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Abstract 

Recent molecular genetic studies have shown that the majority of genes associated with obesity 

are expressed in the central nervous system. Obesity has also been associated with 

neurobehavioural factors such as brain morphology, cognitive performance, and personality. 

Here, we tested whether these neurobehavioural factors were associated with the heritable 

variance in obesity measured by body mass index (BMI) in the Human Connectome Project 

(N=895 siblings). Phenotypically, cortical thickness findings supported the “right brain 

hypothesis” for obesity. Namely, increased BMI associated with decreased cortical thickness in 

right frontal lobe and increased thickness in the left frontal lobe, notably in lateral prefrontal 

cortex. In addition, lower thickness and volume in entorhinal-parahippocampal structures, and 

increased thickness in parietal-occipital structures in participants with higher BMI supported the 

role of visuospatial function in obesity. Brain morphometry results were supported by cognitive 

tests, which outlined a negative association between BMI and visuospatial function, verbal 

episodic memory, impulsivity, and cognitive flexibility. Personality-BMI correlations were 

inconsistent. We then aggregated the effects for each neurobehavioural factor for a behavioural 

genetics analysis and estimated each factor’s genetic overlap with BMI. Cognitive test scores and 

brain morphometry had 0.25 - 0.45 genetic correlations with BMI, and the phenotypic 

correlations with BMI were 77-89% explained by genetic factors. Neurobehavioural factors also 

had some genetic overlap with each other. In summary, obesity as measured by BMI has 

considerable genetic overlap with brain and cognitive measures. This supports the theory that 

obesity is inherited via brain function, and may inform intervention strategies. 

Significance Statement 

Obesity is a widespread heritable health condition. Evidence from psychology, cognitive 

neuroscience, and genetics has proposed links between obesity and the brain. The current study 

tested whether the heritable variance in body mass index (BMI) is explained by brain and 

behavioural factors in a large brain imaging cohort that included multiple related individuals. We 

found that the heritable variance in BMI had genetic correlations 0.25 - 0.45 with cognitive tests, 

cortical thickness, and regional brain volume. In particular, BMI was associated with frontal lobe 

asymmetry and differences in temporal-parietal perceptual systems. Further, we found genetic 
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overlap between certain brain and behavioural factors. In summary, the genetic vulnerability to 

BMI is expressed in the brain. This may inform intervention strategies.  
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\body 

Introduction 

Obesity is a widespread condition leading to increased mortality (1) and economic costs (2). 

Twin and family studies have shown that individual differences in obesity are largely explained 

by genetic variance (3). Gene enrichment patterns suggest that obesity-related genes are 

preferentially expressed in the brain (4). While it is unclear how these brain-expressed genes lead 

to obesity, several lines of research show that neural, cognitive, and personality differences have 

a role in vulnerability to obesity (5, 6). Here we seek to test whether these neurobehavioural 

factors could explain the genetic variance in obesity. 

In the personality literature, obesity is most often negatively associated with Conscientiousness 

(self-discipline and orderliness) and positively with Neuroticism (a tendency towards negative 

affect) (7). In the cognitive domain, tests capturing executive function, inhibition, and attentional 

control have a negative association with obesity (5–8). Neuroanatomically, obesity seems to have 

a negative association with the grey matter volume of prefrontal cortex, and to a lesser extent the 

volume of parietal and temporal lobes, as measured by voxel based morphometry (9). It has also 

been suggested that structural and functional asymmetry of the prefrontal cortex might underlie 

overeating and obesity (10). For genetic analysis, cortical thickness estimates of brain structure 

from Magnetic Resonance Imaging (MRI) have been preferred over volumetric measures (11). 

However, to date, reports of cortical thickness patterns associated with obesity have been 

inconsistent (12, 13). As a prerequisite to our goal of ascertaining the heritability of brain-based 

vulnerability to obesity, we sought to extend previous neurobehavioural findings in a large multi-

factor dataset from the Human Connectome Project (HCP). We also measured volumetric 

estimates of medial temporal lobe and subcortical structures, which have been implicated in 

appetitive control (e.g., 14). 

The main goal was to assess whether the aforementioned obesity-neurobehavioural associations 

are of genetic or environmental origin. Recent evidence from behavioural and molecular genetics 

suggests that there is considerable genetic overlap between obesity, cognitive test scores, and 

brain imaging findings (15–20). However, the evidence so far is not comprehensive across all 
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neurobehavioural factors discussed. A recent paper assessed the heritability of obesity-associated 

regional brain volumes (21). However, the study did not analyze the heritability of the 

association between brain and obesity. The latter analysis is crucial for understanding whether 

brain anatomy and obesity could have a genetic overlap, which would suggest that the 

heritability of vulnerability to obesity is expressed in the brain.  

In addition, we sought to estimate the genetic overlap between the different BMI-related 

neurobehavioural factors. On one hand, performance on cognitive tests and personality must 

originate from the brain (e.g., 22), and therefore personality and cognition could be expected to 

explain brain-morphometry associations with BMI (6). On the other hand, brain-behaviour 

associations are far from certain (23), and even different measurement traditions in both 

behaviour (personality and cognitive tests) and brain morphometry (cortical thickness or brain 

volume) are often conceptualized as providing independent sources of information (7, 11). 

Documenting the degree of genetic overlap between behavioural and brain measures would shed 

light on whether similar underlying processes lead to obesity’s associations with different 

neurobehavioural factors. 

Taken together, the goal of the current analysis was to use a large multifactor dataset to analyze 

the heritability of the associations between obesity and brain/behaviour. We further tested 

genetic overlap between the different neurobehavioural factors themselves.  

Results 

Background 

We analyzed data from 895 participants from the Human Connectome Project S900 release (24), 

including 111 pairs of monozygotic twins and 188 pairs of dizygotic twins and siblings. 

Similarly to many previous reports (3) we modelled BMI heritability with the AE model (A: 

additive genetics and E: unique environment), as opposed to the ACE model (C: common 

environment), as AE had the lowest Akaike Information Criterion (Dataset S1, section 9). BMI 

heritability was A=71% [95% CI: 61%;78%], which is close to the published meta-analytic 

estimate (A=75%, 3).  
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In all analyses below, we controlled for age, gender, race, ethnicity, handedness, and evidence of 

drug consumption on day of testing, which mostly associated with BMI (SI Appendix, section 

Results, Fig. S2). When presenting and interpreting phenotypic associations, we controlled for 

family structure to avoid inflated effect sizes and standard errors (e.g., 25). The behavioural 

genetics analysis did not control for family structure, since this information is needed for 

modelling heritability. As socio-economic status (SES) is intertwined with cognitive test scores 

(26), personality (27), and brain morphometry (28), we also present phenotypic associations 

controlling for SES (education and income) in the supplementary material. All in-text p-values 

are provided without correcting for multiple comparisons. False discovery rate (FDR) correction 

was applied when screening for features within cognitive, personality, and brain factors (Fig. 

