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Abstract 
Bisulfite sequencing is widely employed to study the role of DNA methylation in disease; 
however, the data suffer from biases due to coverage depth variability. Here we 
describe BoostMe, a method for imputing low quality DNA methylation estimates within 
whole-genome bisulfite sequencing (WGBS) data. BoostMe uses a gradient boosting 
algorithm, XGBoost, and leverages information from multiple samples for prediction. We 
find that BoostMe outperforms existing algorithms in speed and accuracy when applied 
to WGBS of human tissues. We also show that imputation improves concordance 
between WGBS and the MethylationEPIC array at low WGBS depth, suggesting 
improved WGBS accuracy after imputation.  
 
Keywords: DNA methylation, XGBoost, whole-genome bisulfite sequencing (WGBS), 
EPIC, imputation, adipose, skeletal muscle, pancreatic islets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/207506doi: bioRxiv preprint 

https://doi.org/10.1101/207506
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Background 
DNA methylation is an epigenetic mark that is known to play a role in many fundamental 
biological processes, including differentiation, development, and gene regulation [1-2]. 
In mammals, DNA methylation occurs primarily on cytosines of CG dinucleotides 
(CpGs). CpG methylation marks convey epigenetic information across the lifespan, as 
they can be stably propagated through mitosis, and in special circumstances even 
through meiosis [3-7]. DNA methylation is an important mechanism for gene-
environment interaction, and can thus influence health of cells, organs, and organisms. 
 
DNA methylation is most commonly measured in cell lines or bulk tissue samples using 
microarrays or sequencing of bisulfite-converted DNA. These assays provide an 
estimate of the fraction of chromosomes in the cell population that are methylated at 
each CpG of interest (“beta” values). Microarrays such as the Illumina Infinium 
Methylation450k, and more recently the MethylationEPIC [8], are a cost-effective 
platform for measuring methylation in genes, promoters, and enhancers. However, the 
EPIC array measures only ~3% of all CpGs in the genome and has relatively little 
coverage of intergenic regions. In contrast, whole-genome bisulfite sequencing (WGBS) 
provides coverage of most of the ~28 million CpGs in the genome of an average tissue, 
giving it a clear advantage over the EPIC array. However, due to the high cost and 
sample input requirements of WGBS, it is often infeasible to generate deep-coverage 
data for a large number of replicates. Furthermore, methylation estimates from WGBS 
for CpGs sequenced at low depth are subject to error and are typically removed before 
performing downstream analysis [9]. One potential remedy for inefficiencies with WGBS 
is the generation of a small number of high-coverage reference samples in relevant 
tissues and disease states. These reference samples could be used to facilitate lower 
coverage and/or lower density methylation profiling in a larger number of samples. Such 
techniques have already been used to increase the power of GWAS studies by 
leveraging data from sparse yet cost-effective SNP arrays [10-12].  
 
Machine and deep learning algorithms have shown promise in providing accurate beta 
value estimates after training on sparse data sets [13,14]. Prediction accuracy, 
however, is still far from the currently expected SNP imputation accuracy in GWAS [13], 
leading to the need for algorithm improvement. The most recent beta value imputation 
methods were based on either random forests [15] or deep neural networks [16]. A 
relatively new algorithm called extreme gradient boosting (XGBoost) has been shown to 
outperform both methods in accuracy and computational efficiency in data science 
competitions when highly predictive features can be constructed [17]. Previous 
imputation methods have also only classified beta values as fully unmethylated or 
methylated. This binarization of the data not only represents a loss of information but 
also ignores the possible significance of intermediate beta values as a conserved and 
biologically relevant genomic signature [18]. Specifically, although single chromsome 
methylation is binary, intermediate methylation in a population of cells has been shown 
to be a predominantly tissue specific signature that is enriched in genes, enhancers, 
and evolutionarily conserved regions [18,19]. Furthermore, although previous algorithms 
have constructed features that capture the local correlation structure of beta values 
[13,20] as well as information from the surrounding DNA sequence context [13,14,21-
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23], no algorithms have created features that incorporate information from multiple 
samples in the same tissue and/or disease state. This adaptation could improve 
prediction for CpGs that are not highly correlated to neighboring CpGs or strongly 
associated with their surrounding DNA context.  
 
Importantly, machine and deep learning algorithms not only can impute missing values 
in sparse methylation data sets, but can also identify genomic features and sequence 
motifs associated with methylation patterns in different tissues [13,14,21,24-26]. For 
example, a previous random forest [13] algorithm applied to whole blood identified co-
localized active transcription factor binding sites (TFBS), including those for ELF1, MAZ, 
MXI1, and RUNX3, to be predictive of beta values in whole blood. A recent deep 
learning algorithm [14] found that transcription factor motifs such as Foxa2 and Srf, 
which are both implicated in cell differentiation and embryonic development, were 
important to beta value prediction in mouse embryonic stem cells. These algorithms are 
therefore useful for characterizing methylation regulatory networks. 
 
Methylation regulatory networks may have particular significance in complex diseases 
such as type 2 diabetes (T2D). The complexity of T2D is characterized by interactions 
between genetic and environmental factors acting in multiple tissues over time. 
Implicated tissues include pancreatic islets, skeletal muscle, adipose, liver, intestine, 
and brain. Genome-wide association studies (GWAS) have shown that the majority of 
T2D-associated loci lie in non-coding regions of the genome [27-29]. These loci 
therefore lack a clear relationship with any potential causal genes, underscoring the 
importance of identifying the epigenetic mechanisms by which they could affect gene 
expression.  
 
