing that the regions are highly heritable and genetic influences are not uniformly
253 distributed across the brain. To assess whether the lower heritability is caused by the
254 difficulty in accurately measuring the regional volume, we quantify the concordance
255 between the average volume sizes and heritability estimates. We found no evidence that
256 the higher heritability is driven by the higher reliability of the volume measurement.
257 Regional variation in terms of genetic contribution is observed among the regions with
258 comparable average volume sizes. Thus, prioritizing regions with high heritability for
259 genetic studies are more likely to result in reproducible *bona fide* findings. The results
260 are consistent in all four datasets and agree with findings from other studies on brain
261 shape measurements and hippocampal sub-region volumes (Roshchupkin et al., 2016;
262 Whelan et al., 2016). In addition, we found strong evidence that the estimates have
263 a symmetric pattern across the left and right hemispheres. Many left/right pairs of
264 regions have similar estimates, consistent with results from previous twin studies (Chen
265 et al., 2012; Wright et al., 2002). Although several regions have large gender differences
266 in heritability, our gender-specific analysis show that the majority of additive genetic
267 effects are shared between female and male subjects.

268 To further study the patterns of regional variations in heritability estimates, we
269 clustered the regions by their biological functions. In brain functional network analy-
270 sis, we grouped the 97 regions into 18 non-overlapping brain functional communities
271 (details can be found in the **Supplementary Note**). We found the community-wise
272 variability in heritability across these functional communities, while the genetic influ-

273 ences widely prevail across the brain functional networks with comparable degrees of
274 control (heritability). The regions within each community do not necessarily have simi-
275 lar heritability estimates, depending on the complexity of the community functions.
276 We performed PCA and found that the components explaining more volume variations
277 do not necessarily have higher heritability, nor higher loadings on regions with higher
278 heritability. This makes sense because PCA is an unsupervised dimension reduction
279 technique. Non-genetic factors or non-additive genetic effects that are not captured by
280 SNPs also influence variation in brain volume.

281 The significant linear correlation between the variance explained by a chromosome
282 and the length of the chromosome was observed on both the volumes and principal
283 components. These patterns suggest that genetic variants controlling regional brain
284 volumes are rather ubiquitously distributed across the genome. Similar findings have
285 been reported on other phenotypes, such as height, body mass index, neuroanatomical
286 phenotypes and schizophrenia (Yang et al., 2011; Lee et al., 2012; Toro et al., 2015;
287 Fritzsche et al., 2016; Shi et al., 2016; Shan et al., 2017; Kemp et al., 2017). To ex-
288 plain this phenomenon, Boyle et al. (2017) proposed an omnigenic hypothesis where
289 most heritability can be explained by effects of genes outside core pathways because
290 gene regulatory networks are sufficiently interconnected. Although SNPs influencing
291 regional brain volumes spread widely across the genome, effect signals are associated
292 with cell-type-specific annotations. For regional brain volumes, we show enrichment of
293 genetic signals in active chromatin regions, especially those that are active specifically
294 in the CNS cell type and broadly active in other cell types.

295 Finally, we compared the results from UK Biobank with the results from the other
296 three datasets. The UK Biobank allows more stable estimation of the magnitude
297 of genetic determination of the human brain. In ADNI, PNC and PING, extreme
298 estimates such as 0.9999 or 0 occurred for some regions (**Fig. 6**); these estimates
299 should not be interpreted as 'true' heritability estimates, but only indicate large or
300 small heritability values for a region. Such extreme estimates may be due to insufficient
301 sample size or low reliability of volume measurements. In UK Biobank, no such extreme
302 estimates are observed, and the heritability estimates range from 1.6% to 82.6%, with
303 standard error approximately 0.07. Although SNP heritability estimates are at the
304 lower bound of (narrow-sense) heritability, we observed many heritable brain regions
305 using the UK Biobank dataset, and the estimates are statistically significant using a
306 likelihood ratio test after multiple testing adjustment Benjamini and Hochberg (1995).
307 For the other three datasets, however, few significant findings remain after multiple
308 testing adjustment.

309 METHODS

310 Methods are available in the **Online Methods** section.

311 *Note: One supplementary information pdf file and one supplementary Excel file are
312 available.*

314

ACKNOWLEDGEMENTS

315

This research was partially supported by U.S. NIH grants MH086633 and MH092335, NSF grants SES-1357666 and DMS-1407655, a grant from the Cancer Prevention Research Institute of Texas, and the endowed Bao-Shan Jing Professorship in Diagnostic Imaging. We thank the UK Biobank, ADNI, PING and PNC participants for their participation and the research teams for their work in collecting, processing and disseminating these datasets for analysis. This research has been conducted using the UK Biobank Resource (application number 22783), subject to a data transfer agreement. Part of data collection and sharing for this project was funded by the Alzheimers Disease Neuroimaging initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: Alzheimers Association; Alzheimers Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Part of data collection and sharing for this project was funded by the Pediatric Imaging, Neurocognition and Genetics Study (PING) (National Institutes of Health Grant RC2DA029475). PING is funded by the National Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health & Human Development. PING data are disseminated by the PING Coordinating Center at the Center for Human Development, University of California, San Diego. Support for the collection of the PNC data sets was provided by grant RC2MH089983 awarded to Raquel Gur and RC2MH089924 awarded to Hakon Hakonarson. All PNC subjects were recruited through the Center for Applied Genomics at The Children's Hospital in Philadelphia.

351

352

AUTHOR CONTRIBUTIONS

353

H.Z., P.L., J.I. and Y.L. designed the study. B.Z. performed the experiment and analyzed the data. T.L., J.Z., Y.W., Y.S., Z.Z., F.Z., C.H., H.L. and J.Y. downloaded

355 the datasets, preprocessed MRI data, undertook the quantity controls and imputed
356 SNP data. B.Z., Y.L., P.L., J.I. and H.Z. wrote the manuscript with feedback from all
357 authors.

358 COMPETING FINANCIAL INTERESTS

359 The authors declare no competing financial interests.

362 Pediatric Imaging, Neurocognition and Genetics (PING)

363 Connor McCabe⁸, Linda Chang⁹, Natacha Akshoomoff¹⁰, Erik Newman⁸, Thomas
364 Ernst⁹, Peter Van Zijl¹¹, Joshua Kuperman¹², Sarah Murray¹³, Cinnamon Bloss¹³,
365 Mark Appelbaum⁸, Anthony Gamst⁸, Wesley Thompson¹⁰, Hauke Bartsch¹².

