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Abstract

Recent molecular genetic studies have shown that the mgjority of genes associated with obesity
are expressed in the central nervous system. Obesity has also been associated with
neurobehavioural factors such as brain morphology, cognitive performance, and personality.
Here, we tested whether these neurobehavioural factors were associated with the heritable
variance in obesity measured by body massindex (BMI) in the Human Connectome Project
(N=895 siblings). Phenotypically, cortical thickness findings supported the “right brain
hypothesis’ for obesity. Namely, increased BM | associated with decreased cortical thicknessin
right frontal lobe and increased thickness in the left frontal 1obe, notably in lateral prefrontal
cortex. In addition, lower thickness and volume in entorhinal-parahippocampal structures, and
increased thickness in parietal-occipital structuresin participants with higher BMI supported the
role of visuospatial function in obesity. Brain morphometry results were supported by cognitive
tests, which outlined a negative association between BM1 and visuospatial function, verbal
episodic memory, impulsivity, and cognitive flexibility. Personality-BM| correlations were
inconsistent. We then aggregated the effects for each neurobehavioural factor for a behavioural
genetics analysis and estimated each factor’s genetic overlap with BMI. Cognitive test scores and
brain morphometry had 0.25 - 0.45 genetic correlations with BMI, and the phenotypic
correlations with BMI were 77-89% explained by genetic factors. Neurobehavioural factors also
had some genetic overlap with each other. In summary, obesity as measured by BMI has
considerable genetic overlap with brain and cognitive measures. This supports the theory that

obesity isinherited via brain function, and may inform intervention strategies.

Significance Statement

Obesity is awidespread heritable health condition. Evidence from psychology, cognitive
neuroscience, and genetics has proposed links between obesity and the brain. The current study
tested whether the heritable variance in body mass index (BM1) is explained by brain and
behavioural factorsin alarge brain imaging cohort that included multiple related individuals. We
found that the heritable variance in BMI had genetic correlations 0.25 - 0.45 with cognitive tests,
cortical thickness, and regional brain volume. In particular, BM| was associated with frontal lobe

asymmetry and differences in temporal-parietal perceptual systems. Further, we found genetic
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overlap between certain brain and behavioural factors. In summary, the genetic vulnerability to
BMI is expressed in the brain. This may inform intervention strategies.
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Introduction

Obesity is awidespread condition leading to increased mortality (1) and economic costs (2).
Twin and family studies have shown that individual differencesin obesity are largely explained
by genetic variance (3). Gene enrichment patterns suggest that obesity-related genes are
preferentially expressed in the brain (4). Whileit is unclear how these brain-expressed genes lead
to obesity, several lines of research show that neural, cognitive, and personality differences have
arolein vulnerability to obesity (5, 6). Here we seek to test whether these neurobehavioural
factors could explain the genetic variance in obesity.

In the personality literature, obesity is most often negatively associated with Conscientiousness
(self-discipline and orderliness) and positively with Neuroticism (a tendency towards negative
affect) (7). In the cognitive domain, tests capturing executive function, inhibition, and attentional
control have a negative association with obesity (5-8). Neuroanatomically, obesity seemsto have
a negative association with the grey matter volume of prefrontal cortex, and to alesser extent the
volume of parietal and temporal lobes, as measured by voxel based morphometry (9). It has also
been suggested that structural and functional asymmetry of the prefrontal cortex might underlie
overeating and obesity (10). For genetic analysis, cortical thickness estimates of brain structure
from Magnetic Resonance Imaging (MRI) have been preferred over volumetric measures (11).
However, to date, reports of cortical thickness patterns associated with obesity have been
inconsistent (12, 13). As a prerequisite to our goal of ascertaining the heritability of brain-based
vulnerability to obesity, we sought to extend previous neurobehavioural findingsin alarge multi-
factor dataset from the Human Connectome Project (HCP). We also measured volumetric
estimates of medial temporal lobe and subcortical structures, which have been implicated in

appetitive control (e.g., 14).