In this work, we generated EPIC and WGBS data on 58 human samples from adipose, 
skeletal muscle, and pancreatic islets (Additional file 1: Table S1). Samples from 
adipose and skeletal muscle included those from patients with normal glucose tolerance 
(NGT) and T2D. We found 1) a high rate of missingness in the WGBS data and 2) 
discordance between WGBS and EPIC, biased towards low coverage and intermediate 
methylation sites. To address these issues, we developed an imputation method based 
on XGBoost called BoostMe, which is designed to leverage information from multiple 
independent samples from the same tissue type and disease state to impute low-
coverage CpGs in WGBS data. We find that, for all tissues and all genomic contexts, 
BoostMe outperforms other methods, achieving the lowest error as well as the highest 
computational efficiency. We also examine the effect of imputation on WGBS accuracy 
by comparing raw WGBS and imputed beta values to those of the EPIC array. We find 
that discordance between EPIC and WGBS measurements at low WGBS depth is 
mitigated after imputation using BoostMe, supporting the use of imputation as an 
important preprocessing step for WGBS data analyses.  
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Results and discussion 
 
Characterizing beta values in WGBS of adipose, skeletal muscle, and pancreatic 
islets 
 
We generated WGBS and EPIC data from 58 samples of human adipose, skeletal 
muscle, and pancreatic islets. We discovered that, despite the relatively deep mean 
sequence coverage across samples (~30x genome-wide), there was a relatively high 
rate of missingness (CpG sequencing depth < 10x) (Figure 1A). The number of missing 
CpGs across all samples ranged from 2.6 million to 10.5 million, or roughly 10% to 40% 
of all ~25.5 million autosomal CpGs. We next explored the overlap between CpGs with 
a high rate of missingness and the underlying tissue-specific epigenomic architecture 
where they are located. We utilized previously published chromatin state segmentations 
for the corresponding tissues [30]. We found that missingness was spread across 
chromatin states (Figure 1B), with the highest raw numbers of missing beta values 
located in the Quiescent/Low Signal and Weak Transcription states (Additional file 1: 
Figure S1). 
 

 
Figure 1 | Characterization of WGBS missingness. (A) WGBS coverage (sequencing depth) 
distributions across tissue types and samples, visualized as the proportion of the ~25.5 million autosomal 
CpGs lying in each coverage interval. Each column is one sample from that tissue type. (B) WGBS 
missingness is distributed across chromatin states in all tissues. The normalized fraction of total 
missingness (y-axis) was calculated as the number of CpGs in each chromatin state that had missing 
beta values (sequencing depth < 10x) normalized by the total number of CpGs in that chromatin state for 
each tissue. Abbreviations: AN, adipose NGT; AT, adipose T2D; MN, muscle NGT; MT, muscle T2D; Isl., 
islets; NGT, normal glucose tolerance; T2D, type 2 diabetes. 
 
Previous imputation work using array-based technology has shown that the beta value 
of a CpG is correlated with the beta values of its neighboring CpGs [13]. To determine 
the extent to which this may be true in WGBS, we quantified neighboring CpG similarity 
as a function of distance by calculating pairwise differences in methylation within 
chromatin states for each tissue and disease state combination (Figure 2, Additional 
file 1: Figures S2, S3). The majority (~70%) of CpG pairs genome-wide were highly 
similar, with an absolute difference in beta values less than 0.1 (Figure 2A). As 
distance between CpGs increased, chromatin states such as active and bivalent/poised 
transcription start site (TSS), strong and weak transcription, and quiescent/low signal 
had generally low differences, suggesting that neighboring beta values may be highly 
informative for prediction in these regions. In contrast, enhancer, flanking TSS, and 
repressed polycomb states exhibited larger differences as distance increased, 
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suggesting that neighboring information alone may not be enough to make accurate 
predictions in these states, particularly when the nearest neighboring CpG is located at 
some distance.  
 

 
Figure 2 | CpG methylation pairwise differences increase with distance and have different average 
behaviors across chromatin states. Differences were calculated using the average methylation value of 
each CpG across all 12 muscle NGT samples. Smoothed lines were fit using a generalized additive 
model. Average behaviors across chromatin states were similar across all tissue and disease state 
combinations examined in this work; see Additional file 1: Figures S2, S3. (A) Absolute pairwise 
differences within chromatin states genome-wide. We randomly sampled blocks of chromatin states 
genome-wide and used ~2 million pairwise differences for each chromatin state. Marginal histograms 
indicate the number of pairwise differences across chromatin states within the range of the graph. (B) 
Pairwise differences in blocks of consecutive CpGs with higher across-tissue variance. Variances were 
calculated across all 58 tissue samples; CpGs with methylation variances above the third quartile of 
variances were considered as having higher variances. Pairs of CpGs lying in the same high-variance 
region but different chromatin states were excluded from this analysis.  
 