367 Alzheimer's Disease Neuroimaging Initiative (ADNI)

368 Michael Weiner¹⁴, Paul Aisen⁸, Ronald Petersen¹⁵, Clifford R. Jack Jr¹⁵, William
369 Jagust¹⁶, John Q. Trojanowski¹⁷, Arthur W. Toga¹⁸, Laurel Beckett¹⁹, Robert C.
370 Green²⁰, Andrew J. Saykin²¹, John Morris²², Leslie M. Shaw¹⁷, Zaven Khachaturian²³,
371 Greg Sorensen²⁴, Maria Carrillo²⁵, Lew Kuller²⁶, Marc Raichle²², Steven Paul²⁷, Peter
372 Davies²⁸, Howard Fillit²⁹, Franz Hefti³⁰, Davie Holtzman²², M. Marcel Mesulman³¹,
373 William Potter³², Peter J. Snyder³³, Adam Schwartz³⁴, Tom Montine³⁵, Ronald G.
374 Thomas⁸, Michael Donohue⁸, Sarah Walter⁸, Devon Gessert⁸, Tamie Sather⁸, Gus
375 Jiminez⁸, Danielle Harvey¹⁹, Matthew Bernstein¹⁵, Nick Fox³⁶, Paul Thompson¹⁸,
376 Norbert Schuff¹⁴, Charles DeCarli¹⁹, Bret Borowski¹⁵, Jeff Gunter¹⁵, Matt Senjem¹⁵,
377 Prashanthi Vemuri¹⁵, David Jones¹⁵, Kejal Kantarci¹⁵, Chad Ward¹⁵, Robert A. Koeppe³⁷,
378 Norm Foster³⁸, Eric M. Reiman³⁹, Kewei Chen³⁹, Chet Mathis²⁶, Susan Landau¹⁶,
379 Nigel J. Cairns²², Erin Householder²², Lisa Taylor-Reinwald²², Virginia M.Y. Lee¹⁷,
380 Magdalena Korecka¹⁷, Michal Figurski¹⁷, Karen Crawford¹⁸, Scott Neu¹⁸, Tatiana
381 M. Foroud²¹, Steven Potkin⁴⁰, Li Shen²¹, Kelley Faber²¹, Sungeun Kim²¹, Kwangsik
382 Nho²¹, Leon Thal⁸, Richard Frank⁴¹, Neil Buckholtz⁴², Marilyn Albert⁴³, John Hsiao⁴².

383
384
385 ⁸UC San Diego, La Jolla, CA 92093, USA. ⁹U Hawaii, Honolulu, HI 96822, USA.

386 ¹⁰Department of Psychiatry, University of California, San Diego, La Jolla, California
387 92093, USA. ¹¹Kennedy Krieger Institute, Baltimore, MD 21205, USA. ¹²Multimodal
388 Imaging Laboratory, Department of Radiology, University of California San Diego, La
389 Jolla, California 92037, USA. ¹³Scripps Translational Science Institute, La Jolla, CA
390 92037, USA. ¹⁴UC San Francisco, San Francisco, CA 94143, USA. ¹⁵Mayo Clinic,
391 Rochester, MN 55905, USA. ¹⁶UC Berkeley, Berkeley, CA 94720-5800, USA. ¹⁷U

392 Pennsylvania, Philadelphia, PA 19104, USA. ¹⁸USC, University of Southern California,
393 Los Angeles, CA 90033, USA. ¹⁹UC Davis, Davis, CA 95616, USA. ²⁰Brigham
394 and Women s Hospital/Harvard Medical School, Boston MA 02115, USA. ²¹Indiana
395 University, Indianapolis, IN 46202-5143, USA. ²²Washington University St. Louis,
396 St. Louis, MO 63130, USA. ²³Prevent Alzheimers Disease 2020, Rockville, MD 20850,
397 USA. ²⁴Siemens ²⁵Alzheimers Association, Chicago, IL 60601, USA. ²⁶University of
398 Pittsburgh, Pittsburgh, PA 15260, USA. ²⁷Cornell University, Ithaca, NY 14850, USA.
399 ²⁸Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
400 ²⁹AD Drug Discovery Foundation, New York, NY 10019, USA. ³⁰Acumen Pharma-
401 ceuticals, Livermore, California 94551, USA. ³¹Northwestern University, Evanston, IL
402 60208, USA. ³²National Institute of Mental Health, Bethesda, MD 20892-9663, USA.
403 ³³Brown University, Providence, RI 02912, USA. ³⁴Eli Lilly, Indianapolis, Indiana
404 46285, USA. ³⁵University of Washington, Seattle, WA 98195, USA. ³⁶University of
405 London, London WC1E 7HU, UK. ³⁷University of Michigan, Ann Arbor, MI 48109,
406 USA. ³⁸University of Utah, Salt Lake City, UT 84112, USA. ³⁹Banner Alzheimers
407 Institute, Phoenix, AZ 85006, USA. ⁴⁰UC Irvine, Irvine, CA 92697, USA. ⁴¹General
408 Electric ⁴²National Institute on Aging/National Institutes of Health, Bethesda, MD
409 20892, USA. ⁴³The Johns Hopkins University, Baltimore, MD 21218, USA.

410 References

411 P. M. Visscher, W. G. Hill, N. R. Wray, Heritability in the genomics era—concepts and
412 misconceptions, *Nature reviews. Genetics* 9 (2008) 255.

413 M. Bartels, M. Van den Berg, F. Sluyter, D. Boomsma, E. J. de Geus, Heritability
414 of cortisol levels: review and simultaneous analysis of twin studies, *Psychoneuroen-*
415 *docrinology* 28 (2003) 121–137.

416 P. M. Visscher, S. E. Medland, M. A. Ferreira, K. I. Morley, G. Zhu, B. K. Cornes,
417 G. W. Montgomery, N. G. Martin, Assumption-free estimation of heritability from
418 genome-wide identity-by-descent sharing between full siblings, *PLoS genetics* 2
419 (2006) e41.

420 P. M. Visscher, G. Hemani, A. A. Vinkhuyzen, G.-B. Chen, S. H. Lee, N. R. Wray,
421 M. E. Goddard, J. Yang, Statistical power to detect genetic (co) variance of complex
422 traits using SNP data in unrelated samples, *PLoS genetics* 10 (2014) e1004269.

423 D. Speed, N. Cai, M. Johnson, S. Nejentsev, D. Balding, U. Consortium, et al., Re-
424 evaluation of SNP heritability in complex human traits, *BioRxiv* (2016) 074310.

425 R. Toro, J. Poline, G. Huguet, E. Loth, V. Frouin, T. Banaschewski, G. Barker,
426 A. Bokde, C. Büchel, F. Carvalho, et al., Genomic architecture of human neu-
427 roanatomical diversity, *Molecular Psychiatry* 20 (2015) 1011.

428 J. Yang, S. H. Lee, M. E. Goddard, P. M. Visscher, Gcta: a tool for genome-wide
429 complex trait analysis, *The American Journal of Human Genetics* 88 (2011) 76–82.

