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Abstract 
 

Bipolar disorder is characterized by mood swings  - oscillations between manic and 
depressive states. The swings (oscillations) mark the length of an episode in a patient’s mood 
cycle (period), and can vary from hours to years. The proposed modeling study uses decision 
making framework to investigate the role of basal ganglia network in generating bipolar 
oscillations. In this model, the basal ganglia system performs a two-arm bandit task in which 
one of the arms leads to a positive outcome, while the other leads to a negative outcome. In 
healthy conditions, the model chooses positive action and avoids negative one, whereas 
under bipolar conditions, the model exhibits slow oscillations in its choice of positive or 
negative outcomes, reminiscent of bipolar oscillations. The model is cast at three levels of 
abstraction: 1) a two-dimensional dynamical system model, 2) a phenomenological basal 
ganglia model, 3) a detailed network model of basal ganglia. Phase-plane analyses on the 
simple reduced dynamical system with two variables reveal the essential parameters that 
generate pathological ‘bipolar-like’ oscillations. Phenomenological and network models of 
the basal ganglia extend that logic, and interpret bipolar oscillations in terms of the activity of 
dopaminergic and serotonergic projections on the cortico-basal ganglia network dynamics. 
The network’s dysfunction, specifically in terms of reward and risk sensitivity, is shown to 
be responsible for the pathological bipolar oscillations. The study proposes a computational 
model that explores the effects of impaired serotonergic neuromodulation on the dynamics of 
the cortico basal ganglia network, and relates this impairment to abstract mood states (manic 
and depressive episodes) and oscillations of bipolar disorder. 
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Introduction 
    
Bipolar oscillations as impaired decision dynamics 

Optimal decision making consists of the problem of selecting the best choice from a set 
of potential alternatives. Rewarding or punitive outcomes can shape future decisions. In 
psychological terms, rewards and punishments may be thought to represent opposite ends on the 
affective valence scale. There have been efforts to find dissociable brain systems that code for 
processing rewarding and punitive outcomes (Liu et al., 2011). However, a stringent division of 
brain systems into reward and punishment systems was found to be inappropriate since neural 
correlates of reward often overlap with those of punishment as well (Rogers, 2011).  

 
The science of learning about the environment through outcomes (rewards and 

punishments), and using the results of such learning for decision making, is called reinforcement 
learning (RL) (Sutton and Barto, 1998b). We focus on a key area of the brain thought to 
implement decision making as a function of reinforcement—the basal ganglia (BG) (Joel et al., 
2002; Schultz, 1998, 2013). Dysfunctional decision making may be associated with pathological 
mood states – positive in case of mania and negative in case of depression. Therefore, it is 
believed that positive or negative mood-states and pathological oscillations between them, as 
found in bipolar oscillations, can be approached through a decision making framework, wherein 
the agent tries to choose between utilities of mood states with positive and negative outcomes 
(Alloy et al., 2015; Hilty et al., 2006). 
 
Basal ganglia and decision making  
 Basal Ganglia (BG) is a network of subcortical nuclei, known to be involved in a variety 
of functions including choice selection, timing, working memory, and motor sequencing 
(Hausdorff et al., 1998; Humphries and Prescott, 2010; McNab and Klingberg, 2008; Mink, 
1996; Redgrave et al., 1999; Tanaka et al., 2004; Yahalom et al., 2004). A prominent approach 
that has been gaining consensus over the past decade, seeks to describe functions of the BG 
using the theory of RL (Chakravarthy et al., 2010; Joel et al., 2002). RL theory describes how an 
artificial agent, animal or human subject learns stimulus-response relationships that maximize 
rewards obtained from the environment. According to this theory, stimulus-response associations 
with rewarding outcomes are reinforced, while those that result in punishments are attenuated. 
Experimental studies showing that the activity of mesencephalic dopamine (DA) cells resembles 
an RL-related quantity called Temporal Difference (TD) error, inspired extensive modeling work 
seeking to apply concepts from RL to describe BG functions. Thus RL theory is set to account 
for the diverse and crucial functions of the BG, in terms of the reward-related information carried 
by mesencephalic DA centers (Houk et al., 1995; Schultz, 2013).    

