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Abstract

The Glycoside Hydrolase Family 13 (GH13) is both evolutionary diverse
and relevant to many industrial applications. Its members perform the hydrol-
ysis of starch into smaller carbohydrates. Members of the family have been
bioengineered to improve catalytic function under industrial environments. We
introduce a framework to analyze the response to selection of GH13 protein
structures given some phylogenetic and simulated dynamic information. We
found that the TIM-barrel is not selectable since it is under purifying selec-
tion. We also show a method to rank important residues with higher inferred
response to selection. These residues can be altered to effect change in prop-
erties. In this work, we define fitness as inferred thermodynamic stability. We
show that under the developed framework, residues 112Y, 122K, 124D, 125W,
and 126P are good candidates to increase the stability of the truncated protein
4E20. Overall, this paper demonstrate the feasibility of a framework for the

analysis of protein structures for any other fitness landscape.

1 Introduction

The Glycoside Hydrolase Family 13 (GH13) is a multi-reaction catalytic family of
enzymes hydrolyzing a-glucoside linkages in starch. Its members catalyze hydrolysis,
transglycosylation, condensation, and cyclization reactions [5]. The initial definition
for this family was formulated in the early 90’s [26, 61, 34]. According to this defini-
tion, a member of this family must [61]: 1) hydrolyse or form (by transglycosylation)

a-glucosidic linkages; 2) have four conserved amino-acidic regions [48]; 3) contain
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the catalytic triad: Asp, Glu, and Asp.; and 4) have a TIM-barrel-like fold in its
structure.

Since then, the number of family members has increased [11] to include a-1,1-,
a-1,2-) a-1,3- and «a-1,5-glucosidic linkages [44]. Also, the number of conserved re-
gions have been updated to 7 [29, 30]. The catalytic activity and substrate binding
residues in the GH13 family members occur at the C-termini of the [-strands and
in the loops that extend from these strands [59]. The catalytic site includes aspar-
tate as a catalytic nucleophile, glutamate as an acid/base, and a second aspartate
for stabilization of the transition state [65]. The catalytic triad plus an arginine
residue are conserved in this family across all catalytic members [45, 60]. The GH13
family has many characterized enzymes with diverse functions and are summarized
and clustered in the CAZy database [63]. GH13 is a highly diverse family in both
function and ubiquity being found in all kingdoms of life [60]. The GH13 family has
been subdivided in over 40 subfamilies [58, 33] by their sequence motif and enzyme
specificity [11], but they all are related both in sequence and structure. To date, this
family counts with thousands of sequences, hundreds of structures solved, and more
than 30 different enzymatic specificities [11]. Many comprehensive reviews on their
mechanisms, sequences, abundance, phylogeny and concept have been performed
[59, 31, 43, 19, 67, 32, 10, 60].

Part of the interest in researching in this family lies in its industrial importance
[22, 9], making it the target of engineering efforts to increase of thermal and alkaline
stability [41, 17, 62, 21], specific activity [41, 51|, , and other diverse biochemical prop-

erties that are important to the industrial context [39, 3, 17]. Many strategies have
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been used to engineer this family including different “rational design” approaches [12]
such as B-fitter [53], proline theory [40], PoPMuSiC-2.1 [16], and sequence consensus
[12]. However, to our knowledge, there is no attempt to leverage both phylogenetic
and molecular dynamics signals to quantify the potential of a structure to response
to selection.

Exploring how selection acts on protein structures is not a trivial problem. One
approach is to assume that protein structures are shape phenotypes and that their 3D
structures respond to both genetics and environmental factors, thereby falling under
a quantitative genetics framework. Proteins and other shapes are highly multivariate

in nature [35], and the model for their phenotype (y) can be expressed as [64]:

y=Xb+Za+e (1)

where X and Z represent design matrices for the fixed and random effects in vectors
b and a respectively, and e is the residual component that cannot be explained by
the model. Here, y is the phenotype of one structure and contains the x, y, and
z coordinates of each homologous (with respect to the rest of the structures being
analyzed) residue. For a protein structure ¢ that has 100 homologous residues, the
length of y; is 300. The more detailed explanation of the abstraction of the protein
structure as a shape can be seen in section 2.4. With this model, the phylogenetic
contribution to phenotype can be estimated. In a multivariate setting such estimation
is called the G matrix, or genetic variance-covariance matrix, that summarizes the
genetic contribution and the interaction of all traits. In the example above, G is

a 300 by 300 matrix. Lande and Arnold [38] proposed a multivariate strategy to
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estimate the response to selection given G as:

