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Abstract

The Glycoside Hydrolase Family 13 (GH13) is both evolutionary diverse

and relevant to many industrial applications. Its members perform the hydrol-

ysis of starch into smaller carbohydrates. Members of the family have been

bioengineered to improve catalytic function under industrial environments. We

introduce a framework to analyze the response to selection of GH13 protein

structures given some phylogenetic and simulated dynamic information. We

found that the TIM-barrel is not selectable since it is under purifying selec-

tion. We also show a method to rank important residues with higher inferred

response to selection. These residues can be altered to effect change in prop-

erties. In this work, we define fitness as inferred thermodynamic stability. We

show that under the developed framework, residues 112Y, 122K, 124D, 125W,

and 126P are good candidates to increase the stability of the truncated protein

4E2O. Overall, this paper demonstrate the feasibility of a framework for the

analysis of protein structures for any other fitness landscape.

1 Introduction

The Glycoside Hydrolase Family 13 (GH13) is a multi-reaction catalytic family of

enzymes hydrolyzing α-glucoside linkages in starch. Its members catalyze hydrolysis,

transglycosylation, condensation, and cyclization reactions [5]. The initial definition

for this family was formulated in the early 90’s [26, 61, 34]. According to this defini-

tion, a member of this family must [61]: 1) hydrolyse or form (by transglycosylation)

α-glucosidic linkages; 2) have four conserved amino-acidic regions [48]; 3) contain
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the catalytic triad: Asp, Glu, and Asp.; and 4) have a TIM-barrel-like fold in its

structure.

Since then, the number of family members has increased [11] to include α-1,1-,

α-1,2-, α-1,3- and α-1,5-glucosidic linkages [44]. Also, the number of conserved re-

gions have been updated to 7 [29, 30]. The catalytic activity and substrate binding

residues in the GH13 family members occur at the C-termini of the β-strands and

in the loops that extend from these strands [59]. The catalytic site includes aspar-

tate as a catalytic nucleophile, glutamate as an acid/base, and a second aspartate

for stabilization of the transition state [65]. The catalytic triad plus an arginine

residue are conserved in this family across all catalytic members [45, 60]. The GH13

family has many characterized enzymes with diverse functions and are summarized

and clustered in the CAZy database [63]. GH13 is a highly diverse family in both

function and ubiquity being found in all kingdoms of life [60]. The GH13 family has

been subdivided in over 40 subfamilies [58, 33] by their sequence motif and enzyme

specificity [11], but they all are related both in sequence and structure. To date, this

family counts with thousands of sequences, hundreds of structures solved, and more

than 30 different enzymatic specificities [11]. Many comprehensive reviews on their

mechanisms, sequences, abundance, phylogeny and concept have been performed

[59, 31, 43, 19, 67, 32, 10, 60].

Part of the interest in researching in this family lies in its industrial importance

[22, 9], making it the target of engineering efforts to increase of thermal and alkaline

stability [41, 17, 62, 21], specific activity [41, 51], , and other diverse biochemical prop-

erties that are important to the industrial context [39, 3, 17]. Many strategies have
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been used to engineer this family including different “rational design” approaches [12]

such as B-fitter [53], proline theory [40], PoPMuSiC-2.1 [16], and sequence consensus

[12]. However, to our knowledge, there is no attempt to leverage both phylogenetic

and molecular dynamics signals to quantify the potential of a structure to response

to selection.

Exploring how selection acts on protein structures is not a trivial problem. One

approach is to assume that protein structures are shape phenotypes and that their 3D

structures respond to both genetics and environmental factors, thereby falling under

a quantitative genetics framework. Proteins and other shapes are highly multivariate

in nature [35], and the model for their phenotype (y) can be expressed as [64]:

y = Xb+ Za+ e (1)

where X and Z represent design matrices for the fixed and random effects in vectors

b and a respectively, and e is the residual component that cannot be explained by

the model. Here, y is the phenotype of one structure and contains the x, y, and

z coordinates of each homologous (with respect to the rest of the structures being

analyzed) residue. For a protein structure t that has 100 homologous residues, the

length of yt is 300. The more detailed explanation of the abstraction of the protein

structure as a shape can be seen in section 2.4. With this model, the phylogenetic

contribution to phenotype can be estimated. In a multivariate setting such estimation

is called the G matrix, or genetic variance-covariance matrix, that summarizes the

genetic contribution and the interaction of all traits. In the example above, G is

a 300 by 300 matrix. Lande and Arnold [38] proposed a multivariate strategy to
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estimate the response to selection given G as:

