
Reliability and correlation of fMRI, ECoG and
EEG during natural stimulus processing

Stefan Haufe1,2,3,�, Paul DeGuzman4, Simon Henin5, Michael Arcaro6,
Christopher J. Honey7, Uri Hasson8, and Lucas C. Parra4,2,�

1Technische Universität Berlin 2City College New York 3Columbia University 4Neuromatters LLC 5NYU Langone Medical Center
6Harvard Medical School 7Johns Hopkins University 8Princeton University

Human brain mapping relies heavily on fMRI, ECoG and
EEG, which capture different physiological signals. Rela-
tionships between these signals have been established in
the context of specific tasks or during resting state, of-
ten using spatially confined concurrent recordings in ani-
mals. But it is not certain whether these correlations gen-
eralize to other contexts relevant for human cognitive neu-
roscience. Here, we address the case of complex natural-
istic stimuli and ask two basic questions. First, how reli-
able are the responses evoked by a naturalistic audio-visual
stimulus in each of these imaging methods, and second,
how similar are stimulus-related responses across meth-
ods? To this end, we investigated a wide range of brain re-
gions and frequency bands. We presented the same movie
clip twice to three different cohorts of subjects (NEEG = 45,
NfMRI = 11, NECoG = 5) and assessed stimulus-driven cor-
relations across viewings and between imaging methods,
thereby ruling out task-irrelevant confounds. All three imag-
ing methods had similar repeat-reliability across viewings
when fMRI and EEG data were averaged across subjects,
highlighting the potential to achieve large signal-to-noise ra-
tio by leveraging large sample sizes. The fMRI signal cor-
related positively with high-frequency ECoG power across
multiple task-related cortical structures but positively with
low-frequency EEG and ECoG power. In contrast to previous
studies, these correlations were as strong for low-frequency
as for high frequency ECoG. We also observed links be-
tween fMRI and infra-slow EEG voltage fluctuations. These
results extend previous findings to the case of natural stim-
ulus processing.
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Introduction
The most frequently-used functional neuroimaging tech-
niques are functional magnetic resonance imaging (fMRI)
and electroencephalography (EEG). Both are complementary
in that fMRI provides high spatial but low temporal reso-
lution, while the opposite is true for EEG. Invasive meth-
ods such as electrocorticography (ECoG), on the other hand,
combine high temporal resolution with relatively high spatial
resolution; however, such procedures are only used in small
cohorts of neurological patients. ECoG, EEG and fMRI also
differ in their underlying neurophysiological origin, are sus-
ceptible to different noise sources (e.g., artifacts, patholog-
ical activity), and generally differ in terms of their inherent
signal-to-noise ratio (SNR). From a practical perspective, it

is, therefore, of interest to quantify and map out the amount
of task-related information that each imaging modality con-
tains in order to decide on the appropriate technique for a
particular study.

At the same time, it is an ongoing endeavor to reveal the
relationships between brain imaging techniques in order to
better understand the physiological foundations underlying
these methods. There have been significant efforts to re-
late the electrical neural signal measured with EEG/ECoG
(Buzsáki et al., 2012) to the hemodynamic blood-oxygen-
level dependent (BOLD) signal captured by fMRI (Logo-
thetis, 2003). In respective experiments, imaging modalities
are linked either through simultaneous recordings or through
separate recordings tied together by a common task. Simulta-
neous fMRI–EEG recordings in human have been performed
in Laufs et al. (2003); Moosmann et al. (2003); Ritter et al.
(2009); Ritter and Villringer (2006); Scheeringa et al. (2008,
2011, 2016). Simultaneous fMRI–ECoG recordings are only
available in animals (Logothetis et al., 2001; Magri et al.,
2012; Niessing et al., 2005) with a recent exception in hu-
man (Carmichael et al., 2017). Most human studies have
relied instead on a common task (Harvey et al., 2013; Her-
mes et al., 2012; Mukamel et al., 2005; Nir et al., 2007;
Winawer et al., 2013). The main findings of these studies
are that high-frequency power in the ECoG correlates pos-
itively with fMRI, while low frequencies correlates nega-
tively with fMRI. These effects may, however, not be uni-
formly distributed across cortical brain structures, and can
display frequency-dependent spatial variations (Harvey et al.,
2013; Scheeringa et al., 2008, 2009). The observed corre-
lations may also depend on the specific task (Maier et al.,
2008; Muthukumaraswamy and Singh, 2009). Recent evi-
dence suggests that the correlations between hemodynamic
and electrical activity can have a non-neuronal physiologi-
cal origin (Mateo et al., 2017), which can be decoupled from
task-related neural processing (Winder et al., 2017). Thus,
it is not certain whether the results of previous studies apply
also in more realistic stimulus condition in humans, nor is
it clear which of these relationships persist once controlling
for physiological confounds unrelated to the brain functions
under study.

The link between scalp EEG and invasive electrical record-
ings has been explored predominantly in non-human pri-
mates using simple visual stimuli. While visually evoked
gamma activity generally correlates in the two imaging
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modalities (Whittingstall and Logothetis, 2009), there ap-
pears to be a complex relationship between lower frequency
activity in the EEG and high-frequency intracranial activity
(Snyder et al., 2015). In human, the link between ECoG and
EEG has been explored mostly in the context of epileptic ac-
tivity, but we are not aware of a systematic analysis of dif-
ferent frequency bands. Such an analysis may be warranted,
given that results on visual evoked gamma activity, for in-
stance, do not seem to readily extend to humans (Juergens
et al., 1999) and likely depend on the stimulus (Scheeringa
et al., 2016).
Here, we consider the case of a complex audio-visual movie
stimulus and ask two basic questions that have not been suf-
ficiently addressed in the previous literature. First, how re-
liable are the responses evoked by such a stimulus in EEG,
fMRI and ECoG, considering the cohort sizes that are typi-
cally available in respective studies? And, second, to what
extent are these three imaging modalities reflecting the same
stimulus-related brain activity?
To study these questions, we analyzed correlations within and
between EEG, fMRI and ECoG recordings across different
brain structures and frequency bands. Data were acquired
from three different cohorts of subjects within separate EEG,
ECoG and fMRI studies, in which subjects watched an audio-
visual movie. The richness of the movie stimulus thereby en-
sured that not only auditory, visual and multi-sensory systems
were engaged in the viewing task, but also a host of higher-
level cognitive functions such as language, memory, and at-
tention. Using the same movie for all subjects allowed us
to temporally align data of different recordings, and to quan-
tify their similarity using correlations (Hasson et al., 2010,
2004). Relationships between imaging modalities were stud-
ied in a common anatomical space in terms of correlations
between signals of different subject cohorts, here referred to
as inter-method correlations (IMC). Additionally, the pres-
ence of two repeated viewings within each subject allowed
us to assess the SNR of each imaging modality in terms of its
repeat-reliability, which we quantified here in terms of inter-
viewing correlations (IVC). The use of IMC/IVC thereby
ruled out correlations induced by physiological or artifactual
fluctuations not related to the task, which would be present
in concurrent multi-modal recordings. To allow meaning-
ful comparisons of correlations across methods, we harmo-
nized the spatial and temporal scales of the different datasets
using spatial co-registration and the standardization of cor-
relation coefficients using data-dependent null distributions.
Our study represents the first comprehensive quantification
of the stimulus-related brain activity that is expressed within
and shared between three important functional brain imaging
modalities.

