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Abstract

Brain genetics is an active research area. The degree to which genetic variants im-
pact variations in brain structure and function remains largely unknown. We examined
the heritability of regional brain volumes (p ~ 100) captured by single-nucleotide poly-
morphisms (SNPs) in UK Biobank (n ~ 9000). We found that regional brain volumes
are highly heritable in this study population. We observed omni-genic impact across
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29 the genome as well as enrichment of SNPs in active chromatin regions. Principal com-
30 ponents derived from regional volume data are also highly heritable, but the amount
31 of variance in brain volume explained by the component did not seem to be related to
32 its heritability. Heritability estimates vary substantially across large-scale functional
33 networks and brain regions. The variation in heritability across regions was not related
34 to measurement reliability. Heritability estimates exhibit a symmetric pattern across
35 left and right hemispheres and are consistent in females and males. Our main findings
36 in UK Biobank are consistent with those in Alzheimers Disease Neuroimaging Initia-
37 tive (n ~ 1100), Philadelphia Neurodevelopmental Cohort (n ~ 600), and Pediatric
38 Imaging, Neurocognition, and Genetics (n ~ 500) datasets, with more stable estimates
39 in UK Biobank.

40 Keywords. SNP Heritability; Regional Brain Volumes; UK Biobank

41

2 The contribution of genetic variations to brain structure and function is of great in-
43 terest. One major goal of brain imaging genetic studies is to understand the degree
2 to which genetics can explain variations in imaging phenotypes, which are usually
a5 measured by the associated heritability. Heritability is the proportion of observed phe-
46 notypic variation that can be explained by the inherited genetic factors. By measuring
a7 the relative size of genetic and non-genetic effects on phenotypic variance, heritability
a8 can provide insight into the genetic basis of a phenotype and guide downstream anal-
49 ysis on more specific biological questions. Specifically, heritability can be measured
50 by either the proportion of total genetic variation (broad sense), or the proportion of
51 total additive genetic variation (narrow sense) (Visscher et al., 2008). One traditional
52 way to estimate narrow-sense heritability is using samples from twin/family studies
53 (Bartels et al.l [2003; |Visscher et al., 2006), in which the pedigree information can
54 capture the effects of all genetic variants on phenotype (Visscher et al., |2014). Then,
55 heritability can be estimated by the fraction of phenotypic variation explained by the
56 genetic relationships among these related subjects. With genome-wide genotyping data
57 on unrelated individuals, an alternative estimator of narrow-sense heritability derives
58 from the additive effects of all common SNPs on phenotype among these unrelated
59 samples, which is usually called SNP heritability (Speed et al 2016). Instead of using
60 the expected relationship based on pedigree information, SNP heritability is estimated
61 from a genome-wide average across all common SNPs (Toro et al., 2015). Since SNP
62 heritability can capture neither non-additive genetic variation nor genetic variation
63 not covered by SNPs measured by the selected genotyping microarray, it is usually
64 viewed as a lower bound estimate for (narrow-sense) heritability. Recently, computing
65 tools such as genome-wide complex trait analysis (GCTA,Yang et al.| (2011))), linkage
66 disequilibrium score regression (Bulik-Sullivan et al., 2015, BOLT-REML (Loh et al.,
67 2015), and massively expedited genome-wide heritability analysis (Ge et al. (2015))
68 have been developed for SNP heritability estimation.
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69 Heritability is not a fixed property of a phenotype, and analysis of different datasets
70 can result in different estimates of heritability. The estimation of heritability depends
71 on the relative contribution of genetic factors, non-genetic factors and possibly their
7 interaction. People from different ethnic groups can have different genetic backgrounds
73 and be subject to different non-genetic factors. Moreover, methodological factors, such
74 as the sample size of the study and reliability of the phenotype measurement, can also
75 impact the estimation. For these reasons, the United Kingdom (UK) Biobank (Sudlow
76 et al., [2015; Satizabal et al., 2017) provides a unique opportunity to comprehensively
77 study the genetic contributions to many brain phenotypes in one single large-scale,
78 relatively homogeneous population. It is an open-access, large prospective study with
79 over 500,000 participants of middle or elderly age. Around 10,000 of these subjects
80 have brain imaging data available.