Classically, the functional anatomy of BG, with major nuclei such as striatum, globus 
pallidus externa (GPe) and interna (GPi), subthalamic nucleus (STN), is thought to consist of two 
major pathways viz., the direct pathway (DP in which the input port, striatum, is directly 
connected to the output port, GPi) and the indirect pathway (IP, in which the input port, striatum, 
is indirectly connected through STN-GPe to the output port,  GPi).  Another pathway, the 
hyperdirect pathway (HDP), connecting the cortex to STN of the BG has also been gaining 
prominence recently (Albin et al., 1989; DeLong, 1990; Nambu et al., 2002). The functional 
opponency between the DP and IP is the basis of a number of computational models of the BG, 
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which describe the DP and IP pathways as Go and NoGo respectively, in view of their 
facilitatory and inhibitory actions on movement respectively (Frank et al., 2004; Redgrave et al., 
1999). But the expansion of the Go-NoGo picture to Go-Explore-NoGo picture, that includes the 
IP as a substrate for exploration, accommodated a much wider range of BG functions in a 
computational RL framework (Chakravarthy and Balasubramani, 2014; Chakravarthy et al., 
2010; Kalva et al., 2012). We also found that the BG models can explain a variety of human 
behavioral data when choice selection is based on optimizing a utility function encompassing 
reward mean and variance, as opposed to the more traditional value function alone 
(Balasubramani et al., 2014, 2015a).  

The current study 
 In the proposed model, we study the utility function approach in more detail, focusing on 
the influence of subjective reward and risk sensitivity in the overall choice selection dynamics 
between positive and negative mood states. It uses a simple task framework, a two-arm bandit 
problem, consisting of probabilistic positive and negative rewards as outcomes of each of the 
arms (states); they correspond to the model’s positive and negative mood states, respectively. In 
the first model (A), we build value, risk and utility functions from classic RL strategies for 
positive and negative states, and use softmax policy (Sutton and Barto, 1998a) to choose between 
actions. Then, in model (B), we extend the concepts to a more detailed network model of BG, 
with abstract activities of D1 receptor-expressing Medium Spiny Neurons (D1 MSN) of striatum 
for computing value, and that of co-expressing D1 and D2 receptor MSNs for computing risk 
function. The direct and indirect pathways of BG, encompassing STN, GPe, GPi and thalamus, 
implement the selection strategy to choose between utilities of positive and negative states. So, 
both the models (A and B) essentially differ in terms of the ‘actor’, that controls the policy 
(choice strategy) dynamics, and the ‘critic’ that compute utility. In both the models, we associate 
putative mechanisms driving the selection dynamics with bipolar-like oscillations between mood 
states. The bipolar oscillations, it must be noted, are obviously different from the pathological 
oscillations of STN-GPe dynamics that are exhibited in diseases such as Parkinson’s (Gillies et 
al., 2002; Weinberger et al., 2009; Willshaw and Li, 2002). While the STN-GPe oscillations are 
in the range of Hertz, the bipolar oscillations span over months and years. Finally, a reduced 
dynamical system model (C) consisting of a simple two-variable system, that captures the 
essential dynamics of both the above models, is presented and the correspondences between the 
key parameters of different models are discussed.  
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Model 

The task used in this study is a simple two arm bandit problem; one arm (state) is 
associated with rewarding outcome, reward (r) = 1, and another state with punitive outcome, r = -
1. The outcomes are probabilistic with probability = 0.5. We chose this task as it is simple 
enough for observing the oscillatory effect in decision making framework between positive and 
negative states.  

A) Phenomenological model (using Softmax policy): 
 Here, the choice selection dynamics (actor) is carried out by softmax equation, and the 
critic component computes the utility associated with positive and negative state outcomes 
(environment). There are auxiliary, slow dynamics that govern the variation of some of the 
parameters that are involved in the selection dynamics, as elaborated in the model description 
below (also refer to figure 1). 
 
B) BG network model  
 In this version, a more realistic network model of the BG replaces the softmax rule used 
in the previous model for making a choice (actor). The network model consists of important BG 
nuclei such as striatum, STN, GPe and interna GPi and thalamus. Utility associated with network 
inputs is computed as a function of the responses of the striatal neurons. In this case too, there 
are auxiliary, slow dynamics that govern the variation of some of the parameters that are 
involved in the selection dynamics of the network model, as elaborated in the model description 
below (also refer to figure 1).   
 
C) Reduced dynamical system model:  

Lastly, a reduced dynamical system of the choice selection and auxiliary dynamics is 
presented so as to perform phase-plane analysis, and better understand the conditions under 
which oscillations between positive and negative states are observed (also refer to figure 1).  
 