Results
Three separate cohorts of subjects were presented with a
325 s long segment of a feature film (Dog Day Afternoon;
previously used by Honey et al., 2012) two times, and neu-
ral activity was recorded with EEG (N = 45 subjects), fMRI
(N = 11) and ECoG (N = 5). We analyzed correlations of

‘raw’ broad-band signals of all imaging methods as well as
of EEG/ECoG power fluctuations in five frequency bands:
θ (4–8 Hz), α (8–12 Hz), β (12–28 Hz), γ (28–56 Hz) and the
high frequencies (HF, 64–116 Hz). To quantifying the effects
that can be resolved from entire cohorts of realistic sizes, we
performed grand-averaging (GA) of the EEG and fMRI data
after spatial normalization. In ECoG, averaging across sub-
jects is not possible, as electrode montages differ between
subject; we, therefore, combined the ECoG channels of all
subjects into a single dataset (without averaging). For com-
parison we also present fMRI and EEG results obtained on
single subjects.

Reliability of responses within imaging methods
To assess the repeat-reliability of stimulus-related brain ac-
tivity for each method, we calculated the correlation of the
continuous neural responses across the two renditions of the
stimulus, which we refer to as the inter-viewing correla-
tion (IVC). Correlations were assessed separately for each
anatomical location using Pearson’s r, and their statistical
significance was assessed by comparing observed values to
a null distribution obtained from surrogate data. The result-
ing z-scores correct for unequal variances of the estimated
correlation coefficients that arise from different sampling fre-
quencies and data-dependent auto-correlation spectra. We
interpret z-scores as objective measures of how much the
observed correlations stand out against random fluctuations
in the data. They can be directly compared across different
imaging methods and differing sampling rates, whereas r-
values are sensitive to the sampling rate and spectral content
of the signals.

2.1.1. Comparable repeated-reliability when averaging over
typical cohort sizes. We observed strong IVC of neural ac-
tivity for all three imaging methods (r-values in Fig. 1, and
corresponding z-scores to determine significance in Fig. 2).
The grand-average fMRI BOLD signal (GA-fMRI) reached
a maximum IVC of rmax = 0.79, where strongest correlations
were observed in temporal, parietal, occipital and fronto-
temporal areas known to implement auditory and visual pro-
cessing hierarchies (Fig. 1 A).
Strong IVCs of single-subject ECoG band-power traces were
observed in very similar areas in all studied frequency bands
(Fig. 1 B). In contrast to fMRI, significant IVC were present
in central sensori-motor areas, while the lack of ECoG elec-
trode coverage in parietal regions (see Fig. S1) prevented IVC
analysis in these regions. The strongest IVC were in the same
range as those observed for GA-fMRI (rmax = 0.77), and were
observed in the superior temporal gyrus for high-frequency
oscillations.
GA-EEG band-power in the lower frequency bands (θ, α, and
β) reached maximal IVC levels only slightly below what is
observed for ECoG and GA-fMRI (rmax = 0.72, see Fig. 1 C).
The levels of IVC were comparable when computed on scalp
sensor data and on cortical sources estimated using a linear
solution to the EEG inverse problem (Pascual-Marqui, 2007,
eLORETA). In both cases, the topography of IVC showed a
broad global pattern, with low IVC values observed only in
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Fig. 1. Repeat-Reliability of stimulus-related brain activity measured with EEG, ECoG and fMRI BOLD measured as inter-viewing correlations
(IVC), r of signals acquired during two separate viewings of a 325 s long audio-visual movie stimulus. EEG data were analyzed at 32 sensors and 2,004
cortical locations after source reconstruction by eLORETA. fMRI data were analyzed at 16,037 cortical locations, while ECoG data were analyzed at
511 cortical locations representing the pooled set of electrodes in five subjects. ‘Raw’ broad-band EEG and ECoG voltage fluctuations were analyzed at
256 Hz sampling frequency (panels D, E). In addition, the instantaneous log-power of EEG and ECoG oscillations in the following frequency bands were
analyzed at the same sampling frequency as fMRI (0.67 Hz, panels A–C): θ (4–8 Hz), α (8–12 Hz), β (12–28 Hz), γ (28–56 Hz) and high-frequency (HF,
64–116 Hz). EEG data of 45 subjects and fMRI data of 11 subjects were grand-averaged before IVC analysis. IVC was measured in terms of Pearson
correlation, r, and plotted onto the outer head surface (sensor-space EEG) or the smoothed cortical surface of the left brain hemisphere (ECoG, fMRI,
source-space EEG, shown from left, top, and bottom). Numbers above the color bars indicate maximal correlation values. As ECoG data do not provide
a full coverage of the cortex (see Fig. S1), gray areas mark the absence of any electrode within 12 mm distance.
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fronto-temporal regions. High-frequency and γ-band activ-
ity has negligible IVC, speaking to the susceptibility of the
EEG signal to movement artifacts and the relative weakness
of coherent brain activity reaching scalp sensors in these fre-
quency ranges.
For the raw broad-band EEG and ECoG voltage fluctuations
(Fig. 1 C, D), IVC reached maximal values of rmax = 0.56
in GA-EEG and rmax = 0.26 in ECoG. The topography of
raw EEG was similar to the topography obtained with EEG
θ-band power, while the raw-ECoG topography closely re-
sembled the ICV distribution observed in HF-ECoG.
To demonstrate the effects of grand-averaging, we also com-
puted IVC on single subjects (Fig. S2). Without averaging,
the maximum IVC in fMRI reached only rmax = 0.39 with a
similar spatial distribution (panel A). Grand-averaging was
particularly effective for EEG (compare Fig. 1 C, E with
Fig. S2 B, C). Without grand-averaging, IVC for single-
subject EEG only reached values around 0.1 (notice that the
color map has been enhanced to show these smaller value).
These smaller IVC are consistent with previous reports in
EEG and MEG (Dmochowski et al., 2012; Lankinen et al.,
2014).

2.1.2. Repeat-reliability is highly significant in all modalities,
independent of sampling rate. To ensure compatibility with
fMRI and previously published ECoG results (Honey et al.,
2012), the IVCs computed for EEG and ECoG band-power
traces shown in Fig. 1 B, C were obtained on data reduced
to the fMRI sampling rate of 0.67 Hz. Note, however, that
correlation values typically depend on the spectral content of
the signal and should not be directly compared across differ-
ent sampling rates. Similarly, maximum values should not be
directly compared between differing sampling rates as they
depend on the number of samples. Indeed, when evaluated at
a higher sampling rate of 256 Hz, IVCs of the band-passed
powers dropped to a maximum of rmax = 0.23 for ECoG and
rmax = 0.53 for EEG (compare Fig. S3 A, B with Fig. 1 B,
C).
The z-scores we calculated (Fig. 2) measure how much the
observed IVCs depart from values obtained with random sig-
nals that have the same spectral content as the original sig-
nals (see Statistical significance of correlations). Signifi-
cant z-scores were obtained for all three imaging modalities
across large portions of the cortex (Figs. 2). Surprisingly,
by far the strongest values were observed for the raw GA-
EEG and single-subject ECoG (zmax = 23.4 for both, see
Fig. 2 D, E) despite the moderate to weak r-values (compare
with Fig. 1 D, E).
The dependence of the r-values on sampling rate noted above
largely disappear for the z-scores (compare Figs. 2 B, C
and S4 A, B). An explanation for this stability is that the
noise (non-stimulus-related activity) above 0.33 Hz dimin-
ishes inter-viewing correlations as well as correlations that
arise under the null hypothesis, limiting the variance of the
latter. Removing that noise through low-pass filtering in-
creases IVC, but to the same extent also correlations that
could arise under the null hypothesis, leading to the same
level of significance (see also Fig. S5). If anything, maxi-

