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Abstract

Bipolar disorder is characterized by mood swings - oscillations between manic and
depressive states. The swings (oscillations) mark the length of an episode in a patient’s mood
cycle (period), and can vary from hours to years. The proposed modeling study uses decision
making framework to investigate the role of basal ganglia network in generating bipolar
oscillations. In this model, the basal ganglia system performs a two-arm bandit task in which
one of the arms leads to a positive outcome, while the other leads to a negative outcome. In
healthy conditions, the model chooses positive action and avoids negative one, whereas
under bipolar conditions, the model exhibits slow oscillations in its choice of positive or
negative outcomes, reminiscent of bipolar oscillations. The model is cast at three levels of
abstraction: 1) a two-dimensional dynamical system model, 2) a phenomenological basal
ganglia model, 3) a detailed network model of basal ganglia. Phase-plane analyses on the
simple reduced dynamical system with two variables reveal the essential parameters that
generate pathological ‘bipolar-like' oscillations. Phenomenological and network models of
the basal ganglia extend that logic, and interpret bipolar oscillations in terms of the activity of
dopaminergic and serotonergic projections on the cortico-basal ganglia network dynamics.
The network’s dysfunction, specifically in terms of reward and risk sengitivity, is shown to
be responsible for the pathological bipolar oscillations. The study proposes a computational
model that explores the effects of impaired serotonergic neuromodulation on the dynamics of
the cortico basal ganglia network, and relates this impairment to abstract mood states (manic
and depressive episodes) and oscillations of bipolar disorder.
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I ntroduction

Bipolar oscillations as impaired decision dynamics

Optimal decison making consists of the problem of selecting the best choice from a set
of potential aternatives. Rewarding or punitive outcomes can shape future decisions. In
psychological terms, rewards and punishments may be thought to represent opposite ends on the
affective valence scale. There have been efforts to find dissociable brain systems that code for
processing rewarding and punitive outcomes (Liu et al., 2011). However, a stringent division of
brain systems into reward and punishment systems was found to be inappropriate since neural
correlates of reward often overlap with those of punishment aswell (Rogers, 2011).

The science of learning about the environment through outcomes (rewards and
punishments), and using the results of such learning for decision making, is called reinforcement
learning (RL) (Sutton and Barto, 1998b). We focus on a key area of the brain thought to
implement decision making as a function of reinforcement—the basal ganglia (BG) (Jodl et al.
2002; Schultz, 1998, 2013). Dysfunctional decision making may be associated with pathological
mood states — poditive in case of mania and negative in case of depression. Therefore, it is
believed that positive or negative mood-states and pathological oscillations between them, as
found in bipolar oscillations, can be approached through a decision making framework, wherein
the agent tries to choose between utilities of mood states with positive and negative outcomes
(Alloy et a., 2015; Hilty et al., 2006).

Basal ganglia and decision making

Basal Ganglia (BG) is a network of subcortical nuclei, known to be involved in a variety
of functions including choice selection, timing, working memory, and motor sequencing
(Hausdorff et al., 1998; Humphries and Prescott, 2010; McNab and Klingberg, 2008; Mink,
1996; Redgrave et al., 1999; Tanaka et al., 2004; Yahalom et al., 2004). A prominent approach
that has been gaining consensus over the past decade, seeks to describe functions of the BG
using the theory of RL (Chakravarthy et al., 2010; Joel et al., 2002). RL theory describes how an
artificial agent, animal or human subject learns stimulus-response relationships that maximize
rewards obtained from the environment. According to this theory, stimulus-response associations
with rewarding outcomes are reinforced, while those that result in punishments are attenuated.
Experimental studies showing that the activity of mesencephalic dopamine (DA) cells resembles
an RL-related quantity called Temporal Difference (TD) error, inspired extensive modeling work
seeking to apply concepts from RL to describe BG functions. Thus RL theory is set to account
for the diverse and crucial functions of the BG, in terms of the reward-related information carried
by mesencephalic DA centers (Houk et al., 1995; Schultz, 2013).