∆z̄ = Gβ (2)

where ∆z̄ is a vector of changes in traits, and β is a vector of selection gradients. The

latter quantity is the effect of a particular trait on the relative fitness, and therefore

depends on the definition of fitness. Here we define fitness at the molecular level

as the function that a particular molecule has. In enzymes, for example, this term

could include the stability necessary to perform the function and the effectiveness

and efficiency of the protein to do it. Then, the selection gradient can be understood

as the change in fitness when the trait (in this case geometry) varies.

To apply the framework, the estimation of a G-matrix is required [36]. To deal

with the fact that the number of samples is limited, this inversion of matrices require

expensive computation, and an eigen decomposition of the covariance matrices is also

required, the restricted maximum likelihood (REML) approach is typically employed

to carry out the variance decomposition. When applied to univariate data it is

more accurate than maximum likelihood methods because it better handles missing

data (i.e. unknown parents, arbitrary breeding designs, etc) and can account for

selection processes. However, REML has good properties only asymptotically. The

reliability of the estimates is questionable when data is scarce. One way to deal with

complex cases that might bias the REML estimates is to use Bayesian inference of

the animal model. This approach uses Markov chain Monte Carlo simulations and is

a more robust estimation than REML, with equivalent results in less complex cases

[6]. This robustness assumes that the Bayesian model has enough information in the

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/205542doi: bioRxiv preprint 

https://doi.org/10.1101/205542
http://creativecommons.org/licenses/by-nc-nd/4.0/


prior probability distribution. A given set of priors considerably affect the estimation

of the variance components. In particular, uninformative priors, such as flat priors,

can lead to biases in the estimation.

1.1 Lynch’s comparative quantitative genetic model: Appli-

cations to protein structures

Lynch [42] developed the phylogenetic mixed model (PMM). In this model, the cor-

relation of phylogenetically heritable components is the time to the shared common

ancestor (length of the path from the most recent common ancestor among two

species and the root of the phylogenetic tree) in the phylogeny [24]. The PMM can

be described as [42]:

z̄ = Xµ+ a+ e (3)

where X is an np×p incidence matrix, p being the number of traits and n the number

of observations.

An assumption of the model is that µc is shared among all taxa in the phylogeny.

This is a sensible assumption to make when analyzing truly homologous protein

structures, since the mean effect on the phenotype is shared by common ancestry.

This also means that µc + aci can be interpreted as the heritable component of the

mean phenotype for the ith taxon [42].

Here, the phylogenetic effects are the portion of the variation that has been

inherited from ancestral species [15]. It does not only contain the genetic component,

but also some environmental contributions given the shared evolutionary history of

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/205542doi: bioRxiv preprint 

https://doi.org/10.1101/205542
http://creativecommons.org/licenses/by-nc-nd/4.0/


the taxa [28]. In PMM the ratio between the additive component and the total

variance is the heritability (h2) in a univariate approach. Housworth et al. [28]

pointed out that a univariate h2 in a PMM is actually equivalent to Freckleton et

al.[20]’s and Pagel [49]’s phylogenetic correlation (λ).

Despite the robustness of the models, the REML technique, employed to estimate

them, has two major drawbacks: assumption of normality of the data, and high

sample size requirements. It is widely known that REML poorly estimates genetic

correlation when overparameterized (multi-trait inference), when the sample size

is small (Martins, personal communication), and when the normality assumption is

violated [24]. These violations can be handled in a Bayesian framework using Markov

Chain Monte Carlo techniques. In such techniques, the higher complexity of the joint

probability calculation needed for the likelihood estimation can be broken down in

lower dimensional conditionals. From those conditionals the MCMC sampling can

be performed and marginal distributions can be extracted [24]. A discussion of the

use of Bayesian MCMC techniques is beyond the scope of this work. We refer the

interested reader to Sorensen and Gianola [57] for a good description of likelihood

and Bayesian methods in quantitative genetics.