1,2,5). 

Cognitive and Personality Factors 

BMI was negatively correlated with the following tests of executive function: cognitive 

flexibility, fluid intelligence, inability to delay gratification, reading abilities, and working 

memory. Intriguingly, the strongest effects were present for non-executive tasks measuring 

visuospatial ability and verbal memory (Fig. 1A). These tasks remained associated with BMI 

after controlling for SES; controlling for SES reduced the number of executive function tests 

involved with BMI to cognitive flexibility and inability to delay gratification (SI Appendix Fig. 

S3A left). No personality test score correlated with BMI when FDR correction was applied (Fig. 

1B). 

Brain Morphology 

Cortical thickness was estimated from each T1-weighted MRI using CIVET 2.0 software (29). 

Parcel-based analysis identified negative associations with BMI in right inferior lateral frontal 

cortex, and bilateral entorhinal-parahippocampal cortex (Fig. 2A & 3A). Positive associations 

with BMI were found with the left superior frontal cortex, left inferior lateral frontal cortex, and 

bilateral parietal cortex parcels. Controlling for SES did not change these results (SI Appendix 

Fig. S4A left). The frontal lobe asymmetry in the BMI association (thinner on the right, thicker 

on the left) mostly involved the inferior lateral prefrontal areas, such as inferior frontal gyrus. 
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Regional brain volumes were measured for estimation of brain morphology-obesity associations 

in brain structures not covered by the CIVET cortical thickness algorithm. Medial temporal lobe 

and subcortical volumes were individually segmented and measured by registering each brain to 

a labelled atlas using ANIMAL software (30). Volumetric results demonstrated an association 

between BMI and lower volume of the entorhinal cortex bilaterally, and a positive association of 

left amygdala volume with BMI (Fig. 2B & 3B). No subcortical region had a significant 

association with BMI, and results did not change when controlling for SES (SI Appendix Fig. 

S4B left). 

Creating poly-phenotype scores 

We performed dimension reduction for heritability analyses to reduce measurement noise and 

avoid multiple testing with redundant measures. Similarly to other recent papers, (20, 27), we 

used the weights of each individual feature within a neurobehavioural factor (personality test, 

cognitive test, brain parcel) to create an aggregate BMI risk score or poly-phenotype score (PPS). 

This is similar to the polygenic score approach in genetics, where the small effects of several 

polymorphisms are aggregated to yield a total effect score (15, 19, 20, 27). We used the 

correlation values as weights to multiply each participant's scaled measurements, and aggregated 

the results into a single composite variable, the PPS. The PPS reflects the total association of 

each neurobehavioural factor with BMI. To avoid overfitting, we assigned each 10% of 

participants the PPS weights obtained from the other 90% (see SI: Data analysis for details).  

The associations between BMI and the PPS-s for cognition (correlation with BMI: r=0.16, 

p<0.001, n=798) and personality (r=0.08, p=0.017, n=888) are slightly higher than the meta-

analytic estimates of the pooled association between BMI and cognitive test scores (r=0.10, ref: 

8) and personality factors (r=0.05, ref: 8). BMI had stronger associations with the PPS-s for 

cortical thickness (r=0.26, p<0.001, n=591), and medial temporal brain volume (r=0.23, 

p<0.001, n=594). There was no association between BMI and subcortical brain volume (r=-0.05, 

p=0.169, n=828). To test the generalizability of the PPS approach, we used weights obtained 

from the full S900 release (SI Appendix Fig. S3 right and S4 right) to test PPS-BMI correlation 

amongst the unseen additional participants in the S1200 release (referred to as S1200n, n=236). 

Cortical thickness PPS had essentially unchanged effect size when correlated with BMI in 
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S1200n (SI Appendix, section Results, Fig. S7). At the same time, cognitive and personality 

PPS-s were less stable (SI Appendix, Section Results, Fig. S7)., likely because the smaller effect 

sizes of individual features need larger training datasets to reduce inaccuracies, or that the true 

PPS-BMI effect size was too small to be found just within the S1200n sample. 

Heritability 

Bivariate heritability was similarly conducted with the AE model, since the main goal was to 

explain variance in BMI, for which AE was the best model. All PPS-s were found to be highly 

heritable, with the A component explaining 36-79% of the variance (Fig. 4A, Dataset S1, section 

10). Significant genetic correlations (rg) were found between BMI and cognitive test scores 

(rg=0.25 (p=0.002), cortical thickness (rg=0.45, p<0.001), and medial temporal brain volume 

(rg=0.36, p<0.001) (Fig. 4B, Dataset S1, section 11). The personality PPS genetic correlation 

with BMI was not significant (rg=0.22, p=0.052). Molecular evidence relying on linkage 

disequilibrium score regression has reported effects of similar magnitude between higher 

cognitive test scores and BMI (rg=-0.22, ref: , 15, rg=-0.18, ref: , 18). Environmental 

correlations (i.e. correlations between environmental variances) were small and not significant 

(Dataset S1, section 11). As expected from high heritability of the traits and high genetic 

correlations, the phenotypic BMI-PPS correlations described in the previous sections were 77-

89% explained by genetic factors (Fig. 4C, Dataset S1, section 10).  

The results broadly replicated when repeating the analysis with just the top features within a 

PPS, suggesting that PPS based findings summarize the effects of the underlying individual 

features (SI Appendix Fig. S8). We further replicated the heritability patterns in a separate 

analysis focused only on the additional participants from the S1200 HCP release (SI Appendix 

Fig. S9). Additionally, controlling for SES (education and income) did not change the results for 

brain-based PPS-s. However, the estimates for cognitive test scores and personality became 

lower and not significant in the S900 release (Figure S10). However, the same estimates were 

significant in the combined sample S900+S1200, suggesting that the effects of cognition and 

personality were reduced but not eliminated when controlling for SES.  
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Genetic overlap between neurobehavioural factors 

Phenotypically, certain PPS-s had small but significant intercorrelations (SI Appendix Fig. S11 

upper triangle). After FDR correction, we were able to find two genetic correlations between 

PPS-s of cognition and cortical thickness (rg=0.35), as well as cognition and personality (rg=0.33, 

SI Appendix Fig. S11 lower triangle). Taken together, while the neurobehavioural factors have 

mostly independent effects on BMI, cognitive test scores may have a small genetic overlap with 

brain structure and personality. 