Classically, the functional anatomy of BG, with major nuclel such as striatum, globus
pallidus externa (GPe) and interna (GPi), subthalamic nucleus (STN), is thought to consist of two
major pathways viz., the direct pathway (DP in which the input port, striatum, is directly
connected to the output port, GPi) and the indirect pathway (1P, in which the input port, striatum,
is indirectly connected through STN-GPe to the output port, GPi). Ancther pathway, the
hyperdirect pathway (HDP), connecting the cortex to STN of the BG has also been gaining
prominence recently (Albin et al., 1989; Del.ong, 1990; Nambu et al., 2002). The functional
opponency between the DP and IP is the basis of a number of computational models of the BG,
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which describe the DP and IP pathways as Go and NoGo respectively, in view of their
facilitatory and inhibitory actions on movement respectively (Frank et al., 2004; Redgrave et al.,
1999). But the expansion of the Go-NoGo picture to Go-Explore-NoGo picture, that includes the
IP as a substrate for exploration, accommodated a much wider range of BG functions in a
computational RL framework (Chakravarthy and Balasubramani, 2014; Chakravarthy et al.,
2010; Kalva et al., 2012). We also found that the BG models can explain a variety of human
behavioral data when choice selection is based on optimizing a utility function encompassing
revard mean and variance, as opposed to the more traditional value function aone
(Balasubramani et al., 2014, 2015a).

The current study

In the proposed model, we study the utility function approach in more detail, focusing on
the influence of subjective reward and risk senstivity in the overall choice selection dynamics
between positive and negative mood states. It uses a simple task framework, a two-arm bandit
problem, consisting of probabiligtic positive and negative rewards as outcomes of each of the
arms (states); they correspond to the model’ s positive and negative mood states, respectively. In
the first model (A), we build value, risk and utility functions from classic RL strategies for
positive and negative states, and use softmax policy (Sutton and Barto, 1998a) to choose between
actions. Then, in model (B), we extend the concepts to a more detailed network mode of BG,
with abstract activities of D1 receptor-expressing Medium Spiny Neurons (D1 MSN) of striatum
for computing value, and that of co-expressing D1 and D2 receptor MSNs for computing risk
function. The direct and indirect pathways of BG, encompassing STN, GPe, GPi and thalamus,
implement the selection strategy to choose between utilities of positive and negative states. So,
both the models (A and B) essentiadly differ in terms of the ‘actor’, that controls the policy
(choice strategy) dynamics, and the “critic’ that compute utility. In both the models, we associate
putative mechanisms driving the selection dynamics with bipolar-like oscillations between mood
states. The bipolar oscillations, it must be noted, are obvioudly different from the pathological
oscillations of STN-GPe dynamics that are exhibited in diseases such as Parkinson’s (Gillies et
al., 2002; Weinberger et al., 2009; Willshaw and Li, 2002). While the STN-GPe oscillations are
in the range of Hertz, the bipolar oscillations span over months and years. Finally, a reduced
dynamical system modd (C) consisting of a simple two-variable system, that captures the
essential dynamics of both the above models, is presented and the correspondences between the
key parameters of different models are discussed.
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M odel

The task used in this study is a smple two arm bandit problem; one arm (state) is
associated with rewarding outcome, reward (r) = 1, and another state with punitive outcome, r = -
1. The outcomes are probabilistic with probability = 0.5. We chose this task as it is smple
enough for observing the oscillatory effect in decision making framework between positive and
negative states.

A) Phenomenological mode (using Softmax policy):

Here, the choice selection dynamics (actor) is carried out by softmax equation, and the
critic component computes the utility associated with positive and negative state outcomes
(environment). There are auxiliary, slow dynamics that govern the variation of some of the
parameters that are involved in the selection dynamics, as elaborated in the model description
below (also refer to figure 1).

B) BG network model

In this version, a more realistic network model of the BG replaces the softmax rule used
in the previous model for making a choice (actor). The network model consists of important BG
nucle such as striatum, STN, GPe and interna GPi and thalamus. Utility associated with network
inputs is computed as a function of the responses of the striatal neurons. In this case too, there
are auxiliary, slow dynamics that govern the variation of some of the parameters that are
involved in the selection dynamics of the network model, as elaborated in the model description
below (also refer to figure 1).

C) Reduced dynamical system model:

Lastly, areduced dynamical system of the choice selection and auxiliary dynamicsis
presented so as to perform phase-plane analysis, and better understand the conditions under
which oscillations between positive and negative states are observed (also refer to figure 1).

Phenomenological model using softmax policy (Model A)

We first present the mathematical formulation for the utility computation in the BG (‘the
“critic’ component). On the lines of the utility models described in (Bell, 1995) and (d'Acremont
et al., 2009), the proposed model of the utility function ‘U;’ is presented as a tradeoff between
the expected payoff and the variance of the payoff (the subscript 't' refers to time) associated
with each state, s. The original Utility formulation used in (Bell, 1995; d'Acremont et al., 2009)
isgiven by egn. (1).
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Ut(st):Qt(St)_K‘\/ht(q) 1

where Q; is the expected cumulative reward and h; is the risk function or reward variance, for
state, 's; and '«' is the risk preference. Note that in egn. (1), we represent the state and action
explicitly as opposed to that presented in (Bell, 1995; d'/Acremont et al., 2009). Following action
execution policy '7', the choice value function 'Q'" at time't' of astate, 's, may be expressed as,

Qu.(8)=Q(5)+1,9, 2

where's' isthe state at time 't', 'a;" is the action performed at time 't', and '5q' is the learning rate
of the value function (0 < g < 1). The temporal difference (TD) error measure of dopamine
(DA) isdefined by ¢; (egn. 3) for the case of immediate reward problems.