81 Here, we used all common (minor allele frequency [MAF] > 0.01) autosomal SNPs
82 to estimate the heritability for 101 regional brain volumes, including the total brain
83 volume (BV), total grey matter (GM), white matter (WM) and cerebrospinal fluid
84 (CSF). We partitioned genetic variation into individual chromosomes to examine the
85 distribution of heritability across the genome. To assess whether functional annotation
86 (Hu et al., [2017alb)) is associated with genetic effects, we partitioned genetic variation
87 according to cell-type-specific annotations. In addition, we estimated the heritability
88 of principal components (PCs) derived from the regional volume data and evaluated
89 the variability of heritability estimations across brain regions and functional networks.
9% Furthermore, we estimated gender-specific heritability in each region. We compared the
01 findings from the UK Biobank with those from the Alzheimers Disease Neuroimaging
92 Initiative (ADNI, Weiner et al.| (2013); n ~ 1100), Philadelphia Neurodevelopmental
03 Cohort (PNC, Satterthwaite et al.| (2014)); n ~ 600), and Pediatric Imaging, Neurocog-
o nition, and Genetics (PING,|Jernigan et al.| (2016); n ~ 500), which demonstrated that
95 more stable estimates can be obtained from the UK Biobank.

% RESULTS

o7 Heritability estimates by all common autosomal SNPs

98 We first estimated the proportion of variation in regional brain volumes that can be
99 explained by all common autosomal SNPs, using linear mixed-effect models (LMMs,
100 see Section Online Methods). Genetic similarity among individuals was captured by
101 the genetic relationship matrix (GRM). We used GCTA tools (Yang et al., 2011) for
102 heritability estimation, adjusting for baseline age, gender, top 10 PCs, as well as BV
103 (to remove scaling effects for other regions).

104 Supplementary Tables 1 and 2 display the heritability estimates, standard er-
105 rors, and p-values from the one-sided likelihood ratio test in each brain region. We
106 found that a large proportion of variation in regional volume is explained by additive
107 genetic effects. The heritability estimates vary across the brain (Fig. . The top
108 10 regions with high heritability estimates are the brain stem (82.7%), cerebellar ver-
100 mal lobules VIIL.X (68.3%), cerebellar vermal lobules 1.V (68.0%), BV (65.9%), left
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110 cerebellum exterior (64.1%), right cerebellum exterior (63.2%), WM (62.8%), right
1 ventral diencephalon (DC) (62.4%), left ventral DC (58.8%), and right cerebellum
112 WM (58.1%), in descending order of heritability point estimate. Noticeable evidence
113 of symmetry in heritability estimates is observed in many brain regions. In Figure
114 many left /right pairs of regions (such as R/L 07, R/L 44, R/L 08, R/L 19) are located
115 next to each other. Since we have a sufficiently large sample size, p-values for most
116 regions are highly significant even after controlling the false discovery rate at 0.05 by
17 Benjamini and Hochberg (1995) procedure.

118 We investigated whether the observed considerable variability in heritability esti-
119 mates across brain regions is due to varying levels of reliability underlying the mea-
120 surements of these regional brain volumes. Supplementary Figure 1(a) shows the
121 relationship between the SNP heritability estimate and the average volume of each
122 brain region, with the latter as a metric to gauge the level of measurement reliability
123 underlying regional brain volumes. While two regions with low heritability estimates
124 also have low average volume size, we observe that high reliability does not necessarily
125 lead to high heritability estimates. Genetic contributions are different among regions
126 with comparable average volume sizes.

127 We also estimated gender-specific heritability in each region (Fig. . The top
128 regions with largest gender disparity, as measured by absolute difference in point her-
129 itability estimates are listed in Supplementary Table 3. Although there are several
130 regions showing strong evidence of gender difference (such as right/left putamen), the
131 distribution of heritability is largely consistent among all, female and male subjects.
132 Partitioning genetic variation by chromosome

133 To examine the distribution of heritability across the genome, we partitioned genetic
134 variation into individual chromosomes. Specifically, we estimated GRM using SNPs on
135 each chromosome and estimated heritability separately for each chromosome on each
136 regional brain volume (22 analyses per region, 2222 analyses in total).