 

Discussion 

Cortical thickness, medial temporal lobe volume, and cognitive measures all had covariation 

with BMI, and their effect on BMI was almost entirely heritable. Similarly, we found genetic 

correlations between obesity risk scores of cognition, cortical thickness and personality. 

Together, our results from a large sample support the role of brain and psychological constructs 

in explaining genetic variance in BMI.  

BMI correlated with increased cortical thickness in the left prefrontal cortex and decreased 

thickness in the right prefrontal cortex, supporting the “right brain” hypothesis for obesity (10). 

The effect was most prominent in the inferior frontal gyrus (Fig. 2A and 3A). Only preliminary 

support for the right brain hypothesis has been previously available (13). Right prefrontal cortex 

has been implicated in inhibitory control (22) and possibly bodily awareness (10). Many 

neuromodulation interventions (e.g. transcranial magnetic stimulation) aimed at increasing self-

regulation capacity often target right prefrontal cortex. On the other hand, effects have also been 

demonstrated in studies targeting left prefrontal cortex (31).  

Cortical thickness results also highlighted the role of temporo-parietal perceptual structures in 

obesity. Namely, BMI was associated with bilaterally decreased thickness of the 

parahippocampal and entorhinal cortices, and with mostly right-lateralized increased thickness of 

parietal and occipital lobes. Volumetric results within the medial temporal lobe supported the 

role of entorhinal cortex and also suggested that obesity is positively associated with the volume 
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of left amygdala. Emergence of the effects of the right parietal structures together with right 

prefrontal structures hint at the role of the ventral frontoparietal network, thought to be especially 

important for detection of behaviourally relevant visual stimuli (32). The parahippocampal and 

entorhinal cortex are associated with episodic memory and context mediation (33). Similarly, the 

hippocampus has been associated with the modulation of food cue reactivity by homeostatic and 

contextual information, and hippocampal dysfunction is postulated to promote weight gain in the 

western diet environment (34). The amygdala is implicated in emotional and appetitive responses 

to sensory stimuli, including food cues (35). 

Integrating these findings, one could envision a model where obesity is associated with a certain 

cognitive profile (36). The model starts with a hyperactive visual attention system attributing 

heightened salience to food stimuli, implicating the ventral visual stream and amygdala. These 

signals are then less optimally tied into relevant context by the parahippocampal and entorhinal 

structures, and less well moderated (or filtered) by the prefrontal executive system. This could 

result in consummatory behaviour driven by the presence of appetitive food signals, which are 

ubiquitous in our obesogenic environment. An impaired response inhibition and salience 

attribution model of obesity has been suggested based on the functional neuroimaging literature. 

Namely, functional MRI studies have consistently identified obesity to associate with heightened 

salience response to food cues, coupled with reduced activation in prefrontal and executive 

systems involved in self-regulation and top-down attentional control (e.g., 35). A similar 

conclusion emerged from a recent resting state network analysis of the HCP data (37), in which 

obesity was associated with alterations in perceptual networks and decreased activity of default 

mode and central executive networks.  

This brain morphology-derived model has some support from cognitive tests. The role of 

prefrontal executive control is outlined by our finding of a negative association between BMI 

and scores on several executive control tasks. Surprisingly, there was no effect of motor 

inhibition as measured by the Flanker inhibitory task. A relation between obesity and reduced 

motor inhibition, while often mentioned, has been inconsistent even across meta analyses (7, 8). 

On the other hand, we found a relationship between decisional impulsivity, measured by delay-

discounting, and BMI, replicating previous literature (6, 7, 18). While controlling for education 

reduced the number of executive tasks associated with BMI, the overall pattern remained the 
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same, suggesting that education level is a proxy for certain executive function abilities. 

Intriguingly, BMI was found to be negatively associated with spatial orientation and verbal 

episodic memory. These tasks tap into the key functions associated with entorhinal and 

parahippocampal regions implicated in our study (33). Therefore, both cognitive and brain 

morphology features propose that the increased salience of food stimuli could be facilitated by 

dysregulated context representation in obesity.  

Regarding personality, we were unable to find any questionnaire-specific effects, notably with 

respect to Neuroticism and Conscientiousness, both often thought to be associated with obesity 

(5–7). There are potential explanations for this negative finding. First, the meta-analytical 

association between various personality tests and BMI is small (r=0.05, ref: 7), for which we 

might have been underpowered after p-value correction. Second, controlling for family structure 

likely further reduced the effect sizes (25). Third, the personality-obesity associations tend to 

pertain to more specific facets and nuances than broad personality traits (38), therefore, further 

analysis with more detailed and eating-specific personality measures is needed in larger samples. 

All the associations discussed here were largely due to shared genetic variance between 

neurobehavioural factors and BMI. This is in accordance with recent molecular genetics 

evidence that 75% of obesity related genes express preferentially in the brain (4). Similarly, the 

genetic correlation between cognition and BMI uncovered in our sample is at the same 

magnitude as molecular estimates of associations between more specific cognitive measures and 

BMI (15, 18). The current evidence further supports the brain-gene association with obesity 

vulnerability.  

A possible explanation of the genetic correlations is pleiotropy – the existence of a common set 

of genes that influence variance in both obesity and brain function. It is possible that people with 

a higher genetic risk for obesity have also genetic propensity for the brain and cognitive patterns 

outlined here. It is then likely that also interventions could influence both obesity and brain 

function. For instance, regular exercise can support weight management (39), reduce the 

heritability of obesity (40), and improve cognitive health (41). 

However, our results could also support a causal relationship – that the genetic correlation is due 
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to a persistent effect of heritable brain factors on overeating and hence BMI. For instance, we 

could hypothesize that the heritable obesity-related cognitive profile promotes overeating when 

high-calorie food is available. As high-calorie food is abundant and inexpensive, the cognitive 

risk profile could lead to repeated overeating providing an opportunity for genetic obesity-

proneness to express. Such longitudinal environmental effects of a trait need not to be large, they 

just have to be consistent (42, see discussion in 43). Of course, a reverse scenario is also possible 

– obesity leads to alterations in cortical morphology due to the consequences of cardiometabolic 

complications, including low-grade chronic inflammation, hypertension, and vascular disease 

(reviewed in 9, 44). However, we find this hypothesis less plausible as global brain atrophy due 

to metabolic syndrome is mostly seen in older participants, whereas the current sample had a 

mean age of 29. Young adults often experience “healthy or transitional obesity”, where clinical 

inflammation levels (45) and other cardiometabolic comorbidities have not yet developed (46).  

