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Abstract23

Brain genetics is an active research area. The degree to which genetic variants im-24

pact variations in brain structure and function remains largely unknown. We examined25

the heritability of regional brain volumes (p ∼ 100) captured by single-nucleotide poly-26

morphisms (SNPs) in UK Biobank (n ∼ 9000). We found that regional brain volumes27

are highly heritable in this study population. We observed omni-genic impact across28
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the genome as well as enrichment of SNPs in active chromatin regions. Principal com-29

ponents derived from regional volume data are also highly heritable, but the amount30

of variance in brain volume explained by the component did not seem to be related to31

its heritability. Heritability estimates vary substantially across large-scale functional32

networks and brain regions. The variation in heritability across regions was not related33

to measurement reliability. Heritability estimates exhibit a symmetric pattern across34

left and right hemispheres and are consistent in females and males. Our main findings35

in UK Biobank are consistent with those in Alzheimers Disease Neuroimaging Initia-36

tive (n ∼ 1100), Philadelphia Neurodevelopmental Cohort (n ∼ 600), and Pediatric37

Imaging, Neurocognition, and Genetics (n ∼ 500) datasets, with more stable estimates38

in UK Biobank.39

Keywords. SNP Heritability; Regional Brain Volumes; UK Biobank40

41

The contribution of genetic variations to brain structure and function is of great in-42

terest. One major goal of brain imaging genetic studies is to understand the degree43

to which genetics can explain variations in imaging phenotypes, which are usually44

measured by the associated heritability. Heritability is the proportion of observed phe-45

notypic variation that can be explained by the inherited genetic factors. By measuring46

the relative size of genetic and non-genetic effects on phenotypic variance, heritability47

can provide insight into the genetic basis of a phenotype and guide downstream anal-48

ysis on more specific biological questions. Specifically, heritability can be measured49

by either the proportion of total genetic variation (broad sense), or the proportion of50

total additive genetic variation (narrow sense) (Visscher et al., 2008). One traditional51

way to estimate narrow-sense heritability is using samples from twin/family studies52

(Bartels et al., 2003; Visscher et al., 2006), in which the pedigree information can53

capture the effects of all genetic variants on phenotype (Visscher et al., 2014). Then,54

heritability can be estimated by the fraction of phenotypic variation explained by the55

genetic relationships among these related subjects. With genome-wide genotyping data56

on unrelated individuals, an alternative estimator of narrow-sense heritability derives57

from the additive effects of all common SNPs on phenotype among these unrelated58

samples, which is usually called SNP heritability (Speed et al., 2016). Instead of using59

the expected relationship based on pedigree information, SNP heritability is estimated60

from a genome-wide average across all common SNPs (Toro et al., 2015). Since SNP61

heritability can capture neither non-additive genetic variation nor genetic variation62

not covered by SNPs measured by the selected genotyping microarray, it is usually63

viewed as a lower bound estimate for (narrow-sense) heritability. Recently, computing64

tools such as genome-wide complex trait analysis (GCTA,Yang et al. (2011)), linkage65

disequilibrium score regression (Bulik-Sullivan et al., 2015), BOLT-REML (Loh et al.,66

2015), and massively expedited genome-wide heritability analysis (Ge et al. (2015))67

have been developed for SNP heritability estimation.68
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Heritability is not a fixed property of a phenotype, and analysis of different datasets69

can result in different estimates of heritability. The estimation of heritability depends70

on the relative contribution of genetic factors, non-genetic factors and possibly their71

interaction. People from different ethnic groups can have different genetic backgrounds72

and be subject to different non-genetic factors. Moreover, methodological factors, such73

as the sample size of the study and reliability of the phenotype measurement, can also74

impact the estimation. For these reasons, the United Kingdom (UK) Biobank (Sudlow75

et al., 2015; Satizabal et al., 2017) provides a unique opportunity to comprehensively76

study the genetic contributions to many brain phenotypes in one single large-scale,77

relatively homogeneous population. It is an open-access, large prospective study with78

over 500, 000 participants of middle or elderly age. Around 10, 000 of these subjects79

have brain imaging data available.80

Here, we used all common (minor allele frequency [MAF] > 0.01) autosomal SNPs81

to estimate the heritability for 101 regional brain volumes, including the total brain82

volume (BV), total grey matter (GM), white matter (WM) and cerebrospinal fluid83

(CSF). We partitioned genetic variation into individual chromosomes to examine the84

distribution of heritability across the genome. To assess whether functional annotation85