430 B. K. Bulik-Sullivan, P.-R. Loh, H. K. Finucane, S. Ripke, J. Yang, N. Patterson, M. J.
431 Daly, A. L. Price, B. M. Neale, S. W. G. of the Psychiatric Genomics Consortium,
432 et al., Ld score regression distinguishes confounding from polygenicity in genome-
433 wide association studies, *Nature genetics* 47 (2015) 291–295.

434 P.-R. Loh, G. Bhatia, A. Gusev, H. K. Finucane, B. K. Bulik-Sullivan, S. J. Pollack,
435 T. R. de Candia, S. H. Lee, N. R. Wray, K. S. Kendler, et al., Contrasting ge-
436 netic architectures of schizophrenia and other complex diseases using fast variance
437 components analysis, *Nature genetics* 47 (2015) 1385.

438 T. Ge, T. E. Nichols, P. H. Lee, A. J. Holmes, J. L. Roffman, R. L. Buckner, M. R.
439 Sabuncu, J. W. Smoller, Massively expedited genome-wide heritability analysis
440 (megha), *Proceedings of the National Academy of Sciences* 112 (2015) 2479–2484.

441 C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott,
442 J. Green, M. Landray, et al., Uk biobank: an open access resource for identifying
443 the causes of a wide range of complex diseases of middle and old age, *PLoS medicine*
444 12 (2015) e1001779.

445 C. L. Satizabal, H. H. H. Adams, D. P. Hibar, . . ., . . ., S. E. Medland, J. M. Shulman,
446 P. M. Thompson, S. Seshadri, M. A. Ikram, Genetic architecture of subcortical brain
447 structures in over 40,000 individuals worldwide, *bioRxiv* (2017).

448 Y. Hu, Q. Lu, R. Powles, X. Yao, C. Yang, F. Fang, X. Xu, H. Zhao, Leveraging
449 functional annotations in genetic risk prediction for human complex diseases, *PLOS*
450 *Computational Biology* 13 (2017a) e1005589.

451 Y. Hu, Q. Lu, W. Liu, Y. Zhang, M. Li, H. Zhao, Joint modeling of genetically
452 correlated diseases and functional annotations increases accuracy of polygenic risk
453 prediction, *PLoS genetics* 13 (2017b) e1006836.

454 M. W. Weiner, D. P. Veitch, P. S. Aisen, L. A. Beckett, N. J. Cairns, R. C. Green,
455 D. Harvey, C. R. Jack, W. Jagust, E. Liu, et al., The alzheimer's disease neuroimaging
456 initiative: a review of papers published since its inception, *Alzheimer's & Dementia* 9 (2013) e111–e194.

458 T. D. Satterthwaite, M. A. Elliott, K. Ruparel, J. Loughead, K. Prabhakaran, M. E.
459 Calkins, R. Hopson, C. Jackson, J. Keefe, M. Riley, et al., Neuroimaging of the
460 philadelphia neurodevelopmental cohort, *Neuroimage* 86 (2014) 544–553.

461 T. L. Jernigan, T. T. Brown, D. J. Hagler, N. Akshoomoff, H. Bartsch, E. Newman,
462 W. K. Thompson, C. S. Bloss, S. S. Murray, N. Schork, et al., The pediatric imaging,
463 neurocognition, and genetics (ping) data repository, *Neuroimage* 124 (2016) 1149–
464 1154.

465 Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and
466 powerful approach to multiple testing, *Journal of the royal statistical society. Series B (Methodological)* (1995) 289–300.

468 S. H. Lee, T. R. DeCandia, S. Ripke, J. Yang, P. F. Sullivan, M. E. Goddard, M. C.
469 Keller, P. M. Visscher, N. R. Wray, S. P. G.-W. A. S. Consortium, et al., Estimating
470 the proportion of variation in susceptibility to schizophrenia captured by common
471 snps, *Nature genetics* 44 (2012) 247–250.

472 E. A. Boyle, Y. I. Li, J. K. Pritchard, An expanded view of complex traits: From
473 polygenic to omnigenic, *Cell* 169 (2017) 1177–1186.

474 H. K. Finucane, B. Bulik-Sullivan, A. Gusev, G. Trynka, Y. Reshef, P.-R. Loh,
475 V. Anttila, H. Xu, C. Zang, K. Farh, et al., Partitioning heritability by functional
476 annotation using genome-wide association summary statistics, *Nature genetics* 47
477 (2015) 1228.

478 R. L. Buckner, J. R. Andrews-Hanna, D. L. Schacter, The brain's default network,
479 *Annals of the New York Academy of Sciences* 1124 (2008) 1–38.

480 O. Sporns, R. F. Betzel, Modular brain networks, *Annual review of psychology* 67
481 (2016) 613–640.

482 H. Huang, X. Lin, Z. Liang, T. Zhao, S. Du, M. M. Loy, K.-O. Lai, A. K. Fu, N. Y. Ip,
483 Cdk5-dependent phosphorylation of liprin α 1 mediates neuronal activity-dependent
484 synapse development, *Proceedings of the National Academy of Sciences* 114 (2017)
485 E6992–E7001.

486 H. E. H. Pol, H. G. Schnack, R. C. Mandl, R. G. Brans, N. E. van Haren, W. F. Baaré,
487 C. J. van Oel, D. L. Collins, A. C. Evans, R. S. Kahn, Gray and white matter density
488 changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia
489 using voxel-based morphometry, *Neuroimage* 31 (2006) 482–488.

490 W. S. Kremen, E. Prom-Wormley, M. S. Panizzon, L. T. Eyler, B. Fischl, M. C.
491 Neale, C. E. Franz, M. J. Lyons, J. Pacheco, M. E. Perry, et al., Genetic and
492 environmental influences on the size of specific brain regions in midlife: the vetsa
493 mri study, *Neuroimage* 49 (2010) 1213–1223.

494 D. Carmelli, C. DeCarli, G. E. Swan, L. M. Jack, T. Reed, P. A. Wolf, B. L. Miller, Evidence
495 for genetic variance in white matter hyperintensity volume in normal elderly
496 male twins, *Stroke* 29 (1998) 1177–1181.

497 C. Bryant, K. S. Giovanello, J. G. Ibrahim, J. Chang, D. Shen, B. S. Peterson, H. Zhu,
498 A. D. N. Initiative, et al., Mapping the genetic variation of regional brain volumes
499 as explained by all common snps from the adni study, *PloS one* 8 (2013) e71723.