5’(:rt_Qt(§) 3

r: is the current reward obtained for making a response of choosing state, s. Similar to the value
function, the risk function 'h;' has an incremental update as defined by egn. (4). Optimizing risk
function in addition to the value function (Balasubramani et al., 2014, 2015a) is shown to capture
human behavior well in avariety of cognitive tasks involving reward-punishment sensitivity, risk
sengitivity, and time scale of reward prediction. Therisk function is updated as follows.

ha(s)=N(8)+7¢ 4

where 5’ is the learning rate of the risk function (0 << 1), and '&’ is the risk prediction error
expressed by egn. (5),

& =0,-h(s) 5

The parameters #, and 7 are set to 0.01, and Q; and h; are set to zero at t = O for
simulations described in the results section. We now present a modified form of the utility
function by substituting x = a Sgn(Q«(s,a;)) inegn. (1), whose reasoning is given below.

U.(3)=Q(s)-asgn(Q(5))yh(s) 6

In the above equation, the risk component includes three subcomponents - the ‘o’ term, the
'sign(Qy)' term, and the risk term Vhy'. The sign(Q;) term achieves a familiar feature of human
decison making viz., risk-aversion for gains and risk-seeking for losses (Kahneman, 1979;
Markowitz, 1952). In other words, when sign(Q;) is postive (negative), U; is maximized
(minimized) by minimizing (maximizing) risk. Note that the expected choice value Q; would be
positive for gains that earn rewards greater than a reward base (= 0, in the present case), and
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would be negative otherwise during losses. Our earlier studies have proposed the parameter o to
be a substrate for serotonin (5-HT) activity in BG (Balasubramani et al., 2014, 2015a).

Updating o as a function of rewards is governed by the following equations. This is proposed to
represent the adaptation of risk preferences as a function of overall reward averages (Kranz et al.
2010), and they represent the main auxiliary dynamics driving the computation of utility.

do

r—=—a+A;+k 7
Oldt r

ar
T —=r-71 8
" dt
T = 1, = 100;

The variable rl| tracks the average rewards ‘r’ gained through time, and the change in a, do/ dt
characterizes the 5-HT dynamics (egns. 7, 8). The parameter A, denotes the reward sensitivity,
and thus the reward history modulates a dynamics. Egn. (7) simply means that higher average
reward in the recent past must tend to increase risk sensitivity, a. Note that the dynamics of a is
thought to occur at a much longer time scale than that of action selection. ‘k’ is a constant.

Choice selection (the “actor” component) is performed using softmax distribution (Sutton, 1998)
generated from the utility. Note that traditionally the distribution generated from the choice value
is used. The probability, P(als), of selecting a choice of state 's, at time 't is given by the
softmax policy (egn. (9)).

P(s)=exp( M (s))/ . ep(BJ (i) 9

'n" isthe total number of choices available, and '#" isthe inverse temperature parameter. Values of
S tending to O make the choices ailmost equiprobable and the g tending to «o makes the softmax
choice selection identical to greedy choice selection.

Network model (Model B):

This lumped model of the previous subsection has been extended to the BG network model with
the value and the risk functions computed by the medium spiny neurons (MSNs) in the striatum
(Balasubramani et al., 2015a; Balasubramani et al., 2015b). Our earlier studies proposed that
striatal DA1 receptor (D1R) expressing MSNs code for value function, while the MSNs co-
expressing D1R-D2R code for the risk function (Balasubramani et al., 2015b). Whereas the D1R
MSNs project via the direct pathway (DP) to GPi, the D2R and the D1R-D2R co-expressing
M SN project to the GPe in the indirect pathway (IP) (Albin et al., 1989; Hashi et al., 2011,
Perreault et al., 2011).

The outputs of the different kinds of MSNs—DI1R expressing, D2R expressing and the D1R-
D2R co-expressing neurons — are represented by variables yp1, Yoz, and Ypip2, respectively in
egn. (10). The subscript t denotes the time of response for a particular state, s.
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You(§) = Wy (8)X(§)

Yor(3) = Wor(§)X(8) "

yDlDz,t(St ) = Wpyp,(8)X(5)

In the above equations, 'X' is alogical variable modeled to be equal to 1 for the current state, s,

i.e, X(s) = 1if s = s. The Utility, U, is then obtained from the network model (the ‘critic’
component) as described in egn. (11) below.