mal z-scores were higher for EEG power fluctuations in the
θ-, α-, and β-bands when sampled at 256 Hz (zmax = 15.9)
as compared to 0.67 Hz (zmax = 9.2). The same was ob-
served for HF-ECoG oscillations (zmax = 15.3 for 256 Hz
compared to zmax = 10.5 for 0.67 Hz sampling rate). This
increase in correlation suggests that stimulus-related ampli-
tude fluctuations in these data are predominantly occurring
at frequencies below 0.33 Hz (see Fig. S5). However, down-
sampling reduced z-scores because a substantial amount of
reliable activity occurs above 0.33 Hz, as verified by ap-
plying a spectrally-resolved inter-viewing coherence analysis
(Fig. S5).

Similarity of responses between imaging methods

To assess the similarity of responses between imaging meth-
ods, we measured the inter-method correlation (IMC) after
spatial co-registration (see Spatial registration and Mappings
between fMRI, ECoG and EEG spaces for technical details).
As before, results for fMRI and EEG were computed with
the signal averaged across subjects (grand-average). We ob-
served significant correlations of stimulus-related responses
between all three neuroimaging methods (IMC are shown
in Fig. 3 and the corresponding z-scores in Fig. 4). IMC
were strongest between the GA-fMRI and ECoG band-power
with absolute values exceeding rmax = 0.61 in all frequency
bands (Fig. 3 A). ECoG power in the lower frequency bands
(θ, α, β) was negatively correlated with BOLD in virtually
all studied areas with large IMC (θ: rmin = −0.72, α:
rmin = −0.72, β: rmin = −0.70). In contrast, γ- and HF-
ECoG power in the same areas was positively correlated with
fMRI (γ: rmax = 0.61), HF: rmax = 0.72). Negative cor-
relations between ECoG γ-power with GA-fMRI were not
significant (Fig. 4 A).
EEG low-frequency band-power was positively correlated
with ECoG low-frequency power but negatively correlated
with high-frequency ECoG (Fig. 3 B). Positive correlations in
the low-frequency bands (θ, α, β) extended over central and
temporal cortices, and are strongest in occipital cortex (in the
range of rmax = 0.48 to 0.58. For γ and HF ECoG, correla-
tions with low-frequency EEG were predominantly negative
and again strongest in occipital cortex (rmax = 0.47).
EEG band-power in the lower frequencies shows diverse spa-
tial effects relative to fMRI (Fig. 3 C). EEG α- and β-power
fluctuations correlated negatively with fMRI in occipital and
parietal areas (rmin = −0.67 for both). In addition, a
negative correlation in parietal areas was found for θ-power
(rmin = −0.46). Yet, EEG θ- and α-power correlated pos-
itively with fMRI BOLD in the temporal (θ: rmax = 0.56)
and sensory-motor areas (α: rmax = 0.43); with weak cor-
responding z-scores Fig. 4 C). A possible explanation for
this mixed finding is the fact that fMRI itself exhibits anti-
correlated activity for this stimulus (Fig. S6): occipital fMRI
is weakly negatively correlated with fMRI in temporal cor-
tices and a portion of sensory-motor cortex (rmax =−0.18).
When analyzing ‘raw’ EEG and ECoG evoked responses
(not powers but phase sensitive signals), we observed sig-
nificant correlations between the fMRI signal and raw infra-
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Fig. 2. Statistical significance of inter-viewing correlation (IVC). Observed correlations, r, were standardized based on the mean and standard
deviation of a null distribution established from phase-randomized surrogate data, yielding a standard normal distributed z-score for each scalp/cortical
location. z-scores are shown in color if they indicate statistical significance at level q < 0.05 (one-tailed test, FDR corrected). The figure shows that
even small IVC values observed for ‘raw’ broad-band EEG/ECoG voltage fluctuations (c.f., panels D, E to corresponding panels of Fig. 1) are highly
significant when compared to surrogate time series with identical autocorrelation spectrum but no IVC. Numbers above the color bars indicate maximal
correlation values.

slow EEG below 0.33 Hz (Fig. 3 C), predominantly in tem-
poral areas (rmax = 0.51). There was also highly significant
correlation of the raw ECoG with raw EEG fluctuations over
temporal areas (Fig. 3 D, rmax = 0.11). A similar IMC anal-
ysis between raw ECoG and fMRI was not possible due to a
high-pass filter of 0.6 Hz that was applied to the ECoG data
at recording time.

Finally, note that correlations between fMRI, EEG band-
power and ECoG band-power were assessed above on data
sampled at 0.67 Hz so that correlations and in particular max-
imum values can be compared between methods (Fig. 3).
When repeating these analyses at 256 Hz sampling fre-

quency, we obtain similar results (Figs. S7–S8).

Discussion
In this work, we addressed two basic questions concerning
fMRI, ECoG and EEG. First, how reliably can each imaging
modality measure responses elicited by naturalistic stimuli?
Second, how similar are these stimulus-responses in the three
modalities? Our analyses identified brain areas related to the
processing of a complex audio-visual narrative in temporal,
occipital, parietal and sensori-motor areas, in line with pre-
vious reports (Honey et al., 2012; Jacques et al., 2016). Re-
liable stimulus-related activity in these areas was found not
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Fig. 3. Similarity of stimulus-related brain activity between EEG, ECoG and fMRI BOLD as measured in terms of inter-method correlations
(IMC) between co-localized single-subject ECoG, grand-average EEG and grand-average fMRI BOLD activity. IMC was assessed in terms of Pearson
correlation, r, between ‘raw’ broad-band EEG and ECoG voltage fluctuations at 256 Hz sampling rate (panel D, notice the different color scale compared
to panels A–C as well as between fMRI and raw EEG, between fMRI and EEG band-power, between between fMRI and ECoG band-power, and between
EEG and ECoG band-power (panels A–C) at 0.67 Hz sampling rate. Frequency bands are the same as in Fig. 1. Matching of co-localized ECoG
electrodes and cortical fMRI voxels was based on Euclidean distance. Source-reconstructed EEG activity (eLORETA) was computed for each fMRI
voxel location. Numbers above color bars indicate maximal correlation values.
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Fig. 4. Statistical significance of inter-method correlations between single-subject ECoG, grand-average EEG and grand-average fMRI BOLD
activity. Using a null distribution established from phase-randomized surrogate data, observed correlations were transformed into standard normal
distributed z-scores. Significant z-scores (using FDR control at level q = 0.05) are drawn in color.