Az =Gp (2)

where AZ is a vector of changes in traits, and f is a vector of selection gradients. The
latter quantity is the effect of a particular trait on the relative fitness, and therefore
depends on the definition of fitness. Here we define fitness at the molecular level
as the function that a particular molecule has. In enzymes, for example, this term
could include the stability necessary to perform the function and the effectiveness
and efficiency of the protein to do it. Then, the selection gradient can be understood
as the change in fitness when the trait (in this case geometry) varies.

To apply the framework, the estimation of a G-matrix is required [36]. To deal
with the fact that the number of samples is limited, this inversion of matrices require
expensive computation, and an eigen decomposition of the covariance matrices is also
required, the restricted maximum likelihood (REML) approach is typically employed
to carry out the variance decomposition. When applied to univariate data it is
more accurate than maximum likelihood methods because it better handles missing
data (i.e. unknown parents, arbitrary breeding designs, etc) and can account for
selection processes. However, REML has good properties only asymptotically. The
reliability of the estimates is questionable when data is scarce. One way to deal with
complex cases that might bias the REML estimates is to use Bayesian inference of
the animal model. This approach uses Markov chain Monte Carlo simulations and is
a more robust estimation than REML, with equivalent results in less complex cases

[6]. This robustness assumes that the Bayesian model has enough information in the
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prior probability distribution. A given set of priors considerably affect the estimation
of the variance components. In particular, uninformative priors, such as flat priors,

can lead to biases in the estimation.

1.1 Lynch’s comparative quantitative genetic model: Appli-

cations to protein structures

Lynch [42] developed the phylogenetic mized model (PMM). In this model, the cor-
relation of phylogenetically heritable components is the time to the shared common
ancestor (length of the path from the most recent common ancestor among two
species and the root of the phylogenetic tree) in the phylogeny [24]. The PMM can
be described as [42]:

z=Xpu+a+e (3)

where X is an np X p incidence matrix, p being the number of traits and n the number
of observations.

An assumption of the model is that p. is shared among all taxa in the phylogeny.
This is a sensible assumption to make when analyzing truly homologous protein
structures, since the mean effect on the phenotype is shared by common ancestry.
This also means that u. + a.; can be interpreted as the heritable component of the
mean phenotype for the ith taxon [42].

Here, the phylogenetic effects are the portion of the variation that has been
inherited from ancestral species [15]. It does not only contain the genetic component,

but also some environmental contributions given the shared evolutionary history of
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the taxa [28]. In PMM the ratio between the additive component and the total
variance is the heritability (h?) in a univariate approach. Housworth et al. [28]
pointed out that a univariate h? in a PMM is actually equivalent to Freckleton et
al.[20]’s and Pagel [49]’s phylogenetic correlation (\).

Despite the robustness of the models, the REML technique, employed to estimate
them, has two major drawbacks: assumption of normality of the data, and high
sample size requirements. It is widely known that REML poorly estimates genetic
correlation when overparameterized (multi-trait inference), when the sample size
is small (Martins, personal communication), and when the normality assumption is
violated [24]. These violations can be handled in a Bayesian framework using Markov
Chain Monte Carlo techniques. In such techniques, the higher complexity of the joint
probability calculation needed for the likelihood estimation can be broken down in
lower dimensional conditionals. From those conditionals the MCMC sampling can
be performed and marginal distributions can be extracted [24]. A discussion of the
use of Bayesian MCMC techniques is beyond the scope of this work. We refer the
interested reader to Sorensen and Gianola [57] for a good description of likelihood
and Bayesian methods in quantitative genetics.