Despite its strengths, the Bayesian framework also has weaknesses. The most

important one is that it requires proper and informative priors. Uninformative pri-

ors lead to biases with high variation in results. The sensitivity to the choice of

prior distribution should always be assessed [37]. Given that in evolutionary biology

datasets the amount of knowledge on the estimator is scarce, well informed priors

are normally not available and by informing priors with partial information, the
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estimation can become ill-conditioned.

To explore the feasibility of a comparative quantitative genetics (CQG) frame-

work in protein structures, we simulated a dataset with variable numbers of traits

and observations. We show that the current implementations of the CQG framework

are not feasibly applied to the dimensionality required for protein structures. We

devised a method that functions as a proxy for the CQG framework and show that

it is feasible and accurate. By applying this framework using the energy of unfolding

(∆G◦) as fitness function to the GH13 family, we are able to show how purifying

selection have fixed the geometry of the TIM-barrel. We also demonstrate how by

changing the fitness function, the response to selection propensity changes accord-

ingly. Finally, a proxy for the amount of dynamic deformation happening in the

protein given a vector of selection is explored. Overall, we present here a starting

framework to explore protein structure evolution and design.

2 Methods

2.1 GH13 dataset

Given that molecular dynamic simulations are very time consuming, we used a subset

of the proteins classified as Glycoside Hydrolases Family 13 (GH13). We randomly

selected 35 protein structures from a possible set of 386, but one failed during the

MD simulation. A final set of 34 protein structures (Table A1 in supplementary

methods) was used in further analyses.
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2.2 Molecular Dynamics (MD) simulations

Each of the 34 protein structures was simulated in solution using the software

GROMACS 4 [27]. The force field modes used for the simulations were GROMOS96

for the protein, and the SPCE for the water molecules. Data were collected every

two picoseconds for at least 40 nanoseconds, discarding the first 10 nanoseconds of

simulation to achieve stability. This process was performed using a workstation with

24 CPU cores and an NVIDIA TESLATM GPU.

The analysis of these simulations will provide information on the flexibility (or

within protein variance) of the protein, as opposed to the analysis across homologs

that will provide phylogenetic information (or between structures variance). By 40

ns all proteins analyzed have achieved equilibrium and therefore most of the intrinsic

variance has been captured.

2.3 Aligning the structures and MD simulations

The alignment of homologous proteins was performed using MATT software [47]. To

align the snapshots from MD simulations a General Procrustes Superimposition

(GPS) was performed using the R package shapes [18].

2.4 Abstracting protein structures as shapes

On a set of aligned protein structures, the abstraction is performed in a similar way

to that in Adams and Naylor [1]. However, they do not fully describe the abstraction.
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Here we assign a landmark to the centroids of residues defined by:

(
1

A

A∑
j=1

Xj,
1

A

A∑
j=1

Yj,
1

A

A∑
j=1

Zj) (4)

where A will be the number of heavy atoms (C, O, N) that constitute the side chain

of a residue including the alpha carbon (Cα). This procedure takes into account only

the homologous residues. It captures the variance of both the backbone and the side

chain. In the case of glycine, the centroid is the Cα.

Once the structure is abstracted as a shape, the resulting n (number of obser-

vations) by l (number of coordinates of homologous residues) matrix is referred to

as the phenotypic matrix (P ). For example, let us assume that we have a protein

structure composed of 150 residues. Let’s imagine that 100 different taxa share an

ortholog of this protein. After aligning the protein structures let’s assume that 100

residues are homologous across all 100 taxa. The resulting phenotypic matrix (P )

will be composed of 100 rows of observations (n) and 300 coordinates. These di-

mensions correspond to the x, y, and z axis of each of the 100 homologous residues.

To estimate the variation of this phenotype, the phenotypic variance VP can be es-

timated by computing the variance-covariance matrix of P as VP = var(P ), or G in

a multivaraite scenario.

2.5 Pooled-within group covariance matrix estimation

After the MD simulations up to 500 samples per simulation were obtained. The

estimation of the pooled-within covariance matrix was performed as follows:
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1. Align every model within each MD simulation using General Procurstes Super-

imposition (GPS): Remove extra rotations and translations that could occur

during MD simulation.

2. Select an ambassador structure that is closest to the mean structure (the geo-

metrical mean of the dataset).

3. Align all ambassadors using MATT flexible structure aligner to identify homol-

ogous sites: Multiple structure alignment to identify structural homology.