U.(5)=Q(8)— 0, Sg(Q(s))y/h(s) 11
Where,
Q(s)=VY4S)

h( S )= yDlD2,t( S )

Here in egn. (11), the risk senditivity parameter is defined by apip, that denotes the specific
control of 5-HT on the risk function encoding D1R-D2R co-expressing MSNs. In the modd, the
DA parameter (as described later below) is used for the updating of cortico-striatal weights, and
also (as described later below) for controlling the switching at GPi (Chakravarthy and
Balasubramani, 2013). The bi-directional connectivity in the STN-GPe system produces complex
oscillations and facilitates "exploratory" behavior (Kalva et al., 2012). However, we note that
STN-GPe oscillations are different from bipolar oscillations. Whereas the STN-GPe oscillations
are in the range of tens of cycles per second, bipolar oscillatory cycles stretch over weeks to
years (Alloy et al., 2015; Hilty et al., 2006; Suppes €t al., 2000). We now present equations for
the individual modules of the proposed network model of the BG contributing to the “actor”
component (figure 2). The reader may refer our earlier studies for more modeling details
(Balasubramani et al., 2015a; Chakravarthy and Balasubramani, 2014).

Mode Components. Striatum

The Striatum is proposed to have three types of MSNs, D1R expressing MSNs, D2R expressing
MSNs, and D1R-D2R co-expressing MSNs, al of which have their respective gain functions (1)
as described below in egn. (12). The ¢, ¢y, €3 are constants that vary with the receptor type. The
value function (Q) of the “critic’ module requires a continuously increasing gain as a function of
DA in the MSNs, which is shown to occur in the DA D1R containing MSNs. The risk function
(h) of the “critic’ module (Balasubramani et al., 2014, 2015a; d'Acremont et al., 2009)would
simply require an increasing gain with increasing magnitude of DA, i.e. a 'U' shaped gan
function which gives increased response with increasing 52 It is plausible that these risk-type of
gain functions would then probably be exhibited by the neurons that co-express both the D1R-
like gain function that increases as a function of DA, and D2R-like gain function that decreases
as a function of DA (Humphries et al., 2009; Moyer et a., 2007; Servan-Schreiber et al., 1990;
Thurley et al., 2008), asidentified in a recent experimental study (Allen et al., 2011). The D2R
MSN's gain function whose activity decreases as a function of DA makes them suitable for
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punishment computation, in opposition to that of the D1IR MSNs responding positively to the
reward prediction error (DA).

A"lw):uexp(ic(léw»_
402(5):1+@(p(§2‘3(15+%))_
4—01‘5):“@@(;(5%3» >
4_02(6)=1+@(p(c?(5+%»

ﬂDlDZ( 0)= /?‘h—Dl(é‘)-l_/?‘h—Dl(é‘)

The weight update equations for a given state in the different kinds of MSNs are provided in egn.
(13).

AWy (§)  =115,45,(8(1)) X(s)

AW, (§)  =11p,Ap,( (1)) X(3)

AWDlDZ( S ) = 77D1D2/7“D1D2( S(1)) x( S ) 13

The ¢'s in the weight update equations are computed for the immediate reward condition as
provided in egn. (14). It represents the DA form of activity that updates the cortico-striatal
weights and is the classical temporal difference (TD) error (Houk et al., 2007; Schultz et al.,
1997).

o(t)=r-Q(s) 14

STN-GPe system

In the network model of the STN-GPe system, STN and GPe layers have equal number of
neurons, with each neuron in STN uniquely connected bidirectionally to a neuron in GPe. Both
STN and GPe layers are assumed to have weak lateral connections within the layer. The number
of neurons in the STN (or GPe) is taken to be equal to the number of possible choices, viz,
positive and negative states, n = 2, in our study (Amemori et al., 2011; Sarvestani et al., 2011).
The dynamics of the STN-GPe network is given below.

dXSI'N
N WSTN SIN _ GPe
S dt Z
yo™ =tanh( Ag, x"™ )
. dXIGPe — _yCPe +ZH:WGPe GPe | _XIIP 15

¢ dt

j=
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>{Pe - internal state (same as the output) representation of ith neuron in GPe;

xer- internal state representation of ith neuron in STN, with the output represented by y,SrN ;
W®- |ateral connections within GPe, equated to a small negative number [14for both the seif (i
=j) and non-self (i # j) connections for every GPe neuron i

W™ - lateral connections within STN, equated to a small positive number s for all non-

sef (i # ) lateral connections, while the weight of self-connection (i =j) isequal to 1+
1, for each STN neuroni.