(Hu et al., 2017a,b) is associated with genetic effects, we partitioned genetic variation86

according to cell-type-specific annotations. In addition, we estimated the heritability87

of principal components (PCs) derived from the regional volume data and evaluated88

the variability of heritability estimations across brain regions and functional networks.89

Furthermore, we estimated gender-specific heritability in each region. We compared the90

findings from the UK Biobank with those from the Alzheimers Disease Neuroimaging91

Initiative (ADNI, Weiner et al. (2013); n ∼ 1100), Philadelphia Neurodevelopmental92

Cohort (PNC, Satterthwaite et al. (2014); n ∼ 600), and Pediatric Imaging, Neurocog-93

nition, and Genetics (PING, Jernigan et al. (2016); n ∼ 500), which demonstrated that94

more stable estimates can be obtained from the UK Biobank.95

RESULTS96

Heritability estimates by all common autosomal SNPs97

We first estimated the proportion of variation in regional brain volumes that can be98

explained by all common autosomal SNPs, using linear mixed-effect models (LMMs,99

see Section Online Methods). Genetic similarity among individuals was captured by100

the genetic relationship matrix (GRM). We used GCTA tools (Yang et al., 2011) for101

heritability estimation, adjusting for baseline age, gender, top 10 PCs, as well as BV102

(to remove scaling effects for other regions).103

Supplementary Tables 1 and 2 display the heritability estimates, standard er-104

rors, and p-values from the one-sided likelihood ratio test in each brain region. We105

found that a large proportion of variation in regional volume is explained by additive106

genetic effects. The heritability estimates vary across the brain (Fig. 1). The top107

10 regions with high heritability estimates are the brain stem (82.7%), cerebellar ver-108

mal lobules VIII.X (68.3%), cerebellar vermal lobules I.V (68.0%), BV (65.9%), left109
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cerebellum exterior (64.1%), right cerebellum exterior (63.2%), WM (62.8%), right110

ventral diencephalon (DC) (62.4%), left ventral DC (58.8%), and right cerebellum111

WM (58.1%), in descending order of heritability point estimate. Noticeable evidence112

of symmetry in heritability estimates is observed in many brain regions. In Figure 1,113

many left/right pairs of regions (such as R/L 07, R/L 44, R/L 08, R/L 19) are located114

next to each other. Since we have a sufficiently large sample size, p-values for most115

regions are highly significant even after controlling the false discovery rate at 0.05 by116

Benjamini and Hochberg (1995) procedure.117

We investigated whether the observed considerable variability in heritability esti-118

mates across brain regions is due to varying levels of reliability underlying the mea-119

surements of these regional brain volumes. Supplementary Figure 1(a) shows the120

relationship between the SNP heritability estimate and the average volume of each121

brain region, with the latter as a metric to gauge the level of measurement reliability122

underlying regional brain volumes. While two regions with low heritability estimates123

also have low average volume size, we observe that high reliability does not necessarily124

lead to high heritability estimates. Genetic contributions are different among regions125

with comparable average volume sizes.126

We also estimated gender-specific heritability in each region (Fig. 2). The top127

regions with largest gender disparity, as measured by absolute difference in point her-128

itability estimates are listed in Supplementary Table 3. Although there are several129

regions showing strong evidence of gender difference (such as right/left putamen), the130

distribution of heritability is largely consistent among all, female and male subjects.131