The main goal was to assess whether the aforementioned obesity-neurobehavioural associations
are of genetic or environmental origin. Recent evidence from behavioural and molecular genetics
suggests that there is considerable genetic overlap between obesity, cognitive test scores, and

brain imaging findings (15-20). However, the evidence so far is not comprehensive across all
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neurobehavioural factors discussed. A recent paper assessed the heritability of obesity-associated
regional brain volumes (21). However, the study did not analyze the heritability of the
association between brain and obesity. The latter analysisis crucia for understanding whether
brain anatomy and obesity could have a genetic overlap, which would suggest that the

heritability of vulnerability to obesity is expressed in the brain.

In addition, we sought to estimate the genetic overlap between the different BMI-related
neurobehavioural factors. On one hand, performance on cognitive tests and personality must
originate from the brain (e.g., 22), and therefore personality and cognition could be expected to
explain brain-morphometry associations with BM1 (6). On the other hand, brain-behaviour
associations are far from certain (23), and even different measurement traditionsin both
behaviour (personality and cognitive tests) and brain morphometry (cortical thickness or brain
volume) are often conceptualized as providing independent sources of information (7, 11).
Documenting the degree of genetic overlap between behavioural and brain measures would shed
light on whether similar underlying processes |ead to obesity’ s associations with different
neurobehavioural factors.

Taken together, the goal of the current analysis was to use a large multifactor dataset to analyze
the heritability of the associations between obesity and brain/behaviour. We further tested
genetic overlap between the different neurobehavioural factors themselves.

Results

Background

We analyzed data from 895 participants from the Human Connectome Project S900 release (24),
including 111 pairs of monozygotic twins and 188 pairs of dizygotic twinsand siblings.
Similarly to many previous reports (3) we modelled BMI heritability with the AE model (A:
additive genetics and E: unique environment), as opposed to the ACE model (C: common
environment), as AE had the lowest Akaike Information Criterion (Dataset S1, section 9). BMI
heritability was A=71% [95% CI. 61%;78%)], which is close to the published meta-analytic
estimate (A=75%, 3).
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In all analyses below, we controlled for age, gender, race, ethnicity, handedness, and evidence of
drug consumption on day of testing, which mostly associated with BMI (SI Appendix, section
Results, Fig. S2). When presenting and interpreting phenotypic associations, we controlled for
family structure to avoid inflated effect sizes and standard errors (e.g., 25). The behavioural
genetics analysis did not control for family structure, since thisinformation is needed for
modelling heritability. As socio-economic status (SES) isintertwined with cognitive test scores
(26), personality (27), and brain morphometry (28), we also present phenotypic associations
controlling for SES (education and income) in the supplementary material. All in-text p-values
are provided without correcting for multiple comparisons. False discovery rate (FDR) correction
was applied when screening for features within cognitive, personality, and brain factors (Fig.
1,2,5).

Cognitive and Per sonality Factors

BMI was negatively correlated with the following tests of executive function: cognitive
flexibility, fluid intelligence, inability to delay gratification, reading abilities, and working
memory. Intriguingly, the strongest effects were present for non-executive tasks measuring
visuospatial ability and verbal memory (Fig. 1A). These tasks remained associated with BMI
after controlling for SES; controlling for SES reduced the number of executive function tests
involved with BMI to cognitive flexibility and inability to delay gratification (SI Appendix Fig.
S3A left). No personality test score correlated with BM1 when FDR correction was applied (Fig.
1B).