Both STN and GPe are modeled to have complete internal connectivity, with every neuron in a
layer connected to every other neuron with the same connection strength. That common lateral
connection strength is s for STN, and (g for GPe. Likewise, STN and GPe neurons are
connected in a one-to-one fashion —i™ neuron in STN is connected to i™ neuron in GPe and vice-
versa. For all the simulations presented below, we set [ = -[J, the time constants zs = 10; 74 =
30.33; and the lope Astn = 3; J1s=0.12.

The DP and I P projectionsto GPi

The outputs of D1R expressing MSNs, transmitted over the direct pathway are computed
as.

x> = atp, Ap, (6, (1)) Ypi,(S) 16

The outputs of the D2R and D1R-D2R expressing MSNs, transmitted to GPe via the indirect
pathway, are computed as,

thpzaDZ /’iDZ(éu(t)) yDZ,t(St) +
o SN Yo (5)) Aozor( 8, (1) Yoroi(§) 17

The variables yp1, Yo21, Ypip2t 8S afunction of state, s at time, t, are obtained from egn. (10). The
neuromodulator 5-HT's specificity in expression along with a particular type of MSN is not
known (Eberlel TWang et al., 1997; Nadjar et al., 2006; Surmeier et al., 1996; Ward and Dorsa,
1996). In the present model, 5-HT is thought to modulate the activity of all three kinds of MSNs
(D1R expressing, D2R expressing and the D1R-D2R co-expressing). Hence the modeling
correlates of 5-HT are the parameters api (egn. (16)). ap2, apip2 (egn. (17)) for modulating the
output of the D1R, D2R and the D1R-D2R M SNs respectively, and they may represent the 5-HT
control exerted by dorsal raphe nucleus (DRN) (Alex and Pehek, 2007; Jiang et al., 1990;
Nakamura, 2013). This study allows all 5-HT-related parameters (ap1, op2, apip2) to take the
same value, for smplicity (o = ap1 = ap2 = apip2). Furthermore, we incorporate 5-HT dynamics
as a function of mean observed rewards through time as follows, as there has been considerable
evidence suggesting the modulation of 5-HT signaling as a function of rewards (Kranz et al.
2010).

z-d—a:—a+A;+k 18
adt r
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dr

T—=r-7 19
" dt

Tr = 1, = 100;

In the above equations, the variable r[J tracks the average reward gained through time, change in
o, do/ dt, characterizes the 5-HT dynamics as in egns. (7, 8). The parameter A, denotes the
reward sensitivity. ‘K’ isaconstant input, is proposed to denote the tonic levels of 5-HT. The last
two equations (18, 19) distinguish the network model of (Balasubramani et al., 2014, 2015a)
from the network model described in this section, and they form the auxiliary dynamics
controlling the model.

The D2R and the D1R-D2R M SNs form part of the striatal matrisomes known to project to the
indirect pathway, while the D1IR MSNs project to the direct pathway (Amemori et al., 2011;
Calabres et al., 2014; Jakab et al., 1996; Nadjar et al., 2006; Surmeier et al., 1996). It should
also be noted that As used as a gain factor in egns. (16, 17) have different values from As used in
egn. (13). The gain functions in egns. (16, 17) are a function of the DA form (Stauffer et al.,
2014) which represents the temporal difference in utility function, dy (egn. 20). This is different
from the DA form, 6, described in egn. (14).

§U(t):Ut(Sf)_Ut—l(%—l) 20

Choice Sdlection at GPi

Choice sdection at GPi is implemented using the combination of the DP and IP
contributions as follows:

XiGF} — —XiDP + VviSI'N—Gpi yiSI'N 21

Since D1R is activated at increased dopamine levels, higher dopamine levels favor activating DP
(constituted by the projections of D1IR MSNs) over IP. This is consistent with the nature of
switching facilitated by DA in the striatum (Chang et al., 2002; Frank and Claus, 2006;
Lauwereyns et al., 2002, Tanaka et al., 2006). The relative weightage of the STN projections to
GPi isrepresented by w> and is set to 1 for all the GPi neurons in the current study.

Choice Sdection at Thalamus

GPi neurons project to thalamus through inhibitory connections. Hence the thalamic
afferents can be simply expressed as a modified form of egn. (21).