We found neurobehavioural PPS-s to have occasional phenotypic and genetic correlations with 

each other. Here, it is hard to argue against pleiotropy playing a role. While one could reasonably 

expect that at least part of the variation in cognitive performance would be shaped by brain 

morphometry (22), it is also the case that engaging in education leads to improvement in 

cognitive test scores (26) and might also lead to changes in cortical thickness (47). The small 

genetic overlap between cognition, cortical thickness and personality can probably be explained 

by common pleiotropic roots. At the same time, integrating morphometry and cognitive findings 

is difficult with this dataset. 

From a practical point of view, our work suggests that evidence from psychology and 

neuroscience can be used to design intervention strategies for people with higher genetic risk for 

obesity. One way would be modifying neurobehavioural factors, e.g. with cognitive training, to 

improve people’s ability to resist the obesogenic environment (31, 36). Another path could be 

changing the immediate environment to be less obesogenic (e.g., 48) so that individual 

differences in neurobehavioural factors would be less likely to manifest. In any case, obesity 

interventions should not focus solely on energy content, but also acknowledge the certain 

neurobehavioural profile that obesity is genetically intertwined with. 

The current analysis has limitations. Due to the cross-sectional nature of the dataset, causality 
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between neurobehavioural factors and BMI is only suggestive – longitudinal designs would 

enable better insight into the causal associations between brain morphology, psychological 

measures, and BMI or weight gain. BMI is a crude proxy for actual eating behaviours or health 

status. In addition, there were more normal-weight than obese participants. However, the 25% 

obesity rate in this sample is close to the published obesity rate of the state of Missouri (31.7%) 

and the US (36.5%, ref: , 49). Also, we expect that BMI itself and the neurobehavioural 

mechanisms behind it are continuum processes, therefore all variation in the range from normal-

weight to obesity is likely helping to uncover underlying associations. While the measurement of 

cognition and personality was exhaustive, it lacked some common behavioural tasks like the 

stop-signal task, or common questionnaires measuring self-control, impulsivity, and eating-

specific behaviours, that have been previously associated with body weight (5, 6). Particularly, 

the common eating-specific behaviours such as uncontrolled eating (50) are likely better 

candidates for explaining brain morphology-BMI associations as they are more directly related to 

the hypothesized underlying behaviour.  

One has to be careful in translating individual differences in cortical thickness in normal 

populations to underlying neural mechanisms. Diverse biological processes have been suggested 

to influence MRI-based cortical thickness measures, ranging from synaptic density to apparent 

thinning due to synaptic pruning and myelination (summarized in 49, 50). A definitive model of 

the underlying mechanism that links normal variations in cortical thickness to differences in 

brain function cannot be given, as cortical thickness has not been mapped with both MRI and 

histology in humans (52). Still, the associations between cortical thickness and BMI in one 

sample were able to predict BMI in a new separate sample, suggesting that the pattern is robust. 

Our conceptual interpretation of the significance of cortical thickness patterns has support from 

measures of both brain structure and cognitive function.  

Relying on PPS-s prevented us from analyzing detailed interactions between cortical thickness 

and cognitive function and their genetic overlap with each other. However, given the relatively 

small associations between PPS-s, and the number of candidate measures that could be expected 

to interact with one another, we believe it would have been hard to find an association that would 

have survived multiple testing correction. Future, focused, hypothesis-driven studies have to 

further elucidate the neurobehavioural mechanisms behind obesity proneness. 
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In summary, the current analysis provides comprehensive evidence that the obesity-related 

differences in brain structure and cognitive tests are largely due to shared genetic factors. 

Genetic factors also explain occasional overlap between neurobehavioural factors. We hope that 

increasingly larger longitudinal data sets and dedicated studies will help to outline more specific 

neurobehavioural mechanisms that confer vulnerability to obesity, and provide a basis for 

designing informed interventions. 

Methods 

Data were provided by the Human Connectome Project (24). Certain people were excluded due 

to missing data or not fulfilling typical criteria. Exclusion details, demographics and family 

structure are summarized in SI Methods and Table S1. Software pipelines for obtaining features 

of cortical thickness and brain volume are described in SI Methods. Analysis scripts to reproduce 

results presented are available at: osf.io/htx7u.  

SI Appendix Fig. S1 provides a schematic pipeline for data analysis. Details of each data 

analysis step are outlined in SI Methods. We describe how PPS weights are obtained through 

cross-validation and how the weights generalize to a separate dataset (S1200n). We further 

describe the main principles of twin and sibling-based heritability analysis and replication of 

these findings using individual features instead of PPS-s, and replication in a separate dataset 

(S1200n). Finally, the software and packages used are listed. 
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Fig. 1. Associations between body mass index (BMI) and (A) cognitive test scores, and (B) 

personality traits (B). Error bars represent 95% confidence intervals. See Dataset S1, section 1 

for explanation of cognitive tests. Numerical values are reported in Dataset S1, section 2. 

EF=executive function; FFM=Five-Factor Model; FDR=false discovery rate; Imp=(lack of) 

impulsivity; Lang=language; Mem=memory; Neg=negative affect; Perc=perception; 

PWB=psychological well-being; Soc=social relationships; SSE=stress and self efficacy; 

WM=working memory. 
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Fig. 2. Associations between body mass index (BMI) and brain morphometry. (A) cortical 

thickness. (B) medial temporal and subcortical regional brain volume. Error bars represent 95% 

confidence intervals. Numerical values are reported in Dataset S1, section 2. FDR=false 

discovery rate; Fro=frontal, Ins=insula; L=left; Occ=occipital; Par=parietal; R=right; 

Tem=temporal; MTL=medial temporal lobe; SC=subcortical. 
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Fig. 3. Brain maps of the associations between body mass index (BMI) and (A) cortical thickness 

and (B) medial temporal and subcortical regional brain volume on a standard brain template in 

MNI space. Values are the same as in Fig. 2. Colour bar applies to both sub-plots. L=left; 

R=right. 
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Fig. 4. Heritability analysis of the association between poly-phenotype scores (PPS) and body 

mass index (BMI). (A) Heritability of each trait. BMI has multiple estimates, since it was entered 

into a bivariate analysis with each PPS separately. (B) Genetic correlations between BMI and 

each PPS. The genetic correlations are positive, because the PPS-s are designed to positively 

predict BMI. (C) Heritability of the significant phenotypic correlation between BMI and PPS. 