500 G. V. Roshchupkin, B. A. Gutman, M. W. Vernooij, N. Jahanshad, N. G. Martin,
501 A. Hofman, K. L. McMahon, S. J. Van Der Lee, C. M. Van Duijn, G. I. De Zu-
502 bicaray, et al., Heritability of the shape of subcortical brain structures in the general
503 population, *Nature communications* 7 (2016).

504 C. D. Whelan, D. P. Hibar, L. S. van Velzen, A. S. Zannas, T. Carrillo-Roa, K. McMa-
505 hon, G. Prasad, S. Kelly, J. Faskowitz, J. E. Iglesias, et al., Heritability and reliability
506 of automatically segmented human hippocampal formation subregions, *Neuroimage*
507 128 (2016) 125–137.

508 C.-H. Chen, E. Gutierrez, W. Thompson, M. S. Panizzon, T. L. Jernigan, L. T. Eyler,
509 C. Fennema-Notestine, A. J. Jak, M. C. Neale, C. E. Franz, et al., Hierarchical
510 genetic organization of human cortical surface area, *Science* 335 (2012) 1634–1636.

511 I. C. Wright, P. Sham, R. M. Murray, D. R. Weinberger, E. T. Bullmore, Genetic con-
512 tributions to regional variability in human brain structure: methods and preliminary
513 results, *Neuroimage* 17 (2002) 256–271.

514 L. G. Fritzsche, W. Igl, J. N. C. Bailey, F. Grassmann, S. Sengupta, J. L. Bragg-
515 Gresham, K. P. Burdon, S. J. Hebbring, C. Wen, M. Gorski, et al., A large genome-
516 wide association study of age-related macular degeneration highlights contributions
517 of rare and common variants, *Nature genetics* 48 (2016) 134–143.

518 H. Shi, G. Kichaev, B. Pasaniuc, Contrasting the genetic architecture of 30 complex
519 traits from summary association data, *The American Journal of Human Genetics*
520 99 (2016) 139–153.

521 Y. Shan, G. Tromp, H. Kuivaniemi, D. T. Smelser, S. S. Verma, M. D. Ritchie, J. R.
522 Elmore, D. J. Carey, Y. P. Conley, M. B. Gorin, et al., Genetic risk models: Influence
523 of model size on risk estimates and precision, *Genetic epidemiology* 41 (2017) 282–
524 296.

525 J. P. Kemp, J. A. Morris, C. Medina-Gomez, V. Forgetta, N. M. Warrington, S. E.
526 Youlten, J. Zheng, C. L. Gregson, E. Grundberg, K. Trajanoska, et al., Identification
527 of 153 new loci associated with heel bone mineral density and functional involvement
528 of gpc6 in osteoporosis., *Nature genetics* (2017).

529 B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, J. C. Gee, A repro-
530 ducible evaluation of ants similarity metric performance in brain image registration,
531 *Neuroimage* 54 (2011) 2033–2044.

532 A. Klein, J. Tourville, 101 labeled brain images and a consistent human cortical labeling
533 protocol, *Frontiers in neuroscience* 6 (2012).

534 S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller,
535 P. Sklar, P. I. De Bakker, M. J. Daly, et al., Plink: a tool set for whole-genome
536 association and population-based linkage analyses, *The American Journal of Human
537 Genetics* 81 (2007) 559–575.

538 E. Y. Liu, M. Li, W. Wang, Y. Li, Mach-admix: genotype imputation for admixed
539 populations, *Genetic epidemiology* 37 (2013) 25–37.

540 1000-Genomes-Project-Consortium, et al., An integrated map of genetic variation from
541 1,092 human genomes, *Nature* 491 (2012) 56.

542 Z. Gu, L. Gu, R. Eils, M. Schlesner, B. Brors, circlize implements and enhances circular
543 visualization in r, *Bioinformatics* 30 (2014) 2811–2812.

544

ONLINE METHODS

545

Participants and image preprocessing

546

Datasets used in this paper included the UK Biobank, ADNI, PNC, and PING. Detailed data collection/processing procedures and quality control prior to the release of data are documented at <http://www.ukbiobank.ac.uk/resources/> for UK Biobank, <http://adni.loni.usc.edu/data-samples/> for ADNI , <http://pingstudy.ucsd.edu/resources/genomics-core.html> for PING and https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1 for PNC. For each dataset, we used subjects with both magnetic resonance imaging (MRI) and SNP data available after applying proper quality controls. We only used baseline data for longitudinal studies.

547

The MRI data were preprocessed using standard procedures via advanced normalization tools (ANTs, Avants et al. (2011)). Following Avants et al. (2011)), our preprocessing steps consisted of the N4 bias correction, registration-based brain extraction, and a prior-based N4-Atropos 6 tissue segmentation (oasis template), which classified the brain into WM, GM, deep GM, CSF, brainstem and cerebellum. We then adopted the 101 regions of interest (ROIs) defined by the manually edited labels of the publicly available MindBoggle-101 dataset (Klein and Tourville, 2012) to perform multi-atlas cortical parcellation.

548

We excluded subjects for whom the imaging data did not pass the standard imaging quality controls, and removed three ROIs with many missing values: X5th ventricle, left lesion and right lesion. There was a total of 101 regional brain volumes, including total BV, GM, WM and CSF. We standardized each volume to better fit the assumption for the LMM. By checking the studentized residuals of the LMM between volume with age and gender, we deleted the top 10 outlier subjects for each standardized volume. The demographic information related to the MRI datasets are listed in **Supplementary Table 11**.

549

Genotyping

550

Genotype imputation was performed on the PNC, ADNI, and PING datasets. For UK

551

Biobank, we used an unimputed dataset. Standard quality controls were performed

552

to ensure high quality of the SNP data. These procedures were performed using the

553

Plink tool set (Purcell et al., 2007).

554

PNC

555

From the PNC database, 8722 participants were genotyped on one of the six different

556

platforms: 66 were genotyped on the Affymetrix array 6.0; 722 were genotyped on

557

the Axiom array; 556 were genotyped on the Illumina HumanHap 550 array version1;

558

1914 were genotyped on the Illumina HumanHap 550 array version 3; 1657 were geno-

559

typed on the Illumina HumanHap 610 array; and 3807 were genotyped on the Illumina

560

Human Omni Express array. We applied the quality control steps to each dataset

561

562

563

564

565

566

567

568

569

570

583 separately, which included removal of subjects with more than 10% missing values,
584 removal of SNPs (i) with more than 5% missing values, (ii) with MAF smaller than
585 5%, (iii) with Hardy-Weinberg equilibrium test p-value $< 1 \times 10^{-6}$, and (iv) located
586 on a sex chromosome. We then employed MACH-Admix software (Liu et al., 2013) to
587 perform genotype imputation, using 1000G Phase I Integrated Release Version 3 hap-
588 lotypes (1000-Genomes-Project-Consortium et al., 2012) as a reference panel. We also
589 conducted quality control after imputation, excluding markers with (i) low imputation
590 accuracy (based on imputation output R^2); and (ii) Hardy-Weinberg equilibrium test
591 p-value $< 1 \times 10^{-6}$. We combined the six datasets and retained the shared SNPs.
592 Finally, 5,354,265 bi-allelic markers (including SNPs and indels) from 8681 subjects
593 remained for further analysis.