4. Extract the centroid of fully homologous sites: Identify shared information

among all structures.

5. Concatenate the centroids’ three dimensions for all trajectories

6. Perform a GPS on the entire set of shapes to bring all pre-aligned structures

into the same reference plane.

7. Compute the pooled-within covariance matrix (W ) by first computing the de-

viation from the mean in each class/group (individual homologs in our case)

as:

Dk = xk(ω)− x̄k,s (5)

then computing the sum over the classes of the products of Dk as:

Fl,m =
∑

ω:f(ω)=s

[Dl]× [Dm] (6)
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Finally, compute the pooled-within covariance matrix:

W =
1

n− S

S∑
s=1

(Fi,j)i,j=1,··· ,p (7)

where S is a the number of categorical variables describing the groups or

species, ω is an instance where f(ω) corresponds to the class value of the

instance, and x̄i,s is the mean of the variable i for individuals belonging to s.

Finally, n is the sample size.

Here, W contains the covariance matrix of the within-homolog (i.e. Molecular

dynamic data). To estimate the evolutionary component of P , the between

structures/species covariance matrix (B) has to be taken into account. B will

be simply the difference between the VP and W .

2.6 Estimating ∆G◦unfold as proxy for fitness

The ∆G◦
unfold on each model for each protein was estimated using the command line

version of FoldX [56]. It is important to notice that the computed ∆G◦
unfold is not

comparable in proteins of different size, therefore we computed the average ∆G◦
unfold

per residue as:

ˆ∆G◦
unfold =

∆G◦
unfold

n
(8)

n being the number of residues. With this ˆ∆G◦
unfold as proxy for fitness we can try

to explore the fitness surface. To do this, we used the first two principal compo-

nents (PC) of a PC analysis of the shapes as X and Y axes; ˆ∆G◦
unfold in the Z axis

(Supplementary figure B3).

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/205542doi: bioRxiv preprint 

https://doi.org/10.1101/205542
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.7 Propensity to respond to selection

Arnold [4] showed that, despite high additive variances, G might not be aligned with

the fitness surface. This implies that even though βλ can be non-zero, the response

to selection might send the phenotype in a different direction than the fitness surface.

Blows and Walsh [8] and Hansen and Houle [25] developed an approach to measure

the angle between β and the predicted response to selection from the multivariate

breeders equation, ∆z̄ as:

θ∆z̄-β = cos−1

(
∆z̄Tβλ√

∆z̄∆z̄T
√
βλβTλ

)
(9)

θ∆z̄-β would be zero when there is no genetic constraint, whereas an angle of 90◦

would represent an absolute constraint [66].

3 Results and Discussion

In supplementary materials A and B we have shown that the traditional PMM mod-

els and their Bayesian counterparts are not feasible when the number of traits and

observations are in the order of those obtained in protein science when MD simu-

lations are taken into account. Here, we applied a simple method to overcome this

over-parameterization.
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3.1 Overcoming over-parameterization: Approaching the G-

matrix by means of the P-matrix

Given the previous results, the estimation of the G matrix within the Lynch’s PMM

is not feasible. This is not a new observation since in comparative evolutionary bi-

ology it is widely known that accurate measures of G are difficult or impossible to

obtain [46]. This pattern is even more evident when dimensionality is high. On

average, protein structures are composed of over 200 residues in a three-dimensional

system, which means over 600 variables. Also, the sample size at the species level

is typically small. Because of these reasons, a full and stable estimation of the G-

matrix is not possible. However, an increased number of samples can be achieved by

means of molecular dynamic simulations. This increases n considerably depending

on the length of the simulation. We have shown the infeasibility of the GLMM to

deal with the dimensionality and very large sample size. However, it has been shown

that phenotypic (VP ) covariance matrices can be estimated with more confidence

with large sample sizes [13]. It is also shown that in some cases, VP can be used as

surrogate for G when the two are proportional [46, 55]. To test this, we performed a

shape simulation explained in supplementary section A.1. The simulation was per-

formed with 500 replicates as molecular dynamics snapshots, 100 taxa, and the traits

were varied from 2 to 1024 in a geometric series increase. Since the within-homolog

matrix structure is known, a pooled-within covariance matrix (W ) was computed as

exposed in the section 2.5.