Horizontal lines depict 95% confidence intervals. Cogn=PPS of cognitive tests; corr=correlation; 

CT=PPS of cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of 

personality tests; SC=PPS of subcortical structure volumes. 
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Supplementary Information Text 

Methods 
Participants 
Data were provided by the Human Connectome Project (24) WU-Minn Consortium (Principal 

Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657, RRID:SCR_008749) 

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 

Research; and by the McDonnell Center for Systems Neuroscience at Washington University,  

The analyzed data were split between the S900 data release (964 participants) and the S1200 data 

release (236 additional participants). We treated the S900 as the main analysis sample and results 

from this sample are reported throughout the paper. At times, we used unique participants from 

the S1200 release for replication, referred to as S1200n. For the main analysis sample, we 

applied the following exclusion criteria, as these might confound brain-obesity associations: 

people with missing values on crucial variables, such as age, BMI, education, income, gender, 

race, and ethnicity (n=6), hypo/hyper thyroidism (n=4), other endocrine problems (n=16), 

underweight (BMI <=18, n=9), and women who had recently given birth (n=9). In addition, as 

we used family information to control for participants’ relatedness, we excluded participants that 

were half-siblings to other participants (n=31). The same exclusions were applied to S1200n 

(n=11). 

The final main analysis dataset consisted of 895 participants, demographics of which are 

summarized in Table 1. The sample had good gender balance and variation in BMI and income. 

As limitations, the sample was relatively young and well educated, and BMI distribution was 

slightly less obese compared to current prevalence estimates for Missouri or the US as a whole 

(MO: 31.7%, US: 36.5%, ref: , 49). Most people were white and non-Hispanic, however other 

races-ethnicities were also represented. The participants were nested into 384 families, typically 

having 1 to 3 siblings in the dataset. For comparison, we also provide the same statistics for the 

S1200n sample, as well as a subset of S1200n sample in which no participant is related to the 

S900 sample.  

For the heritability analysis between each neurocognitive factor and BMI, we randomly chose 

one sibling pair per family, ensuring that the pair had complete data. Non-twin sibling pairs were 
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considered equivalent to dizygotic twin pairs with respect to heritability analyses once data was 

residualized for age and gender. If multiple sibling pairs within a family had complete data, we 

prioritized choosing monozygotic twin pairs and dizygotic twin pairs over non-twin sibling pairs. 

Depending on the neurocognitive factor, the heritability analysis was conducted on 46-111 pairs 

of monozygotic twins (median=97) and 60-202 pairs of dizygotic twins and siblings 

(median=176). 

Measures 
Psychological measures. 

Participants completed an extensive set of questionnaires and cognitive tests (see 53, 54 for an 

overview). In the current analysis, we included 22 questionnaires and 18 cognitive tests (see Fig. 

2 and Dataset S1, section 1 for complete list). Here we refer to the set of questionnaire results as 

personality variables, as personality encompasses various patterns of what people want, say, do, 

feel, or believe (55). Based on our previous review (6) we chose cognitive tests capturing aspects 

of executive function, memory, and language. 

Cortical thickness. 

All T1-weighted MRI images were processed using the CIVET pipeline (version 2.0) (29, 56, 

57). Processing was executed on the Canadian Brain Imaging Network (CBRAIN) High 

Performance Computing platform for collaborative sharing and distributed processing of large 

MRI datasets (58). Briefly, native T1-weighted MRI scans were corrected for non-uniformity 

using the N3 algorithm (59). The corrected volumes were masked and registered into stereotaxic 

space, and then segmented into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) 

and background using a neural net classifier (60). The white matter and gray matter surfaces 

were extracted using the Constrained Laplacian-based Automated Segmentation with Proximities 

algorithm (61, 62). The resulting surfaces were resampled to a stereotaxic surface template to 

provide vertex based measures of cortical thickness (63). All resulting images were visually 

inspected for motion artefacts by experienced personnel and then subsequently processed 

through a stringent quality control protocol, which only 641 of the 894 participants in our initial 

cohort passed. In the S1200n, 144 of the 214 passed. For those participants who passed, cortical 

thickness was then measured in native space using the linked distance between the two surfaces 
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across 81924 vertices and a 20mm surface smoothing kernel was applied to the data (64). The 

Desikan–Killiany–Tourville (DKT) atlas was used to parcellate the surface into 64 cortical 

regions (65). Cortical thickness was averaged over all vertices in each region of interest for each 

subject (66) and the effect of mean cortical thickness was regressed to allow for regional analysis 

(67). After participant exclusions, data was available for 591/137 participants in the 

S900/S1200n samples. 

Volumetric estimates. 

Because the CIVET cortical thickness method does not cover all medial temporal and subcortical 

structures, we used volumetric estimates for these brain regions. For subcortical volumetric 

estimation, T1-weighted scans of the subjects were pre-processed through a computerized 

pipeline (n=899). Image denoising (68), intensity non-uniformity correction (59), and image 

intensity normalization into range (0-100) using histogram matching were performed. After 

preprocessing, all images were first linearly (using a 9-parameter rigid registration) and then 

nonlinearly registered to an average template (MNI ICBM152) as part of the ANIMAL software 

(30, 69). The subcortical structures, i.e., thalamus, putamen, caudate, and globus pallidus were 

segmented using ANIMAL by warping segmentations from ICBM152 back to each subject using 

the obtained nonlinear transformations. The medial temporal lobe structures, i.e. hippocampus, 

amygdala, temporal pole, and parahippocampal, entorhinal and perirhinal cortices, were 

segmented using an automated patch-based label-fusion technique (70). The method selects the 

most similar templates from a library of labelled MRI template images, and combines them with 

a majority voting scheme to assign the highest weighted label to every voxel to generate a 

discrete segmentation. Quality control was performed on the individual registered images as well 

as the automated structure segmentations by visual inspection, and inaccurate results were 

discarded. In S900, 648 participants passed the quality control for medial temporal lobe 

structures, ad 895 for subcortical structures. Within S1200n, of the 214 participants, 212 passed 

the quality control for subcortical structures, and 174 passed the quality control for medial 

temporal lobe. After exclusions, the S900/S1200n samples included data from n=828/204, 8 

parcels per subjects for the subcortical structures, and n=594/166, 12 parcels for the medial 

temporal lobe structures. 
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Data Analysis 
Analyzing each feature. 