594 **ADNI**

595 Genetic data from ADNI1 (620,901 genetic markers from 818 subjects) and ADNI2/GO
596 (730,525 genetic markers from 432 subjects) were processed separately with the follow-
597 ing pipeline. The first-line quality control steps include (i) call rate check per subject
598 and per SNP marker, (ii) gender check, (iii) sibling pair identification, and (iv) pop-
599 ulation stratification. The second-line preprocessing steps include removal of SNPs
600 (i) with more than 5% missing values, (ii) with MAF smaller than 10%, (iii) with
601 Hardy-Weinberg equilibrium p-value $< 1 \times 10^{-6}$ and (iv) located on a sex chromo-
602 some. For further processing, we included 503,778 SNPs from 756 white (Caucasian)
603 subjects from ADNI1 and 516,453 SNPs from 397 white subjects from ADNI2/GO. We
604 employed MACH-Admix software (Liu et al., 2013) to perform genotype imputation,
605 using 1000G Phase I Integrated Release Version 3 haplotypes (1000-Genomes-Project-
606 Consortium et al., 2012) as a reference panel. We conducted quality control after
607 imputation, excluding markers with (i) low imputation accuracy (based on imputa-
608 tion output R^2); and (ii) Hardy-Weinberg equilibrium p-value $< 1 \times 10^{-6}$. We then
609 had 7,986,566 bi-allelic markers (including SNPs and indels) from 756 subjects from
610 ADNI1 and 8,218,182 markers from 397 subjects from ADNI2/GO. We combined
611 the two datasets and retained the shared SNPs. Finally, 7,664,643 bi-allelic markers
612 (including SNPs and indels) from 1153 subjects remained for further analysis.

613 **PING**

614 We applied the following preprocessing technique to the genetic data. The first-line
615 quality control steps included (i) call rate check per subject and per SNP marker,
616 (ii) gender check, and (iii) sibling pair identification. The second-line preprocessing
617 steps included removal of SNPs (i) with more than 5% missing values, (ii) with MAF
618 smaller than 10%, (iii) with Hardy-Weinberg equilibrium p-value $< 1 \times 10^{-6}$, and (iv)
619 located on a sex chromosome. We thus had 539,865 SNPs from 1036 subjects for fur-
620 ther processing. We employed MACH-Admix software (Liu et al., 2013) to perform
621 genotype imputation, using 1000G Phase I Integrated Release Version 3 haplotypes
622 (1000-Genomes-Project-Consortium et al., 2012) as a reference panel. We also con-

623 ducted quality control after imputation, excluding markers with (i) low imputation
624 accuracy (based on imputation output R^2), and (ii) Hardy-Weinberg equilibrium p-
625 value $< 1 \times 10^{-6}$. Finally, 10,883,584 bi-allelic markers (including SNPs and indels)
626 from 1036 subjects were retained for data analysis.

627 **Further quality control**

628 On each SNP dataset, we further selected subjects with available brain volume data.
629 We then used all autosomal SNPs and again applied the standard quality control
630 procedures: excluding subjects with more than 10% missing genotypes, only including
631 SNPs with MAF > 0.01 , with genotyping rate $> 90\%$, and passing Hardy-Weinberg
632 test ($P > 1 \times 10^{-7}$). We further removed non-European subjects, if any. In PING,
633 we only used biologically unrelated subjects. After quality control, we calculated the
634 GRM by all SNPs and by SNPs on each chromosome separately using GCTA software
635 (Yang et al., 2011). To avoid including closely related relatives, we excluded one of
636 any pair of individuals with estimated genetic relationship larger than 0.025. The
637 sample sizes of the datasets after conducting all quality control procedures are listed
638 in **Supplementary Table 12**.

639 **Heritability analysis**

640 First, for each regional volume, we estimated the proportion of variation explained
641 by all autosomal SNPs with a LMM (101 analyses in total). The formal setting of
642 the LMM and definition of likelihood ratio test statistics can be found in Yang et al.
643 (2011). The basic idea is to fit the GRM with random effects to the phenotypic measure,
644 while adjusting for other covariates with fixed effects. The GRM was the correlation
645 matrix of participants estimated by the common genetic variants, which was expected
646 to capture the genetic similarity among unrelated individuals. Then the heritability
647 of a phenotype was estimated by contrasting the genetic similarity among individuals
648 with their phenotypic similarity. Baseline age, gender indicator, top 10 PCs of GRM,
649 and BV (for regions other than BV itself) were included as covariates, unless otherwise
650 stated. We also included the phase indicator for the ADNI study to adjust for potential
651 batch effects. Besides the combined sample, we fitted the LMM separately on female
652 and male samples for UK Biobank data.

653 Second, we partitioned the genetic variation by each chromosome. We estimated
654 the GRM of each chromosome and fitted each of them separately on each volume (22
655 analyses per volume, 2222 analyses in total). The same set of covariates was included
656 in these LMMs.

657 Next, we performed PCA on the volumes and computed the heritability of the
658 top 10 PCs. We also partitioned the genetic variation on the components by each
659 chromosome. In the LMMs for the components, we did not adjust for BV unless
660 otherwise stated, since we have observed that the variation of BV is almost captured
661 by the first component, and should be orthogonal to the remaining components.

662 Finally, we fitted linear models between the length of a chromosome and the aggre-

663 gate heritability of all volumes or their components to study the heritability distribu-
664 tion across the genome. We clustered the regions according to their biological functions
665 and showed the heritability distribution across these communities using the R package
666 circlize (Gu et al., 2014).