Brain Morphology

Cortical thickness was estimated from each T1-weighted MRI using CIVET 2.0 software (29).
Parcel-based analysis identified negative associations with BMI in right inferior lateral frontal
cortex, and bilateral entorhinal-parahippocampal cortex (Fig. 2A & 3A). Positive associations
with BMI were found with the left superior frontal cortex, left inferior lateral frontal cortex, and
bilateral parietal cortex parcels. Controlling for SES did not change these results (SI Appendix
Fig. SAA left). The frontal lobe asymmetry in the BMI association (thinner on the right, thicker

on the left) mostly involved the inferior lateral prefrontal areas, such asinferior frontal gyrus.
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Regional brain volumes were measured for estimation of brain morphol ogy-obesity associations
in brain structures not covered by the CIVET cortical thickness algorithm. Medial temporal |obe
and subcortical volumes were individually segmented and measured by registering each brain to
alabdlled atlas usng ANIMAL software (30). Volumetric results demonstrated an association
between BM| and lower volume of the entorhinal cortex bilaterally, and a positive association of
left amygdala volume with BMI (Fig. 2B & 3B). No subcortical region had a significant
association with BMI, and results did not change when controlling for SES (SI Appendix Fig.
S4B |eft).

Creating poly-phenotype scores

We performed dimension reduction for heritability analyses to reduce measurement noise and
avoid multiple testing with redundant measures. Similarly to other recent papers, (20, 27), we
used the weights of each individual feature within a neurobehavioural factor (personality test,
cognitive test, brain parcel) to create an aggregate BM|1 risk score or poly-phenotype score (PPS).
Thisissimilar to the polygenic score approach in genetics, where the small effects of several
polymorphisms are aggregated to yield atotal effect score (15, 19, 20, 27). We used the
correlation values as weights to multiply each participant's scaled measurements, and aggregated
the resultsinto a single composite variable, the PPS. The PPS reflects the total association of
each neurobehavioural factor with BMI. To avoid overfitting, we assigned each 10% of
participants the PPS weights obtained from the other 90% (see SI: Data anaysis for details).

The associations between BMI and the PPS-s for cognition (correlation with BMI: r=0.16,
p<0.001, n=798) and personality (r=0.08, p=0.017, n=888) are dlightly higher than the meta-
analytic estimates of the pooled association between BMI and cognitive test scores (r=0.10, ref:
8) and personality factors (r=0.05, ref: 8). BMI had stronger associations with the PPS-s for
cortical thickness (r=0.26, p<0.001, n=591), and medial temporal brain volume (r=0.23,
p<0.001, n=594). There was no association between BM| and subcortical brain volume (r=-0.05,
p=0.169, n=828). To test the generalizahility of the PPS approach, we used weights obtained
from the full S900 release (SI Appendix Fig. S3 right and $4 right) to test PPS-BMI correlation
amongst the unseen additional participantsin the S1200 release (referred to as S1200n, n=236).
Cortical thickness PPS had essentially unchanged effect size when correlated with BMI in
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S1200n (SI Appendix, section Results, Fig. S7). At the same time, cognitive and personality
PPS-s were less stable (SI Appendix, Section Results, Fig. S7)., likely because the smaller effect
sizes of individual features need larger training datasets to reduce inaccuracies, or that the true
PPS-BMI effect size was too small to be found just within the S1200n sample.

Heritability

Bivariate heritability was similarly conducted with the AE model, since the main goal was to
explain variance in BM|I, for which AE was the best model. All PPS-s were found to be highly
heritable, with the A component explaining 36-79% of the variance (Fig. 4A, Dataset S1, section
10). Significant genetic correlations (rg) were found between BMI and cognitive test scores
(rg=0.25 (p=0.002), cortical thickness (r4=0.45, p<0.001), and medial temporal brain volume
(rq=0.36, p<0.001) (Fig. 4B, Dataset S1, section 11). The personality PPS genetic correlation
with BMI was not significant (rg=0.22, p=0.052). Molecular evidence relying on linkage
disequilibrium score regression has reported effects of similar magnitude between higher
cognitive test scores and BMI (rg=-0.22, ref: , 15, rg=-0.18, ref: , 18). Environmental
correlations (i.e. correlations between environmental variances) were small and not significant
(Dataset S1, section 11). As expected from high heritability of the traits and high genetic
correlations, the phenotypic BMI-PPS correlations described in the previous sections were 77-
89% explained by genetic factors (Fig. 4C, Dataset S1, section 10).