A schematic pipeline of the analysis is displayed in SI Appendix Fig. S1. Data from all 

neurocognitive factors were first residualized for control variables (age, ethnicity, gender, 

handedness, race) using multiple linear regression. When presenting phenotypic associations, we 

used a linear mixed model, adding a random intercept for family (SI Appendix Fig. S1), and also 

varied the involvement of income and education. As BMI was skewed (long-tail at the upper end 

of the scale), it was log-transformed to achieve a normal-like distribution. Handedness was also 

log normalized. 

For each factor category (cognition, personality, cortical thickness, medial temporal volume, 

subcortical volume), factor-BMI relationships were assessed using univariate correlation 

between each brain parcel or test score and BMI. We initially also tried using a partial least 

squares (PLS) correlation approach, which is a multivariate technique suited to handling 

correlated predictors (71, 72). However, the PLS estimates were extremely close to univariate 

correlations, therefore univariate correlations were preferred for simplicity. As a result, we 

received an estimate of the relative contribution (weight) of each predictor within a given factor. 

Estimates used in this study are presented in Dataset S1, section 2. 

Creating poly-phenotype scores. 

To summarize effects for each neurocognitive factor, we created an aggregate BMI risk score or 

poly-phenotype score (PPS) for each neurocognitive factor. This was inspired by the polygenic 

risk score approach, where the effects of single-nucleotide polymorphisms are added up to form 

a total genetic score (73). Specifically, we used the correlation-derived weights to multiply each 

participant's measured values, and aggregated the results into a single composite variable for a 

given factor, the PPS. A PPS would reflect the total association that a given factor has with BMI. 

Even though only some features within a neurobehavioural factor had significant effects on BMI, 

and certain features correlated with each other (see Datasets S3-S7), both our testing (see SI 

Results) and recommendations by others (74) lead us to not apply p-value cutoffs, clumping, or 

pruning, as excluding these steps does not hurt predictive ability and improves transparency (74). 

PPS-s have a mean of 0 but varying standard deviation, depending on the number of features and 
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their effect sizes (Dataset S1, section 8). 

We used cross-validation principles to avoid and test for overfitting. Namely, we divided 

participants into 10% folds. Each 10% fold received the correlation weights from the remaining 

90% of the sample. As the result, we received one PPS vector for each factor, where each 

participant’s score was based on out-of-sample prediction. When creating the 10% folds, we 

created folds for each factor separately, as each factor has a different number of available data 

points, ensuring that folds were as equal in size as possible. We also ensured that siblings from 

the same family were in the same fold. Therefore, no data from family members were used in 

calculating both the correlation weights and performing out of sample predictions.  

To test the robustness of PPS-s, we first tested the impact of not pruning and applying p-value 

cutoffs. In a pruned PPS, features are omitted that a) correlate above criterion to another feature 

and b) have lower correlation with BMI than the other feature (75). In a PPS with p-value cut-

off, features are omitted that have an above-criterion uncorrected p-value when correlated with 

BMI Neither pruning nor a p-value cutoff improved the predictive ability of the PPS-s (see SI 

Results). 

We further tested the predictive ability of PPS scores by applying the weights created on the full 

S900 release to predict BMI in the S1200n release (new participants only), which we did not 

touch before predicting. As 101 participants within the S1200n were related to participants in the 

S900, we also tested the predictive ability in the subset of S1200 that was not related to S900 

(n=124).  

Heritability analysis. 

In the heritability analysis, a typical behavioural genetics decomposition uses relatedness 

assumptions between individuals to divide variance in a trait to the following components: 

genetic variance (A, additive and interactive effects), shared environmental variance (C, family 

and shared school effects), and unique environmental variance (E, unique experience and 

measurement error). The assumptions are: 100% of genetic variance shared between 

monozygotic twins, 50% of genetic variance shared between dizygotic twins and sex-and gender 

residualized siblings, 100% of family environment shared by all siblings, 0% unique variance 
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shared between siblings. Such decomposition is called univariate heritability.  

Besides establishing univariate heritability, one can also conduct heritability analysis on the 

covariance between two traits. For instance, a genetic correlation is the correlation between the A 

components of trait 1 and trait 2. A bivariate heritability analysis decomposes the phenotypic 

correlation between trait 1 and trait 2 into A, C, and E components. 

Heritability analysis was conducted on PPS scores not residualized for family structure, as this 

information is used in heritability modelling. We then ran bivariate heritability analyses 

separately between each PPS and BMI, which provided univariate heritability estimates of the 

PPS-s and BMI, genetic and environmental correlations between the univariate estimates of PPS-

s and BMI, and bivariate decomposition of the phenotypic correlation between each PPS and 

BMI. We used the AE model, since BMI was best explained by an AE model, as opposed to an 

ACE model, based on Akaike Information Criterion (AIC) (Dataset S1, section 9). Similar AIC 

patterns were present for bivariate models (SI Appendix Fig. S12, Dataset S1, section 12). We 

report only standardized A estimates in the main results, as in the univariate and bivariate 

analysis of the AE model, E=100-A. Also, no environmental correlations were significant. All 

standardized and unstandardized estimates are reported in the supplementary materials (Datasets 

S10-S11). 

Analysis software. 

Analysis was conducted in Microsoft R Open 3.4.0 (76), using May 2017 version of packages 

abind, car, caret, cowplot, corrplot, ggplot2, lme4, MuMIn, pbkrtest, plyr, psych, synthpop, tidyr, 

WriteXLS (77–92). Cortical thickness was plotted using Surfstat (93) in MATLAB (94). 

Heritability analysis was conducted using OpenMX (95), adapting scripts provided by the 

Colorado International Twin Workshop (96). 

SI Results 
Control variables 
Age, gender and race related to BMI, demonstrating the need for residualizing (SI Appendix Fig. 

S2). Marginal R2 explaining only fixed effects was 0.07, and conditional R2 explaining both 

fixed and random effects was 0.38, highlighting the effect of family structure. When controlling 

for education and income, education was a significant additional predictor, with total model R2 
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being 0.09 and conditional R2 0.37. Further, controlling for family structure in a nested model as 

random intercept improved model fit (AIC dropped from 7006 to 6895 / 6978 to 6885 when 

controlling for education and income), suggesting that family nesting needs to be taken into 

account. 