667 Functional enrichment of genetic signals

668 Cell-type-specific active chromatin annotations per SNP were from Finucane et al.
669 (2015) and Boyle et al. (2017) (<https://github.com/bulik/ldsc/wiki/Partitioned-Heritability>).
670 According to Finucane et al. (2015), we performed functional annotation analyses us-
671 ing cell-type-specific annotations marked by the four histones: H3K4me1, H3K4me3,
672 H3K9ac and H3K27ac. Each cell-type-specific annotation corresponded to a histone
673 mark in a single cell type, and there were 220 such annotations. The 220 cell-type-
674 specific annotations were further divided into 10 groups, including adrenal gland and
675 pancreas, CNS, cardiovascular system, connective tissue and bone, gastrointestinal,
676 immune and hematopoietic systems, kidney, liver, skeletal muscle and other. The SNPs
677 were first divided into four overlapping groups according to their activeness in all cell-
678 type groups (only, few, broad, and never active). A SNP was labeled 'only' if it was
679 annotated as active in only one of the 10 cell-type groups. A SNP was labeled 'few'
680 if it was annotated as active in at most 5 cell-type groups. SNPs that were active in
681 6-10 cell-type groups were labeled 'broad', and SNPs that were not active in any cell
682 type were labeled 'never active'. Then, SNPs were further labeled as either active in
683 the CNS cell group ('CNS active') or not ('CNS inactive'). As the number of SNPs
684 in each group was different, we randomly selected the same number of SNPs from
685 each cell group (n=8368) and computed the heritability for each group in each region.
686 We generated 50 random selected SNP datasets and calculated the mean of these 50
687 heritability estimates in each region.

688 Data availability

689 Links to all datasets (UK Biobank, ADNI, PNC and PING) that support the findings
690 of this study are provided in Section Online Methods. Researchers can apply to use
691 these datasets for health related research in the public interest.