only in fMRI BOLD signals and high-frequency power of the
ECoG, but also in low-frequency EEG and ECoG rhythms as
well as in raw broad-band EEG and ECoG voltage fluctu-
ations. The regions involved in stimulus-related processing
are strikingly consistent between fMRI and ECoG, suggest-
ing that both methods pick up similar brain responses, as pre-
viously established. This finding was further corroborated
by studying correlations between methods. In line with re-
sults obtained in simultaneous fMRI-ECoG recordings in an-
imals (Logothetis et al., 2001; Magri et al., 2012; Niessing
et al., 2005) as well as in human (Carmichael et al., 2017),
we observed positive correlations between fMRI and high-
frequency ECoG activity and negative correlations with low-
frequency ECoG. We also observed negative correlations be-
tween EEG α band-power and BOLD in parietal, occipital

and rolandic areas in line with previous reports on simulta-
neous recordings (Laufs et al., 2003; Moosmann et al., 2003;
Ritter et al., 2009; Scheeringa et al., 2009). Overall, these
results are in line with the accepted notion that fMRI and
HF ECoG capture similar activity, namely, neuronal firing
(Logothetis, 2003; Manning et al., 2009; Nir et al., 2007),
yet low-frequency oscillations are qualitatively different. α-
band activity in particular is often said to reflect top-down
inhibitory processes (Halgren et al., 2017; Klimesch et al.,
2007) that suppress neuronal firing, and is thus negatively
correlated with HF activity (Spaak et al., 2012). Importantly,
and contrary to previous work (Magri et al., 2012), here we
find that these lower frequencies are just as much correlated
with fMRI BOLD as high frequencies for the studied natural-
stimulus viewing task.
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Interestingly, we found both positive and negative correla-
tions between fMRI and EEG band power within the θ and
α-bands of the EEG. Negative correlations were clearly ob-
served in occipital cortex in the α, while correlations were
positive in temporal and motor cortices in the β-band. Fur-
ther analyses showed that this mixed sign could be the result
of anti-correlated fMRI activity in visual and auditory cortex,
which may reflect a competition of cognitive processes for
attentional resources during processing of the multi-modal
stimulus (Shomstein and Yantis, 2004).
A noteworthy result of the present study is that we identi-
fied strong stimulus-induced correlations of the BOLD sig-
nal and the infra-slow EEG signals below 0.33 Hz (Fig. 3,
panel B). Previous links between hemodynamic responses
and infra-low EEG had been associated with resting-state
fluctuations (Hiltunen et al., 2014), the slow-cortical potential
(He and Raichle, 2009), and arterial blood pressure (Nikulin
et al., 2014). Most studies in this field used simultaneous
recordings; correlated activity could therefore be the result
of common physiological or artifactual confounds such as
heart beat, breathing, etc. . Here, we could exclude the pres-
ence of any confound unrelated to the cognitive task. The ob-
served correlations between infra-slow EEG and fMRI were
most pronounced over temporal areas, suggesting auditory
and speech perception processes as drivers, though this may
be specific to the present audiovisual video stimulus.

Benefits and limitations of inter-subject correlations
Our analyses relied on correlations between separately-
acquired but synchronized recordings within and across
imaging methods. While this framework is limiting in that it
requires identical timings of all relevant events, it does allow
us to assess the similarity of signals from different imaging
methods without requiring multi-modal recordings. An ad-
vantage of this approach is that one can prevent the technical
complications and significant signal-loss resulting from si-
multaneous recordings. More importantly, the approach pre-
vents task-irrelevant physiological processes from driving the
results (Hasson et al., 2004; Mukamel et al., 2005), a con-
cern that has been recently highlighted for fMRI, in partic-
ular during ‘resting state’ (Winder et al., 2017). The study
of cognitive processes using inter-subject correlations is well
established in fMRI (Chen et al., 2017; Jääskeläinen et al.,
2008; Mantini et al., 2012), ECoG, (Honey et al., 2012), EEG
(Cohen and Parra, 2016; Dmochowski et al., 2012; Ki et al.,
2016), and MEG (magnetoencephalography, Lankinen et al.,
2014). As with those studies, all correlations reported here
exclusively relate to brain processes involved in processing
the audio-visual narrative. The spatial distribution of reliable
brain activity reported here must, therefore, be interpreted ex-
clusively in terms of that cognitive task, and should not be
mistaken as representative of all brain signals captured by the
different imaging methods.

Cohort size and impact of grand-averaging
EEG and fMRI data presented here were averaged across
subjects before assessing the reliability of the task-related re-

sponses they contain. This form of ‘grand-averaging’ is well
established to analyze evoked potentials in EEG and has re-
cently also been used in fMRI (Schmaelzle et al., 2017). We
did not average across subjects in ECoG due to inconsistent
electrode montages in each of the five subjects. Using grand-
averaging in EEG and fMRI, the SNR (or, repeat-reliability)
could be increased to reach similar levels of reliability as in
single-subject ECoG. Without grand-averaging, the observed
reliability of fMRI was lower than in ECoG. This drop was
even more pronounced in EEG. Note that the sample sizes
used here are typical in research studies, and are indicative
of the ease of obtaining these data for the different methods.
The obvious disadvantage of averaging is the potential loss of
spatial (and functional) resolution due to anatomical or func-
tional misalignment across subjects, as well as the loss of
subject-level information. Whether or not grand-averaging is
a useful approach in a given neuroimaging study will depend
on this trade-off between (functional) resolutions and signal-
to-noise ratio as well as the general analysis goal.

Among the various signals analyzed here, raw EEG/ECoG
times series (above 0.6 Hz), typically referred to as ‘evoked
responses’, were somewhat less reliable across stimulus rep-
etitions, but were highly significant compared to chance fluc-
tuations (for the EEG, after grand-averaging). Raw stimulus-
evoked EEG activity has traditionally been studied by aver-
aging brain responses across many repetitions of a simple
stimulus within highly controlled experiments (Luck, 2014).
More recently it has been used with naturalistic stimuli by
correlating activity between subjects (Cohen and Parra, 2016;
Dmochowski et al., 2014; Ki et al., 2016). Recent evidence
places the origin of these evoked responses to superficial
cortical layers with broad spatial coherence (Halgren et al.,
2017), suggesting a likely reason for why they dominate the
scalp EEG. Here we found that the potential fluctuations
evoked by the video stimulus correlate between EEG and
ECoG, most strongly over temporal cortex. Given the large
z-scores observed here, these signals may have been gener-
ally under-appreciated, as they remain largely unexplored in
ECoG and generally in the context of continuous naturalistic
stimuli.

