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Abstract

Summary ascend is an R package comprised of fast, streamlined analysis functions op-
timised to address the statistical challenges of single cell RNA-seq. The package incorporates
novel and established methods to provide a flexible framework to perform filtering, quality con-
trol, normalisation, dimension reduction, clustering, differential expression and a wide-range of
plotting. ascend is designed to work with scRNA-seq data generated by any high-throughput
platform, and includes functions to convert data objects between software packages.

Availability The R package and associated vignettes are freely available at https://github.
com/ IMB-Computational-Genomics—Lab/ascend.

Contact joseph.powell@Quq.edu.au

Supplementary information An example dataset is available at ArrayExpress, accession
number E-MTAB-6108.
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1 Introduction

Single cell RNA sequencing (scRNA-seq) has revolutionised the way we understand differences in
transcriptional programs. Recent advances in droplet-based molecular biology techniques, coupled
with microfluidics have given us the ability to examine the transcriptomes of tens of thousands of sin-
gle cells simultaneously. This has enabled the characterization of gene expression variation for each
cell in a heterogeneous population. Platforms and protocols such as 10X Genomics Chromium [,
Drop-seq [?], InDrop [B], and others (reviewed in [d]) provide accessible high-throughput methods
for generating scRNA-seq data. This breakthrough in technology has generated new challenges in
data management, normalization, statistical methods, data visualization, and computing limitations
because current methods for standard RNA-seq analysis cannot be readily applied to scRNA-seq
data.

Here we present ascend, an R package designed to create a simple and streamlined workflow for
the analysis of scRNA-seq experiments. ascend is designed to handle data generated from any
single cell library preparation platform; which can include data from either single and pair-end
reads, and including or not including unique molecular identifiers (UMIs). Software such as scpipe
(https://github.com/LuyiTian/scPipe)l [H] provides a unified bioinformatics pipeline to
generate a count matrix from raw sequence data, but does not include any further functionality for
down-stream analysis of scRNA-Seq data. ascend imports scRNA-seq data following bioinformat-
ics processing, performs user-friendly quality control, filtering, normalisation, dimension reduction,
clustering, differential expression and visualization. It includes functions to leverage multiple CPUs,
allowing most analyses to be performed on a standard desktop or laptop.

2 ascend

2.1 Data object

The core of the ascend R package is the Expression and Metadata Set (EMSet), an S4 object made
specifically for scRNA-seq experiments requiring only a user-supplied gene-cell expression matrix.
Metadata such as cell- or gene-related information, including custom controls and spike-ins, can be
incorporated. We have included a specific function to convert a GeneBCMatrix object generated
by the 10X Genomics Cell Ranger pipeline into an EMSet object. Class-specific convenience func-
tions allow object components to be manipulated in place or extracted with ease and standard R
functions can be used to modify metadata. In addition, to promote cross-package compatibility,
a convenience method is available to convert the EMSet to another common class, the SCESet,
created by the R packages scater [6] and scran [[@].

2.2 Filtering and quality control

Cell-specific and gene-specific metrics are generated upon the creation of an EMSet and are re-
calculated when changes to the object are made. ascends filtering functions identify and remove
low-quality cells based on library size and gene expression. Filtering of outliers greater than a
specified mean absolute deviation (MADs) is based on the workflow described by Lun et al. [7], and
cells expressing a high percentage of defined control genes (e.g. mitochondrial/ribosomal) can also
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be excluded. Customised sets of control genes, such as spike-ins, can be substituted. Finally, genes
detected in a low percentage of cells can be excluded. Functions include default parameters, which
can be edited by a user.

2.3 Removal of batch effects and normalisation

Analysis of large-scale scRNA-seq data often requires combining multiple samples. Therefore, to re-
move systematic biases due to technical variation between batches, ascend removes potential batch
effects at two levels, between cells and between samples. Here, the effects of confounding factors,
such as experimental conditions or cell cycle genes can also be removed. Cell-cell normalization
is another crucial step to remove technical variation between individual cells. ascend offers two
options to calculate a normalization size factor for each cell: a computationally intensive deconvo-
lution method [R], and we adjusted the RLE approach (Relative Log Expression, as described in
Anders and Huber, 2010) to find geometric means in zero-inflated data (refer to ascend vignettes
for more details). The former method takes into account the zero-inflation issue by pooling cells,
while the latter uses gene expression values higher than zero to calculate the geometric mean of a
gene. After normalization, the data is ready for analysis to find biological changes/differences.

2.4 Reduction of high-dimensional space

Dimensionality reduction is an important step for scRNA data analysis, since scRNA data is multi-
ple orders of magnitude larger than bulk RNA-seq data (n-cells * m-genes). Moreover, the expres-
sion levels of many genes are likely to be correlated, therefore the problem of (multi)collinearity
is common, while and additional factors such as dropouts, and high expression variation increase
the noise in the data. ascend implements principal component analysis (PCA) or multidimensional
scaling (MDS) to reduce the dimensions of the data and preserve the data structure (i.e. explain
most of the variance between cells). A ¢-SNE (¢-distributed Stochastic Neighbour Embedding)
procedure is used only to visualise cells in a low-dimensional space labeled by batch, cluster or the
expression levels of specific genes.

2.5 Clustering

Clustering cells into subpopulations is a crucial step that determines downstream analysis in single-
cell workflow [9,00]. ascend implements our CORE algorithm (Nguyen et al., 2017, under review)
as an unsupervised approach that does not require user defined-parameters, and a stable, optimal
number of clusters is computed automatically. The method is fast and scalable, enabling the detec-
tion of small clusters at high resolution as rare subpopulations, or larger clusters for more general
classification with simpler downstream analysis.

Briefly, from the normalised gene expression, a Euclidean distance matrix between cells is calculated.
An unsupervised dendrogram is then constructed by applying hierarchical clustering as described
(Nguyen et al., under review). The dendrogram is dynamically reclustered by a top-down split
and merging process over multiple iterations with changing tree-height thresholds. This approach
merges smaller clusters into larger consensus clusters, and uses an adjusted Rand index to compare
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different clustering results to find the optimal number of clusters.

2.6 Differential expression

After decomposing the dataset into subpopulations, ascend provides functionalities to compare
these subpopulations for finding biological signatures that distinguish them. The analysis is based
on negative binomial tests from DESeq [[M]. We introduced several modifications that allow (i)
more accurate estimation of fold change (adjusted fold change), and (ii) more efficient multipro-
cessing (divide and conquer approach) to handle large datasets.

3 Conclusion

In summary, ascend is a user-friendly and computationally efficient package for analysing scRNA-seq
data from all experimental platforms. ascend implements a state-of-the-art unsupervised clustering
method and integrates established analysis techniques for normalisation and differential gene expres-

sion. The ascend package and context-specific tutorials addressing a range of analytical scenarios
are available at https://github.com/IMB-Computational—Genomics—Lab/ascend.
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Figure 1: The ascend workflow. Solid lines indicate general workflow and dashed lines indicate
optional steps. Visualisation can be performed after the dimensionality reduction or clustering
steps.
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