Table 1 shows the feasibility and accuracy of the pooled-within species covariance
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Table 1: Accuracy and feasibility of the pooled-within covariance estimation. Mem-
ory (Mb), time (sec) and accuracy (random skewer correlation) of the pooled-within
covariance estimation approach. RSB corresponds to the random skewer test for the
phylogenetic covariance and RSW to the dynamic component.

Traits Time Memory
RSB RSW

(secs.) (Mb) p-val ρ p-val ρ

2 0.60 182.9 0.002 1.000 0.021 0.999
4 0.80 238.2 0.000 0.999 0.007 0.952
8 1.00 387.6 0.000 0.998 0.000 0.983
16 1.82 407.5 0.000 0.998 0.000 0.963
32 6.08 428.5 0.000 0.998 0.000 0.966
64 20.32 465.9 0.000 0.999 0.000 0.953
128 91.14 539.4 0.000 0.999 0.000 0.947
256 341.90 686.8 0.000 0.999 0.000 0.950
512 1342.36 982.2 0.000 0.999 0.000 0.938
1024 5268.82 1843.7 0.000 0.999 0.000 0.937

estimation method. Here the Cheverud’s Random Skewer (RS) test [13, 14] imple-

mented in the R package phytools [54] were used to test the accuracy. A discussion

of the appropriateness of the usage of this metric can be found in Supplementary

Materials A3 and references therein.

Even with highly multivariate data (1024 traits), the memory requirement is

manageable (less than 2 Gb), the evaluation is completed in under an hour, and

the accuracy of the estimation is high. The estimated G matrix is almost identical

to the simulated one is most of the runs, and the estimated MD have over 0.97

correlated responses to random vectors than the actual MD. This is a surprising

result since this method cannot completely separate the error terms from the genetic

and the dynamic components. However, the split of the error term between the
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two other components can make it negligible. Moreover, it seems that error does

not significantly affect the structure of G and MD, allowing them to behave almost

identically in comparison to the simulated counterparts. Given these results, and the

fact that the application to real datasets can only be made with this approach, it is

reasonable to keep using the described method from this point forward. However,

the biological and evolutionary meaning of this approach is less clear than in the

other methods since there is no explicit use of a phylogeny.

3.1.1 Meaning of the pooled within-structure covariance matrix

VP -matrices can be used as surrogates of G-matrices in cases were they are propor-

tional or sufficiently similar [50]. Proa et al. [50] showed that this assumption can

be relaxed if the correlation between G and VP ≥ 0.6. In protein structures, we

can assume that given the strong selective pressures and long divergence times, the

relationship between VP and G is standardized. Assuming that this is true in pro-

tein structures, the estimated pooled variance-covariance (V/CV) matrices in real

datasets might have a specific biological meaning. This was described in Haber

[23] for morphological integration in mammals. Following Haber’s [23] logic, the

within-structure/species (i.e. thermodynamic V/CV) matrix refers to integration of

residues in a thermodynamic and functional manner. It also contains information

about environmental factors affecting the physical-chemistry of the structure. Haber

[23] includes a genetic component for his estimation of the within population vari-

ation, since populations follow a filial design. Our data, on the other hand, have a

controlled amount of genetic component given that the sampling is done in a time
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series instead of a static population. Our approach would be more related to an

estimation of within repeated measures design.

The among-structure/species (i.e additive or evolutionary V/CV) matrix refers

to the concerted evolution of traits given integration and selection [23].

3.2 Response to selection in the GH13 family

As defined in equation 2, the response to selection of a phenotype depends on the

within-species change in mean due to selection, the correlation between different

traits, and the amount of heritable component of the shape. The first component

can be referred to as β = V −1
P S, and also known as the vector of selection gradients

[52] or directional selection gradient. The second and third elements are summarized

in the G matrix. As expressed in equation 2, this covariance matrix represents the

genetic component of the variation in the diagonal, and the correlated response of

every trait to each other in the off-diagonal.

Another extension from equation 2 is to compute the long-term selection gradient

assuming that G is more or less constant over long periods of time:

βλ = G−1∆z̄ (10)

Here ∆z̄ would be proportional to the differences in mean between two diverging

populations.

It is important to stress the relationship between these concepts and fitness.