Since ~70-80% of CpGs are invariantly methylated across tissues and samples [31], we 
also calculated pairwise differences within regions of higher across-tissue variance. In 
contrast to the bimodal distribution of beta values genome-wide, average beta values in 
these high-variance blocks were more highly enriched for intermediate values 
(Additional file 1: Figure S4). Pairwise differences within these blocks exhibited less 
drastic changes over distance compared to the genome-wide analysis, and were more 
similar across chromatin states (Figure 2B). However, they had slightly larger 
magnitudes at low distances, where the bulk of differences occurred, indicating that 
even proximal CpGs may be less informative in these regions.  
 
BoostMe outperforms random forests and DeepCpG for methylation imputation 
 
To address the high rate of missingness in our data, we developed BoostMe, a method 
for imputing beta values using WGBS data from at least three samples. Previous 
attempts at beta value imputation based on penalized functional regression [23], 
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random forests [13], and deep neural networks [14] yielded relatively poor predictive 
accuracy genome-wide (RMSE > 0.23, AUROC < 0.93) (Additional file 1: Table S2). 
To improve on those methods, we implemented predictive models optimized for WGBS 
data using both random forest and gradient boosting [17] algorithms. 
 
We constructed a total of 648 features designed to both parallel and improve upon 
previous work [13]. Prediction features constructed from the WGBS data included the 
nearest non-missing neighboring CpG beta values upstream and downstream of the 
CpG of interest, base-pair distance to the neighboring CpGs, and the average beta 
value of the CpG of interest in other samples from the same tissue and disease state 
(sample average). We also used tissue-specific reference data to create features that 
describe the genomic context of individual CpGs such as histone marks (n = 7), 
computational predictions of transcription factor binding sites (TFBSs) (n = 608), 
chromatin states (n = 13), and ATAC-Seq peaks (as a measure of DNA accessibility; 
see Methods, Additional file 1: Table S3 for a full list of features).  
 
Importantly, by testing the inclusion of different features in the model, we found that not 
all features had a beneficial effect on model accuracy (Table 1). The highest model 
accuracy was obtained when using the sample average, neighboring beta values and 
distances, ATAC-seq peaks, histone marks, GENCODE annotations, and chromatin 
states. Using these features, and after applying additional quality control exclusion 
criteria (Methods), the average number of CpGs usable for training and testing per 
sample was 20 million (range: 14.7 million - 21.2 million), and the average number of 
missing CpGs able to be imputed per sample (sequencing depth < 10x) was 2.6 million 
(range: 750,000 - 7.7 million).  
 
Table 1 | Performance of BoostMe using different feature combinations.  

Features RMSE 
(all) 

RMSE 
(int.) AUROC AUPRC Accuracy 

Nearest non-missing upstream and downstream 
neighboring beta values and distances (N) 0.1515 0.2149 0.9489 0.9856 0.9370 

Sample average (A) 0.09594 0.1430 0.9895 0.9942 0.9624 
A, N 0.09330 0.1377 0.9902 0.9977 0.9639 

A, N, transcription factor binding sites 0.09333 0.1378 0.9902 0.9977 0.9638 
A, N, recombination rate 0.09330 0.1377 0.9902 0.9977 0.9639 

A, N, ATAC-seq peaks (P) 0.09327 0.1377 0.9902 0.9977 0.9639 
A, N, histone marks (H) 0.09322 0.1376 0.9902 0.9977 0.9639 

A, N, GENCODE annotations (G) 0.09323 0.1376 0.9902 0.9977 0.9639 
A, N, chromatin states (C) 0.09318 0.1375 0.9902 0.9977 0.9639 

A, N, P, H, G, C* 0.09311 0.1373 0.9902 0.9977 0.9640 
Performance was benchmarked on each sample by repeating the model training and testing process ten 
times using ten different random seeds. All metrics were calculated by averaging across all 58 samples. 
RMSE, root-mean-squared error; int., intermediate CpGs, defined as having a sample average 
methylation between 0.2 and 0.8; AUROC, area under the receiver operating characteristic curve; 
AUPRC, area under the precision-recall curve. Accuracy was calculated as the CpGs correctly predicted 
as methylated or unmethylated divided by the total number of CpGs. *Final set of features used to 
benchmark performance. 
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We compared the performance of BoostMe and random forests with DeepCpG for 
predicting continuous beta values in WGBS data from adipose NGT (n = 12), adipose 
T2D (n = 12), muscle NGT (n = 12), muscle T2D (n = 12), and pancreatic islet (n = 10) 
tissue (Figure 3A). Due to memory limits, both BoostMe and random forests were 
trained on 1,000,000 randomly selected CpGs from a single sample, validated on a 
hold-out 500,000 CpGs, and tested on a hold-out set of 1,000,000 CpGs. We repeated 
this random sampling, training, and testing 10 times and averaged the results for each 
sample. DeepCpG was trained for each tissue and disease state combination as 
described in Angermueller et al. [14], using a total of ~10 million CpGs for training and 
~5 million for validation. We evaluated DeepCpG models on a held-out random sample 
of 1,000,000 CpGs that also fit the BoostMe criteria for training and testing. We found 
that both BoostMe and random forests outperformed DeepCpG, achieving an average 
root-mean-squared error (RMSE) of 0.10, area under the receiver operating 
characteristic curve (AUROC) of 0.99, area under the precision-recall curve (AUPRC) of 
0.99, and an accuracy of 0.96 (Table 2). Unlike previous methods [13,14], we trained on 
continuous beta values rather than binary values because of the available depth in our 
WGBS data, and found that this change improved overall RMSE by at least 0.06 and 
performed similarly for AUROC, AUPRC, and accuracy (Additional file 1: Table S4). 
 