Despite its strengths, the Bayesian framework also has weaknesses. The most
important one is that it requires proper and informative priors. Uninformative pri-
ors lead to biases with high variation in results. The sensitivity to the choice of
prior distribution should always be assessed [37]. Given that in evolutionary biology
datasets the amount of knowledge on the estimator is scarce, well informed priors

are normally not available and by informing priors with partial information, the
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estimation can become ill-conditioned.

To explore the feasibility of a comparative quantitative genetics (CQG) frame-
work in protein structures, we simulated a dataset with variable numbers of traits
and observations. We show that the current implementations of the CQG framework
are not feasibly applied to the dimensionality required for protein structures. We
devised a method that functions as a proxy for the CQG framework and show that
it is feasible and accurate. By applying this framework using the energy of unfolding
(AG”) as fitness function to the GH13 family, we are able to show how purifying
selection have fixed the geometry of the TIM-barrel. We also demonstrate how by
changing the fitness function, the response to selection propensity changes accord-
ingly. Finally, a proxy for the amount of dynamic deformation happening in the
protein given a vector of selection is explored. Overall, we present here a starting

framework to explore protein structure evolution and design.

2 Methods

2.1 GH13 dataset

Given that molecular dynamic simulations are very time consuming, we used a subset
of the proteins classified as Glycoside Hydrolases Family 13 (GH13). We randomly
selected 35 protein structures from a possible set of 386, but one failed during the
MD simulation. A final set of 34 protein structures (Table Al in supplementary

methods) was used in further analyses.
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2.2 Molecular Dynamics (MD) simulations

Each of the 34 protein structures was simulated in solution using the software
GROMACS 4 [27]. The force field modes used for the simulations were GROMOS96
for the protein, and the SPCE for the water molecules. Data were collected every
two picoseconds for at least 40 nanoseconds, discarding the first 10 nanoseconds of
simulation to achieve stability. This process was performed using a workstation with
24 CPU cores and an NVIDIA TESLA™ GPU.

The analysis of these simulations will provide information on the flexibility (or
within protein variance) of the protein, as opposed to the analysis across homologs
that will provide phylogenetic information (or between structures variance). By 40
ns all proteins analyzed have achieved equilibrium and therefore most of the intrinsic

variance has been captured.

2.3 Aligning the structures and MD simulations

The alignment of homologous proteins was performed using MATT software [47]. To
align the snapshots from MD simulations a General Procrustes Superimposition

(GPS) was performed using the R package shapes [18].

2.4 Abstracting protein structures as shapes

On a set of aligned protein structures, the abstraction is performed in a similar way

to that in Adams and Naylor [1]. However, they do not fully describe the abstraction.
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Here we assign a landmark to the centroids of residues defined by:

(

A

| =

J

lon, 1¢
szzijzzzj) (4)
1 j=1 j=1
where A will be the number of heavy atoms (C, O, N) that constitute the side chain
of a residue including the alpha carbon (C,). This procedure takes into account only
the homologous residues. It captures the variance of both the backbone and the side
chain. In the case of glycine, the centroid is the Cl,.

Once the structure is abstracted as a shape, the resulting n (number of obser-
vations) by [ (number of coordinates of homologous residues) matrix is referred to
as the phenotypic matrix (P). For example, let us assume that we have a protein
structure composed of 150 residues. Let’s imagine that 100 different taxa share an
ortholog of this protein. After aligning the protein structures let’s assume that 100
residues are homologous across all 100 taxa. The resulting phenotypic matrix (P)
will be composed of 100 rows of observations (n) and 300 coordinates. These di-
mensions correspond to the x, y, and z axis of each of the 100 homologous residues.
To estimate the variation of this phenotype, the phenotypic variance Vp can be es-
timated by computing the variance-covariance matrix of P as Vp = var(P), or G in

a multivaraite scenario.