Thalamus __ |,DP STN-Gpi ySTN
= A ;

X X =W
These afferentsin egn. (22) activate thalamic neurons as follows,

Thalamus
i Thalamus Thalamus

dy
— = +X
a7 ' 23

22
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where y™2™s s the state of the i thalamic neuron. Choice selected is simply the ‘i’ (i=1,2,..,n)
whose y™*™* first crosses the threshold on integration. The threshold value used in the current
smulation is 1.815.

Reduced dynamical system model (Model C)

A simple dynamical systems approximation of the positive and negative attractor system
described by models, A and B, can be given by:

?;t(=—(x3+ax+b) 24
z?:Arx—,ub+k 25

Egn. 24, in isolation, shows bistability: for a large positive (negative) ‘k’, x stabilizes at a
negative (positive) value. Note that ‘b’ tends to increase (decrease) for positive (negative) ‘X’
(egn. 25).

The positive and negative wells generated by the x-cubic equation (egn. 24) emulate the
positive and negative utility states modeled by the critic component of previous models. The b-
equation (egn. 25) helps in setting up the stability of solutions, approximates the auxiliary
dynamics (egns. 18,19) of the previous models (A, B).

Format of results:

In all models A, B and C, we present the stability of solutions as a function of key
parameters driving the models (Ar and k). Monostable and oscillatory solutions are presented for
each model, where monostability is the presence of either positive or negative state attractor, and
oscillatory is the presence of oscillations between positive and negative states.

For models A and B, the choice selections through time are smoothened by averaging
with amoving window of size 50 (i.e., by averaging moving boxcars) to compute the percent of
positive state as a choice at a given time. The trgjectory of positive state sel ection percentages
through time (read-out) is then fit with a polynomial of degree 50 to enable maximal good fit in
MATLAB. The frequency of read-out fitting curve is found by first subtracting out their mean,
then finding the index of absolute maximum in frequency (FFT) space. Multiplying with 365
divided by length of the read-out normalizes the index. The choice of numbers used for
normalizing the index helpsin presentation of results comparable with other models. Trajectories
with frequencies greater than 1 in a period of 365 time units are taken to possess oscillationsin
read-out spaces. But, the oscillations between positive and negative state regimes are of key
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interest. To filter those trajectories, we compartmentalize the percent positive state selection
greater than 50% to be in positive state regime, and that less than 50% to be in negative state
regime. The read-out trgjectories showing oscillations between positive and negative state
regimes are then labeled to show bipolar oscillations; those that do not exhibit oscillations are
labeled to show monostable solution. In the dynamical system model (C), the sign of ‘X’ variable
determines the valence of states. Bipolar oscillations are defined by oscillations between
solutions of x with opposite signs through time as computed in the read-outs. Monostability is
interpreted when the choice read-out trajectories through time converges to a single state regime
(positive or negative ‘X’). The stability of solutionsin the reduced smple mode (C) is computed
analytically, by solving the cubic using Cardano’s method (Confalonieri, 2015), and mapping the
resulting eigenvalues of their Jacobian (at equilibrium point) to the respective dynamical
solutions.
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Results

Modd A:

First, we describe softmax policy based phenomenological model A, set to exploitative
mode with 3 =10 in egn. (9), for selecting the highest utilities of positive and negative states.
Dynamicsina , egns. (7, 8), leads to an increase (decrease) in value of « when in positive state
(negative state) due to the reward average magnitudes; this promotes the selection of negative
state (positive state) asthe utility of positive state (negative state) gradually reduces. The above
mechanism causes oscillation between states, for certain values of reward sensitivity A;, and
basal risk sensitivity or tonic serotonin level parameter k. The variation in periods of positive and
negative cycles can also be controlled by other parameterssuch as ¢ rand t 5intheegns. (7, 8);
for afixed valueof t = t =100, theresults are as shown in figure 3. Figure 3 (first panel)
portrays the stability of trgjectory of read-outs (percent positive state selection through time) as a
function of parameters, A, and k. Cases a (controls), b, and ¢ of figure 3 show smoothened
(window size of 20) trgectories of 13 different initial values of a.

Model B

Next, we show oscillations between positive and negative states using a more realistic
network model of BG working with the o dynamics as described in egns. (18, 19). In this model,
egn. (11), value is represented by the activity of D1 MSN, and risk by D1-D2 co-expressing
MSNSs. The functional principles of computing the utility and selecting the maximum between
utilities of positive and negative states remains as the same as the model A. The a changes as a
function of reward averages, like that described in model A, to facilitate oscillations between
states. Figure 4 (first panel) portrays the stability of trajectory of read-outs (percent positive state
selection through time) as a function of parameters, A. and k. Cases a, b, ¢ of figure 4 show
smoothened (window size of 20) tragjectories of 13 different initial values of a.