Figure 1: UK Biobank, SNP heritability and adjusted p-values ranked by estimates

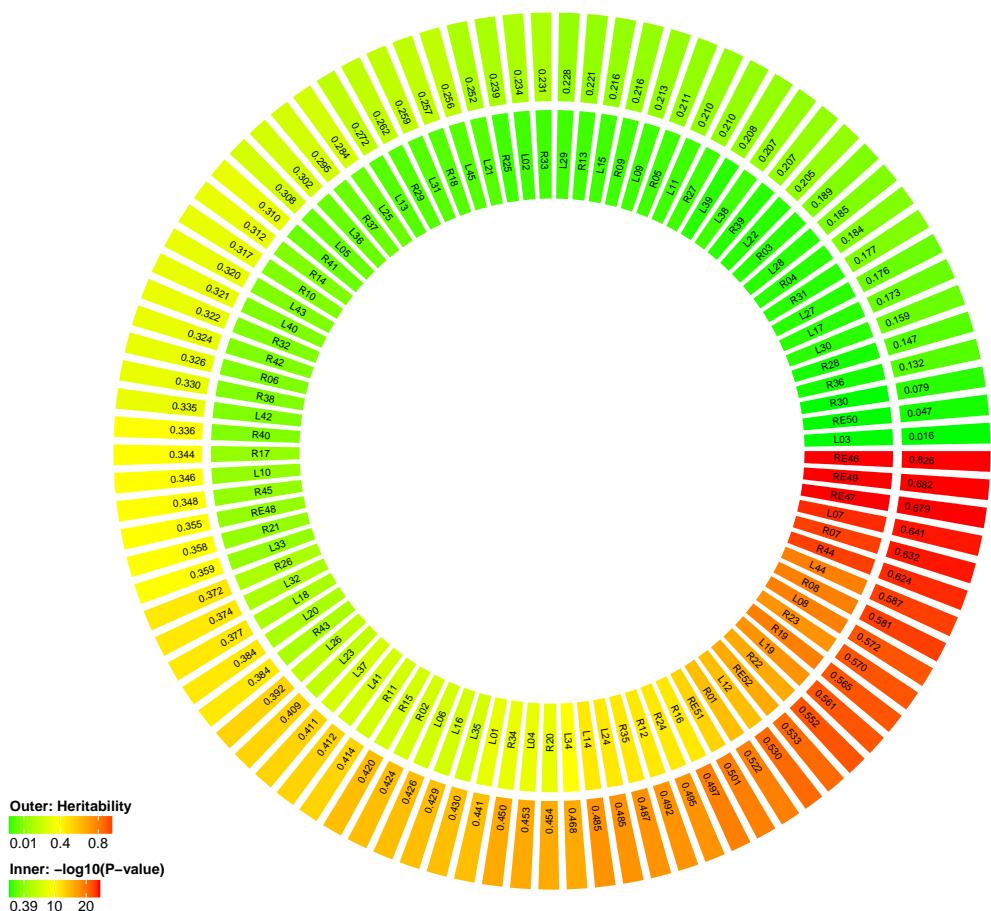


Figure 2: Gender-specific heritability estimate in each region

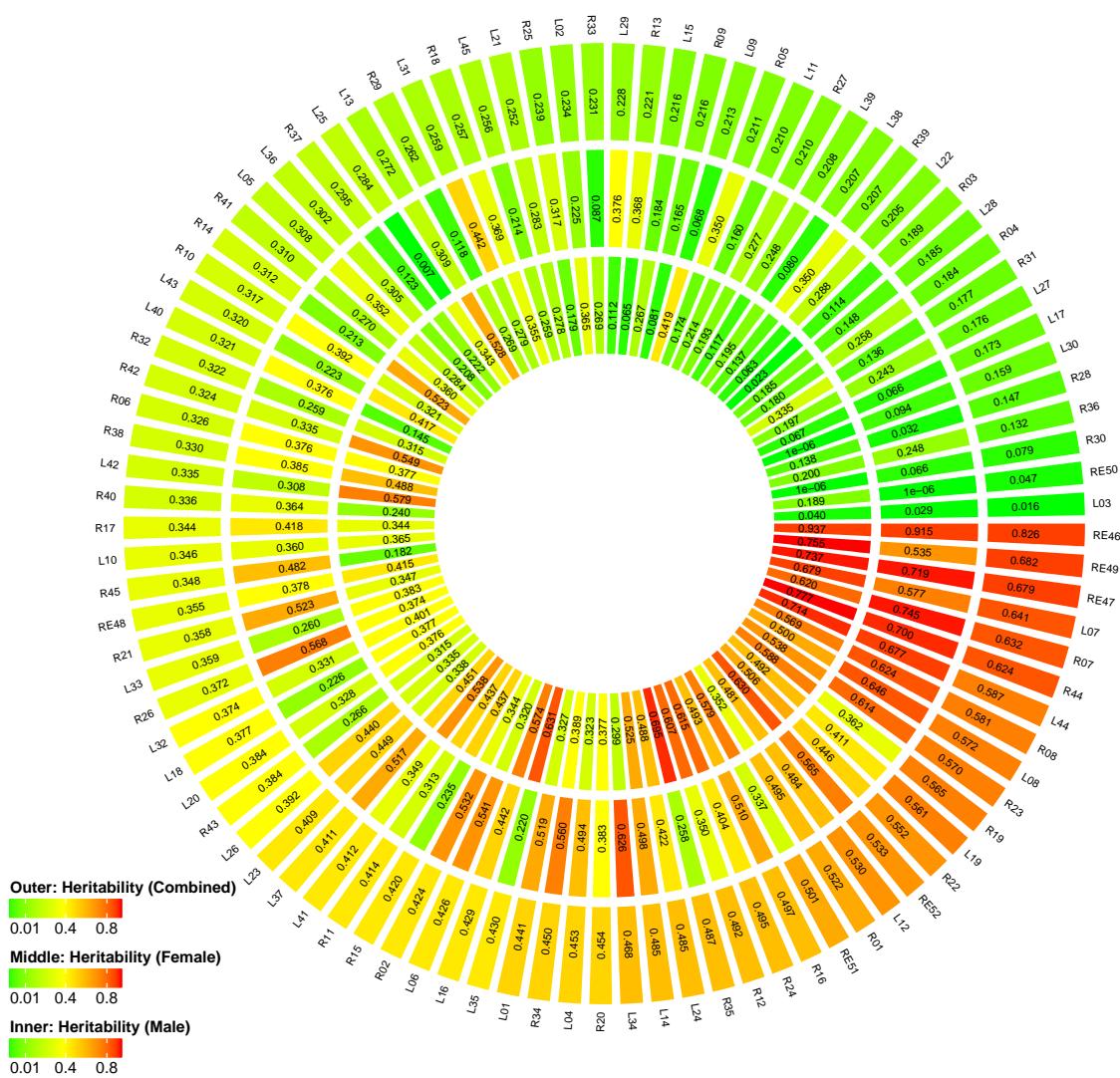


Figure 3: Aggregated heritability of brain regions by each chromosome. In each data set, heritability explained by each chromosome is highly correlated with chromosome length.

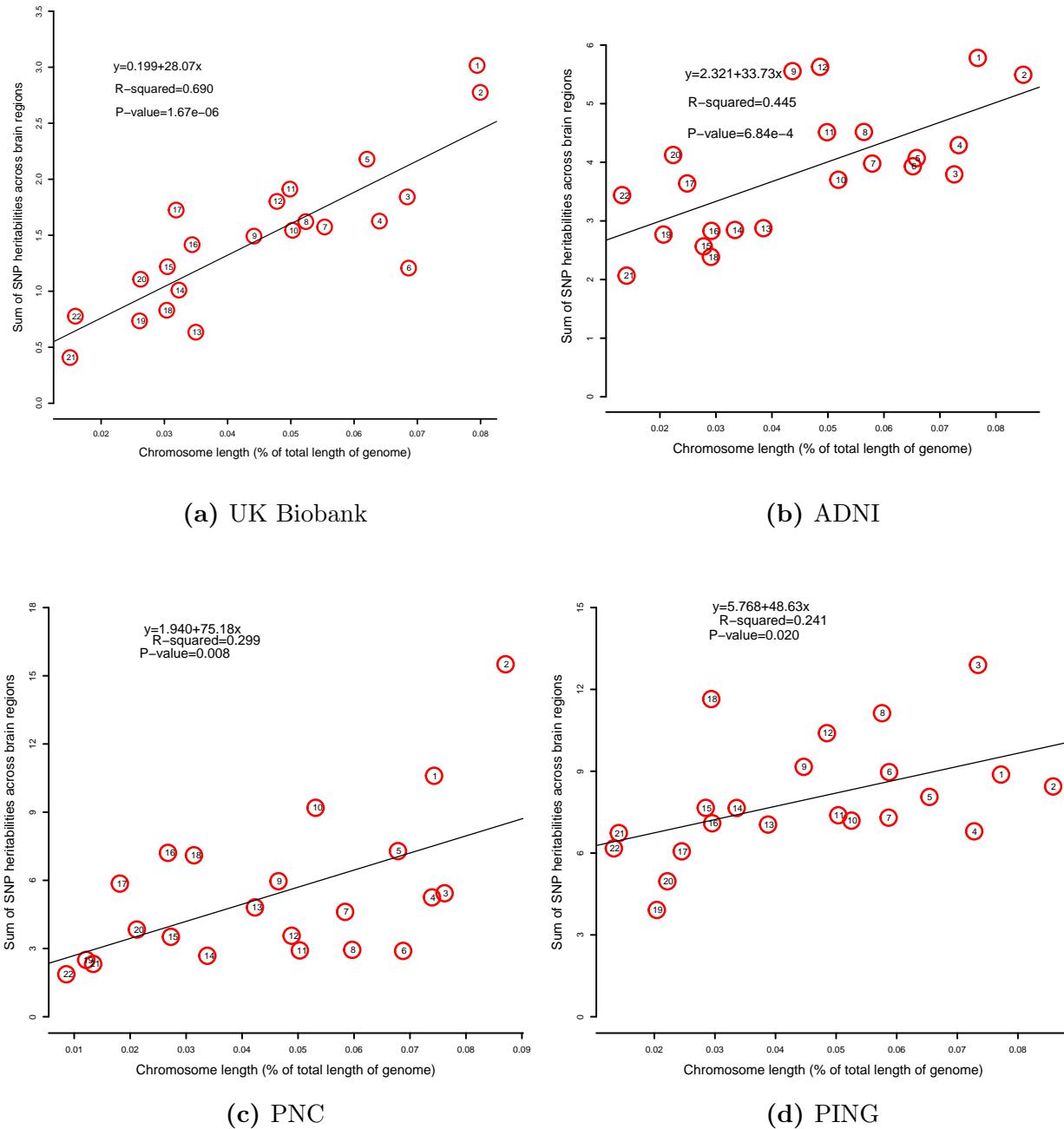


Figure 4: Heritability of brain regions by category of SNPs according to functional annotations