Given that fitness (w) is directly related to selection, its mathematical relationship
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can be expressed as f = a +
n∑
i=1

βizi + ei [8], and so it behaves as the weight of a

multiple regression of f on the vector of phenotypes z.

In proteins, the definition of fitness is not trivial, and can vary depending on the

hypothesis being tested. If the analysis is done comparatively (i.e. across different

protein structures from different sources), a fitness analysis including exclusively

structural measures, such as Gibbs free energy (∆G), can be misleading. The fitness

surface that can arise from this data would only represent departures from every

individual native state. Nevertheless, ∆G and the energy of unfolding (∆G◦), are

important measures to determine the stability of the protein which is important for

the fitness of a protein structure. The stability of the structure allows it to perform

a function and is therefore under selection because it is necessary for the particular

biochemical function [7]. We are aware that there is a limitation to the protein

structure stability role in fitness. To improve this fitness landscape, f can be defined

by ∆G◦ coupled with a functional measure. In proteins, function is the main selective

trait; therefore, including a term accounting for this would create a more realistic

fitness surface. In enzymes this can be achieved by using the Kcat/KM for each of

the enzymes for a common substrate. The fitness function (F ) can be expressed as:

F (i, s) = ∆G◦
i

Ki,s
cat

Ki,s
M

(11)

where ∆G◦
i is the free energy of unfolding of the structure i, Ki,s

cat is the turnover

number for structure i in substrate s, and Ki,s
M is the Michaelis constant of protein i

working on substrate s.
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In the case of the α-amylase family (GH13), one might try to apply the framework

developed in previous sections and try to estimate the response to selection of a subset

of them. However, equation 11 cannot be applied since the information of the relative

efficiency given a common substrate is not consistently available across all proteins in

the dataset. For this reason we are going to work exclusively with ∆G◦
unfold, keeping

in mind two caveats, 1) that ∆G◦
unfold only represents structural stability and 2)

that it has been shown that ∆Gequilibrium or ∆G◦
unfold are not optimized for during

evolution [2].

3.2.1 Estimating dynamic and genetic variance-covariance matrices in

the α-Amylase dataset

The structure depicted with the higher fitness was the model 1 of structure 2TAA

(Supplemental figure B3), from Aspergillus oryzae assuming ˆ∆G◦ as fitness. The

model 1 of structure 2TAA can be assumed to be the result of the goal of selection.

The realized response to selection ∆z̄$ can be defined as µ⊕ − µ0, where µ⊕ is the

target or after-selection mean structure and µ0 is the starting or before-selection

structure. To estimate ∆z̄$ it is essential to have the fitness defined based on the

questions to be asked, given that the interpretation of the realized response to selec-

tion depends on it.

In an engineering perspective, let’s assume that µ⊕ is the mean of a population

of structures with the desired stability. On the other hand, µ0 is the mean of a

population of structures created by a desired vector. One might ask the question of

how does µ0 have to change towards the stability of µ⊕. This can be achieved by
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computing βλ (equation 10), and replacing ∆z̄ by ∆z̄$. In the particular case of the

GH13 dataset, let’s assume that the model 1 of the structure 2TAA is the desired

phenotype (with the higher fitness in supplementary figure B3), and the model 643

of the structure 4E2O from Geobacillus thermoleovorans CCB US3 UF5 (with the

lower fitness in supplementary figure B3) corresponds to the source phenotype. βλ

would have a length corresponding to the dimensions of the shape. In the GH13

case 297 homologous residues were identified, which means that these shapes have

a dimensionality of 891 traits. This dimension-per-dimension output is important

since it reflects the amount of pressure in each dimension per each residue. However,

it makes the visualization more difficult. For the sake of visualization simplicity,

Figure 1 shows the absolute value of the sum of βλ per residue, standardized from 0

to 1.

Figure 1a shows the selection gradient using the estimated G. Not surprisingly,

the selection gradient for the TIM-barrel is low. This means that there is not much

directional selection on this sub-structure. However, it is somewhat surprising that

there is not any purifying selection either. This can be explained by the fixation

of the trait in the evolution. Since the TIM-barrel is a widespread sub-structure

that has been strongly selected during evolution, it might have reached a point of

fixation of its geometry. Therefore, the G matrix shows little covariation among

these residues since the geometric variability is also low. It is important to stress

here that the phenotype measured is the geometry of the structure more than that

of the sequence. Therefore, despite some variation that may have occurred at the

sequence level, it might not have meaningfully affected the positional information.
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(a) Selection gradient on G (b) Dynamic gradient on M

Figure 1:
∑

i=x,y,z |βλi| rendered in the source structure 4E2O. White represents the
lowest magnitude (0), while red the highest (1). Blue depicts the non-homologous
residues.