2.5 Pooled-within group covariance matrix estimation

After the MD simulations up to 500 samples per simulation were obtained. The

estimation of the pooled-within covariance matrix was performed as follows:
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1. Align every model within each MD simulation using General Procurstes Super-
imposition (GPS): Remove extra rotations and translations that could occur

during MD simulation.

2. Select an ambassador structure that is closest to the mean structure (the geo-

metrical mean of the dataset).

3. Align all ambassadors using MATT flexible structure aligner to identify homol-

ogous sites: Multiple structure alignment to identify structural homology.

4. Extract the centroid of fully homologous sites: Identify shared information

among all structures.
5. Concatenate the centroids’ three dimensions for all trajectories

6. Perform a GPS on the entire set of shapes to bring all pre-aligned structures

into the same reference plane.

7. Compute the pooled-within covariance matrix (W) by first computing the de-
viation from the mean in each class/group (individual homologs in our case)
as:

Dy, = xp(w) — T s (5)

then computing the sum over the classes of the products of Dy as:

Fim= Y [D]x[Dn)] (6)

w:f(w)=s

10
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Finally, compute the pooled-within covariance matrix:

1
W= n—S Z (E,j)@j:L...’p (7)

where S is a the number of categorical variables describing the groups or
species, w is an instance where f(w) corresponds to the class value of the
instance, and Z; s is the mean of the variable ¢ for individuals belonging to s.

Finally, n is the sample size.

Here, W contains the covariance matrix of the within-homolog (i.e. Molecular
dynamic data). To estimate the evolutionary component of P, the between
structures/species covariance matrix (B) has to be taken into account. B will

be simply the difference between the Vp and W.

2.6 Estimating AG,, ;,; as proxy for fitness

un fol

The AG,, 1,14 00 each model for each protein was estimated using the command line

(o]
unfol

version of FoldX [56]. It is important to notice that the computed AGS, ;,,; is not

comparable in proteins of different size, therefore we computed the average AGy,, ;14

per residue as:
(0]
AG(unfold

n

AGinfold = <8)

n being the number of residues. With this AGf:nfold as proxy for fitness we can try
to explore the fitness surface. To do this, we used the first two principal compo-
nents (PC) of a PC analysis of the shapes as X and Y axes; Angfold in the 7 axis

(Supplementary figure B3).
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2.7 Propensity to respond to selection

Arnold [4] showed that, despite high additive variances, G might not be aligned with
the fitness surface. This implies that even though ) can be non-zero, the response
to selection might send the phenotype in a different direction than the fitness surface.
Blows and Walsh [8] and Hansen and Houle [25] developed an approach to measure
the angle between § and the predicted response to selection from the multivariate
breeders equation, AZ as:

Opzp = cos™* Az By (9)
VAZAT /BT

Oz would be zero when there is no genetic constraint, whereas an angle of 90°

would represent an absolute constraint [66].

3 Results and Discussion

In supplementary materials A and B we have shown that the traditional PMM mod-
els and their Bayesian counterparts are not feasible when the number of traits and
observations are in the order of those obtained in protein science when MD simu-
lations are taken into account. Here, we applied a simple method to overcome this

over-parameterization.

12
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3.1 Overcoming over-parameterization: Approaching the G-

matrix by means of the P-matrix

Given the previous results, the estimation of the G matrix within the Lynch’s PMM
is not feasible. This is not a new observation since in comparative evolutionary bi-
ology it is widely known that accurate measures of G are difficult or impossible to
obtain [46]. This pattern is even more evident when dimensionality is high. On
average, protein structures are composed of over 200 residues in a three-dimensional
system, which means over 600 variables. Also, the sample size at the species level
is typically small. Because of these reasons, a full and stable estimation of the G-
matrix is not possible. However, an increased number of samples can be achieved by
means of molecular dynamic simulations. This increases n considerably depending
on the length of the simulation. We have shown the infeasibility of the GLMM to
deal with the dimensionality and very large sample size. However, it has been shown
that phenotypic (Vp) covariance matrices can be estimated with more confidence
with large sample sizes [13]. It is also shown that in some cases, Vp can be used as
surrogate for G when the two are proportional [46, 55]. To test this, we performed a
shape simulation explained in supplementary section A.1. The simulation was per-
formed with 500 replicates as molecular dynamics snapshots, 100 taxa, and the traits
were varied from 2 to 1024 in a geometric series increase. Since the within-homolog
matrix structure is known, a pooled-within covariance matrix (W) was computed as

exposed in the section 2.5.