Table 2 | Genome-wide performance of different algorithms on predicting methylation values, averaged 
across tissues and samples. 

Algorithm RMSE 
(all) 

RMSE 
(int.) AUROC AUPRC Accuracy Resources Time 

(hrs) 
BoostMe 0.09 0.13 0.99 0.99 0.96 16 CPUs 0.33 
Random 
Forests 0.09 0.13 0.99 0.99 0.96 16 CPUs 14 

DeepCpG 0.18 0.23 0.94 0.98 0.91 1 GPU 144 
RMSE, root-mean-squared error; int., intermediate CpGs, defined as having a sample average 
methylation between 0.2 and 0.8; AUROC, area under the receiver operating characteristic curve; 
AUPRC, area under the precision-recall curve. 
 
To characterize performance patterns in different genomic contexts, we compared the 
performance of each algorithm within tissue-specific chromatin states (Figure 3B). 
Again, BoostMe and random forests outperformed DeepCpG in all chromatin states. In 
addition, all three algorithms exhibited the same trend across chromatin states, with the 
best predictive performance in TSS-associated states, which were strongly associated 
with low beta values (Additional file 1: Figure S5).  
 
Beta values are bimodally distributed, with the majority of CpGs being either fully 
methylated or unmethylated; however, there is evidence that intermediate methylated 
CpGs are a conserved genomic signature that is often tissue-specific [18,19]. 
Furthermore, given our finding that regions of higher across tissue-variance tended to 
have average beta values in the intermediate range (Additional file 1: Figure S4), 
CpGs with intermediate average beta values may be more biologically significant, and 
therefore more important to predict accurately. Therefore, we also benchmarked all 
algorithms on intermediate beta values, defined as having a sample average 
methylation between 0.20 and 0.80 inclusive. We found similar trends in algorithm 
performance, with both BoostMe and random forests having an RMSE of 0.13 and 
DeepCpG an RMSE of 0.23 (Table 2).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/207506doi: bioRxiv preprint 

https://doi.org/10.1101/207506
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

 
Figure 3 | BoostMe and random forests outperform DeepCpG for predicting methylation values 
genome-wide. (A) Root-mean-squared error (RMSE) of BoostMe, random forests (RF) and DeepCpG for 
predicting methylation in all tissue and disease state combinations examined in this study. Data points 
represent performance on individual samples. NGT, normal glucose tolerance; T2D, type 2 diabetes. (B) 
RMSE of all algorithms by chromatin state. 
 
We hypothesized that a uniform distribution of beta values in our training set would 
improve prediction at CpGs with intermediate beta values. We tested this by generating 
a training set using a biased sampling procedure that drew CpGs from each beta value 
decile with a frequency inversely proportion to its size. Contrary to our expectation, we 
found that this sampling procedure did not improve significantly the performance of 
BoostMe (Additional file 1: Figure S6). 
 
We further examined BoostMe error as a function of distance to the nearest non-
missing CpG across chromatin states, both genome-wide (Figure 4A) and within 
regions of higher across-tissue variance (Figure 4B). Trends in RMSE across distance 
strongly paralleled our previous analysis of pairwise differences in CpG methylation 
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within chromatin states (Figure 2). As expected, the absolute prediction error was 
lowest for all chromatin states when there was a non-missing, neighboring CpG within 
100 bp of the CpG of interest, which was true for the majority (~87%) of CpGs. The 
error increased for the smaller subset of CpGs where the nearest non-missing neighbor 
was farther away to varying degrees for each chromatin state: error in TSS states 
increased rapidly; transcribed states (strong transcription, weak transcription) remained 
relatively stable and low; and enhancer and inactive chromatin states had higher but 
generally stable error rates. Similar to the pairwise differences within regions of high 
across-tissue variance (Figure 2B), all chromatin states in these regions exhibited 
stably higher error rates, and had similar behaviors. Due to the small average block size 
for regions of high across-tissue variance (~533 bp on average), there was a lack of 
data past 200 bp which led to larger confidence intervals and less accurate smoothed 
line estimates.  
 

 
Figure 4 | BoostMe error across chromatin states as a function of distance to the nearest non-
missing CpG. Absolute prediction error was measured as the difference between the predicted and 
actual beta values for (A) a holdout test set of 5 million CpGs and (B) a holdout set of ~1.3 million CpGs 
in high-variance regions that met BoostMe criteria for training and testing. Gray shaded areas indicate 
confidence intervals for each smoothed line created using a generalized additive model. Marginal 
histograms display the number of pairwise differences across chromatin states within the range of the 
graph. Chromatin state corresponds to the chromatin state that the predicted CpG lied in.  
 