However, one must be cautious with the approach employed in Figure 1 since

the signs are missed, thereby ignoring the direction of selection and the correlated

response to selection. Nevertheless, this approach allows for a coarse-grained visual

exploration of βλi . Individual instances identified by this method should be analysed

afterwards in each dimension. Table 2 shows the actual values of βλ for the top 5

positive values (directional selection) and top 5 negative values (purifying selection).

Figure 1b and Table 3 show the mean difference between target and source when

effects of correlated dynamic differentials are removed. Given that effectively G acts
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Table 2: Selection gradient in the top 5 residues. Top panel shows the residues were
at least one of its coordinates is under directional selection and the sum of their
absolute values is the highest. Bottom panel contains the information of residues
where at least one of its coordinates is under purifying selection, and the sum of the
raw values are the lowest.

ResIndex Residue βX βY βz ∆z̄X ∆z̄Y ∆z̄Z

Directional

112 TYR -5.225 1.082 11.138 -5.106 2.043 10.248
122 LYS 12.333 -2.321 -0.964 12.452 -1.360 -1.854
124 ASP 14.28 -6.963 -10.036 14.399 -6.002 -10.926
125 TRP 18.001 -0.984 0.336 18.121 -0.022 -0.554
126 PHE 11.53 -0.833 3.253 11.650 0.128 2.363

Purifying

80 HIS -5.580 -2.148 4.023 -5.461 -1.187 3.13
121 THR 2.508 -4.644 -5.731 2.627 -3.683 -6.621
223 TYR -0.010 -7.631 -7.634 0.110 -6.670 -8.524
358 SER -8.647 -3.461 1.963 -8.527 -2.500 1.073
394 GLU -4.561 -0.449 -4.002 -4.442 0.512 -4.892

as a rotation matrix in equation 10 to remove the selection differentials, one may

posit that the same can be achieved with the dynamic (M) matrix. This concept is

more difficult to interpret than the actual response to selection. Once G is replaced

by M in equation 10, we might call it dynamic gradient to differentiate it from the

selection gradient already explained. In this case, if the gradient is zero for a given

trait, this can be interpreted that the dynamic component of the phenotype does not

contribute significantly to the difference in shape for that particular trait. In the case

of non-zero gradients, these can be interpreted as contributions of the dynamics to

the differential, either towards the target (positive gradient) or away from the target

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/205542doi: bioRxiv preprint 

https://doi.org/10.1101/205542
http://creativecommons.org/licenses/by-nc-nd/4.0/


(negative gradient).

Table 3: Dynamics gradient in the top 5 residues. Top panel shows the residues where
at least one of its coordinates is under positive gradient. Bottom panel contains the
information of residues where at least one of its coordinates is under a negative
gradient.

ResIndex Residue βX βY βz ∆z̄X ∆z̄Y ∆z̄Z

Directional

117 LEU 13.028 37.149 11.848 2.130 3.521 4.437
125 TRP 29.019 33.605 6.857 18.121 -0.022 -0.554
126 PHE 22.548 33.755 9.774 11.650 0.128 2.363
262 LYS 12.972 38.081 11.412 2.073 4.454 4.001
367 LEU 13.590 34.561 15.609 2.692 0.933 8.197

Purifying

124 ASP 25.297 27.625 -3.515 14.399 -6.002 -10.926
223 TYR 11.008 26.958 -1.113 0.110 -6.670 -8.524

In the GH13 subset, most dynamic gradients were positive having only two

residues that had one coordinate under a negative gradient (Table 3). This can

also be inferred by Figure 1b. The values of the dynamic gradient are high but sensi-

ble given the definition of fitness. Since we defined fitness as the energy of unfolding

(∆G◦), most of the information used to select the target and source structures comes

from stability, and therefore thermodynamic information. The results depicted in Ta-

ble 3 and Figure 1b suggest that most of the variation that explains the difference in

phenotype between the structure 4E2O and 2TAA, is contained within the molecular

dynamic component rather than the approximation to the phylogenetic component.
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Orientation of G

The GH13 θ was 1.4 degrees, which means that the direction of optimal response is

1.4 degrees away from the total genetic variation of 99% explained by the projection.