Robustness of PPS-s 
Similarly to genetic literature (74), we found that pruning features or applying a p-value 

threshold does not change the predictive ability of the PPS-s (SI Appendix Fig. S5 & S6).  

To test the generalizability of the PPS approach, we used weights obtained from the full S900 

release (SI Appendix Fig. S3 right and S4 right) to predict the BMI of new participants in the 

S1200 release (S1200n, n=236), which were not used in any of the initial assessments. As certain 

participants in the S1200n release were related to participants in the S900, we also tested the PPS 

performance when they were excluded. As can be seen in SI Appendix Fig. S7, cortical thickness 

estimates are very similar, no matter the training or testing dataset. Cognition PPS effect sizes 

were similar to each other, but did not reach statistical significance in the replication sample 

(S1200n). Personality PPS had unexpectedly high correlation with BMI in the new data. Further 

research is needed to determine if such effect sizes would further replicate. Medial temporal lobe 

PPS-s also did not replicate.  

Heritability replication 
We tested whether the PPS-based bivariate analysis patterns would replicate in the S900 dataset, 

but using unaggregated top individual features within the PPS-s. We chose the 5 individual 

features from the top predictors of cognition and cortical thickness. As shown in SI Appendix 

Fig. S8, the individual tasks are comparable with the PPS-s in terms of univariate heritability, 

genetic correlations, and heritability of phenotypic correlation. However, with genetic 

correlations, the estimates are non-significant (SI Appendix Fig. S8 B1&B2), suggesting that we 

are not powered to establish significance of the smaller correlations. Further, the standardized 

estimates for heritability of the phenotypic correlations (SI Appendix Fig. S8 C1&C2) are noisier 

and the estimator often failed at estimating standardized confidence intervals. Such failures at 

individual feature levels highlight the value of PPS-s, which provide more stable estimates at 

these sample sizes. 
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We further used participants only in the S1200n release to replicate the bivariate heritability 

analysis results in new data. PPS weights were obtained from the S900 release. We focused only 

on participants who did not have siblings in the S900 release. Granted, the power is low because 

of fewer complete twin pairs available (29 MZ pairs and 30 DZ pairs). The univariate estimate 

for BMI heritability was [A=64% [95% CI: 41%;79%]. In the bivariate analysis, we were also 

able to replicate the patterns seen in the main dataset (SI Appendix Fig. S9), however the 

confidence intervals were often covering 0 or not estimated, likely due to small sample size. 

Figures 

 

Fig. S1. A schematic diagram of the analysis pipeline. All steps were conducted on all 

neurocognitive factors separately. BMI=body mass index; CV=cross-validation; MTL=medial 

temporal lobe; MRI=magnet resonance image; PPS=poly-phenotype score; SC=subcortical; 

SES=socio-economic status (education and income). 
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Fig. S2. Regression weights of a multilevel linear model nested for family. Lines mark standard 

95% confidence intervals. Intercept is 27.37 (standard error: 2.16). For interpretability, regular 

BMI is unscaled here. Reference groups: Gender: male, Race: white, Ethnicity: not 

Hispanic/unknown. Am.=American; BC=birth control; Is.=Islander 
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Fig. S3. Associations between body mass index (BMI), cognitive test scores (A), and personality 
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traits (B), either when controlling for education, income, and family structure (left), or not 

controlling for these variables (right). Error bars mark 95% confidence intervals. See Dataset S1, 

section 1 for explanation of cognitive test names. Numerical values are reported in Dataset S1, 

section 2. EF=executive function; FFM=Five-Factor Model; FDR=false discovery rate; 

Imp=(lack of) impulsivity; Lang=language; Mem=memory; Neg=negative affect; 

Perc=perception; PWB=psychological well-being; Soc=social relationships; SSE=stress and self 

efficacy; WM=working memory 
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Fig. S4. Associations between body mass index (BMI), cortical thickness (A) and regional brain 
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volume (B), either when controlling for education, income, and family structure (left), or not 

controlling for these variables (right). Error bars mark 95% confidence intervals. Numerical 

values are reported in Dataset S1, section 2. FDR=false discovery rate; Fro=frontal, Ins=insula; 

L=left;  Occ=occipital; Par=parietal; R=right; Tem=temporal;  

 

 

 

 

 

Fig. S5. Low impact of pruning to the poly-phenotype scores’ (PPS) associations with BMI. 

PPS-s were trained and tested within the Human Connectome Project’s S900 release, using 

cross-validation. Pruning means excluding features that have a higher correlation than set 

criterion with another feature that associates with BMI. A pruning criterion equal to 1 means no 

pruning was done. Cogn=PPS of cognitive tests; CT=PPS of cortical thickness; MTL=PPS of 
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medial temporal lobe volume; Pers=PPS of personality tests. 

 

Fig. S6. Low impact of excluding features by p value to the poly-phenotype scores’ (PPS) 

associations with BMI. PPS-s were trained and tested within the Human Connectome Project’s 

S900 release, using cross-validation. Features with a p value higher than criterion were excluded 

from the PPS. A p criterion of 1 means no exclusion was done. Cogn=PPS of cognitive tests; 

CT=PPS of cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of 

personality tests. 
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Fig. S7. Comparison of poly-phenotype scores’ (PPS) performance in correlating with BMI, 

depending on training data and test data.  

S900CV→S900: PPS-s within S900 release trained and tested with cross-validation to avoid 

bias. These PPS-s are used in heritability analysis.  

S900→S1200n: PPS-s trained on S900 and tested in full S1200n sample.  

S900→S1200n (unrelated): PPS-s trained on S900 and tested in S1200n sample not related to 

S900.  

Cogn=PPS of cognitive tests; CT=PPS of cortical thickness; CV=cross-validated; MTL=PPS of 

medial temporal lobe volume; Pers=PPS of personality tests; S900 – Participants in Human 

Connectome Project’s S900 release; S1200n – participants only in the S1200 release; SC=PPS of 

subcortical structure volumes; 
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Fig. S8. Heritability analysis of the association between poly-phenotype scores (PPS) of 

cognitive test scores (A1-C1) and cortical thickness (A2-C2), compared with most significant 

individual features of each PPS. (A) Heritability of each trait. The effect of unique environment 

(E) is not shown, since E=100-A. (B) Genetic correlations between BMI and each PPS or 

between BMI and each feature. The PPS-based genetic correlations are positive, because the 

PPS-s are designed to positively predict BMI. However, individual features can have negative 

genetic correlations. (C) Heritability of the phenotypic correlation between BMI and PPS or 

between BMI and each feature. Horizontal lines depict 95% confidence intervals. The estimator 

failed at estimating certain features. Corr=correlation; L=Left hemisphere; herit=heritability; 

R=right hemisphere. 
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Fig. S9. Heritability analysis of the association between poly-phenotype scores (PPS) and body 

mass index (BMI) in the S1200n sample unrelated to S900. (A) Heritability of each trait. BMI 

has multiple estimates, since it was entered into a bivariate analysis with each PPS separately. 