Phenomenological model using softmax policy (Model A) 

We first present the mathematical formulation for the utility computation in the BG (‘the 
“critic” component). On the lines of the utility models described in (Bell, 1995) and (d'Acremont 
et al., 2009), the proposed model of the utility function ‘Ut’ is presented as a tradeoff between 
the expected payoff and the variance of the payoff (the subscript 't' refers to time) associated 
with each state, s. The original Utility formulation used in (Bell, 1995; d'Acremont et al., 2009) 
is given by eqn. (1). 
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where Qt is the expected cumulative reward and ht is the risk function or reward variance, for  
state, 's'; and 'κ' is the risk preference. Note that in eqn. (1), we represent the state and action 
explicitly as opposed to that presented in (Bell, 1995; d'Acremont et al., 2009). Following action 
execution policy 'π', the choice value function 'Q' at time 't' of a state, 's', may be expressed as, 

Q
t+1

( s
t
) = Q

t
( s

t
)+η

Q
δ

t         
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where 'st' is the state at time 't', 'at' is the action performed at time 't', and 'ηQ' is the learning rate 
of the value function (0 < ηQ < 1). The temporal difference (TD) error measure of dopamine 
(DA) is defined by δt  (eqn. 3) for the case of immediate reward problems.  

δ
t

= r
t
− Q

t
( s

t
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rt is the current reward obtained for making a response of choosing state, s. Similar to the value 
function, the risk function 'ht' has an incremental update as defined by eqn. (4). Optimizing risk 
function in addition to the value function (Balasubramani et al., 2014, 2015a) is shown to capture 
human behavior well in a variety of cognitive tasks involving reward-punishment sensitivity, risk 
sensitivity, and time scale of reward prediction.  The risk function is updated as follows. 

h
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t
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t
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where 'ηh' is the learning rate of the risk function (0 <ηh< 1), and 'ξt' is the risk prediction error 
expressed by eqn. (5), 

ξ
t

= δ 2
t
− h

t
( s

t
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 The parameters ηh and ηQ are set to 0.01, and Qt and ht are set to zero at t = 0 for 
simulations described in the results section. We now present a modified form of the utility 
function by substituting κ = α sign(Qt(st,at))  in eqn. (1), whose reasoning is given below. 
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In the above equation, the risk component includes three subcomponents - the ‘α’ term, the 
'sign(Qt)' term, and the risk term '√ht'. The sign(Qt) term achieves a familiar feature of human 
decision making viz., risk-aversion for gains and risk-seeking for losses (Kahneman, 1979; 
Markowitz, 1952). In other words, when sign(Qt) is positive (negative), Ut is maximized 
(minimized) by minimizing (maximizing) risk. Note that the expected choice value Qt would be 
positive for gains that earn rewards greater than a reward base (= 0, in the present case), and 
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would be negative otherwise during losses. Our earlier studies have proposed the parameter α to 
be a substrate for serotonin (5-HT) activity in BG (Balasubramani et al., 2014, 2015a).  
 
Updating α as a function of rewards is governed by the following equations. This is proposed to 
represent the adaptation of risk preferences as a function of overall reward averages (Kranz et al., 
2010), and they represent the main auxiliary dynamics driving the computation of utility. 

τα
dα
dt

= −α + A
r
r
−

+ k         7 

τ
r

dr
dt

= r − r          8 

τr = τα = 100; 
 
The variable r� tracks the average rewards ‘r’ gained through time, and the change in α, dα/ dt 
characterizes the 5-HT dynamics (eqns. 7, 8). The parameter Ar denotes the reward sensitivity, 
and thus the reward history modulates α dynamics. Eqn. (7) simply means that higher average 
reward in the recent past must tend to increase risk sensitivity, α. Note that the dynamics of α is 
thought to occur at a much longer time scale than that of action selection. ‘k’ is a constant. 
 
Choice selection (the “actor” component) is performed using softmax distribution (Sutton, 1998) 
generated from the utility. Note that traditionally the distribution generated from the choice value 
is used. The probability, Pt(a|s), of selecting a choice of state 's',  at time 't' is given by the 
softmax policy (eqn. (9)).  

P
t
( s ) = exp( βU

t
( s )) / exp( βU

t
( i ))

i=1

n

∑
      

9 

'n' is the total number of choices available, and 'β' is the inverse temperature parameter. Values of 
β tending to 0 make the choices almost equiprobable and the β tending to ∞ makes the softmax 
choice selection identical to greedy choice selection. 