Mode C

Furthermore, we capture the positive and negative regime attractors simulated using
utility models A and B using a smple 2-dimensional model. This model uses a cubic ‘X -variable
equation to capture the positive (negative) attractors, while x is positive (negative), eqn. (24),
respectively. The auxiliary dynamics (as ssimulated using a in models A and B) with key
parameters A, and k are captured in the equation smulating ‘b’ -dynamics, egn. (25). Analysis
with the reduced model shows that the parameter representing reward sensitivity in the models A
and B, i.e, A, is equivalent to the coefficient of b-variable; and the basal risk sengtivity, i.e., k
parameter, is equivalent to a constant that adjusts the height of the intersection point of b and x
nullclines. Hence a negative (positive) k produces the intersection point at positive (negative) X,
and thereby stabilizes the positive (negative) states. Furthermore, higher values of A, facilitate
limit cycle oscillations. Figure 5 (first panel) portrays the stability of trgjectory of read-outs as a
function of parameters, A, and k. The stability of solutions is computed using bifurcation analysis
(as described in the methods). In the bistable case, the solution is dependent on the initial
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condition, is indicated by grey color in the result figure. Cases a, b, ¢ of figure 5 show
smoothened (window size of 20) tragjectories of 13 different initial values of ‘X and ‘b’
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Discussion

Bipolar disorder is characterized by mood swings, - oscillations between manic and
depressive episodes, - with the episodes varying from hours to years (Hilty et al., 2006). The
underlying factors of bipolar disorder are thought to involve a combination of genetic, biological,
and environmental factors (Alloy and Abramson, 2010; Alloy et al., 2015; Harvey, 2008). We
are interested in understanding the pathophysiology from the view of decision making dynamics.
We explore the computational grounds facilitating occurrence of positive and negative stable
mood states in an alternative manner. Particularly, we focus on a key factor contributing to the
disorder namely dysfunction of the serotonergic and dopaminergic system in the reward circuitry
mediated by cortico-basal ganglia network dynamics. To this end, our model finds that reduced
risk sengtivity levels (k), and abnormally high reward sensitivity (A;) as key factors that
contribute to alternating choices between manic and depressive episodes. A comparison with the
reduced dynamical system show their correspondences to a smple system (model C), which can
pave the way to understanding of the factors causing bipolar disorder in human patients.

Existing models use abstract limit cycle systems to show bipolar oscillations (Odgers et
al., 2009), but they do not make a contact with the underlying neural substrates. We too begin
with an abstract utility based softmax model of bipolar oscillations (model A), but expand it to a
neural network model of BG (model B) that builds on our earlier modeling effort describing the
roles of dopamine and serotonin neuromodulation in the decision making functions of the BG
system (Balasubramani et al., 2014, 2015a). Under control conditions (case a of figures 3-5), the
network selects the rewarding choice with a high probability. A two-variable reduced model C of
the dynamics allowed exploration of the entire phase plane as a function of the two parameters of
interest viz., reward sensitivity (A), and basal risk sensitivity (k). A comparison between simple
dynamical system and cortico-basal ganglia network substantiate two crucial factors contributing
to bipolar-like oscillations of the moddl: Ar and k of the reduced model that correspond to the
network mode!’ s reward sensitivity (A;), and basal risk sensitivity (k), respectively.

There has been alot of clinical and experimental evidence supporting 5-HT dysfunction
and reward hypersensitivity in bipolar disorder (Hilty et al., 2006). Our modeling study suggests
that reward hypersensitivity (Alloy et al., 2015) with medium levels of 5-HT as tonic/basal
values or that induced by medication, can facilitate bipolar oscillations. Serotonin signaling has
been linked to reward magnitudes and reward processes by various experiments (Kranz et al.
2010; Nakamura, 2013; Nakamura and Wong-Lin, 2014), and is influenced by habenular and
PFC inputs (Challis et al., 2015), a fact that supports our model’s proposal to bidirectionally
relate rewards to serotonin-mediated auxiliary dynamics (egns. 18, 19). Moreover, our model
links 5-HT levels to risk sensitivity, just as previous studies have suggested that risk-aversion
and risk-seeking are altered in bipolar disorder (Chandler et al., 2009). A major pharmacological
therapy for bipolar disorder is administration of lithium (Geddes and Miklowitz, 2013). There
have been reports that lithium affects the sensitivity and function of serotonin receptors (Price et
al., 1990; Wood, 1985). Hence controlling the sensitivity of 5-HT receptors has been shown to
contribute to stabilize the moods and control the episode symptoms (Dremencov et al., 2005;
Wood, 1985), just as predicted by our modd. Along with 5-HT, DA control of the network has
been proposed to relate to depression and manic disorders. There have been several proposals
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suggesting an increase of dopamine in manic state and a decrease during depression (Cookson
1985; Cools et al., 2011; Huys et al., 2015), and therefore it is plausible that the main regulators
of the network- DA and 5-HT - have been also involved in bipolar disorder manifestation (Berk
et al., 2007; Geddes and Miklowitz, 2013; Mahmood and Silverstone, 2001; Silverstone, 1985).