Partitioning genetic variation by chromosome132

To examine the distribution of heritability across the genome, we partitioned genetic133

variation into individual chromosomes. Specifically, we estimated GRM using SNPs on134

each chromosome and estimated heritability separately for each chromosome on each135

regional brain volume (22 analyses per region, 2222 analyses in total).136

Supplementary Figure 2(a) shows the heritability estimates by chromosome.137

The chromosomes are ordered from left to right by their lengths. We found that longer138

chromosomes tend to have larger heritability estimates than shorter ones. We then139

calculated the aggregate heritability across all of the 101 regions and found that the140

aggregated heritability explained by each chromosome is also highly correlated with141

chromosome length (Fig. 3(a), R2 = 69.0%, p-value=1.67 × 10−06). These findings142

are consistent with a highly polygenic, or omni-genic model (Lee et al., 2012; Boyle143

et al., 2017) and indicate that SNPs contributing to variations in regional brain volumes144

are spread nearly uniformly across the genome.145

Partitioning genetic variation by functional annotation146

We explored whether functional annotation of SNPs can explain the amount of genetic147

variation. Following Finucane et al. (2015), we used 220 cell-type-specific annota-148

tions. Specifically, SNPs were divided into seven groups according to their activeness149
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among 10 cell groups, namely adrenal gland and pancreas, central nervous system150

(CNS), cardiovascular system, connective tissue and bone, gastrointestinal, immune151

and hematopoietic systems, kidney, liver, skeletal muscle and other. In our analysis,152

we particularly focused on SNPs active in the CNS cell group (see Section Online153

Methods). We found strong evidence that SNPs residing in chromatin regions inactive154

across all cell groups contributed less to heritability than SNPs residing in chromatin155

regions active in at least one cell group. Moreover, SNPs in chromatin regions particu-156

larly active in the CNS cell group contributed slightly more to heritability than SNPs157

in chromatin regions inactive in the CNS cell group (but active in other cell groups).158

On average, SNPs residing in chromatin regions active in both the CNS cell group and159

broadly active in other cell groups explain most of the variation in regional volumes160

(Fig. 4).161

Heritability pattern across brain function networks162

To investigate the heritability pattern across large-scale brain functional networks, we163

clustered 97 brain regions into 18 functional communities (Buckner et al., 2008; Sporns164

and Betzel, 2016; Huang et al., 2017). We found that the heritability estimates vary165

substantially across these functional communities, while the degree of gene control on166

these functional communities is comparable (Fig. 5). Communities with complex167

functions tend to have large regional variance in heritability. For example, communi-168

ties C1 and C5 are involved in several networks, including default mode, somatomotor,169

visual, attention, and language. Regions within the two communities have large vari-170

ance in heritability estimates. Other clusters linked to simpler functions (with smaller171

cluster size as well) tend to have smaller regional variance in heritability estimates.172

The heritability estimates cluster rather tightly together for regions within communi-173

ties C9 (default mode, motion), C11 (visual), C13 (auditory, language), C14 (memory)174

and C15 (somatosensory).175

Heritability analysis after dimension reduction176

We performed principal component analysis (PCA) on the regional brain volumes and177

obtained the top 10 PCs. Supplementary Table 4 lists the heritability estimates178

for the top 10 PCs with and without adjusting for BV. We found that the first PC179

has a high heritability estimate without adjusting for BV (68.7%), but the heritability180

estimate is zero after adjusting for BV. These estimates indicate that the first PC fully181

captured the variance of BV. The Pearson correlation between the first PC and BV182

is 0.979. As the PCs are orthogonal, adjusting for BV did not affect the heritability183

estimates of other PCs.184

Although the top 10 PCs are highly heritable, the amount of phenotypic variation185

explained by each PC does not seem to be related to the heritability of the PC. For186

example, the heritability of the second PC was much smaller than that of the other top187