137 Supplementary Figure 2(a) shows the heritability estimates by chromosome.
138 The chromosomes are ordered from left to right by their lengths. We found that longer
139 chromosomes tend to have larger heritability estimates than shorter ones. We then
140 calculated the aggregate heritability across all of the 101 regions and found that the
141 aggregated heritability explained by each chromosome is also highly correlated with
142 chromosome length (Fig. [B|(a), R? = 69.0%, p-value=1.67 x 107). These findings
143 are consistent with a highly polygenic, or omni-genic model (Lee et al., 2012; Boyle
144 et al.,2017) and indicate that SNPs contributing to variations in regional brain volumes
145 are spread nearly uniformly across the genome.

146 Partitioning genetic variation by functional annotation

147 We explored whether functional annotation of SNPs can explain the amount of genetic
148 variation. Following [Finucane et al| (2015), we used 220 cell-type-specific annota-
149 tions. Specifically, SNPs were divided into seven groups according to their activeness
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150 among 10 cell groups, namely adrenal gland and pancreas, central nervous system
151 (CNS), cardiovascular system, connective tissue and bone, gastrointestinal, immune
152 and hematopoietic systems, kidney, liver, skeletal muscle and other. In our analysis,
153 we particularly focused on SNPs active in the CNS cell group (see Section Online
154 Methods). We found strong evidence that SNPs residing in chromatin regions inactive
155 across all cell groups contributed less to heritability than SNPs residing in chromatin
156 regions active in at least one cell group. Moreover, SNPs in chromatin regions particu-
157 larly active in the CNS cell group contributed slightly more to heritability than SNPs
158 in chromatin regions inactive in the CNS cell group (but active in other cell groups).
159 On average, SNPs residing in chromatin regions active in both the CNS cell group and
160 broadly active in other cell groups explain most of the variation in regional volumes

161 (Fig. .

162 Heritability pattern across brain function networks

163 To investigate the heritability pattern across large-scale brain functional networks, we
164 clustered 97 brain regions into 18 functional communities (Buckner et al., 2008} |Sporns
165 and Betzel, 2016; Huang et all [2017). We found that the heritability estimates vary
166 substantially across these functional communities, while the degree of gene control on
167 these functional communities is comparable (Fig. . Communities with complex
168 functions tend to have large regional variance in heritability. For example, communi-
169 ties C1 and C5 are involved in several networks, including default mode, somatomotor,
170 visual, attention, and language. Regions within the two communities have large vari-
171 ance in heritability estimates. Other clusters linked to simpler functions (with smaller
172 cluster size as well) tend to have smaller regional variance in heritability estimates.
173 The heritability estimates cluster rather tightly together for regions within communi-
174 ties C9 (default mode, motion), C11 (visual), C13 (auditory, language), C14 (memory)
175 and C15 (somatosensory).

176 Heritability analysis after dimension reduction

177 We performed principal component analysis (PCA) on the regional brain volumes and
178 obtained the top 10 PCs. Supplementary Table 4 lists the heritability estimates
179 for the top 10 PCs with and without adjusting for BV. We found that the first PC
180 has a high heritability estimate without adjusting for BV (68.7%), but the heritability
181 estimate is zero after adjusting for BV. These estimates indicate that the first PC fully
182 captured the variance of BV. The Pearson correlation between the first PC and BV
183 is 0.979. As the PCs are orthogonal, adjusting for BV did not affect the heritability
184 estimates of other PCs.