The results broadly replicated when repeating the analysis with just the top features within a
PPS, suggesting that PPS based findings summarize the effects of the underlying individual
features (SI Appendix Fig. S8). We further replicated the heritability patternsin a separate
analysis focused only on the additional participants from the S1200 HCP release (SI Appendix
Fig. S9). Additionally, controlling for SES (education and income) did not change the results for
brain-based PPS-s. However, the estimates for cognitive test scores and personality became
lower and not significant in the S900 release (Figure S10). However, the same estimates were
significant in the combined sample S900+S1200, suggesting that the effects of cognition and
personality were reduced but not eliminated when controlling for SES.
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Genetic overlap between neurobehavioural factors

Phenotypically, certain PPS-s had small but significant intercorrelations (SI Appendix Fig. S11
upper triangle). After FDR correction, we were able to find two genetic correlations between
PPS-s of cognition and cortical thickness (rg=0.35), as well as cognition and personality (r;=0.33,
S| Appendix Fig. S11 lower triangle). Taken together, while the neurobehavioural factors have
mostly independent effects on BMI, cognitive test scores may have a small genetic overlap with

brain structure and personality.

Discussion

Cortical thickness, medial temporal |obe volume, and cognitive measures all had covariation
with BMI, and their effect on BMI was almost entirely heritable. Similarly, we found genetic
correlations between obesity risk scores of cognition, cortical thickness and personality.
Together, our results from alarge sample support the role of brain and psychological constructs

in explaining genetic variance in BMI.

BMI correlated with increased cortica thicknessin the left prefrontal cortex and decreased
thicknessin the right prefrontal cortex, supporting the “right brain” hypothesis for obesity (10).
The effect was most prominent in the inferior frontal gyrus (Fig. 2A and 3A). Only preliminary
support for the right brain hypothesis has been previously available (13). Right prefrontal cortex
has been implicated in inhibitory control (22) and possibly bodily awareness (10). Many
neuromodulation interventions (e.g. transcranial magnetic stimulation) aimed at increasing self-
regulation capacity often target right prefrontal cortex. On the other hand, effects have also been
demonstrated in studies targeting left prefrontal cortex (31).

Cortical thickness results also highlighted the role of temporo-parietal perceptual structuresin
obesity. Namely, BMI was associated with bilaterally decreased thickness of the
parahippocampal and entorhinal cortices, and with mostly right-lateralized increased thickness of
parietal and occipital lobes. Volumetric results within the medial temporal |obe supported the
role of entorhinal cortex and also suggested that obesity is positively associated with the volume
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of left amygdala. Emergence of the effects of the right parietal structures together with right
prefrontal structures hint at the role of the ventral frontoparietal network, thought to be especially
important for detection of behaviourally relevant visual stimuli (32). The parahippocampal and
entorhinal cortex are associated with episodic memory and context mediation (33). Similarly, the
hippocampus has been associated with the modulation of food cue reactivity by homeostatic and
contextual information, and hippocampal dysfunction is postulated to promote weight gain in the
western diet environment (34). The amygdalaisimplicated in emotional and appetitive responses

to sensory stimuli, including food cues (35).

Integrating these findings, one could envision amodel where obesity is associated with acertain
cognitive profile (36). The model starts with a hyperactive visual attention system attributing
heightened salience to food stimuli, implicating the ventral visual stream and amygdala. These
signals are then less optimally tied into relevant context by the parahippocampal and entorhinal
structures, and less well moderated (or filtered) by the prefrontal executive system. This could
result in consummatory behaviour driven by the presence of appetitive food signals, which are
ubiquitous in our obesogenic environment. An impaired response inhibition and salience
attribution model of obesity has been suggested based on the functional neuroimaging literature.
Namely, functional MRI studies have consistently identified obesity to associate with heightened
salience response to food cues, coupled with reduced activation in prefrontal and executive
systems involved in self-regulation and top-down attentional control (e.g., 35). A similar
conclusion emerged from a recent resting state network analysis of the HCP data (37), in which
obesity was associated with alterations in perceptual networks and decreased activity of default
mode and central executive networks.