Finally, we benchmarked the computational performance of all algorithms. BoostMe had 
a training runtime that was up to 40x faster than random forests using identical 
computational resources and up to 400x faster than DeepCpG (Table 2). Both BoostMe 
and random forests training times outperformed DeepCpG, which took multiple days to 
train due to the need to train CpG and DNA modules separately before training the joint 
module (Methods).  
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Imputation reduces WGBS discordance with EPIC at low sequencing depth 
 
To assess the effect of imputation on the quality of WGBS data, we first characterized 
the concordance of WGBS and EPIC array beta estimates at the same CpGs in the 
same samples (Figure 5A). As reported previously [32], WGBS and EPIC beta values 
were generally well-correlated (r2 = 0.92) (Additional file 1: Figure S7). However, we 
found that disagreement between the two platforms was concentrated at lower WGBS 
depth and intermediate beta values, with varying levels of discordance at high 
sequencing depth. Neither EPIC nor WGBS beta values can be considered the true 
methylation value of a particular CpG; however, since discordance between the two 
estimates was a function of sequencing depth, we hypothesized that discordance at low 
depth could be mostly attributed to WGBS inaccuracy, and discordance at high depth to 
EPIC inaccuracy.  
 

 
Figure 5 | Imputation reduces discordance between WGBS and EPIC methylation estimates at low 
sequencing depth. (A) Root-mean squared discordance (RMSD) between EPIC and WGBS methylation 
estimates at CpGs common between the two platforms. X-axis: depth at which the CpG was sequenced, 
binned into intervals of 5. Y-axis: the beta value of the CpG as measured by the EPIC array, binned into 
intervals of 0.05. Yellow color indicates higher discordance. (B) RMSD between EPIC and imputed 
WGBS values at the same CpGs as in A. (C) Difference between A and B. 
 
We then used BoostMe to impute and replace beta values common between the two 
platforms. We found that the discordance was mitigated (Figure 5B), particularly at 
lower WGBS depth and intermediate beta values (Figure 5C). Furthermore, we found 
that discordance mitigation at lower WGBS depth was robust with respect to the EPIC 
array probe type examined (Additional file 1: Figure S8). Discordance at higher depth 
was variable and in some cases increased after imputation (Figure 5C).  
 
BoostMe and random forests identify features important to general methylation 
levels 
 
To interrogate differences in the methylation patterns of the different tissues and 
disease states, we examined the top variable importance scores output by random 
forests and BoostMe using all features (Figure 6, Additional file 1: Figures S9, S10). 
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Both algorithms highly prioritized the sample average and neighboring CpG features, 
which were well-correlated with the beta value of the CpG of interest.  
 

 
Figure 6 | Random forests exhibit greater bias in favor of positively correlated features compared 
to BoostMe. Correlation among methylation beta value and top 30 features in descending order for 
adipose T2D as reported by (A) random forests and (B) BoostMe. Ranking was determined by 
aggregating the variable importance scores across 10 runs from all adipose T2D samples. Beta - beta 
value of the CpG of interest. 
 
We found that random forests also ranked highly features that were negatively 
correlated with beta values, especially those associated with open chromatin and 
promoter regions such as H3K4me3, ATAC-Seq peaks, CpG islands, and the TSS 
chromatin states (Figure 6A). Random forests also identified several TFBSs previously 
shown to be methylation-sensitive such as YY1 [33,34], REST [35,36], and EP300 [37]. 
In concordance with previous results [13], we found that random forests were biased to 
rank highly features that are positively correlated with each other. This trend was 
particularly evident in the correlations among the top TFBSs identified, with all of them 
having some degree of overlap with each other (Figure 6A). 
      
In contrast, BoostMe did not exhibit the same bias in favor of positively correlated 
features (Figure 6B). Since gradient boosting trees are trained sequentially, with each 
subsequent tree designed to reduce error from the previous tree, BoostMe is less likely 
to rank highly features that exhibit strong positive cross-correlations. Therefore, 
BoostMe more highly prioritized chromatin states that were positively correlated with 
methylation such as the quiescent/low signal and weak transcription chromatin states in 
addition to highly predictive features that were negatively correlated with methylation 
identified by random forests, such as ATAC-Seq peaks and H3K4me3. BoostMe did not 
report as many methylation-associated TFBSs as highly predictive, likely because of 
their high positive correlations with each other and with other features indicative of open 
chromatin, such as ATAC-Seq peaks and H3K4me3. 
 

A B
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To further determine whether BoostMe or random forests could identify features that 
were important to specific tissues, we trained models using only TFBSs in tissue-
specific regions of open chromatin as determined by ATAC-seq peaks. We found that 
the rankings were generally the same across tissues for both algorithms (Additional 
file 1: Tables S5, S6). 
       
Conclusions 
 
Here we introduce BoostMe, a method for imputing low quality beta values within whole-
genome bisulfite sequencing (WGBS) data. BoostMe is based on XGBoost, a 
computationally efficient gradient boosting algorithm that has seen widespread success 
in data science competitions [17]. Importantly, BoostMe leverages information from at 
least three samples and trains and predicts on continuous beta values. This framework 
allows BoostMe to outperform existing imputation methodology, including DeepCpG 
[13], a deep neural network method, in both speed and accuracy across tissues and 
genomic contexts. BoostMe also achieves lower RMSE than DeepCpG for 
intermediately methylated CpGs, which we found to be enriched in regions of high 
across-tissue methylation variance. Furthermore, using matched EPIC and WGBS data 
from the same samples, we have shown that BoostMe imputation reduces discordance 
between the two platforms, particularly at low WGBS depth. Overall, our results support 
the use of BoostMe as a preprocessing step to improve WGBS quality when multiple 
samples are available.  
 