185 Although the top 10 PCs are highly heritable, the amount of phenotypic variation
186 explained by each PC does not seem to be related to the heritability of the PC. For
187 example, the heritability of the second PC was much smaller than that of the other top
188 10 components. This result may indicate that although the gene had a large influence
189 on the brain volumes, these phenotypes were not fully genetically controlled by all SNPs
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190 in this population. Non-genetic factors, non-additive genetic effects and even batch
101 effects may also contribute to variation in brain volumes. We also calculated heritability
102 estimates by each chromosome (Supplementary Fig. 3(a)) for these top 10 PCs and
193 found that the sum of the heritability values explained by each chromosome is again
104 highly correlated with chromosome length (Supplementary Fig. 4(a), R? = 49.6%,
105 p-value=2.48 x 10704).

196 Similar to brain functional community analysis, we grouped the brain regions into
107 10 modules according to their loadings for the top 10 PCs. That is, we classified the
108 regions corresponding to the top 10 loadings of each component into one module. Each
199 region therefore can fall into more than one module. In our analysis, most regions
200 fell only into one (44 regions) or two (25 regions) modules. Supplementary Figure
201 5 shows the distribution of heritability estimates across these 10 modules. Again,
202 regions classified in modules corresponding to PCs that explain more volume variation
203 do not necessarily have higher heritability estimates. As expected, regions in modules
204 corresponding to PCs with higher heritability estimates also have higher heritability
205 estimates.

206 Comparing UK Biobank results with results from other datasets

207 The same analyses presented above in the UK Biobank were conducted in three other
208 datasets, namely ADNI, PNC and PING datasets. Due to smaller sample sizes or
209 less reliable brain imaging data, heritability estimates from these three datasets have
210 much larger variance than those from the UK Biobank (Fig. @, Supplementary
211 Figs. 6 and 7). After multiple testing adjustment, we found few regions or PCs to
212 be significant at a false discovery rate of 0.05 in the three studies (Supplementary
213 Tables 5-7).

214 However, some findings are indeed consistent. For example, from each dataset, we
215 observed the linear relationship between chromosome length and the variance explained
216 by each chromosome. But the association tends to be weaker as the sample size de-
217 creases (Fig. 3| and Supplementary Fig. 4). In addition, heritability estimates of
218 regional brain volumes are not related to their reliability (Supplementary Fig. 1).

219 DISCUSSION

220 In summary, our extensive analyses across four imaging genetic datasets support the
21 following five important findings. First, regional volumes are generally heritable. The
222 majority of brain regions are similarly heritable among females and among males.
223 Study samples used in this work vary from young (PING, PNC) to middle-age/elderly
224 participants (ADNI, UK Biobank). Second, we observe omni-genic patterns where
225 genetic variants contributing to variations in brain volumes are widely spread across
226 the genome with one major evidence being the significant positive linear relationship
227 between chromosome-specific heritability estimates and chromosome length. Third, we
28 found that genetic variants residing in active chromatin regions, particularly those ac-
229 tive specifically in the CNS cell group, tend to explain more variation in brain volumes.
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230 Fourth, through PCA, we demonstrated that the top PCs are also highly heritable, but
231 the amount of brain volume variation explained by the PCs does not seem to be related
232 to the heritability estimates of these PCs. Fifth, the genetic influences are not uni-
233 formly distributed across the brain regions or brain functional communities. Similar
234 genetic control can be found among regions within a small community and on pairs of
235 regions in the left and right hemispheres. Results from the four independent cohorts
236 are largely consistent. Compared to ADNI, PNC and PING, UK Biobank can provide
237 more stable estimates of heritability with smaller standard errors.

238 We found that 65.9% of BV variability can be explained by genetic variation of
239 all common autosomal SNPs for UK Biobank subjects. Adjusting for BV, 39.3% of
240 CSF volume variability is explained by genetic variation. Without BV adjustment,
201 the heritability estimates for GM (67.5%) are similar to the estimates for BV (65.9%);
242 after adjusting for BV, the heritability estimates for GM are zero, suggesting that BV
243 and GM share the same or very similar genetic bases. For WM, however, heritability
244 estimates remain almost unchanged before and after adjusting for BV (62.8% and
245 62.0%, respectively), indicating that genes underlying WM are not general brain growth
246 genes, but rather more likely to be genes that specific control this particular brain
247 structure and sub-regions. Our heritability estimates are similar to those reported in
248 (Pol et al., 2006} |Kremen et al., 2010; |Carmelli et al., |1998; Bryant et al., 2013). We
249 have more clearly illustrated the different genetic bases behind BV/GM volume and
250 WM volume.