10 components. This result may indicate that although the gene had a large influence188

on the brain volumes, these phenotypes were not fully genetically controlled by all SNPs189
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in this population. Non-genetic factors, non-additive genetic effects and even batch190

effects may also contribute to variation in brain volumes. We also calculated heritability191

estimates by each chromosome (Supplementary Fig. 3(a)) for these top 10 PCs and192

found that the sum of the heritability values explained by each chromosome is again193

highly correlated with chromosome length (Supplementary Fig. 4(a), R2 = 49.6%,194

p-value=2.48 × 10−04).195

Similar to brain functional community analysis, we grouped the brain regions into196

10 modules according to their loadings for the top 10 PCs. That is, we classified the197

regions corresponding to the top 10 loadings of each component into one module. Each198

region therefore can fall into more than one module. In our analysis, most regions199

fell only into one (44 regions) or two (25 regions) modules. Supplementary Figure200

5 shows the distribution of heritability estimates across these 10 modules. Again,201

regions classified in modules corresponding to PCs that explain more volume variation202

do not necessarily have higher heritability estimates. As expected, regions in modules203

corresponding to PCs with higher heritability estimates also have higher heritability204

estimates.205

Comparing UK Biobank results with results from other datasets206

The same analyses presented above in the UK Biobank were conducted in three other207

datasets, namely ADNI, PNC and PING datasets. Due to smaller sample sizes or208

less reliable brain imaging data, heritability estimates from these three datasets have209

much larger variance than those from the UK Biobank (Fig. 6, Supplementary210

Figs. 6 and 7). After multiple testing adjustment, we found few regions or PCs to211

be significant at a false discovery rate of 0.05 in the three studies (Supplementary212

Tables 5-7).213

However, some findings are indeed consistent. For example, from each dataset, we214

observed the linear relationship between chromosome length and the variance explained215

by each chromosome. But the association tends to be weaker as the sample size de-216

creases (Fig. 3 and Supplementary Fig. 4). In addition, heritability estimates of217

regional brain volumes are not related to their reliability (Supplementary Fig. 1).218

DISCUSSION219

In summary, our extensive analyses across four imaging genetic datasets support the220

following five important findings. First, regional volumes are generally heritable. The221

majority of brain regions are similarly heritable among females and among males.222

Study samples used in this work vary from young (PING, PNC) to middle-age/elderly223

participants (ADNI, UK Biobank). Second, we observe omni-genic patterns where224

genetic variants contributing to variations in brain volumes are widely spread across225

the genome with one major evidence being the significant positive linear relationship226

between chromosome-specific heritability estimates and chromosome length. Third, we227

found that genetic variants residing in active chromatin regions, particularly those ac-228

tive specifically in the CNS cell group, tend to explain more variation in brain volumes.229
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Fourth, through PCA, we demonstrated that the top PCs are also highly heritable, but230

the amount of brain volume variation explained by the PCs does not seem to be related231

to the heritability estimates of these PCs. Fifth, the genetic influences are not uni-232

formly distributed across the brain regions or brain functional communities. Similar233

genetic control can be found among regions within a small community and on pairs of234

regions in the left and right hemispheres. Results from the four independent cohorts235

are largely consistent. Compared to ADNI, PNC and PING, UK Biobank can provide236

more stable estimates of heritability with smaller standard errors.237

We found that 65.9% of BV variability can be explained by genetic variation of238

all common autosomal SNPs for UK Biobank subjects. Adjusting for BV, 39.3% of239

CSF volume variability is explained by genetic variation. Without BV adjustment,240

the heritability estimates for GM (67.5%) are similar to the estimates for BV (65.9%);241

after adjusting for BV, the heritability estimates for GM are zero, suggesting that BV242

and GM share the same or very similar genetic bases. For WM, however, heritability243

estimates remain almost unchanged before and after adjusting for BV (62.8% and244

62.0%, respectively), indicating that genes underlying WM are not general brain growth245

genes, but rather more likely to be genes that specific control this particular brain246

structure and sub-regions. Our heritability estimates are similar to those reported in247

(Pol et al., 2006; Kremen et al., 2010; Carmelli et al., 1998; Bryant et al., 2013). We248

have more clearly illustrated the different genetic bases behind BV/GM volume and249