Table 1 shows the feasibility and accuracy of the pooled-within species covariance
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Table 1: Accuracy and feasibility of the pooled-within covariance estimation. Mem-
ory (Mb), time (sec) and accuracy (random skewer correlation) of the pooled-within
covariance estimation approach. RSp corresponds to the random skewer test for the
phylogenetic covariance and RSy to the dynamic component.

Traits Time Memory RSp RSw
(secs.) (Mb) p-val p p-val p
2 0.60 182.9 0.002 1.000 0.021 0.999
4 0.80 238.2 0.000 0.999 0.007 0.952
8 1.00 387.6 0.000 0.998 0.000 0.983
16 1.82 407.5 0.000 0.998 0.000 0.963
32 6.08 428.5 0.000 0.998 0.000 0.966

64 20.32 465.9 0.000 0.999 0.000 0.953
128 91.14 539.4 0.000 0.999 0.000 0.947
256 341.90 686.8 0.000 0.999 0.000 0.950
512 1342.36 982.2 0.000 0.999 0.000 0.938
1024 5268.82 1843.7 0.000 0.999 0.000 0.937

estimation method. Here the Cheverud’s Random Skewer (RS) test [13, 14] imple-
mented in the R package phytools [54] were used to test the accuracy. A discussion
of the appropriateness of the usage of this metric can be found in Supplementary
Materials A3 and references therein.

Even with highly multivariate data (1024 traits), the memory requirement is
manageable (less than 2 Gb), the evaluation is completed in under an hour, and
the accuracy of the estimation is high. The estimated G matrix is almost identical
to the simulated one is most of the runs, and the estimated M D have over 0.97
correlated responses to random vectors than the actual M D. This is a surprising
result since this method cannot completely separate the error terms from the genetic

and the dynamic components. However, the split of the error term between the

14
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two other components can make it negligible. Moreover, it seems that error does
not significantly affect the structure of G and M D, allowing them to behave almost
identically in comparison to the simulated counterparts. Given these results, and the
fact that the application to real datasets can only be made with this approach, it is
reasonable to keep using the described method from this point forward. However,
the biological and evolutionary meaning of this approach is less clear than in the

other methods since there is no explicit use of a phylogeny.

3.1.1 Meaning of the pooled within-structure covariance matrix

Vp-matrices can be used as surrogates of G-matrices in cases were they are propor-
tional or sufficiently similar [50]. Proa et al. [50] showed that this assumption can
be relaxed if the correlation between G and Vp > 0.6. In protein structures, we
can assume that given the strong selective pressures and long divergence times, the
relationship between Vp and G is standardized. Assuming that this is true in pro-
tein structures, the estimated pooled variance-covariance (V/CV) matrices in real
datasets might have a specific biological meaning. This was described in Haber
[23] for morphological integration in mammals. Following Haber’s [23] logic, the
within-structure/species (i.e. thermodynamic V/CV) matrix refers to integration of
residues in a thermodynamic and functional manner. It also contains information
about environmental factors affecting the physical-chemistry of the structure. Haber
[23] includes a genetic component for his estimation of the within population vari-

ation, since populations follow a filial design. Our data, on the other hand, have a

controlled amount of genetic component given that the sampling is done in a time
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series instead of a static population. Our approach would be more related to an
estimation of within repeated measures design.
The among-structure/species (i.e additive or evolutionary V/CV) matrix refers

to the concerted evolution of traits given integration and selection [23].