Network model (Model B):      
 
This lumped model of the previous subsection has been extended to the BG network model with 
the value and the risk functions computed by the medium spiny neurons (MSNs) in the striatum 
(Balasubramani et al., 2015a; Balasubramani et al., 2015b). Our earlier studies proposed that 
striatal DA1 receptor (D1R) expressing MSNs code for value function, while the MSNs co-
expressing D1R-D2R code for the risk function (Balasubramani et al., 2015b). Whereas the D1R 
MSNs project via the direct pathway (DP) to GPi, the D2R and the D1R-D2R co-expressing 
MSNs project to the GPe in the indirect pathway (IP) (Albin et al., 1989; Hasbi et al., 2011; 
Perreault et al., 2011). 
 
The outputs of the different kinds of MSNs—D1R expressing, D2R expressing and the D1R-
D2R co-expressing neurons – are represented by variables yD1, yD2, and yD1D2, respectively in 
eqn. (10). The subscript t denotes the time of response for a particular state, s.  
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In the above equations, 'x' is a logical variable modeled to be equal to 1 for the current state, st, 
i.e., x(si) = 1 if  si = st. The Utility, U, is then obtained from the network model (the ‘critic’ 
component) as described in eqn. (11) below. 
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Here in eqn. (11), the risk sensitivity parameter is defined by αD1D2 that denotes the specific 
control of 5-HT on the risk function encoding D1R-D2R co-expressing MSNs. In the model, the 
DA parameter (as described later below) is used for the updating of cortico-striatal weights, and 
also (as described later below) for controlling the switching at GPi (Chakravarthy and 
Balasubramani, 2013). The bi-directional connectivity in the STN-GPe system produces complex 
oscillations and facilitates "exploratory" behavior (Kalva et al., 2012). However, we note that 
STN-GPe oscillations are different from bipolar oscillations. Whereas the STN-GPe oscillations 
are in the range of tens of cycles per second, bipolar oscillatory cycles stretch over weeks to 
years (Alloy et al., 2015; Hilty et al., 2006; Suppes et al., 2000). We now present equations for 
the individual modules of the proposed network model of the BG contributing to the “actor” 
component (figure 2). The reader may refer our earlier studies for more modeling details 
(Balasubramani et al., 2015a; Chakravarthy and Balasubramani, 2014). 
 
 
Model Components: Striatum 
 
The Striatum is proposed to have three types of MSNs, D1R expressing MSNs, D2R expressing 
MSNs, and D1R-D2R co-expressing MSNs, all of which have their respective gain functions (λ) 
as described below in eqn. (12). The c1, c2, c3 are constants that vary with the receptor type. The 
value function (Q) of the “critic” module requires a continuously increasing gain as a function of 
DA in the MSNs, which is shown to occur in the DA D1R containing MSNs. The risk function 
(h) of the “critic” module (Balasubramani et al., 2014, 2015a; d'Acremont et al., 2009)would 
simply require an increasing gain with increasing magnitude of DA, i.e. a 'U' shaped gain 
function which gives increased response with increasing δ2. It is plausible that these risk-type of 
gain functions would then probably be exhibited by the neurons that co-express both the D1R-
like gain function that increases as a function of DA, and D2R-like gain function that decreases 
as a function of DA (Humphries et al., 2009; Moyer et al., 2007; Servan-Schreiber et al., 1990; 
Thurley et al., 2008), as identified in a recent experimental study (Allen et al., 2011). The D2R 
MSN's gain function whose activity decreases as a function of DA makes them suitable for 
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punishment computation, in opposition to that of the D1R MSNs responding positively to the 
reward prediction error (DA). 
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The weight update equations for a given state in the different kinds of MSNs are provided in eqn. 
(13). 
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The δ's in the weight update equations are computed for the immediate reward condition as 
provided in eqn. (14). It represents the DA form of activity that updates the cortico-striatal 
weights and is the classical temporal difference (TD) error (Houk et al., 2007; Schultz et al., 
1997). 
δ ( t ) = r − Q

t
( s

t
)            14 

 
STN-GPe system 
 
 In the network model of the STN-GPe system, STN and GPe layers have equal number of 
neurons, with each neuron in STN uniquely connected bidirectionally to a neuron in GPe. Both 
STN and GPe layers are assumed to have weak lateral connections within the layer. The number 
of neurons in the STN (or GPe) is taken to be equal to the number of possible choices, viz., 
positive and negative states, n = 2, in our study (Amemori et al., 2011; Sarvestani et al., 2011). 
The dynamics of the STN-GPe network is given below. 
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GPe
ix - internal state (same as the output) representation of ith neuron in GPe; 
STN
ix - internal state representation of ith neuron in STN, with the output represented by 

STN
iy ; 

GPeW - lateral connections within GPe,  equated to a small negative number �g for both the self (i 
= j) and non-self (i ≠  j) connections for every GPe neuron i.  