251 In regional volume analysis, we obtained the heritability estimates of 97 regions,
252 showing that the regions are highly heritable and genetic influences are not uniformly
253 distributed across the brain. To assess whether the lower heritability is caused by the
254 difficulty in accurately measuring the regional volume, we quantify the concordance
255 between the average volume sizes and heritability estimates. We found no evidence that
256 the higher heritability is driven by the higher reliability of the volume measurement.
257 Regional variation in terms of genetic contribution is observed among the regions with
258 comparable average volume sizes. Thus, prioritizing regions with high heritability for
250 genetic studies are more likely to result in reproducible bona fide findings. The results
260 are consistent in all four datasets and agree with findings from other studies on brain
261 shape measurements and hippocampal sub-region volumes (Roshchupkin et al., 2016}
262 Whelan et al., 2016|). In addition, we found strong evidence that the estimates have
263 a symmetric pattern across the left and right hemispheres. Many left/right pairs of
264 regions have similar estimates, consistent with results from previous twin studies (Chen
265 et al.,[2012; Wright et al., 2002). Although several regions have large gender differences
266 in heritability, our gender-specific analysis show that the majority of additive genetic
267 effects are shared between female and male subjects.

268 To further study the patterns of regional variations in heritability estimates, we
260 clustered the regions by their biological functions. In brain functional network analy-
270 sis, we grouped the 97 regions into 18 non-overlapping brain functional communities
271 (details can be found in the Supplementary Note). We found the community-wise
272 variability in heritability across these functional communities, while the genetic influ-
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273 ences widely prevail across the brain functional networks with comparable degrees of
274 control (heritability). The regions within each community do not necessarily have sim-
275 ilar heritability estimates, depending on the complexity of the community functions.
276 We performed PCA and found that the components explaining more volume variations
277 do not necessarily have higher heritability, nor higher loadings on regions with higher
278 heritability. This makes sense because PCA is an unsupervised dimension reduction
279 technique. Non-genetic factors or non-additive genetic effects that are not captured by
280 SNPs also influence variation in brain volume.

281 The significant linear correlation between the variance explained by a chromosome
282 and the length of the chromosome was observed on both the volumes and principal
283 components. These patterns suggest that genetic variants controlling regional brain
284 volumes are rather ubiquitously distributed across the genome. Similar findings have
285 been reported on other phenotypes, such as height, body mass index, neuroanatomical
286 phenotypes and schizophrenia (Yang et al., 2011; |Lee et al., 2012; [Toro et al., 2015}
287 Fritsche et al., 2016; Shi et al., |2016; Shan et al., [2017; |Kemp et al.l 2017). To ex-
288 plain this phenomenon, Boyle et al.| (2017) proposed an omnigenic hypothesis where
289 most heritability can be explained by effects of genes outside core pathways because
290 gene regulatory networks are sufficiently interconnected. Although SNPs influencing
201 regional brain volumes spread widely across the genome, effect signals are associated
202 with cell-type-specific annotations. For regional brain volumes, we show enrichment of
203 genetic signals in active chromatin regions, especially those that are active specifically
204 in the CNS cell type and broadly active in other cell types.

295 Finally, we compared the results from UK Biobank with the results from the other
296 three datasets. The UK Biobank allows more stable estimation of the magnitude
207 of genetic determination of the human brain. In ADNI, PNC and PING, extreme
208 estimates such as 0.9999 or 0 occurred for some regions (Fig. @; these estimates
299 should not be interpreted as ’true’ heritability estimates, but only indicate large or
300 small heritability values for a region. Such extreme estimates may be due to insufficient
301 sample size or low reliability of volume measurements. In UK Biobank, no such extreme
302 estimates are observed, and the heritability estimates range from 1.6% to 82.6%, with
303 standard error approximately 0.07. Although SNP heritability estimates are at the
304 lower bound of (narrow-sense) heritability, we observed many heritable brain regions
305 using the UK Biobank dataset, and the estimates are statistically significant using a
306 likelihood ratio test after multiple testing adjustment |Benjamini and Hochberg| (1995)).
307 For the other three datasets, however, few significant findings remain after multiple
308 testing adjustment.