3.2 Response to selection in the GH13 family

As defined in equation 2, the response to selection of a phenotype depends on the
within-species change in mean due to selection, the correlation between different
traits, and the amount of heritable component of the shape. The first component
can be referred to as =V, 1S, and also known as the vector of selection gradients
[52] or directional selection gradient. The second and third elements are summarized
in the G matrix. As expressed in equation 2, this covariance matrix represents the
genetic component of the variation in the diagonal, and the correlated response of
every trait to each other in the off-diagonal.

Another extension from equation 2 is to compute the long-term selection gradient

assuming that G is more or less constant over long periods of time:

Pr=G Az (10)

Here AZ would be proportional to the differences in mean between two diverging
populations.
It is important to stress the relationship between these concepts and fitness.

Given that fitness (w) is directly related to selection, its mathematical relationship
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can be expressed as f = a + i Bizi + e; [8], and so it behaves as the weight of a
multiple regression of f on thezzvlector of phenotypes z.

In proteins, the definition of fitness is not trivial, and can vary depending on the
hypothesis being tested. If the analysis is done comparatively (i.e. across different
protein structures from different sources), a fitness analysis including exclusively
structural measures, such as Gibbs free energy (AG), can be misleading. The fitness
surface that can arise from this data would only represent departures from every
individual native state. Nevertheless, AG and the energy of unfolding (AG®), are
important measures to determine the stability of the protein which is important for
the fitness of a protein structure. The stability of the structure allows it to perform
a function and is therefore under selection because it is necessary for the particular
biochemical function [7]. We are aware that there is a limitation to the protein
structure stability role in fitness. To improve this fitness landscape, f can be defined
by AG° coupled with a functional measure. In proteins, function is the main selective
trait; therefore, including a term accounting for this would create a more realistic
fitness surface. In enzymes this can be achieved by using the K. /K for each of
the enzymes for a common substrate. The fitness function (F') can be expressed as:

s

F(i,s) = AGE Kj‘}; (11)
M

where AG? is the free energy of unfolding of the structure i, K 5 is the turnover

number for structure ¢ in substrate s, and K]"\’j is the Michaelis constant of protein ¢

working on substrate s.
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In the case of the a-amylase family (GH13), one might try to apply the framework
developed in previous sections and try to estimate the response to selection of a subset
of them. However, equation 11 cannot be applied since the information of the relative
efficiency given a common substrate is not consistently available across all proteins in
the dataset. For this reason we are going to work exclusively with AGY, 4, keeping
in mind two caveats, 1) that AGy,, ;.4 only represents structural stability and 2)
that it has been shown that AG.quitibrium OF AGanold are not optimized for during

evolution [2].

3.2.1 Estimating dynamic and genetic variance-covariance matrices in

the a-Amylase dataset

The structure depicted with the higher fitness was the model 1 of structure 2TAA
(Supplemental figure B3), from Aspergillus oryzae assuming AGe as fitness. The
model 1 of structure 2TAA can be assumed to be the result of the goal of selection.
The realized response to selection Az, can be defined as pg — o, where pig is the
target or after-selection mean structure and pg is the starting or before-selection
structure. To estimate Az it is essential to have the fitness defined based on the
questions to be asked, given that the interpretation of the realized response to selec-
tion depends on it.

In an engineering perspective, let’s assume that pg is the mean of a population
of structures with the desired stability. On the other hand, pg is the mean of a
population of structures created by a desired vector. One might ask the question of

how does py have to change towards the stability of pg. This can be achieved by
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computing ) (equation 10), and replacing AZ by AZ,. In the particular case of the
GH13 dataset, let’s assume that the model 1 of the structure 2TAA is the desired
phenotype (with the higher fitness in supplementary figure B3), and the model 643
of the structure 4E20 from Geobacillus thermoleovorans CCB_US3_UF5 (with the
lower fitness in supplementary figure B3) corresponds to the source phenotype. [y
would have a length corresponding to the dimensions of the shape. In the GH13
case 297 homologous residues were identified, which means that these shapes have
a dimensionality of 891 traits. This dimension-per-dimension output is important
since it reflects the amount of pressure in each dimension per each residue. However,
it makes the visualization more difficult. For the sake of visualization simplicity,
Figure 1 shows the absolute value of the sum of £, per residue, standardized from 0
to 1.