According to this, the Geobacillus thermoleovorans structure is susceptible to the

selection in the actual direction of the fitness landscape towards the structure of

Aspergillus oryzae to achieve maximum stability. The extent of such change is given

by ∆z̄, which means that the centroid position of the residue i should be displaced

by ~v = (∆z̄ix,∆z̄iy,∆z̄iz).

In the case of the dynamics, the same approach can be taken. Here, θM was 1.5

degrees which means that the optimal dynamic response is 1.5 degrees away from the

optimal response. This can be interpreted in a similar way than that of the regular

θ. However, manipulating the structure along the dynamics gradient is not feasible.

The GH13 dataset θ∆z̄-β was 0.3. This means that the genetic constraints on 4E2O

are not affecting the direction of selection. This posits the possibility that a strong

directional selection will drive the source structure towards the target. The same

pattern happens when this approach is applied to M . θM∆z̄-β is 1.46 degrees, which

is almost identical to θM . Thus, there are almost no within-variation or dynamic

constraints to the vector of response given the dynamic gradient.

Concluding remarks

We have introduced the application of the approximation of comparative quantitative

genetics framework, by means of a pooled-within group covariance matrix in a subset
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of the GH13 proteins, and demonstrated this application is feasible and provides

sensible results, given the definition of fitness. This definition is essential in the

interpretation of the results since it is the interpretation that gives polarity to R$.

Therefore, all conclusions about the response to selection and the selection gradient

itself must be analyzed under this light.

The usage of M in the determination of the dynamic gradient could be contro-

versial. This is due to the fact that, in the partition of the phenotypic variance, M

is expected to be the environmental variance plus an error term. However, since the

source data for the estimation of G and M come from repeated measures by MD, M

contains information about the thermodynamics and folding stability of the protein.

It is therefore also contributing to selection.

It is important to stress the fact that this is an approximation to the true G and

true M , since we have shown in previous sections that these cannot be estimated

given the dimensionality of the phenotype. However, we have shown that the pooled-

within group approach gives consistent results.

We have also shown that, in a stability perspective, the TIM-barrel show a small

phylogenetic/genetic component to the selection gradient when a less stable structure

(4E2O) is analyzed with respect to a more stable one (2TAA). In an engineering

perspective, this means that most of the changes in shape come from the dynamics.

Nevertheless, the small θ∆z̄-β show that most of the changes applied to 4E2O would

directly result in increasing the stability towards the one expressed by 2TAA. 4E2O

is a truncated protein, and therefore some loss of stability is expected. It seems that

residues 112Y, 122K, 124D, 125W, and 126P, are good candidates to increase the
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stability of the molecule given their ∆ẑs. In these cases, the goal will be to shift the

position of their centroids by the resulting vector of the three dimensions.

A Material and Methods

This section contain all the information on the structures used. It also have all the

simulation and test methods performed to show the infeasibility of the traditional

and bayesian PMM in protein structures. This supplementary material can be found

in here

B Supplementary results

All of the simulation and test results showing the infeasibility of the traditional PMM

in protein structures can be found in here
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ministrativo de Ciencia y Tecnoloǵıa - Colciencias (Colombia) through the CALDAS

scholarship.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/205542doi: bioRxiv preprint 

https://web.cs.dal.ca/~cblouin/hleap2016/Hleap_Response_suppl.pdf
https://web.cs.dal.ca/~cblouin/hleap2016/Hleap_Response_suppl.pdf
https://doi.org/10.1101/205542
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Dean C. Adams and Gavin J. P. Naylor. A comparison of methods for as-

sessing the structural similarity of proteins. In Mathematical Methods for

Protein Structure Analysis and Design, pages 109–115, 2003. doi: 10.1007/

978-3-540-44827-3\ 6.

[2] Javier Antonio Alfaro. Capturing the dynamics of protein sequence evolution

through site-independent structurally constrained phylogenetic models. PhD the-

sis, Department of biochemitry & molecular biology, Dalhousie University, Hal-

ifax, Canada, 2014.
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