309 METHODS

310 Methods are available in the Online Methods section.

311

312 Note: One supplementary information pdf file and one supplementary Excel file are
313 available.
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544 ONLINE METHODS

545 Participants and image preprocessing

546 Datasets used in this paper included the UK Biobank, ADNI, PNC, and PING. De-
547 tailed data collection/processing procedures and quality control prior to the release of
548 data are documented at http://www.ukbiobank.ac.uk/resources/ for UK Biobank,
549 http://adni.loni.usc.edu/data-samples/| for ADNI | http://pingstudy.ucsd.
550 edu/resources/genomics-core.html for PING and https://www.ncbi.nlm.nih.gov/
551 projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.pl| for PNC. For each
552 dataset, we used subjects with both magnetic resonance imaging (MRI) and SNP data
553 available after applying proper quality controls. We only used baseline data for longi-
554 tudinal studies.

555 The MRI data were preprocessed using standard procedures via advanced normal-
556 ization tools (ANTSs, |Avants et al.| (2011])). Following |Avants et al.|(2011)), our prepro-
557 cessing steps consisted of the N4 bias correction, registration-based brain extraction,
558 and a prior-based N4-Atropos 6 tissue segmentation (oasis template), which classified
550 the brain into WM, GM, deep GM, CSF, brainstem and cerebellum. We then adopted
560 the 101 regions of interest (ROIs) defined by the manually edited labels of the publicly
561 available MindBoggle-101 dataset (Klein and Tourville, |2012) to perform multi-atlas
562 cortical parcellation.

563 We excluded subjects for whom the imaging data did not pass the standard imaging
564 quality controls, and removed three ROIs with many missing values: X5th ventricle, left
565 lesion and right lesion. There was a total of 101 regional brain volumes, including total
566 BV, GM, WM and CSF. We standardized each volume to better fit the assumption for
567 the LMM. By checking the studentized residuals of the LMM between volume with age
568 and gender, we deleted the top 10 outlier subjects for each standardized volume. The
560 demographic information related to the MRI datasets are listed in Supplementary
570 Table 11.

571 Genotyping

572 Genotype imputation was performed on the PNC, ADNI, and PING datasets. For UK
573 Biobank, we used an unimputed dataset. Standard quality controls were performed
574 to ensure high quality of the SNP data. These procedures were performed using the
575 Plink tool set (Purcell et al., [2007)).

576 PNC

577 From the PNC database, 8722 participants were genotyped on one of the six different
578 platforms: 66 were genotyped on the Affymetrix array 6.0; 722 were genotyped on
579 the Axiom array; 556 were genotyped on the Illumina HumanHap 550 array versionl;
580 1914 were genotyped on the Illumina HumanHap 550 array version 3; 1657 were geno-
581 typed on the Illumina HumanHap 610 array; and 3807 were genotyped on the Illumina
582 Human Omni Express array. We applied the quality control steps to each dataset
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583 separately, which included removal of subjects with more than 10% missing values,
584 removal of SNPs (i) with more than 5% missing values, (ii) with MAF smaller than
585 5%, (iii) with Hardy-Weinberg equilibrium test p-value < 1 x 1075, and (iv) located
586 on a sex chromosome. We then employed MACH-Admix software (Liu et al., [2013) to
587 perform genotype imputation, using 1000G Phase I Integrated Release Version 3 hap-
588 lotypes (1000-Genomes-Project-Consortium et al, 2012) as a reference panel. We also
589 conducted quality control after imputation, excluding markers with (i) low imputation
590 accuracy (based on imputation output R?); and (i) Hardy-Weinberg equilibrium test
501 p-value < 1 x 1075, We combined the six datasets and retained the shared SNPs.
592 Finally, 5,354,265 bi-allelic markers (including SNPs and indels) from 8681 subjects
503 remained for further analysis.