WM volume.250

In regional volume analysis, we obtained the heritability estimates of 97 regions,251

showing that the regions are highly heritable and genetic influences are not uniformly252

distributed across the brain. To assess whether the lower heritability is caused by the253

difficulty in accurately measuring the regional volume, we quantify the concordance254

between the average volume sizes and heritability estimates. We found no evidence that255

the higher heritability is driven by the higher reliability of the volume measurement.256

Regional variation in terms of genetic contribution is observed among the regions with257

comparable average volume sizes. Thus, prioritizing regions with high heritability for258

genetic studies are more likely to result in reproducible bona fide findings. The results259

are consistent in all four datasets and agree with findings from other studies on brain260

shape measurements and hippocampal sub-region volumes (Roshchupkin et al., 2016;261

Whelan et al., 2016). In addition, we found strong evidence that the estimates have262

a symmetric pattern across the left and right hemispheres. Many left/right pairs of263

regions have similar estimates, consistent with results from previous twin studies (Chen264

et al., 2012; Wright et al., 2002). Although several regions have large gender differences265

in heritability, our gender-specific analysis show that the majority of additive genetic266

effects are shared between female and male subjects.267

To further study the patterns of regional variations in heritability estimates, we268

clustered the regions by their biological functions. In brain functional network analy-269

sis, we grouped the 97 regions into 18 non-overlapping brain functional communities270

(details can be found in the Supplementary Note). We found the community-wise271

variability in heritability across these functional communities, while the genetic influ-272
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ences widely prevail across the brain functional networks with comparable degrees of273

control (heritability). The regions within each community do not necessarily have sim-274

ilar heritability estimates, depending on the complexity of the community functions.275

We performed PCA and found that the components explaining more volume variations276

do not necessarily have higher heritability, nor higher loadings on regions with higher277

heritability. This makes sense because PCA is an unsupervised dimension reduction278

technique. Non-genetic factors or non-additive genetic effects that are not captured by279

SNPs also influence variation in brain volume.280

The significant linear correlation between the variance explained by a chromosome281

and the length of the chromosome was observed on both the volumes and principal282

components. These patterns suggest that genetic variants controlling regional brain283

volumes are rather ubiquitously distributed across the genome. Similar findings have284

been reported on other phenotypes, such as height, body mass index, neuroanatomical285

phenotypes and schizophrenia (Yang et al., 2011; Lee et al., 2012; Toro et al., 2015;286

Fritsche et al., 2016; Shi et al., 2016; Shan et al., 2017; Kemp et al., 2017). To ex-287

plain this phenomenon, Boyle et al. (2017) proposed an omnigenic hypothesis where288

most heritability can be explained by effects of genes outside core pathways because289

gene regulatory networks are sufficiently interconnected. Although SNPs influencing290

regional brain volumes spread widely across the genome, effect signals are associated291

with cell-type-specific annotations. For regional brain volumes, we show enrichment of292

genetic signals in active chromatin regions, especially those that are active specifically293

in the CNS cell type and broadly active in other cell types.294

Finally, we compared the results from UK Biobank with the results from the other295

three datasets. The UK Biobank allows more stable estimation of the magnitude296

of genetic determination of the human brain. In ADNI, PNC and PING, extreme297

estimates such as 0.9999 or 0 occurred for some regions (Fig. 6); these estimates298

should not be interpreted as ’true’ heritability estimates, but only indicate large or299

small heritability values for a region. Such extreme estimates may be due to insufficient300

sample size or low reliability of volume measurements. In UK Biobank, no such extreme301

estimates are observed, and the heritability estimates range from 1.6% to 82.6%, with302

standard error approximately 0.07. Although SNP heritability estimates are at the303

lower bound of (narrow-sense) heritability, we observed many heritable brain regions304

using the UK Biobank dataset, and the estimates are statistically significant using a305

likelihood ratio test after multiple testing adjustment Benjamini and Hochberg (1995).306

For the other three datasets, however, few significant findings remain after multiple307

testing adjustment.308

METHODS309

Methods are available in the Online Methods section.310

311

Note: One supplementary information pdf file and one supplementary Excel file are312

available.313
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ONLINE METHODS544