This brain morphol ogy-derived model has some support from cognitive tests. The role of
prefrontal executive control is outlined by our finding of a negative association between BM|
and scores on several executive control tasks. Surprisingly, there was no effect of motor
inhibition as measured by the Flanker inhibitory task. A relation between obesity and reduced
motor inhibition, while often mentioned, has been inconsistent even across meta analyses (7, 8).
On the other hand, we found a relationship between decisional impulsivity, measured by delay-
discounting, and BMI, replicating previous literature (6, 7, 18). While controlling for education
reduced the number of executive tasks associated with BMI, the overall pattern remained the
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same, suggesting that education level is aproxy for certain executive function abilities.

Intriguingly, BM1 was found to be negatively associated with spatial orientation and verbal
episodic memory. These tasks tap into the key functions associated with entorhinal and
parahippocampal regions implicated in our study (33). Therefore, both cognitive and brain
morphology features propose that the increased salience of food stimuli could be facilitated by
dysregulated context representation in obesity.

Regarding personality, we were unable to find any questionnaire-specific effects, notably with
respect to Neuroticism and Conscientiousness, both often thought to be associated with obesity
(5-7). There are potential explanations for this negative finding. First, the meta-analytical
association between various personality tests and BM1 issmall (r=0.05, ref: 7), for which we
might have been underpowered after p-value correction. Second, controlling for family structure
likely further reduced the effect sizes (25). Third, the personality-obesity associations tend to
pertain to more specific facets and nuances than broad personality traits (38), therefore, further
analysis with more detailed and eating-specific personality measures is needed in larger samples.

All the associations discussed here were largely due to shared genetic variance between
neurobehavioural factors and BMI. Thisisin accordance with recent molecular genetics
evidence that 75% of obesity related genes express preferentially in the brain (4). Similarly, the
genetic correlation between cognition and BMI uncovered in our sampleis at the same
magnitude as molecular estimates of associations between more specific cognitive measures and
BMI (15, 18). The current evidence further supports the brain-gene association with obesity

vulnerability.

A possible explanation of the genetic correlations is pleiotropy — the existence of a common set
of genes that influence variance in both obesity and brain function. It is possible that people with
a higher genetic risk for obesity have also genetic propensity for the brain and cognitive patterns
outlined here. It isthen likely that also interventions could influence both obesity and brain
function. For instance, regular exercise can support weight management (39), reduce the
heritability of obesity (40), and improve cognitive health (41).

However, our results could also support a causal relationship — that the genetic correlation is due
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to apersistent effect of heritable brain factors on overeating and hence BMI. For instance, we
could hypothesize that the heritable obesity-related cognitive profile promotes overeating when
high-calorie food is available. As high-calorie food is abundant and inexpensive, the cognitive
risk profile could lead to repeated overeating providing an opportunity for genetic obesity-
proneness to express. Such longitudinal environmental effects of atrait need not to be large, they
just have to be consistent (42, see discussion in 43). Of course, areverse scenario isalso possible
— obesity leads to alterationsin cortical morphology due to the consequences of cardiometabolic
complications, including low-grade chronic inflammation, hypertension, and vascular disease
(reviewed in 9, 44). However, we find this hypothesis less plausible as global brain atrophy due
to metabolic syndrome is mostly seen in older participants, whereas the current sample had a
mean age of 29. Y oung adults often experience “healthy or transitional obesity”, where clinical

inflammation levels (45) and other cardiometabolic comorbidities have not yet developed (46).

We found neurobehavioural PPS-s to have occasional phenotypic and genetic correlations with
each other. Here, it is hard to argue against pleiotropy playing arole. While one could reasonably
expect that at least part of the variation in cognitive performance would be shaped by brain
morphometry (22), it is also the case that engaging in education leads to improvement in
cognitive test scores (26) and might also lead to changesin cortical thickness (47). The small
genetic overlap between cognition, cortical thickness and personality can probably be explained
by common pleiotropic roots. At the same time, integrating morphometry and cognitive findings
isdifficult with this dataset.