STNW - lateral connections within STN,  equated to a small positive number �s for all non-
self (i ≠  j) lateral connections, while the weight of self-connection (i = j)  is equal to 1+ 
�s, for each STN neuron i. 

Both STN and GPe are modeled to have complete internal connectivity, with every neuron in a 
layer connected to every other neuron with the same connection strength. That common lateral 
connection strength is �s for STN, and �g for GPe. Likewise, STN and GPe neurons are 
connected in a one-to-one fashion – ith neuron in STN is connected to ith neuron in GPe and vice-
versa. For all the simulations presented below, we set �g = -�s; the time constants τS = 10; τg = 
30.33; and the slope λSTN = 3; �s = 0.12. 
 
The DP and IP projections to GPi 
 
 The outputs of D1R expressing MSNs, transmitted over the direct pathway are computed 
as: 
x

t
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U
( t )) y
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The outputs of the D2R and D1R-D2R expressing MSNs, transmitted to GPe via the indirect 
pathway, are computed as, 
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The variables yD1,t, yD2,t, yD1D2,t as a function of state, s at time, t, are obtained from eqn. (10). The 
neuromodulator 5-HT's specificity in expression along with a particular type of MSN is not 
known (Eberle�Wang et al., 1997; Nadjar et al., 2006; Surmeier et al., 1996; Ward and Dorsa, 
1996). In the present model, 5-HT is thought to modulate the activity of all three kinds of MSNs 
(D1R expressing, D2R expressing and the D1R-D2R co-expressing). Hence the modeling 
correlates of 5-HT are the parameters αD1 (eqn. (16)), αD2, αD1D2 (eqn. (17)) for modulating the 
output of the D1R, D2R and the D1R-D2R MSNs respectively, and they may represent the 5-HT 
control exerted by dorsal raphe nucleus (DRN) (Alex and Pehek, 2007; Jiang et al., 1990; 
Nakamura, 2013). This study allows all 5-HT-related parameters (αD1, αD2, αD1D2) to take the 
same value, for simplicity (α = αD1 = αD2 = αD1D2). Furthermore, we incorporate 5-HT dynamics 
as a function of mean observed rewards through time as follows, as there has been considerable 
evidence suggesting the modulation of 5-HT signaling as a function of rewards (Kranz et al., 
2010). 
 

τα
dα
dt

= −α + A
r
r
−

+ k          18 
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τ
r

dr
dt

= r − r           19

 τr = τα = 100; 
In the above equations, the variable r� tracks the average reward gained through time, change in 
α, dα/ dt, characterizes the 5-HT dynamics as in eqns. (7, 8). The parameter Ar denotes the 
reward sensitivity. ‘k’ is a constant input, is proposed to denote the tonic levels of 5-HT. The last 
two equations (18, 19) distinguish the network model of (Balasubramani et al., 2014, 2015a) 
from the network model described in this section, and they form the auxiliary dynamics 
controlling the model. 

  
The D2R and the D1R-D2R MSNs form part of the striatal matrisomes known to project to the 
indirect pathway, while the D1R MSNs project to the direct pathway (Amemori et al., 2011; 
Calabresi et al., 2014; Jakab et al., 1996; Nadjar et al., 2006; Surmeier et al., 1996). It should 
also be noted that λs used as a gain factor in eqns. (16, 17) have different values from λs used in 
eqn. (13). The gain functions in eqns. (16, 17) are a function of the DA form (Stauffer et al., 
2014) which represents the temporal difference in utility function, δU (eqn. 20). This is different 
from the DA form, δ, described in eqn. (14).  
 
δ

U
( t ) = U

t
( s

t
) −U

t−1
( s

t−1
)          20 

 
Choice Selection at GPi 
 
 Choice selection at GPi is implemented using the combination of the DP and IP 
contributions as follows: 

iGP DP STN Gpi STN
i i i ix x w y−= − +          21 

 
Since D1R is activated at increased dopamine levels, higher dopamine levels favor activating DP 
(constituted by the projections of D1R MSNs) over IP. This is consistent with the nature of 
switching facilitated by DA in the striatum (Chang et al., 2002; Frank and Claus, 2006; 
Lauwereyns et al., 2002; Tanaka et al., 2006). The relative weightage of the STN projections to 
GPi is represented by wSTN-GPi, and is set to 1 for all the GPi neurons in the current study.  
 