Figure 1a shows the selection gradient using the estimated G. Not surprisingly,
the selection gradient for the TIM-barrel is low. This means that there is not much
directional selection on this sub-structure. However, it is somewhat surprising that
there is not any purifying selection either. This can be explained by the fixation
of the trait in the evolution. Since the TIM-barrel is a widespread sub-structure
that has been strongly selected during evolution, it might have reached a point of
fixation of its geometry. Therefore, the G matrix shows little covariation among
these residues since the geometric variability is also low. It is important to stress
here that the phenotype measured is the geometry of the structure more than that
of the sequence. Therefore, despite some variation that may have occurred at the

sequence level, it might not have meaningfully affected the positional information.
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(a) Selection gradient on G (b) Dynamic gradient on M

Figure 1: >, [B\] rendered in the source structure 4E20. White represents the
lowest magnitude (0), while red the highest (1). Blue depicts the non-homologous
residues.

However, one must be cautious with the approach employed in Figure 1 since
the signs are missed, thereby ignoring the direction of selection and the correlated
response to selection. Nevertheless, this approach allows for a coarse-grained visual
exploration of 3y,. Individual instances identified by this method should be analysed
afterwards in each dimension. Table 2 shows the actual values of (8, for the top 5
positive values (directional selection) and top 5 negative values (purifying selection).

Figure 1b and Table 3 show the mean difference between target and source when

effects of correlated dynamic differentials are removed. Given that effectively G acts
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Table 2: Selection gradient in the top 5 residues. Top panel shows the residues were
at least one of its coordinates is under directional selection and the sum of their
absolute values is the highest. Bottom panel contains the information of residues
where at least one of its coordinates is under purifying selection, and the sum of the
raw values are the lowest.

ResIndex Residue Bx By 5. AZx AZy AzZz
Directional
112 TYR -5.225  1.082 11.138 -5.106 2.043 10.248
122 LYS 12.333 -2.321 -0.964 12.452 -1.360 -1.854
124 ASP 14.28 -6.963 -10.036 14.399 -6.002 -10.926
125 TRP 18.001 -0.984 0.336 18.121 -0.022 -0.554
126 PHE 11.53 -0.833 3.253 11.650 0.128  2.363
Purifying

80 HIS -5.580 -2.148 4.023 -5.461 -1.187 3.13
121 THR 2.508 -4.644 -5.731 2.627 -3.683 -6.621
223 TYR -0.010 -7.631 -7.634 0.110 -6.670 -8.524
358 SER -8.647 -3.461 1.963 -8.527 -2.500 1.073
394 GLU -4.561 -0.449 -4.002 -4.442 0.512 -4.892

as a rotation matrix in equation 10 to remove the selection differentials, one may
posit that the same can be achieved with the dynamic (M) matrix. This concept is
more difficult to interpret than the actual response to selection. Once G is replaced
by M in equation 10, we might call it dynamic gradient to differentiate it from the
selection gradient already explained. In this case, if the gradient is zero for a given
trait, this can be interpreted that the dynamic component of the phenotype does not
contribute significantly to the difference in shape for that particular trait. In the case
of non-zero gradients, these can be interpreted as contributions of the dynamics to

the differential, either towards the target (positive gradient) or away from the target
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(negative gradient).

Table 3: Dynamics gradient in the top 5 residues. Top panel shows the residues where
at least one of its coordinates is under positive gradient. Bottom panel contains the
information of residues where at least one of its coordinates is under a negative

gradient.
ResIndex Residue Bx By 08, AzZx Azy AZy
Directional
117 LEU 13.028 37.149 11.848 2.130 3.521  4.437
125 TRP 29.019 33.605 6.857 18.121 -0.022 -0.554
126 PHE 22.548 33.755 9.774 11.650 0.128  2.363
262 LYS 12.972 38.081 11.412 2.073 4.454 4.001
367 LEU 13.590 34.561 15.609 2.692 0.933  8.197
Purifying