A notable limitation of BoostMe is its interpretability. Although it was previously reported 
that random forests identified TFBSs associated with methylation in whole blood [13], 
we found that neither BoostMe nor random forests identified noteworthy differences in 
variable importance scores between different tissues. On the other hand, DeepCpG, a 
deep neural network method, was able to identify differences in transcription factor 
motifs associated with prediction among the different tissues. For example, DeepCpG 
identified motifs of TFs important to a tissue type, such as EBF1 in adipose [38,39], 
ASCL2 in muscle [40], and FOXA1 in pancreatic islets [41,42], which have all been 
reported to be involved in regulating differentiation and development in their respective 
cell types. Thus, despite its relatively poor performance, DeepCpG may be superior for 
identifying tissue-specific differences. No algorithm examined in this work readily 
identified differences between NGT and T2D. 
 
Similar to previous methodology [13,14], BoostMe relies on the locally correlated 
structure of neighboring CpGs to identify sample-specific differences. Although using 
neighboring information leads to an overall more accurate prediction for all algorithms 
examined in this work, the accuracy of this approach may not be robust for a subset of 
CpGs. To determine the local similarity of CpG methylation within WGBS and its effect 
on algorithm performance, we first calculated pairwise differences between beta values 
across chromatin states, finding that enhancer states generally had the largest 
differences, while TSS and transcribed states had the lowest. In concordance with this 
result, we found that all algorithms performed worst in active and weak enhancer 
chromatin states and best in TSS and transcribed states. Performance was slightly 
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worse in regions of high across-tissue variance, where pairwise differences were 
generally larger. 
 
Finally, to further characterize the relationship between informative neighboring CpGs 
and algorithm performance, we examined BoostMe error as a function of distance to the 
nearest non-missing CpG. The nearest non-missing beta values upstream and 
downstream were the second and third-most informative features in the model after the 
sample average. We found that error was lowest when the CpG of interest had a non-
missing neighbor within 100 bp. This result parallels a previous study [43], which 
reported that methylation haplotype blocks, defined as areas of consecutive CpGs with 
r2 > 0.5, measure just 95 bp long on average. Although the majority (~87%) of CpGs did 
have a non-missing neighbor within 100 bp, the decreased performance for the 
remaining subset of CpGs may be a significant shortcoming of BoostMe and all 
neighbor-dependent imputation methods in general. Given these limitations, further 
work must be done to develop even more accurate imputation methodology that can 
identify sample-specific differences for prediction without depending heavily on 
informative neighboring CpGs, perhaps through incorporation of long-range interactions 
and other high-dimensional genomic and epigenomic features not considered in this 
work. Such methodology could potentially facilitate whole-genome imputation from a 
sparse subset of CpGs, with accuracy independent of neighboring CpG distance. 
 
Methods 
 
Sample collection 
Muscle and adipose NGT and T2D samples were collected as previously described [4]. 
Briefly, we attempted to contact participants and participants' relatives from previous 
diabetes-related studies [44-47] and also recruited subjects by newspaper 
advertisements. We excluded individuals with any diseases or drug treatments that 
might confound analyses. We defined glucose tolerance categories of NGT and T2D 
using World Health Organization (WHO) criteria [48]. Biopsies were performed by 9 
experienced and well-trained physicians from 2009-2013 in 3 different study sites 
(Helsinki, Kuopio, and Savitaipale). The study was approved by the coordinating ethics 
committee of the Hospital District of Helsinki and Uusimaa. A written informed consent 
was obtained from all subjects.  
 
Islet samples were collected as previously described [30]. Briefly, samples were 
procured from the Integrated Islet Distribution Program, the National Disease Research 
Interchange (NDRI), or ProdoLabs. Islets were shipped overnight from distribution 
centers, prewarmed in shipping media for 1-2 h before harvest, and cultured in tissue 
culture-treated flasks. Genomic DNA was then isolated from islet explant cultures and 
used for sequencing. 
 
Whole-genome sequencing 
Whole genome sequencing libraries were generated from 50 ng genomic DNA 
fragmented by Covaris sonication. DNA end repair achieved using Lucigen DNA 
Terminator Repair Enzyme Mix. Sequencing adapters were added according to Illumina 
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PE Sample Prep instruction. Libraries were size-selected on Invitrogen 4-12% 
polyacrylamide gels excising 200-250 bp fragments. Libraries were amplified with 10 
PCR cycles and purified using AMPure beads (Beckman). 
 
Whole-genome bisulfite sequencing 
Whole-genome bisulfite sequencing was performed using Epigenome/TruSeq DNA 
Methylation Kit (Illumina). Libraries were prepared for each sample using 50 ng of input 
DNA by denaturing the DNA at 98oC for 10 minutes. Bisulfite conversion was generated 
at 64oC for 2.5 h and DNA purified using EZ DNA Methylation Gold Kit (Zymo 
Research). Bisulfite converted libraries were generated by random-primed DNA 
synthesis, 3’ tagging, and purification using AMPure beads (Beckman). Sample-specific 
index sequences were added with 10 cycles of amplification.  
 
Library quality was assessed using Qubit (Thermo Fisher Scientific) and Agilent 
Bioanalyzer. Paired-end 125bp sequencing was performed on Illumina HiSeq 2500 
instruments to 30X genome coverage. 
 