Choice Selection at Thalamus 
  
 GPi neurons project to thalamus through inhibitory connections. Hence the thalamic 
afferents can be simply expressed as a modified form of eqn. (21). 
 

iThalamus DP STN Gpi STN
i i i ix x w y−= −          22 

These afferents in eqn. (22) activate thalamic neurons as follows, 
dy

i
Thalamus

dt
= −y

i
Thalamus + x

i
Thalamus

         23 
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where Thalamus
iy is the state of the ith thalamic neuron. Choice selected is simply the 'i' (i=1,2,..,n) 

whose Thalamus
iy  first crosses the threshold on integration. The threshold value used in the current 

simulation is 1.815. 
 
 
Reduced dynamical system model (Model C) 
 

A simple dynamical systems approximation of the positive and negative attractor system 
described by models, A and B, can be given by:  

dx

dt
= −(x3 + ax + b)            24 

 
db

dt
= A

r
x − μb + k             25 

 
 
Eqn. 24, in isolation, shows bistability: for a large positive (negative) ‘k’, x stabilizes at a 
negative (positive) value. Note that ‘b’ tends to increase (decrease) for positive (negative) ‘x’ 
(eqn. 25).  

The positive and negative wells generated by the x-cubic equation (eqn. 24) emulate the 
positive and negative utility states modeled by the critic component of previous models. The b-
equation (eqn. 25) helps in setting up the stability of solutions, approximates the auxiliary 
dynamics (eqns. 18,19) of the previous models (A, B).  
 
 
Format of results: 
 

In all models A, B and C, we present the stability of solutions as a function of key 
parameters driving the models (Ar and k). Monostable and oscillatory solutions are presented for 
each model, where monostability is the presence of either positive or negative state attractor, and 
oscillatory is the presence of oscillations between positive and negative states.  
 

For models A and B, the choice selections through time are smoothened by averaging 
with a moving window of size 50 (i.e., by averaging moving boxcars) to compute the percent of 
positive state as a choice at a given time. The trajectory of positive state selection percentages 
through time (read-out) is then fit with a polynomial of degree 50 to enable maximal good fit in 
MATLAB. The frequency of read-out fitting curve is found by first subtracting out their mean, 
then finding the index of absolute maximum in frequency (FFT) space. Multiplying with 365 
divided by length of the read-out normalizes the index. The choice of numbers used for 
normalizing the index helps in presentation of results comparable with other models. Trajectories 
with frequencies greater than 1 in a period of 365 time units are taken to possess oscillations in 
read-out spaces. But, the oscillations between positive and negative state regimes are of key 
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interest. To filter those trajectories, we compartmentalize the percent positive state selection 
greater than 50% to be in positive state regime, and that less than 50% to be in negative state 
regime. The read-out trajectories showing oscillations between positive and negative state 
regimes are then labeled to show bipolar oscillations; those that do not exhibit oscillations are 
labeled to show monostable solution. In the dynamical system model (C), the sign of ‘x’ variable 
determines the valence of states. Bipolar oscillations are defined by oscillations between 
solutions of x with opposite signs through time as computed in the read-outs. Monostability is 
interpreted when the choice read-out trajectories through time converges to a single state regime 
(positive or negative ‘x’). The stability of solutions in the reduced simple model (C) is computed 
analytically, by solving the cubic using Cardano’s method (Confalonieri, 2015), and mapping the 
resulting eigenvalues of their Jacobian (at equilibrium point) to the respective dynamical 
solutions.  
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Results 
  
Model A: 

First, we describe softmax policy based phenomenological model A, set to exploitative 
mode with β=10 in eqn. (9), for selecting the highest utilities of positive and negative states. 
Dynamics inα, eqns. (7, 8), leads to an increase (decrease) in value of α when in positive state 
(negative state) due to the reward average magnitudes; this promotes the selection of negative 
state (positive state) as the utility of positive state (negative state) gradually reduces. The above 
mechanism causes oscillation between states, for certain values of reward sensitivity Ar, and 
basal risk sensitivity or tonic serotonin level parameter k. The variation in periods of positive and 
negative cycles can also be controlled by other parameters such as τr and τa in the eqns. (7, 8); 
for a fixed value of τr = τa = 100, the results are as shown in figure 3. Figure 3 (first panel) 
portrays the stability of trajectory of read-outs (percent positive state selection through time) as a 
function of parameters, Ar and k. Cases a (controls), b, and c of figure 3 show smoothened 
(window size of 20) trajectories of 13 different initial values of α. 
 