124 ASP 25.297 27.625 -3.515 14.399 -6.002 -10.926
223 TYR 11.008 26.958 -1.113 0.110 -6.670 -8.524

In the GH13 subset, most dynamic gradients were positive having only two
residues that had one coordinate under a negative gradient (Table 3). This can
also be inferred by Figure 1b. The values of the dynamic gradient are high but sensi-
ble given the definition of fitness. Since we defined fitness as the energy of unfolding
(AG”), most of the information used to select the target and source structures comes
from stability, and therefore thermodynamic information. The results depicted in Ta-
ble 3 and Figure 1b suggest that most of the variation that explains the difference in
phenotype between the structure 4E20 and 2TAA, is contained within the molecular

dynamic component rather than the approximation to the phylogenetic component.
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Orientation of G

The GH13 6 was 1.4 degrees, which means that the direction of optimal response is
1.4 degrees away from the total genetic variation of 99% explained by the projection.
According to this, the Geobacillus thermoleovorans structure is susceptible to the
selection in the actual direction of the fitness landscape towards the structure of
Aspergillus oryzae to achieve maximum stability. The extent of such change is given
by AZ, which means that the centroid position of the residue ¢ should be displaced
by U = (AZiy, AZiy, AZ;,).

In the case of the dynamics, the same approach can be taken. Here, 6, was 1.5
degrees which means that the optimal dynamic response is 1.5 degrees away from the
optimal response. This can be interpreted in a similar way than that of the regular
0. However, manipulating the structure along the dynamics gradient is not feasible.

The GH13 dataset 0a; 5 was 0.3. This means that the genetic constraints on 4E20
are not affecting the direction of selection. This posits the possibility that a strong
directional selection will drive the source structure towards the target. The same
pattern happens when this approach is applied to M. G%Z_B is 1.46 degrees, which
is almost identical to 6,,. Thus, there are almost no within-variation or dynamic

constraints to the vector of response given the dynamic gradient.

Concluding remarks

We have introduced the application of the approximation of comparative quantitative

genetics framework, by means of a pooled-within group covariance matrix in a subset
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of the GH13 proteins, and demonstrated this application is feasible and provides
sensible results, given the definition of fitness. This definition is essential in the
interpretation of the results since it is the interpretation that gives polarity to R.
Therefore, all conclusions about the response to selection and the selection gradient
itself must be analyzed under this light.

The usage of M in the determination of the dynamic gradient could be contro-
versial. This is due to the fact that, in the partition of the phenotypic variance, M
is expected to be the environmental variance plus an error term. However, since the
source data for the estimation of G and M come from repeated measures by MD, M
contains information about the thermodynamics and folding stability of the protein.
It is therefore also contributing to selection.

It is important to stress the fact that this is an approximation to the true G' and
true M, since we have shown in previous sections that these cannot be estimated
given the dimensionality of the phenotype. However, we have shown that the pooled-
within group approach gives consistent results.

We have also shown that, in a stability perspective, the TIM-barrel show a small
phylogenetic/genetic component to the selection gradient when a less stable structure
(4E20) is analyzed with respect to a more stable one (2TAA). In an engineering
perspective, this means that most of the changes in shape come from the dynamics.
Nevertheless, the small 0z 3 show that most of the changes applied to 4E20 would
directly result in increasing the stability towards the one expressed by 2TAA. 4E20
is a truncated protein, and therefore some loss of stability is expected. It seems that

residues 112Y, 122K, 124D, 125W, and 126P, are good candidates to increase the
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stability of the molecule given their AZs. In these cases, the goal will be to shift the

position of their centroids by the resulting vector of the three dimensions.

A  Material and Methods

This section contain all the information on the structures used. It also have all the
simulation and test methods performed to show the infeasibility of the traditional
and bayesian PMM in protein structures. This supplementary material can be found

in here

B Supplementary results

All of the simulation and test results showing the infeasibility of the traditional PMM

in protein structures can be found in here
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