Identifying the most reliable time-scale

We analyzed amplitude fluctuations in EEG and ECoG at
the original sampling rate of 256 Hz as well as at 0.67 Hz.
Low-pass filtering to the lower sampling rate substantially
increased inter-viewing and inter-method correlations. Slow
fluctuations below 0.33 Hz were found to capture most of
the stimulus-related signal in these amplitude traces. Inter-
estingly, z-scores were found to be larger before low-pass
filtering, while corresponding inter-viewing correlations in-
creased. This suggests that z-scores are less sensitive to the
power-spectrum of the stimulus-related and noise portions of
the signal, and a drop in z-scores indicates that reliable activ-
ity has been removed.
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Comparing reliability between imaging methods
An important advantage of z-scores over r-values is that they
allow direct comparison between data sets. For homogeneous
datasets consisting of a fixed number of independent samples,
there is a monotonous relationship between r-values and z-
scores. Thus, comparisons of datasets in either of the two
metrics lead to the same conclusion. This is not anymore
the case if the number of samples differs between datasets,
as correlations estimated on fewer samples are more vari-
able and therefore reach statistical significance less easily.
The same effect is caused by dependencies between sam-
ples, which lead to increased variance by decreasing the ef-
fective number of samples. Such dependencies are naturally
present in all neurophysiological time series, and are ex-
pressed in dataset-specific autocorrelation spectra. Appendix
A provides a numerical demonstration that z-scores as com-
puted here achieve correct false-positive rates (p-values) de-
spite different number of samples and autocorrelation spec-
tra. Thus, z-scores are suitable to compare IVC in EEG,
fMRI and ECoG despite differing numbers of samples and
differing spectra of these signals.
In practice, the choice of the ‘right’ metric depends on one’s
analysis goals. Strong correlations (if significant) are useful
if one wants to predict one time course from another, where
stronger correlations imply better predictability. This could,
for example, be of practical relevance if one wanted to ap-
proximate ECoG activity from non-invasive EEG measure-
ments. In contrast, if one is interested in statistical signifi-
cance, then the relevant metric is the z-score. For example,
one may want to test if IVC differs between task conditions.
In those instances the relevant question is not how large or
small the correlations are, but rather, how stable they are in
the face of chance fluctuations. There, a high z-score is more
relevant than a large r-value.

Spatial heterogeneity
The EEG, ECoG and fMRI datasets studied here strongly dif-
fer in the number of simultaneously-acquired measurements,
as well as in the spatial domains sampled by these measure-
ments. EEG was measured at 32 scalp sites, whereas ECoG
and fMRI were assessed at about 100 intra-cranial electrodes
and thousands of brain voxels, respectively. In this light, one
of the most interesting findings of this study is that EEG sig-
nals reached absolute levels of reliability that are comparable
to levels achieved by ECoG and fMRI. A likely explanation
for the competitive performance of EEG is again the larger
number of subjects entering the grand-average, as discussed
above.
Computation of inter-method correlations was hampered by
different spatial coverages. fMRI signals were available from
the entire brain, but only cortical activity was used for inter-
method comparisons. EEG sensors pick up mixtures of ac-
tivities of sources located all across the brain, and therefore
often suffer from low SNR and the lack of straightforward
anatomical localization. To increase SNR, and to visualize
and relate EEG to ECoG and fMRI activity in a common
anatomical space, scalp EEG data were mapped to the corti-

cal surface using an inverse source reconstruction technique.
The blurring observed in EEG source estimates could in prin-
ciple be reduced by making prior assumption on the spatial
focality of the underlying brain sources (e.g., Haufe et al.,
2008, 2011). However, it was accepted here as being re-
flective of the low spatial resolution of the scalp-level data.
ECoG electrodes were available at superficial cortical loca-
tions of the left hemisphere, with little coverage for large
parts of the right hemisphere, the medial surface of the left
hemisphere, and several larger patches of the occipital, pari-
etal, central and frontal cortex of the left hemisphere. Inter-
method correlations involving ECoG were thus only assessed
at those locations.

Future work
Two restrictions of the present study are that we assessed only
linear relationships and only looked at co-localized anatomi-
cal structures. Future studies may assess task-related interac-
tions between different brain structures (Simony et al., 2016)
across imaging methods and use non-linear measures of func-
tional connectivity in order to better characterize the mech-
anisms linking the neurophysiological phenomena picked up
by different methods. Using partial correlation analysis and
information theory, future studies may also attempt to disso-
ciate task-related signals that are method-specific from sig-
nals that are reflected by multiple imaging methods. Specific
multivariate techniques (e.g., Bießmann et al., 2010; Dähne
et al., 2015; Dähne et al., 2014; Dmochowski et al., 2012;
Lankinen et al., 2014; McIntosh and Lobaugh, 2004) could,
moreover, be used to identify brain networks characterized
by maximal IVC/IMC in optimal data-driven ways.

Conclusion
Our results provide a comprehensive spatio-spectral account
of the neural correlates of natural audio-visual stimulus pro-
cessing in fMRI, ECoG and EEG, three of the most widely
used neuroimaging methods in humans. All three methods
reached similar levels of reliability when data were aver-
aged across the subjects of each cohort. Correlations be-
tween methods confirmed prior findings of an opposing sign
of high and low frequency electrical activity, perhaps index-
ing different neural mechanisms (direct neuronal firing in
high-frequency ECoG and fMRI BOLD, inhibitory drive in
low-frequency EEG/ECoG).

Experimental procedures
ECoG data used in this study have been described in detail
in Honey et al. (2012); we here largely recapitulate these de-
tails. The EEG data with 32 electrodes (N = 30 subjects) has
previously been used by Dmochowski et al. (2017). The ad-
ditional EEG dataset with 128 electrodes (N = 15 subjects)
and the fMRI data have not been previously published.

Study subjects
fMRI—Eleven subjects (six female; 20-35 years old) partic-
ipated in the fMRI experiment. All subjects were in good
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health without history of psychiatric or neurological disor-
ders and gave their informed consent to participate in the
study and consent to publish in accordance with procedures
approved by the Princeton University Institutional Review
Board and with ethical standards set out by the Federal Pol-
icy for the Protection of Human Subjects (or ’Common Rule’,
U.S. Department of Health and Human Services Title 45 CFR
46). Subjects had normal or corrected-to-normal visual acu-
ity. All subjects were experienced MRI subjects that were
well trained to lay still during scans. There were no specific
recruitment goals with respect to gender or race/ethnicity;
however, fluency in English was required.
ECoG— The following description is quoted from (Honey
et al., 2012): “Five patients (four female; 20–47 years old)
experiencing pharmacologically refractory complex partial
seizures were recruited via the Comprehensive Epilepsy Cen-
ter of the New York University School of Medicine. Pa-
tients had elected to undergo intracranial monitoring for clin-
ical purposes and provided informed consent both pre- and
post-electrode implantation in accordance with National In-
stitutes of Health guidelines administered by the local Insti-
tutional Review Board. For each patient, electrode place-
ment was determined by clinicians based on clinical crite-
ria. We focus here on patients with entirely or predominantly
left-lateralized coverage, all of whom had left-lateralized lan-
guage function.” We are excluding right-hemisphere elec-
trodes available from two patients with bilateral coverage.
EEG—Data were obtained from two separate batches. In
the first batch, thirty healthy subjects were recruited (fifteen
male; 19–31 years old). Procedures were approved by the
Western Institutional Review Board (Puyallup, WA). In the
second batch, 15 healthy subjects were recruited from the
campus of City College (nine male; 18–28 years old). All
procedures for this cohort were approved by the Institutional
Review Board of the City University of New York. Prior
to the start of the experiments, all subjects gave written in-
formed consent. There were no specific recruitment goals
with respect to gender or race/ethnicity; however, fluency in
English was required.