 
Model B 
 Next, we show oscillations between positive and negative states using a more realistic 
network model of BG working with the α dynamics as described in eqns. (18, 19). In this model, 
eqn. (11), value is represented by the activity of D1 MSN, and risk by D1-D2 co-expressing 
MSNs. The functional principles of computing the utility and selecting the maximum between 
utilities of positive and negative states remains as the same as the model A. The α changes as a 
function of reward averages, like that described in model A, to facilitate oscillations between 
states. Figure 4 (first panel) portrays the stability of trajectory of read-outs (percent positive state 
selection through time) as a function of parameters, Ar and k. Cases a, b, c of figure 4 show 
smoothened (window size of 20) trajectories of 13 different initial values of α. 
 
 
Model C 
 Furthermore, we capture the positive and negative regime attractors simulated using 
utility models A and B using a simple 2-dimensional model. This model uses a cubic ‘x’-variable 
equation to capture the positive (negative) attractors, while x is positive (negative), eqn. (24), 
respectively. The auxiliary dynamics (as simulated using α in models A and B) with key 
parameters Ar and k are captured in the equation simulating ‘b’-dynamics, eqn. (25). Analysis 
with the reduced model shows that the parameter representing reward sensitivity in the models A 
and B, i.e., Ar, is equivalent to the coefficient of b-variable; and the basal risk sensitivity, i.e., k 
parameter, is equivalent to a constant that adjusts the height of the intersection point of b and x 
nullclines. Hence a negative (positive) k produces the intersection point at positive (negative) x, 
and thereby stabilizes the positive (negative) states. Furthermore, higher values of Ar facilitate 
limit cycle oscillations. Figure 5 (first panel) portrays the stability of trajectory of read-outs as a 
function of parameters, Ar and k. The stability of solutions is computed using bifurcation analysis 
(as described in the methods). In the bistable case, the solution is dependent on the initial 
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condition, is indicated by grey color in the result figure. Cases a, b, c of figure 5 show 
smoothened (window size of 20) trajectories of 13 different initial values of ‘x’ and ‘b’.  
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Discussion 
 

Bipolar disorder is characterized by mood swings,  - oscillations between manic and 
depressive episodes, - with the episodes varying from hours to years (Hilty et al., 2006). The 
underlying factors of bipolar disorder are thought to involve a combination of genetic, biological, 
and environmental factors (Alloy and Abramson, 2010; Alloy et al., 2015; Harvey, 2008). We 
are interested in understanding the pathophysiology from the view of decision making dynamics. 
We explore the computational grounds facilitating occurrence of positive and negative stable 
mood states in an alternative manner. Particularly, we focus on a key factor contributing to the 
disorder namely dysfunction of the serotonergic and dopaminergic system in the reward circuitry 
mediated by cortico-basal ganglia network dynamics. To this end, our model finds that reduced 
risk sensitivity levels (k), and abnormally high reward sensitivity (Ar) as key factors that 
contribute to alternating choices between manic and depressive episodes. A comparison with the 
reduced dynamical system show their correspondences to a simple system (model C), which can 
pave the way to understanding of the factors causing bipolar disorder in human patients. 

 
Existing models use abstract limit cycle systems to show bipolar oscillations (Odgers et 

al., 2009), but they do not make a contact with the underlying neural substrates. We too begin 
with an abstract utility based softmax model of bipolar oscillations (model A), but expand it to a 
neural network model of BG (model B) that builds on our earlier modeling effort describing the 
roles of dopamine and serotonin neuromodulation in the decision making functions of the BG 
system (Balasubramani et al., 2014, 2015a). Under control conditions (case a of figures 3-5), the 
network selects the rewarding choice with a high probability. A two-variable reduced model C of 
the dynamics allowed exploration of the entire phase plane as a function of the two parameters of 
interest viz., reward sensitivity (Ar), and basal risk sensitivity (k).  A comparison between simple 
dynamical system and cortico-basal ganglia network substantiate two crucial factors contributing 
to bipolar–like oscillations of the model: Ar and k of the reduced model that correspond to the 
network model’s reward sensitivity (Ar), and basal risk sensitivity (k), respectively.  