Participants and image preprocessing545

Datasets used in this paper included the UK Biobank, ADNI, PNC, and PING. De-546

tailed data collection/processing procedures and quality control prior to the release of547

data are documented at http://www.ukbiobank.ac.uk/resources/ for UK Biobank,548

http://adni.loni.usc.edu/data-samples/ for ADNI , http://pingstudy.ucsd.549

edu/resources/genomics-core.html for PING and https://www.ncbi.nlm.nih.gov/550

projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1 for PNC. For each551

dataset, we used subjects with both magnetic resonance imaging (MRI) and SNP data552

available after applying proper quality controls. We only used baseline data for longi-553

tudinal studies.554

The MRI data were preprocessed using standard procedures via advanced normal-555

ization tools (ANTs, Avants et al. (2011)). Following Avants et al. (2011)), our prepro-556

cessing steps consisted of the N4 bias correction, registration-based brain extraction,557

and a prior-based N4-Atropos 6 tissue segmentation (oasis template), which classified558

the brain into WM, GM, deep GM, CSF, brainstem and cerebellum. We then adopted559

the 101 regions of interest (ROIs) defined by the manually edited labels of the publicly560

available MindBoggle-101 dataset (Klein and Tourville, 2012) to perform multi-atlas561

cortical parcellation.562

We excluded subjects for whom the imaging data did not pass the standard imaging563

quality controls, and removed three ROIs with many missing values: X5th ventricle, left564

lesion and right lesion. There was a total of 101 regional brain volumes, including total565

BV, GM, WM and CSF. We standardized each volume to better fit the assumption for566

the LMM. By checking the studentized residuals of the LMM between volume with age567

and gender, we deleted the top 10 outlier subjects for each standardized volume. The568

demographic information related to the MRI datasets are listed in Supplementary569

Table 11.570

Genotyping571

Genotype imputation was performed on the PNC, ADNI, and PING datasets. For UK572

Biobank, we used an unimputed dataset. Standard quality controls were performed573

to ensure high quality of the SNP data. These procedures were performed using the574

Plink tool set (Purcell et al., 2007).575

PNC576

From the PNC database, 8722 participants were genotyped on one of the six different577

platforms: 66 were genotyped on the Affymetrix array 6.0; 722 were genotyped on578

the Axiom array; 556 were genotyped on the Illumina HumanHap 550 array version1;579

1914 were genotyped on the Illumina HumanHap 550 array version 3; 1657 were geno-580

typed on the Illumina HumanHap 610 array; and 3807 were genotyped on the Illumina581

Human Omni Express array. We applied the quality control steps to each dataset582
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separately, which included removal of subjects with more than 10% missing values,583

removal of SNPs (i) with more than 5% missing values, (ii) with MAF smaller than584

5%, (iii) with Hardy-Weinberg equilibrium test p-value < 1 × 10−6, and (iv) located585

on a sex chromosome. We then employed MACH-Admix software (Liu et al., 2013) to586

perform genotype imputation, using 1000G Phase I Integrated Release Version 3 hap-587

lotypes (1000-Genomes-Project-Consortium et al., 2012) as a reference panel. We also588

conducted quality control after imputation, excluding markers with (i) low imputation589

accuracy (based on imputation output R2); and (ii) Hardy-Weinberg equilibrium test590

p-value < 1 × 10−6. We combined the six datasets and retained the shared SNPs.591

Finally, 5, 354, 265 bi-allelic markers (including SNPs and indels) from 8681 subjects592

remained for further analysis.593

ADNI594

Genetic data from ADNI1 (620, 901 genetic markers from 818 subjects) and ADNI2/GO595

(730, 525 genetic markers from 432 subjects) were processed separately with the follow-596

ing pipeline. The first-line quality control steps include (i) call rate check per subject597

and per SNP marker, (ii) gender check, (iii) sibling pair identification, and (iv) pop-598

ulation stratification. The second-line preprocessing steps include removal of SNPs599