Experimental setting
The audiovisual stimulus was a 325 s long movie clip se-
lected from the 1975 commercial film Dog Day Afternoon
(DDA, Lumet, 1975).
fMRI—subjects viewed two repetitions of DDA clips. In ad-
dition to original (intact) clips, two manipulated variants, in
which the scene order was randomized either on a coarse or
fine level, were presented. The order of presentation was
fixed: intact, coarse, intact, fine, coarse, fine.
Presentation order was randomized across individuals. The
Psychophysics Toolbox in MATLAB was used to display the
movie clips and synchronize the movie onset with the MRI
data acquisition. Audio for the movie was delivered via in-
ear headphones. Movie clips subtended 20° horizontally and
16° vertically.
ECoG—subjects viewed DDA in alternation with two more
movie clips (two presentations per clip) at bedside on a Mac-

Book laptop located 40–60 cm from their eyes. PsychTool-
box Extensions (Kleiner et al., 2007) for MATLAB (Math-
Works, Natick, MA) were used to display the movies and
trigger their onsets. Subjects viewed intact, coarse, and fine
renditions of the clips. Presentation of each clip was preceded
by a 30 s period in which subjects fixated on a central white
square (< 1° visual angle) on a black background.
EEG—subjects of the first batch watched two repetitions of
the intact movie interspersed with single presentations of the
manipulated version: intact, coarse, fine, intact as used in
Honey et al. (2012). In-house software (Neuromatters LLC,
NY) was used for video playback. Only data recorded during
presentation of intact stimuli (two viewings per subject and
imaging method) were analyzed in the present study. sub-
jects of the second batch watched the intact DDA clip twice,
with each exposure separated by approximately 45 min, at the
beginning and the end of an unrelated experiment. The video
clip was presented via a custom version of mplayer (Mplayer
media player, http://mplayerhq.hu), modified to generate par-
allel port triggers once per second.

Signal acquisition

fMRI—Data were acquired with a 3T Skyra magnetic reso-
nance imaging (MRI) scanner (Siemens, Munich, Germany)
using a 16-channel head coil. All functional acquisitions used
a gradient echo, echo planar sequence with a 64 square ma-
trix (slice thickness of 4 mm, interleaved acquisition) lead-
ing to an in-plane resolution of 3 × 3 mm2 (field of view
[FOV], 192 × 192 mm2, GRAPPA iPAT = 2, 27 slices per
volume; repetition time [TR] = 1.5 s; echo time [TE] = 30 ms;
flip angle = 72 degrees). High resolution structural scans
were acquired in each scan session for registration to surface
anatomical images (MPRAGE sequence; 256 × 256 matrix;
240× 240 mm2 FOV; TR = 1.9 s; TE = 2.1 ms; flip angle = 9
degrees; 0.9375 × 0.9375 × 0.9375 mm3 resolution).
ECoG—Signals were recorded from 922 electrodes across
all five subjects. Subdural arrays of platinum electrodes em-
bedded in silastic sheeting (8 × 8 square grids, 4 × 8 rect-
angular grids, or 1 × 8 strips) were placed purely accord-
ing to clinical criteria. Electrodes had an exposed diameter
of 2.3 mm and were spaced 10 mm center-to-center. Depth
recordings were not analyzed in the present study. Screws
in the skull served as reference and ground. Signals were
sampled at 30 kHz using a custom-built digital acquisition
system (based on the open-source NSpike framework (L.M.
Frank and J. MacArthur, Harvard University Instrument De-
sign Laboratory, Cambridge, MA) that included a 0.6 Hz
high-pass filter in hardware.
EEG—EEG data were recorded with a BioSemi Active Two
system (BioSemi, Amsterdam, Netherlands) at a sampling
frequency of 2,048 Hz. subjects of the first batch were fit-
ted with a standard, 32-electrode cap following the interna-
tional 10/20 system, while subjects in the second batch were
fitted with a 128-electrode cap according to an equiradial sys-
tem (Biosemi). Six additional electrooculogram (EOG) elec-
trodes were placed around the eyes to record and allow for the
removal of eye-movement artifacts. Sony MDR 7506 head-
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phones were used for audio playback during video viewing
for the first batch of subjects, whereas the second batch of
subjects were presented the audio over a pair of studio moni-
tors, each situated at a 45° angle to the subject (e.g., left/right
side) and at a distance of approximately 1 m (Fostex, PM0.3
Active monitors, Tokyo, Japan).
For this investigation, we pooled the data of the two EEG
batches. To this end, 32 out of 128 electrodes used in the
second batch of recordings were matched with the 32 elec-
trodes used in the first batch of recordings based on nearest
Euclidean distance of their standardized locations (median
distance: 6 mm, maximum: 12 mm). This yielded N = 45
recordings with 32 EEG and six EOG electrodes available in
each.

Spatial registration

All data were processed using in-house MATLAB code un-
less otherwise noted.
fMRI—Data were preprocessed using AFNI (Cox, 1996).
Subject-wise data were transformed to MNI standard space
using a two-step linear and nonlinear registration (AFNI’s
3dAllineate and 3dQWarp), and re-sampled to a common
rectangular grid at 4 mm resolution using linear interpolation.
Data were then spatially smoothed using a Gaussian kernel
(full-width-at-half-maximum: 10 mm; with less smoothing
IVC were lower and areas above significance more discon-
nected). After extraction of the brain volume, 32,798 vox-
els were retained. Volumetric data were further mapped to
the cortical surface of the ‘New York Head’ (Huang et al.,
2016), a high resolution anatomical template extending the
ICBM152 head (Fonov et al., 2011), based on minimum Eu-
clidean distance. This resulted in the selection of 16,037 grey
matter voxels (8,080 in the left hemisphere) to be analyzed.
ECoG—T1-weighted MR images were acquired from each
subject both before and after the implantation of electrodes.
Electrodes were localized on the individual cortical surfaces
using a combination of manual identification in the T1 im-
ages, intraoperative photographs, and a custom MATLAB
tool based on the known physical dimensions of the grids
and strips (Yang et al., 2012). Subsequently, the individual-
subject T1 images were non-linearly registered to an MNI
template using the DARTEL algorithm via SPM (Ashburner,
2007), and the same transformation was applied to map in-
dividual electrode coordinates into MNI space. Out of 573
artifact-free labeled and MNI-registered electrodes used in
Honey et al. (2012), only those 511 located in the left hemi-
sphere were retained (see Fig. S1 for a depiction of the elec-
trode locations). Data of all five subjects were pooled and
subsequently treated as one single dataset.
EEG—For plotting purposes, electrode coordinates were
aligned with the surface of the New York Head (Huang
et al., 2016) using MNI coordinates provided by EEGLAB
(Delorme et al., 2011) (see Fig. S1 for electrode locations).
Source reconstruction (see EEG source modeling) was con-
ducted in order to map EEG activity to cortical anatomy in
MNI standard space.