 
There has been a lot of clinical and experimental evidence supporting 5-HT dysfunction 

and reward hypersensitivity in bipolar disorder (Hilty et al., 2006). Our modeling study suggests 
that reward hypersensitivity (Alloy et al., 2015) with medium levels of 5-HT as tonic/basal 
values or that induced by medication, can facilitate bipolar oscillations. Serotonin signaling has 
been linked to reward magnitudes and reward processes by various experiments (Kranz et al., 
2010; Nakamura, 2013; Nakamura and Wong-Lin, 2014), and is influenced by habenular and 
PFC inputs (Challis et al., 2015),  a fact that supports our model’s proposal to bidirectionally 
relate rewards to serotonin-mediated auxiliary dynamics (eqns. 18, 19). Moreover, our model 
links 5-HT levels to risk sensitivity, just as previous studies have suggested that risk-aversion 
and risk-seeking are altered in bipolar disorder (Chandler et al., 2009). A major pharmacological 
therapy for bipolar disorder is administration of lithium (Geddes and Miklowitz, 2013). There 
have been reports that lithium affects the sensitivity and function of serotonin receptors (Price et 
al., 1990; Wood, 1985). Hence controlling the sensitivity of 5-HT receptors has been shown to 
contribute to stabilize the moods and control the episode symptoms (Dremencov et al., 2005; 
Wood, 1985), just as predicted by our model. Along with 5-HT, DA control of the network has 
been proposed to relate to depression and manic disorders. There have been several proposals 
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suggesting an increase of dopamine in manic state and a decrease during depression (Cookson, 
1985; Cools et al., 2011; Huys et al., 2015), and therefore it is plausible that the main regulators 
of the network- DA and 5-HT - have been also involved in bipolar disorder manifestation  (Berk 
et al., 2007; Geddes and Miklowitz, 2013; Mahmood and Silverstone, 2001; Silverstone, 1985).  
 

Therefore, we model bipolar oscillations as a manifestation of impaired reward-based 
decision making framework, and describe mania and depression as distinct cognitive states with 
opposite reward outcomes. The reduced dynamical system model shows the similarity between 
analysis of our model to other catastrophe theory based models developed for disorders such as 
anorexia (Zeeman, 1976). Such an understanding supported by the proposed cortico-basal 
ganglia model may form a preliminary basis to pinpoint underlying neural dynamics for various 
pathological approach behaviors, and may assist in designing and interpreting the system level 
dynamics used for therapeutics (Alloy and Abramson, 2010) and cognitive behavioral therapy. 
Importantly, bipolar manic and depressive people have exaggerated cognitive scores of reward 
sensitivity, a feature observed in our model (Alloy et al., 2015). Similarly, the bipolar patients 
have impaired neuromodulatory control too (Berk et al., 2007; Geddes and Miklowitz, 2013; 
Mahmood and Silverstone, 2001; Silverstone, 1985). The scope of recurrence depends on the 
initial state of the system, to which therapeutics is provided to alter the internal dynamics. We 
propose that the systems level understanding of bipolar oscillation dynamics, as in this study, can 
contribute prominently towards understanding at multiple scales; it may be a better way to 
proceed with the problem of recurrences in a precise and personalized manner. Moreover other 
factors such as life style (working schedule) and circadian rhythm driven internal cycles might 
influence the onset and persistence of symptoms of bipolar disorder (Alloy et al., 2015).  
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Figures 

 
Figure 1: Schematic showing important components of various models used in the 
study 
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Figure 2: Schematic of the network model of the basal ganglia.  
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Figure 3- Softmax-based phenomenological model: The topmost panel shows the 
stability of solutions as a function of Ar  and k. Monostable solution could indicate either 
positive or negative state stability, and oscillations indicate swings between positive and 
negative states with varying time periods. Instances of each solution are provided as 
cases a, b, c: Solutions stabilizing at positive state regime as shown in case (a) for 
parameters Ar  = 0.001 and k = -500, and solutions stabilizing at negative state as in 
case (b) are shown for parameters Ar  = 0.001 and k = 500. Oscillations, case (c), are 
shown for parameters Ar  = 100, and k = -0.001.  
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Figure 4- BG network model: The first panel shows the stability of solutions as a 
function of Ar and k. Monostable solution could indicate either positive or negative state 
stability, and oscillations indicate between among positive and negative states with 
varying time periods. Instances of each solution are provided as cases a, b, and c: 
Solutions stabilizing at positive state regime as shown in case (a) for parameters Ar = 
0.001 and k = -500, and solutions stabilizing at negative state as in case (b) are shown 
for parameters Ar = 0.001 and k = 500. Oscillations, case (c), are shown for parameters 
Ar = 100, and k = -0.001. 
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Figure 5- Reduced dynamical system model: The first panel show the stability of 
solutions as a function of Ar and k, with other parameters set to a = -6, and μ = 0.6. 
Monostable solution could indicate either positive or negative ‘x’ stability, and 
oscillations indicate swings between positive and negative states with varying time 
periods. Instances of each solution are provided as cases a, b, and c: Trajectories and 
phase planes for dynamics stabilizing at positive state regime as shown in case (a), at a 
negative state are shown in case (b), oscillations in case (c).  
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