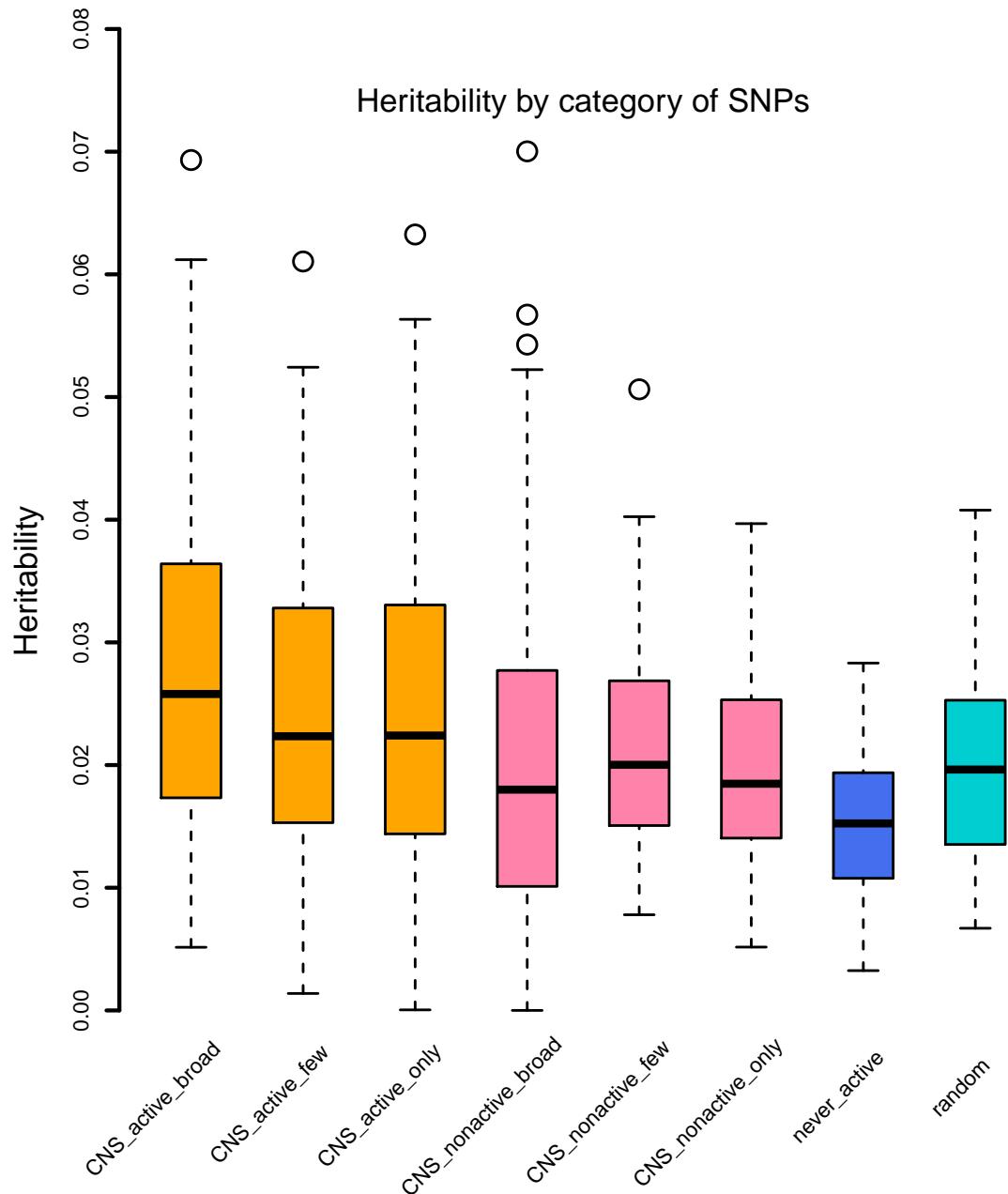


Figure 5: UK Biobank, SNP heritability and adjusted p-values grouped by brain function networks

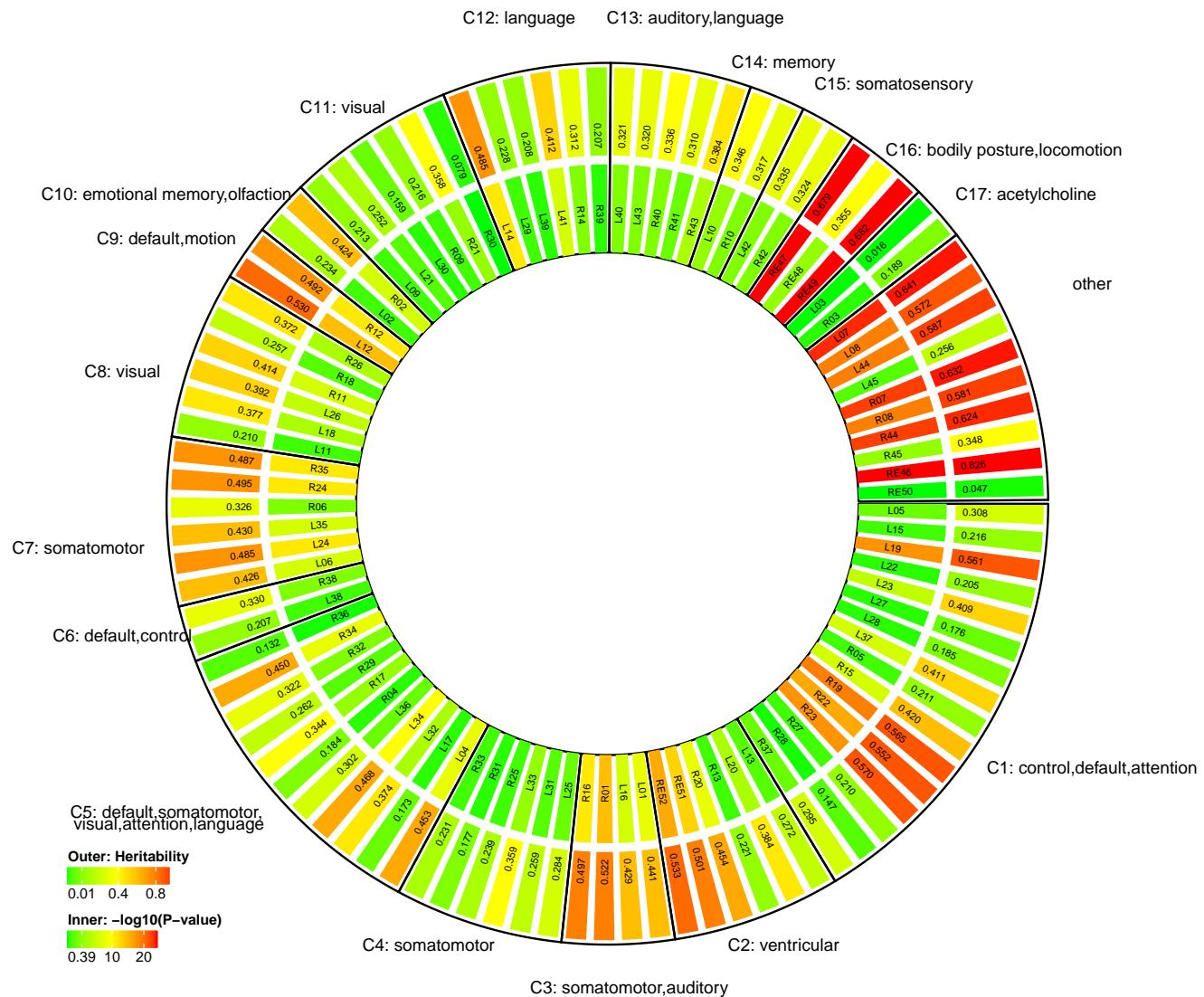


Figure 6: Comparing SNP heritability in different datasets. Estimates of variation explained by all autosomal SNPs of each regional brain volumes as well as GV, WM, BV and CSF (last four bars).