Data preprocessing
fMRI—Functional data were slice-time and motion corrected
(AFNI’s 3dvolreg). The remaining data were linearly de-
trended, and high-pass filtered at 0.01 Hz using the discrete
Fourier transform (DFT) and its inverse. In addition to the
subject-level data, a grand-average (GA) was computed by
averaging across subjects.
ECoG—Data were preprocessed using mean regression and
down-sampling to 400 Hz (see procedures described in
Honey et al., 2012). In order to facilitate comparisons be-
tween ECoG and EEG data, ECoG data were further dec-
imated to 256 Hz after appropriate low-pass filtering using
anti-aliasing finite impulse response filters (8th order Cheby-
shev Type I, MATLAB’s resample function).
EEG—Data were decimated to 256 Hz using MATLAB’s
resample. Data were then high-pass filtered at 0.5 Hz and
notch-filtered between 59 and 61 Hz using third order But-
terworth infinite response (IIR) filters. Signal from six elec-
trooculogram (EOG) channels was removed from all EEG
channels through multivariate linear regression and subtrac-
tion, i.e. noise canceling using standard procedures (Parra
et al., 2005); code available from Cohen and Parra (2016).
Artifact channels, defined as those with unusually small or
large standard deviations (SD < 1 µ V or SD > 50 µ V or
SD > meanch(SD) + 2 SDch(SD), where SDch are mean and
standard deviations over channels, respectively) were set to
zero. This, however, affected only one channel per subject
on average and had a negligible impact on the overall re-
sults. A grand-average dataset was computed by averaging
the preprocessed EEG time courses (here referred to as ‘raw’
as opposed to log band-power time series (see Calculation of
EEG/ECoG band-power) across subjects.
In all datasets, the first 15 and the last 13 seconds were ex-
cluded, leaving a period of 297 seconds to be analyzed. The
initial time is typically removed to allow the T1 saturation to
reach a steady state and avoid any potential evoked responses
due to scanning onset. In this paradigm we also wanted to re-
move a strong visual, non-specific response. There was also
a brief blank screen period at the end of the recording. The
number of EEG/ECoG samples at 256 Hz sampling rate was
T = 76,032, while the number of fMRI samples (TR’s) at
0.67 Hz was T = 198.

EEG source modeling
For source analysis, EEG data at 32 channels were mapped
to 2,004 locations covering the entire cortical surface (1,002
in the left hemisphere) by inverting a precise standardized
volume conductor model of current flow in an average hu-
man head (Huang et al., 2016). This step was performed on
grand-average signals for analyses of raw broad-band EEG
time courses, while it was performed separately for each sub-
ject for analyses of the log-power of brain oscillations (see
below). Prior to source imaging, data and head model were
transformed into common average electrical reference. The
inversion was carried out using eLORETA (Pascual-Marqui,
2007). The regularization parameter λwas adjusted on grand-
average raw EEG data using two-fold cross-validation. To
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this end, electrodes were split into two subsets comprising
19 and 13 electrodes, respectively, both covering the whole
scalp. Sources were first estimated based on the subset of 19
electrodes for 11 logarithmically spaced choices of the regu-
larization parameter λ. The resulting source activity was pro-
jected back to the scalp using the volume conductor model.
The resulting scalp potentials were evaluated at the 13 re-
maining channels, and the discrepancy to the potentials ac-
tually recorded at those electrodes was measured in terms of
the mean-squared error (MSE). Using the value of λ that min-
imized this MSE, sources were re-estimated based on all 32
electrodes. This choice of λwas used in all subsequent source
analyses, including band-power analyses in source space.
Three-dimensional source current estimates were further re-
duced to scalar activations. This was done by projecting the
current vector using location-specific 3D projection vectors
that were designed to maximize the correlation of the grand-
average raw EEG signal between the first and the second
viewing (Dmochowski et al., 2012). These projection vectors
were computed once and used throughout all source analyses.

Calculation of EEG/ECoG band-power
In addition to the raw broad-band EEG and ECoG signals
(preprocessed as described above), we also calculated the
instantaneous amplitude in five common frequency bands.
These bands included θ (4–8 Hz), α (8–12 Hz), β (12–28 Hz),
γ (28–56 Hz) and a high-frequency band (HF, 64–116 Hz).
subject-level data were filtered in each band using third-order
Butterworth IIR filters. We applied the Hilbert transform
to obtain the complex-valued analytic signal, the absolute
value of which provides the instantaneous band-amplitude.
For single-subject analysis (see Fig. S2 B, C), the logarithm
was applied directly. Grand-average instantaneous log band-
power was obtained by taking the mean of the subject-wise
squared amplitudes across subjects, and applying the loga-
rithm on the mean. Additional down-sampled datasets were
obtained by reducing the EEG and ECoG band data to the
fMRI sampling rate of 0.67 Hz using resample.

Inter-Viewing correlation (IVC) within imaging meth-
ods
Raw and log band-power EEG data (at the level of 32 sensors
as well as at 2,004 source locations) were linearly detrended.
Correlations between time series recorded during the first
and second movie viewing were assessed using the Pearson
product-moment correlation coefficient, yielding one inter-
viewing correlation (IVC) coefficient per channel and imag-
ing method.

Mappings between fMRI, ECoG and EEG spaces
In order to study correlations across imaging methods we se-
lected channels (electrodes/cortical locations) that were co-
located. The procedures to match channels between methods
as well as to harmonize the temporal scale of the data for each
pair of methods are outlined below.
ECoG–fMRI—For each of the 511 ECoG channels, corre-
sponding BOLD activity was defined as the average of the ac-

tivity of all cortical fMRI voxels within a 6 mm radius around
that ECoG electrode. The down-sampled ECoG log band-
power data at 0.67 Hz sampling rate were convolved with a
canonical hemodynamic response function (HRF, SPM pack-
age, Penny et al., 2011). ECoG data were then detrended,
high-pass filtered at 0.01 Hz using the Fourier transform, and
cropped to the common 297 s interval.
ECoG–EEG—EEG channels pick up activity from the entire
brain as a result of the spread of neuronal electrical activity
in the head. It is, therefore, impossible to associate individual
EEG channels with ECoG/fMRI counterparts, which is why
we worked on EEG source estimates obtained as described
above. Source locations were assigned to the closest ECoG
electrode based on minimum Euclidean distance.
fMRI–EEG—EEG source log band-power traces at 0.67 Hz
sampling rate were convolved with a canonical HRF, de-
trended, high-pass filtered at 0.01 Hz, and cropped. EEG
sources were interpolated to match fMRI voxel locations
based on minimum Euclidean distance.

Inter-method correlation (IMC) analysis
For each of the three pairs of measurement techniques, corre-
lations between the appropriately mapped time courses (aver-
aged across the two viewings) were assessed using Pearson’s
product-moment correlation, yielding one inter-method cor-
relation (IMC) value per channel and pair of imaging tech-
niques.

Statistical significance of correlations
As neurophysiological time series are auto-correlated, cor-
relations between them cannot be assessed using standard
analytical tests assuming independent and identically dis-
tributed samples. Instead, the distribution of observed cor-
relations under the null hypothesis of zero true correlation
needs to be estimated empirically. Correlation values r ob-
tained on original and surrogate data were mapped to the
interval [−∞,∞] using the Fisher z-transform ρ = atanh(r),
where atanh is the hyperbolic tangent. For each channel, we
confirmed that the null distribution of the z-transformed cor-
relation scores is consistent with a Gaussian distribution us-
ing the Kolmogorov-Smirnov test (p < 0.05). Means µ0 and
standard deviations σ0 estimated from surrogate data were
used to standardize correlation coefficients observed on the
original data, yielding z-scores z = (ρ-µ0)/σ0. We derived p-
values assuming that these z-scores are standard normal dis-
tributed under the null hypothesis. We demonstrate the exact-
ness of this approach empirically with numerical simulations
in Testing for significant correlation between auto-correlated
time series: simulation.
As we did not expect any negative inter-viewing correla-
tions, right-tailed tests were used for all IVC analyses. In
contrast, inter-method correlations were assessed using two-
tailed tests, except for correlations involving ‘raw’ EEG or
ECoG signals, the polarity of which depends on recording
and inverse source reconstruction parameters, and is essen-
tially arbitrary, as is the sign of the resulting inter-method cor-
relations. Consequently, we tested the absolute value of the
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IMC in these cases using a one-tailed test. For each analysis,
the false discovery rate (FDR) was controlled at level q = 0.05
by applying the Benjamini-Hochberg correction (Benjamini
and Hochberg, 1995) across all voxels. Only z-scores that
were significant after FDR correction are reported.