504 ADNI

595 Genetic data from ADNI1 (620, 901 genetic markers from 818 subjects) and ADNI2/GO
506 (730, 525 genetic markers from 432 subjects) were processed separately with the follow-
597 ing pipeline. The first-line quality control steps include (i) call rate check per subject
598 and per SNP marker, (ii) gender check, (iii) sibling pair identification, and (iv) pop-
599 ulation stratification. The second-line preprocessing steps include removal of SNPs
600 (i) with more than 5% missing values, (ii) with MAF smaller than 10%, (iii) with
601 Hardy-Weinberg equilibrium p-value < 1 x 1079 and (iv) located on a sex chromo-
602 some. For further processing, we included 503, 778 SNPs from 756 white (Caucasian)
603 subjects from ADNI1 and 516,453 SNPs from 397 white subjects from ADNI2/GO. We
604 employed MACH-Admix software (Liu et al.l 2013)) to perform genotype imputation,
605 using 1000G Phase I Integrated Release Version 3 haplotypes (1000-Genomes-Project-
606 Consortium et al., 2012) as a reference panel. We conducted quality control after
607 imputation, excluding markers with (i) low imputation accuracy (based on imputa-
608 tion output R?); and (ii) Hardy-Weinberg equilibrium p-value < 1 x 107%. We then
609 had 7,986,566 bi-allelic markers (including SNPs and indels) from 756 subjects from
610 ADNI1 and 8,218,182 markers from 397 subjects from ADNI2/GO. We combined
611 the two datasets and retained the shared SNPs. Finally, 7,664,643 bi-allelic markers
612 (including SNPs and indels) from 1153 subjects remained for further analysis.

613 PING

614 We applied the following preprocessing technique to the genetic data. The first-line
615 quality control steps included (i) call rate check per subject and per SNP marker,
616 (ii) gender check, and (iii) sibling pair identification. The second-line preprocessing
617 steps included removal of SNPs (i) with more than 5% missing values, (ii) with MAF
618 smaller than 10%, (iii) with Hardy-Weinberg equilibrium p-value < 1 x 1075, and (iv)
619 located on a sex chromosome. We thus had 539, 865 SNPs from 1036 subjects for fur-
620 ther processing. We employed MACH-Admix software (Liu et al., |2013]) to perform
621 genotype imputation, using 1000G Phase I Integrated Release Version 3 haplotypes
622 (1000-Genomes-Project-Consortium et al., 2012) as a reference panel. We also con-
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623 ducted quality control after imputation, excluding markers with (i) low imputation
624 accuracy (based on imputation output R?), and (ii) Hardy-Weinberg equilibrium p-
625 value < 1 x 1079, Finally, 10,883,584 bi-allelic markers (including SNPs and indels)
626 from 1036 subjects were retained for data analysis.

627 Further quality control

628 On each SNP dataset, we further selected subjects with available brain volume data.
629 We then used all autosomal SNPs and again applied the standard quality control
630 procedures: excluding subjects with more than 10% missing genotypes, only including
631 SNPs with MAF > 0.01, with genotyping rate > 90%, and passing Hardy-Weinberg
632 test (P > 1 x 1077). We further removed non-European subjects, if any. In PING,
633 we only used biologically unrelated subjects. After quality control, we calculated the
634 GRM by all SNPs and by SNPs on each chromosome separately using GCTA software
635 (Yang et al., |2011)). To avoid including closely related relatives, we excluded one of
636 any pair of individuals with estimated genetic relationship larger than 0.025. The
637 sample sizes of the datasets after conducting all quality control procedures are listed
638 in Supplementary Table 12.