EPIC array 
Genomic DNA was extracted from each tissue using DNeasy Blood and Tissue Kits 
(QIAGEN), according to the manufacturer's recommendations. 200ng of genomic DNA 
per sample was submitted to the Center for Inherited Disease Research at The Johns 
Hopkins University, where they were bisulfite-converted using EZ DNA methylation Kits 
(Zymo research), as part of the TruSeq DNA Methylation protocol (Illumina). DNA 
methylation was measured using the Illumina Infinium HD Methylation Assay with 
Infinium MethylationEPIC BeadChips according to manufacturer's instructions.  
 
WGS data processing 
Raw FASTQ files were evaluated with FastQC [49]. Adapter sequences were trimmed 
using Atropos [50], and reads with at least one pair shorter than 25 bp were excluded. 
Reads were aligned to the reference genome (GRCh37) using BWA MEM [51], followed 
by Samblaster [52] for marking duplicates. 
 
WGS variant calling 
SNPs and indels were called separately for all sample BAM files using GATK 
HaplotypeCaller [53]. Variants were filtered using GATK Variant Quality Score 
Recalibration. Quality score cutoffs were chosen by comparing rates of discordance 
with SNP array genotypes. 
 
WGBS data processing 
Raw FASTQ were pre-processed as above and aligned using bwa-meth [54]. 
Methylation values were extracted using the MethylDackel 'extract' command, including 
bias correct based on the values recommended by the 'mbias' command, and forward- 
and reverse-strand CpGs were merged with a minimum coverage cutoff of 10 
(https://github.com/dpryan79/methyldackel). Methylation level data from the X and Y 
chromosomes were excluded.  
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EPIC Array Data Processing 
The EPIC data are part of a much larger, unpublished study. As such, all samples were 
processed jointly with other samples from the larger study. We processed raw signal 
idat files using minfi v1.20.2 [55] with the Illumina normalization method. We analyzed 
the quality of each sample looking for outliers across a variety of measures including 
fraction of failed probes (detection p-value > 0.05), median methylated and un-
methylated intensity, control probe signal (using the returnControlStat function from 
shinyMethyl v1.10.0 [56]), distribution of the overall methylation profile, and principle 
component analysis. None of the WGBS included in this study were flagged as outliers. 
In addition, we verified the identity of each sample by comparing genotypes assayed on 
the EPIC array to imputed genotypes using the HRC reference panel r1.1 [57] and 
Illumina Omni2.5 array genotypes.  
 
For both the earlier 450k and recent EPIC Illumina methylation array, previous studies 
[58-61] have identified poor quality probes that either do not uniquely map to the 
reference genome or contain common genetic variation. These properties make the 
signal at these probes un-reliable. We removed such probes from the EPIC array. First, 
we removed cross-reactive probes on the EPIC chip by mapped non-control probes 
back to the entire bisulfite-converted genome, using Novoalign's -b4 option, with 
allowance for up to three mismatches in the probe alignment (-R120 option). We kept 
only unique mapping probes. Second, we removed probes with a SNP within 10 bp of 
the 3’ end of the probe, within the target CpG itself, and finally, in the case of type I 
probes, if the variant overlaps the single base extension site. We used 10 bp as this 
cutoff is consistent with previous studies [59]. For SNPs we used common (MAF ³ 1%) 
SNPs, indels or structural variation in the phase 3 1000 Genomes European dataset, 
common (MAF ³ 1%) SNPs in the HRC reference panel r1.1, and SNPs appearing at all 
our own samples, even at low frequency, after imputation to the HRC reference panel. 
As a final step, we combined our blacklist with a previously published blacklist [61] for a 
total of 120,627 probes which were removed from analysis. In addition, we removed 
probes per tissue with a high detection p-value (p-value > 0.05 in ³ 5% of samples from 
the larger study). After blacklist filters, we removed 578 adipose probes, 733 muscle 
probes, and 2,206 islet probes based on the per sample filters.  
 
Identification of higher across-tissue variance regions in WGBS 
Using all 58 WGBS samples, we calculated the variance in methylation values for each 
CpG. We then searched for blocks of consecutive CpGs that had 1) variance above the 
third quartile of variance levels and 2) a non-missing methylation value in at least 20 
samples, determined by looking at the distribution of variance values as a function of 
missing values (Additional file 1: Figure S11). This analysis identified approximately 
200,000 blocks of high across-tissue variance CpGs genome-wide. Blocks contained an 
average of eight CpGs, spanned an average of 533 bp, and had higher relative 
enrichment in enhancer chromatin states (Additional file 1: Figure S4). 
 
Feature construction for BoostMe and random forests 
We used the same 648 features in the BoostMe and random forest algorithms (see 
Additional file 1: Table S2 for a detailed list). Prior to feature construction, we applied 
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a further set of exclusion criteria to filter the CpGs included in training, validation, and 
testing. Only autosomal CpGs were used (n=25,586,776). We overlapped WGS data 
with the WGBS data from all samples and excluded CpGs for which the CG dinucleotide 
on either strand was disturbed by a SNP or indel that was 2 bp long. We also excluded 
all CpGs located in ENCODE blacklist regions [62].  
 