(i) with more than 5% missing values, (ii) with MAF smaller than 10%, (iii) with600

Hardy-Weinberg equilibrium p-value < 1 × 10−6 and (iv) located on a sex chromo-601

some. For further processing, we included 503, 778 SNPs from 756 white (Caucasian)602

subjects from ADNI1 and 516, 453 SNPs from 397 white subjects from ADNI2/GO. We603

employed MACH-Admix software (Liu et al., 2013) to perform genotype imputation,604

using 1000G Phase I Integrated Release Version 3 haplotypes (1000-Genomes-Project-605

Consortium et al., 2012) as a reference panel. We conducted quality control after606

imputation, excluding markers with (i) low imputation accuracy (based on imputa-607

tion output R2); and (ii) Hardy-Weinberg equilibrium p-value < 1 × 10−6. We then608

had 7, 986, 566 bi-allelic markers (including SNPs and indels) from 756 subjects from609

ADNI1 and 8, 218, 182 markers from 397 subjects from ADNI2/GO. We combined610

the two datasets and retained the shared SNPs. Finally, 7, 664, 643 bi-allelic markers611

(including SNPs and indels) from 1153 subjects remained for further analysis.612

PING613

We applied the following preprocessing technique to the genetic data. The first-line614

quality control steps included (i) call rate check per subject and per SNP marker,615

(ii) gender check, and (iii) sibling pair identification. The second-line preprocessing616

steps included removal of SNPs (i) with more than 5% missing values, (ii) with MAF617

smaller than 10%, (iii) with Hardy-Weinberg equilibrium p-value < 1 × 10−6, and (iv)618

located on a sex chromosome. We thus had 539, 865 SNPs from 1036 subjects for fur-619

ther processing. We employed MACH-Admix software (Liu et al., 2013) to perform620

genotype imputation, using 1000G Phase I Integrated Release Version 3 haplotypes621

(1000-Genomes-Project-Consortium et al., 2012) as a reference panel. We also con-622
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ducted quality control after imputation, excluding markers with (i) low imputation623

accuracy (based on imputation output R2), and (ii) Hardy-Weinberg equilibrium p-624

value < 1 × 10−6. Finally, 10, 883, 584 bi-allelic markers (including SNPs and indels)625

from 1036 subjects were retained for data analysis.626

Further quality control627

On each SNP dataset, we further selected subjects with available brain volume data.628

We then used all autosomal SNPs and again applied the standard quality control629

procedures: excluding subjects with more than 10% missing genotypes, only including630

SNPs with MAF > 0.01, with genotyping rate > 90%, and passing Hardy-Weinberg631

test (P > 1 × 10−7). We further removed non-European subjects, if any. In PING,632

we only used biologically unrelated subjects. After quality control, we calculated the633

GRM by all SNPs and by SNPs on each chromosome separately using GCTA software634

(Yang et al., 2011). To avoid including closely related relatives, we excluded one of635

any pair of individuals with estimated genetic relationship larger than 0.025. The636

sample sizes of the datasets after conducting all quality control procedures are listed637

in Supplementary Table 12.638

Heritability analysis639

First, for each regional volume, we estimated the proportion of variation explained640

by all autosomal SNPs with a LMM (101 analyses in total). The formal setting of641

the LMM and definition of likelihood ratio test statistics can be found in Yang et al.642

(2011). The basic idea is to fit the GRM with random effects to the phenotypic measure,643

while adjusting for other covariates with fixed effects. The GRM was the correlation644

matrix of participants estimated by the common genetic variants, which was expected645

to capture the genetic similarity among unrelated individuals. Then the heritability646

of a phenotype was estimated by contrasting the genetic similarity among individuals647

with their phenotypic similarity. Baseline age, gender indicator, top 10 PCs of GRM,648

and BV (for regions other than BV itself) were included as covariates, unless otherwise649

stated. We also included the phase indicator for the ADNI study to adjust for potential650