639 Heritability analysis

640 First, for each regional volume, we estimated the proportion of variation explained
641 by all autosomal SNPs with a LMM (101 analyses in total). The formal setting of
642 the LMM and definition of likelihood ratio test statistics can be found in [Yang et al.
643 (2011). The basic idea is to fit the GRM with random effects to the phenotypic measure,
644 while adjusting for other covariates with fixed effects. The GRM was the correlation
645 matrix of participants estimated by the common genetic variants, which was expected
646 to capture the genetic similarity among unrelated individuals. Then the heritability
647 of a phenotype was estimated by contrasting the genetic similarity among individuals
648 with their phenotypic similarity. Baseline age, gender indicator, top 10 PCs of GRM,
649 and BV (for regions other than BV itself) were included as covariates, unless otherwise
650 stated. We also included the phase indicator for the ADNI study to adjust for potential
651 batch effects. Besides the combined sample, we fitted the LMM separately on female
652 and male samples for UK Biobank data.

653 Second, we partitioned the genetic variation by each chromosome. We estimated
654 the GRM of each chromosome and fitted each of them separately on each volume (22
655 analyses per volume, 2222 analyses in total). The same set of covariates was included
656 in these LMMs.

657 Next, we performed PCA on the volumes and computed the heritability of the
658 top 10 PCs. We also partitioned the genetic variation on the components by each
659 chromosome. In the LMMs for the components, we did not adjust for BV unless
660 otherwise stated, since we have observed that the variation of BV is almost captured
661 by the first component, and should be orthogonal to the remaining components.

662 Finally, we fitted linear models between the length of a chromosome and the aggre-
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663 gate heritability of all volumes or their components to study the heritability distribu-
664 tion across the genome. We clustered the regions according to their biological functions
665 and showed the heritability distribution across these communities using the R package
666 circlize (Gu et al., [2014)).

667 Functional enrichment of genetic signals

668 Cell-type-specific active chromatin annotations per SNP were from |Finucane et al.
669 (2015) and Boyle et al.|(2017)) (https://github.com/bulik /1dsc/wiki/Partitioned-Heritability).
670 According to Finucane et al. (2015), we performed functional annotation analyses us-
671 ing cell-type-specific annotations marked by the four histones: H3K4mel, H3K4me3,
672 H3K9ac and H3K27ac. Each cell-type-specific annotation corresponded to a histone
673 mark in a single cell type, and there were 220 such annotations. The 220 cell-type-
674 specific annotations were further divided into 10 groups, including adrenal gland and
675 pancreas, CNS, cardiovascular system, connective tissue and bone, gastrointestinal, im-
676 mune and hematopoietic systems, kidney, liver, skeletal muscle and other. The SNPs
677 were first divided into four overlapping groups according to their activeness in all cell-
678 type groups (only, few, broad, and never active). A SNP was labeled ’only’ if it was
679 annotated as active in only one of the 10 cell-type groups. A SNP was labeled 'few’
680 if it was annotated as active in at most 5 cell-type groups. SNPs that were active in
681 6-10 cell-type groups were labeled ’broad’, and SNPs that were not active in any cell
682 type were labeled 'never active’. Then, SNPs were further labeled as either active in
683 the CNS cell group ("CNS active’) or not (’CNS inactive’). As the number of SNPs
684 in each group was different, we randomly selected the same number of SNPs from
685 each cell group (n=8368) and computed the heritability for each group in each region.
686 We generated 50 random selected SNP datasets and calculated the mean of these 50
687 heritability estimates in each region.

688 Data availability

689 Links to all datasets (UK Biobank, ADNI, PNC and PING) that support the findings
690 of this study are provided in Section Online Methods. Researchers can apply to use
691 these datasets for health related research in the public interest.
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Figure 1: UK Biobank, SNP heritability and adjusted p-values ranked by estimates
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Figure 2: Gender-specific heritability estimate in each region
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Figure 3: Aggregated heritability of brain regions by each chromosome. In each dataet,
heritability explained by each chromosome is highly correlated with chromosome length.
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Figure 4: Heritability of brain regions by category of SNPs according to functional anno-

tations
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Figure 5: UK Biobank, SNP heritability and adjusted p-values grouped by brain function
networks
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Figure 6: Comparing SNP heritability in different datasets. Estimates of variation ex-
plained by all autosomal SNPs of each regional brain volumes as well as GV, WM, BV and
CSF (last four bars).
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