The effect of unique environment (E) is not shown, since E=100-A. (B) Genetic correlations 

between BMI and each PPS. The genetic correlations are positive, because the PPS-s are 

designed to positively predict BMI. None of the environmental correlations were significant and 

therefore not shown. (C) Heritability of the phenotypic correlation between BMI and PPS. 

Horizontal lines depict 95% confidence intervals. Estimates not shown for PPS-s that did not 

have significant phenotypic association with BMI. Cogn=PPS of cognitive tests; 

corr=correlation; CT=PPS of cortical thickness; herit=heritability; MTL=PPS of medial temporal 

lobe volume; Pers=PPS of personality tests; SC=PPS of subcortical structure volumes 
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Fig S10. Heritability analysis of the association between poly-phenotype scores (PPS) and body 

mass index (BMI), when controlling for education and income within the S900 sample (top 

panel) and in the S1200 sample, where S1200n is added to the S900 sample (bottom panel). As 

in previous analyses, the PPS weights of S1200n sample are based on S900 sample, S1200n 

sample just adds statistical power to the S900 based findings. Depending on the neurocognitive 

factor, the heritability analysis in the combined sample was conducted on 59-135 pairs of 

monozygotic twins (median=108.5) and 85-259 pairs of dizygotic twins and siblings 

(median=179). (A) Heritability of each trait. BMI has multiple estimates since it was entered into 

a bivariate analysis with each PPS separately. (B) Genetic correlations between BMI and each 

PPS. The genetic correlations are positive, because the PPS-s are designed to positively predict 

BMI. (C) Heritability of the significant phenotypic correlation between BMI and PPS. Horizontal 

lines depict 95% confidence intervals. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS 

of cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; 

SC=PPS of subcortical structure volumes.  
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Fig. S11. Phenotypic (upper triangle) and genetic (lower triangle) correlations between PPS-s 

used for heritability analysis. Phenotypic correlations account for family structure. FDR-

corrected significant correlations are highlighted with color. Correlations are multiplied by 100 

for clarity. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical thickness; 

MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; SC=PPS of 

subcortical structure volumes 
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Fig. S12. Akaike Information Criteria (AIC) for BMI-PPS (poly-phenotype score) bivariate 

heritability decompositions. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical 

thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; SC=PPS 

of subcortical structure volumes. 
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Table S1. Descriptive statistics of samples analyzed. 

Variable S900 S1200n 
S1200n 
unrelated 

N 895 225 124 

Age (years) x�=28.83 
(SD=3.67) 

x�=28.85 
(SD=3.84) 

x�=29.31 
(SD=3.83) 

BMI (kg/m2) 
x�=27.27 
(SD=5.77) 

x�=26.51 
(SD=5.21) 

x�=26.32 
(SD=5.18) 

BMI groups 
   

Normal weight (BMI 18-24.9) 375 (41.9%) 101 (44.9%) 56 (45.2%) 
Overweight (BMI 25-29.9) 285 (31.8%) 74 (32.9%) 45 (36.3%) 

Obese (BMI 30+) 235 (26.3%) 50 (22.2%) 23 (18.5%) 
Drug test positive 

   
No 777 (86.8%) 195 (86.7%) 105 (84.7%) 
Yes 118 (13.2%) 30 (13.3%) 19 (15.3%) 

Education (years) x�=14.85 
(SD=1.82) 

x�=15.06 
(SD=1.72) 

x�=14.83 
(SD=1.8) 

Ethnicity: 
   

Hispanic/Latino 819 (91.5%) 198 (88%) 114 (91.9%) 
Not Hispanic/Latino/unknown 76 (8.5%) 27 (12%) 10 (8.1%) 
Families 384 151 66 

1 sibling 37 (10.4%) 19 (20%) 19 (28.8%) 
2 siblings 107 (30.1%) 49 (51.6%) 36 (54.5%) 
3 siblings 163 (45.9%) 20 (21.1%) 11 (16.7%) 
4 siblings 43 (12.1%) 6 (6.3%) 0 (0%) 
5 siblings 5 (1.4%) 1 (1.1%) 0 (0%) 

Gender 
   

Male 413 (46.1%) 120 (53.3%) 61 (49.2%) 

Female no birth control 143 (16%) 24 (10.7%) 16 (12.9%) 
Female with birth control 339 (37.9%) 81 (36%) 47 (37.9%) 

Handedness x�=65.07 
(SD=45.13) 

x�=68.93 
(SD=41.03) 

x�=70.73 
(SD=36.97) 

Income 
   

<$10,000 65 (7.3%) 16 (7.1%) 9 (7.3%) 
10K-19,999 79 (8.8%) 12 (5.3%) 9 (7.3%) 
20K-29,999 116 (13%) 24 (10.7%) 15 (12.1%) 
30K-39,999 104 (11.6%) 30 (13.3%) 17 (13.7%) 
40K-49,999 98 (10.9%) 23 (10.2%) 13 (10.5%) 
50K-74,999 181 (20.2%) 46 (20.4%) 25 (20.2%) 
75K-99,999 119 (13.3%) 28 (12.4%) 14 (11.3%) 

>=100,000 133 (14.9%) 46 (20.4%) 22 (17.7%) 
Race 
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White 664 (74.2%) 176 (78.2%) 95 (76.6%) 
Other/unknown 45 (5%) 21 (9.3%) 11 (8.9%) 
Black or African Am. 145 (16.2%) 13 (5.8%) 8 (6.5%) 
Asian/Nat. Hawaiian/Other 
Pacific Is. 41 (4.6%) 15 (6.7%) 10 (8.1%) 

BMI=body mass index; Is=islander; Nat=native 
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Additional Dataset S1 (separate file) 
See first tab of file “SI_Dataset_1.xlsx” for table of contents. 
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