CpG features 
Features constructed from the WGBS data included neighboring CpG methylation 
values and the sample average feature. Neighboring CpG methylation values were 
taken within the sample of interest. For each neighbor, the methylation value as well as 
the base-pair distance from the neighbor to the CpG of interest were included as 
features. The sample average feature was created by taking the average of all samples 
within each tissue at the CpG of interest, not including the sample being interrogated. 
Samples in which the CpG was not sequenced above 10x coverage were excluded from 
the calculation. CpGs without a measurement above 10x coverage from at least two 
additional samples were also excluded.  
 
Genomic features 
We constructed both general and tissue-specific genomic features. General genomic 
features were the same across all tissues and included GC content, recombination rate, 
GENCODE annotations, and CpG island (CGI) information. GC content data was 
downloaded from the raw data used to encode the gc5Base track on hg19 from the 
UCSC Genome Browser [63,64]. DNA recombination rate annotations from HapMap 
were downloaded from the UCSC hg19 annotation database 
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/). CpG island coordinates 
were obtained from UCSC browser. CpG island shores and shelves were calculated 
from CpG island coordinates by taking 2 kb flanking regions. GENCODE v25 transcript 
annotations were downloaded from the GENCODE data portal 
(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_25). 
 
Tissue-specific genomic features included ATAC-seq, chromatin states, histone marks, 
and transcription factor binding sites (TFBS). These features were all binary, with 0 
indicating that the CpG of interest did not overlap that feature, and 1 indicating overlap. 
Chromatin state annotations were obtained from a previously published 13 chromatin 
state model for 31 diverse tissues that included islets, skeletal muscle, and adipose 
[30]. This model was generated from cell/tissue ChIP-seq data for H3K27ac, 
H3K27me3, H3K36me3, H3K4me1, and H3K4me3, and input from a diverse set of 
publicly available data [19, 65-67]. ATAC-seq data was obtained from previously 
published studies for islets [30], skeletal muscle [68], and adipose [69]. TFBS data was 
obtained as described in [68], with additional PWMs from [70]. TFBS data was filtered 
for each tissue by the ATAC-seq feature to only include hits overlapping an ATAC-seq 
peak. We merged hits from multiple motifs of the same transcription factor to reduce the 
number of variables included in the algorithm and optimize computational efficiency.  
 
BoostMe and random forests implementation 
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For BoostMe we used the xgboost package (version 0.6-4) [17] in R [71] (version 3.3.1). 
For random forests we used the ranger package (version 0.6.0) in R, which facilitates 
random forest training and testing on multiple CPUs [72]. In the final algorithm, we set 
num_trees to 500 to balance computational time and accuracy, and used default values 
for other parameters after finding that performance was robust to different settings. 
 
For both algorithms, we used regression trees to predict a continuous methylation value 
between 0 and 1 for CpGs of interest. Algorithms were trained on individual samples 
within each tissue and disease state combination. We trained only on CpGs with at least 
10x coverage and no more than 80x coverage. Random forest variable importance was 
calculated using the mean decrease in variance at each split as implemented in the 
ranger package. BoostMe variable importance was evaluated for each variable as the 
loss reduction after each split using that variable as implemented in the xgboost 
package.  
 
Due to memory limits, algorithms were trained on a random sample of 1,000,000 CpGs 
from all available CpGs within a sample, validated on a hold-out set of 500,000 CpGs, 
and benchmarked on another hold-out set of 1,000,000 CpGs. To account for possible 
biases that would arise from only training on a small subset of the over 20 million CpGs 
available for training from each sample, we repeated the process of randomly sampling 
CpGs for training, validation, and testing ten times for each sample using ten different 
random seeds and averaged the results. 
 
DeepCpG implementation 
 
We implemented DeepCpG (version 1.0.4) as described in Angermueller et al. (2017) 
[14]. Briefly, for each of the five tissue and T2D status combinations (adipose NGT, 
adipose T2D, muscle NGT, muscle T2D, and islet) the data was first divided by 
chromosome into training (chr. 1, 3, 5, 7, 9, 11, 13, 15), validation (chr. 16, 17, 18, 19, 
20, 21, 22), and test sets, corresponding to a rough 40-20-40 split. The DNA module 
and CpG module were trained on separate NVIDIA Tesla K80 GPUs and the 
performance of each module was evaluated individually on the test set. The joint 
module was trained with the best-performing DNA and CpG modules, and its 
predictions were used for final benchmarking. In contrast to original single-cell bisulfite 
implementation of DeepCpG which was trained and tested on binary methylation 
values, we trained and tested on continuous methylation values to parallel our 
implementation of BoostMe and random forests. We find that this change made no 
difference in the accuracy of the model (Additional file 1: Table S4).  
 
We experimented with six different hyperparameter combinations for each DNA model, 
including three architectures (CnnL2h128, CnnL2h256, CnnL3h256) and two dropout 
rates (0, 0.2). We then selected the best-performing combination based on AUC and 
reported the motifs significantly matching the filters from the first convolutional layer of 
that model [73]. Similarly, we tested both RnnL1 and RnnL2 for the CpG model for each 
tissue. For the joint module, we tested JointL1h512, JointL2h512, and JointL3h512. The 
best-performing joint model was selected to evaluate RMSE, AUC, AUPRC, and 
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accuracy for each tissue. We used a default learning rate of 0.001 for all models. Similar 
to random forests and BoostMe, performance was generally robust with respect to 
different architectures. For a detailed explanation of all model architectures, see 
http://deepcpg.readthedocs.io/. 
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