Therefore, we model bipolar oscillations as a manifestation of impaired reward-based
decision making framework, and describe mania and depression as distinct cognitive states with
opposite reward outcomes. The reduced dynamical system mode shows the similarity between
analysis of our model to other catastrophe theory based models developed for disorders such as
anorexia (Zeeman, 1976). Such an understanding supported by the proposed cortico-basal
ganglia model may form a preliminary basis to pinpoint underlying neural dynamics for various
pathological approach behaviors, and may assist in designing and interpreting the system level
dynamics used for therapeutics (Alloy and Abramson, 2010) and cognitive behavioral therapy.
Importantly, bipolar manic and depressive people have exaggerated cognitive scores of reward
sengitivity, a feature observed in our model (Alloy et al., 2015). Similarly, the bipolar patients
have impaired neuromodulatory control too (Berk et al., 2007; Geddes and Miklowitz, 2013;
Mahmood and Silverstone, 2001; Silverstone, 1985). The scope of recurrence depends on the
initial state of the system, to which therapeutics is provided to ater the internal dynamics. We
propose that the systems level understanding of bipolar oscillation dynamics, asin this study, can
contribute prominently towards understanding at multiple scales; it may be a better way to
proceed with the problem of recurrences in a precise and personalized manner. Moreover other
factors such as life style (working schedule) and circadian rhythm driven internal cycles might
influence the onset and persistence of symptoms of bipolar disorder (Alloy et al., 2015).
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Figure 1: Schematic showing important components of various models used in the
study
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Figure 2: Schematic of the network model of the basal ganglia.
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Figure 3- Softmax-based phenomenological model: The topmost panel shows the
stability of solutions as a function of A; and k. Monostable solution could indicate either
positive or negative state stability, and oscillations indicate swings between positive and
negative states with varying time periods. Instances of each solution are provided as
cases a, b, c: Solutions stabilizing at positive state regime as shown in case (a) for
parameters A, = 0.001 and k = -500, and solutions stabilizing at negative state as in
case (b) are shown for parameters A, = 0.001 and k = 500. Oscillations, case (c), are
shown for parameters A, = 100, and k = -0.001.
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Figure 4- BG network model: The first panel shows the stability of solutions as a
function of A; and k. Monostable solution could indicate either positive or negative state
stability, and oscillations indicate between among positive and negative states with
varying time periods. Instances of each solution are provided as cases a, b, and c:
Solutions stabilizing at positive state regime as shown in case (a) for parameters A, =
0.001 and k = -500, and solutions stabilizing at negative state as in case (b) are shown
for parameters A, = 0.001 and k = 500. Oscillations, case (c), are shown for parameters

A, =100, and k =-0.001.
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Figure 5- Reduced dynamical system model: The first panel show the stability of
solutions as a function of Ar and k, with other parameters set to a = -6, and py = 0.6.
Monostable solution could indicate either positive or negative ‘x’ stability, and
oscillations indicate swings between positive and negative states with varying time
periods. Instances of each solution are provided as cases a, b, and c: Trajectories and
phase planes for dynamics stabilizing at positive state regime as shown in case (a), at a
negative state are shown in case (b), oscillations in case (c).
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Choices

Choice selection machinery:

Utility of states:

Auxillary dynamics:

Parameters of interest:

Utility(s) = value(s) - a*sign(value(s))*risk(s)
[eq. (6)]

Aa o< Ar*reward-average + k
[egs. (7,8)]

Ar, k

Positive rewards Negative rewards
Positive state Negative state
BG direct and indirect pathway Reduced dynamical system
network model (Model C)
(Model B)

UtilitY(S) - outpUtD1_MSN5(S) - a*OUtput[”_MSNS(S)*OUtputD1_D2'MSN5 (S) UtilitY(S) - X(S): AX oC -(X3 + a*x + b)
[eq. (11)] [egs. (24)]
Aa o< Ar*reward-average + k Ab o< Ar*x -u*b + k
[egs. (18, 19)] [egs. (25)]
Ar, K Ar, k

Environment

Actor

Critic

A
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Rewards
Punishments

D1 - DIRMSN
D2 = D2RMSN
D1D2 = D1R-D2R MSN
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