Visualization
Color-coded r-values and z-scores were rendered onto the
surface of either the outer head surface or the cortical surface
of the ‘New York Head’ (Huang et al., 2016). EEG sensor-
space results were projected onto the outer head surface us-
ing a spherical harmonics expansion interpolation. fMRI re-
sults as well as results of EEG–fMRI IMC analyses were
mapped to the cortical surface using to the nearest-neighbor
rule, where distance was measured along the geodesics of
the cortical manifold. ECoG results as well as results of
ECoG–fMRI and EEG–ECoG IMC analyses were mapped
onto the cortical surface by coloring all surface nodes within
6 mm distance of each ECoG channel. Cortical surfaces were
smoothed for display purposes. Electrodes/voxels with z-
scores significant after FDR correction are shown in color,
while non-significant locations are shown in gray. Identical
r-values/z-scores are displayed in identical colors in all plots
throughout the paper except for Fig. 1 D and for Fig. S2.
To cover the entire range of values observed, we used non-
linear saturating color scales. For each analysis, a colorbar
is plotted that shows the range of attained r-scores/significant
z-scores.
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APPENDIX

Testing for significant correlation between auto-correlated time series: simulation
We assessed the validity of the statistical test for non-zero correlations between auto-correlated time series introduced in the
Statistical significance of correlations section. Two independent time series were generated either as univariate third-order
linear auto-regressive (AR) processes, as Gaussian-distributed pink noise, or as squared (non-Gaussian distributed) pink noise.
The number of samples was set to either N = 198 or to N = 76,032, amounting to a recording of 297 s length at the fMRI
and EEG/ECoG sampling frequencies, respectively. For each pair of time series, 100 surrogate datasets were constructed using
phase randomization, and a p-value was derived. An alternative p-value was derived using MATLAB’s corr() function under the
assumption that samples are independent. For this approach, correlation scores were transformed into a Student-t distributed
test statistic, which gave rise to an analytic solution for the p-value.
Each experiment was repeated 2,000 times. From the distribution of the p-values we derived the empirical false-positive rate
(FPR) as a function of the required FPR (alpha-level). For a statistical test to be exact, it is important that the relation between
the two is close to identity, while undershoots of the empirical FPR are generally more tolerable than inflated FPR’s. Results
shown below (Fig. A1) indicate that the statistical test based on surrogate data is faithful to the desired alpha level for all possible
FPR’s and in all tested scenarios. In contrast, the standard analytic test is characterized by highly inflated FPR’s in the alpha
ranges of interest in practice (α = 0.01, α = 0.05). This behavior is more pronounced for pink noise than for auto-regressive
processes, and for longer compared to shorter time series. In extreme cases, FPR’s of up to 92% (pink noise data, N = 76,032)
are observed at a nominal alpha level of 5%.

1

Fig. A1. Comparison of two approaches to test the statistical significance of correlations between auto-correlated time series: the surrogate
data based approach used throughout this paper (see Statistical significance of correlations section) and the conventional analytic approach assuming
independent samples. The surrogate based approach leads to empirical false-positive rates (FPR) that are close to the desired FPR (alpha level)
regardless of the sample size or temporal dynamics of the time series, while the conventional approach leads to strongly inflated FPR’s in the practically
relevant alpha ranges (α = 0.01, α = 0.05) in all cases.
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Fig. S1. Location of ECoG
and EEG electrodes on the
scalp/cortical surfaces.
ECoG electrodes are drawn
in a different color for each
of the five subjects.
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Fig. S2. Inter-viewing correlations observed within single sub-
jects for EEG and fMRI. IVC scores, r, were computed in each sub-
ject, and averaged across subjects. No statistical testing/thresholding
was performed. Observed IVC scores are smaller than those observed
on grand-averaged data (c.f., Fig. 1, but notice the different color scale
here), yet exhibit similar topographies.

SUPPLEMENTARY FIGURES
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Fig. S3. Inter-viewing correlation of EEG/ECoG band-power computed at 256 Hz sampling rate, i.e., without low-pass filtering the instantaneous log
band-power. Observed IVC values are smaller than for down-sampled data, but exhibit similar spatial topographies.
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Fig. S4. Statistical significance of EEG/ECoG band-power inter-method correlation at 256 Hz sampling rate. Note that even small IVC values (as,
e.g., observed for high-frequency ECoG data, c.f. Fig. S3) are highly significant.
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Fig. S5. Analysis of inter-viewing coherence (frequency-
resolved correlation) of high-frequency (56–116 Hz) ECoG
band-power fluctuations for the ECoG electrode exhibiting
highest IVC in the HF band. Top panel shows the power spec-
trum for first and second viewing. The HF power signal is dom-
inated by activity below 2 Hz. The coherence spectrum shows
significant correlation (red bold line) also below 2 Hz. The black
vertical line indicates the low-pass filter at 0.33 Hz that is ap-
plied when sampling at the fMRI resolution of 0.67 Hz. For this
signal, an inter-viewing correlation of r = 0.17 (z = 15.3) was
observed at 256 Hz sampling rate. After low-pass filtering and
down-sampled to 0.67 Hz, IV correlation increased to r = 0.77,
but was slightly less significant (z = 10.5). This drop in signifi-
cance is explained by the fact that the low-pass filter removes
correlated signal components that do not exist in random surro-
gate data. On the other hand, restricting the signal content to
the strongest and most correlated portion through the low-pass
filter increases inter-viewing correlation, as less correlated sig-
nal parts are removed.

Figure 1: Correlation between different cortical areas within fMRI. The seed for computing correlations with other fMRI voxel is in occipital
(left) and temporal cortex (right), indicated as a black dot.

1

Fig. S6. Correlation between different cortical areas within
fMRI. Seeds for computing correlations with other fMRI voxel
are in occipital (left) and temporal cortex (right), indicated as
black dots.
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Fig. S7. Inter-method correlation (IMC) be-
tween the instantaneous log-power of EEG
and ECoG oscillations in the θ (4–8 Hz), α (8–
12 Hz), β (12–28 Hz), γ (28–56 Hz) and high-
frequency (HF, 64–116 Hz) bands at 256 Hz
sampling rate.
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Fig. S8. Statistical significance of inter-method
correlations between EEG and ECoG band-power at
256 Hz sampling rate. While correlation values are
much smaller than for 0.67 Hz sampling rate, they re-
main equally significant as compared to null distribu-
tions.
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