batch effects. Besides the combined sample, we fitted the LMM separately on female651

and male samples for UK Biobank data.652

Second, we partitioned the genetic variation by each chromosome. We estimated653

the GRM of each chromosome and fitted each of them separately on each volume (22654

analyses per volume, 2222 analyses in total). The same set of covariates was included655

in these LMMs.656

Next, we performed PCA on the volumes and computed the heritability of the657

top 10 PCs. We also partitioned the genetic variation on the components by each658

chromosome. In the LMMs for the components, we did not adjust for BV unless659

otherwise stated, since we have observed that the variation of BV is almost captured660

by the first component, and should be orthogonal to the remaining components.661

Finally, we fitted linear models between the length of a chromosome and the aggre-662
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gate heritability of all volumes or their components to study the heritability distribu-663

tion across the genome. We clustered the regions according to their biological functions664

and showed the heritability distribution across these communities using the R package665

circlize (Gu et al., 2014).666

Functional enrichment of genetic signals667

Cell-type-specific active chromatin annotations per SNP were from Finucane et al.668

(2015) and Boyle et al. (2017) (https://github.com/bulik/ldsc/wiki/Partitioned-Heritability).669

According to Finucane et al. (2015), we performed functional annotation analyses us-670

ing cell-type-specific annotations marked by the four histones: H3K4me1, H3K4me3,671

H3K9ac and H3K27ac. Each cell-type-specific annotation corresponded to a histone672

mark in a single cell type, and there were 220 such annotations. The 220 cell-type-673

specific annotations were further divided into 10 groups, including adrenal gland and674

pancreas, CNS, cardiovascular system, connective tissue and bone, gastrointestinal, im-675

mune and hematopoietic systems, kidney, liver, skeletal muscle and other. The SNPs676

were first divided into four overlapping groups according to their activeness in all cell-677

type groups (only, few, broad, and never active). A SNP was labeled ’only’ if it was678

annotated as active in only one of the 10 cell-type groups. A SNP was labeled ’few’679

if it was annotated as active in at most 5 cell-type groups. SNPs that were active in680

6-10 cell-type groups were labeled ’broad’, and SNPs that were not active in any cell681

type were labeled ’never active’. Then, SNPs were further labeled as either active in682

the CNS cell group (’CNS active’) or not (’CNS inactive’). As the number of SNPs683

in each group was different, we randomly selected the same number of SNPs from684

each cell group (n=8368) and computed the heritability for each group in each region.685

We generated 50 random selected SNP datasets and calculated the mean of these 50686

heritability estimates in each region.687

Data availability688

Links to all datasets (UK Biobank, ADNI, PNC and PING) that support the findings689

of this study are provided in Section Online Methods. Researchers can apply to use690

these datasets for health related research in the public interest.691
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Figure 1: UK Biobank, SNP heritability and adjusted p-values ranked by estimates
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Figure 2: Gender-specific heritability estimate in each region
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Figure 3: Aggregated heritability of brain regions by each chromosome. In each dataet,
heritability explained by each chromosome is highly correlated with chromosome length.
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Figure 4: Heritability of brain regions by category of SNPs according to functional anno-
tations

●

●
●

●
●

●

●

H
er

ita
bi

lit
y

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

CNS_a
cti

ve
_b

ro
ad

CNS_a
cti

ve
_fe

w

CNS_a
cti

ve
_o

nly

CNS_n
on

ac
tiv

e_
br

oa
d

CNS_n
on

ac
tiv

e_
few

CNS_n
on

ac
tiv

e_
on

ly

ne
ve

r_
ac

tiv
e

ra
nd

om

Heritability by category of SNPs

23

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/208496doi: bioRxiv preprint 

https://doi.org/10.1101/208496
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: UK Biobank, SNP heritability and adjusted p-values grouped by brain function
networks
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Figure 6: Comparing SNP heritability in different datasets. Estimates of variation ex-
plained by all autosomal SNPs of each regional brain volumes as well as GV, WM, BV and
CSF (last four bars).
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