From a practical point of view, our work suggests that evidence from psychology and
neuroscience can be used to design intervention strategies for people with higher genetic risk for
obesity. One way would be modifying neurobehavioural factors, e.g. with cognitive training, to
improve peopl€’ s ability to resist the obesogenic environment (31, 36). Another path could be
changing the immediate environment to be less obesogenic (e.g., 48) so that individual
differences in neurobehavioural factors would be less likely to manifest. In any case, obesity
interventions should not focus solely on energy content, but also acknowledge the certain
neurobehavioural profile that obesity is genetically intertwined with.

The current analysis has limitations. Due to the cross-sectional nature of the dataset, causality
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between neurobehavioural factors and BMI is only suggestive — longitudina designs would
enable better insight into the causal associations between brain morphology, psychological
measures, and BMI or weight gain. BMI is a crude proxy for actual eating behaviours or health
status. In addition, there were more normal-weight than obese participants. However, the 25%
obesity rate in this sampleis close to the published obesity rate of the state of Missouri (31.7%)
and the US (36.5%, ref: , 49). Also, we expect that BMI itself and the neurobehavioural
mechanisms behind it are continuum processes, therefore all variation in the range from normal-
weight to obesity is likely helping to uncover underlying associations. While the measurement of
cognition and personality was exhaustive, it lacked some common behavioural tasks like the
stop-signal task, or common questionnaires measuring self-control, impulsivity, and eating-
specific behaviours, that have been previously associated with body weight (5, 6). Particularly,
the common eating-specific behaviours such as uncontrolled eating (50) are likely better
candidates for explaining brain morphology-BM | associations as they are more directly related to
the hypothesized underlying behaviour.

One hasto be careful in trandating individual differencesin cortical thicknessin normal
populations to underlying neural mechanisms. Diverse biological processes have been suggested
to influence MRI-based cortical thickness measures, ranging from synaptic density to apparent
thinning due to synaptic pruning and myelination (summarized in 49, 50). A definitive model of
the underlying mechanism that links normal variationsin cortical thickness to differencesin
brain function cannot be given, as cortical thickness has not been mapped with both MRI and
histology in humans (52). Still, the associ ations between cortical thickness and BMI in one
sample were able to predict BMI in a new separate sample, suggesting that the pattern is robust.
Our conceptual interpretation of the significance of cortical thickness patterns has support from

measures of both brain structure and cognitive function.

Relying on PPS-s prevented us from analyzing detailed interactions between cortical thickness
and cognitive function and their genetic overlap with each other. However, given the relatively
small associations between PPS-s, and the number of candidate measures that could be expected
to interact with one another, we believe it would have been hard to find an association that would
have survived multiple testing correction. Future, focused, hypothesis-driven studies have to

further elucidate the neurobehavioural mechanisms behind obesity proneness.


https://doi.org/10.1101/204917
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/204917; this version posted August 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

In summary, the current analysis provides comprehensive evidence that the obesity-related
differences in brain structure and cognitive tests are largely due to shared genetic factors.
Genetic factors also explain occasional overlap between neurobehavioural factors. We hope that
increasingly larger longitudinal data sets and dedicated studies will help to outline more specific
neurobehavioural mechanisms that confer vulnerability to obesity, and provide abasis for

designing informed interventions.
M ethods

Data were provided by the Human Connectome Project (24). Certain people were excluded due
to missing data or not fulfilling typical criteria. Exclusion details, demographics and family
structure are summarized in S| Methods and Table S1. Software pipelines for obtaining features
of cortical thickness and brain volume are described in SI Methods. Analysis scriptsto reproduce

results presented are available at: osf.io/htx7u.

Sl Appendix Fig. S1 provides a schematic pipeline for data analysis. Details of each data
analysis step are outlined in SI Methods. We describe how PPS weights are obtained through
cross-validation and how the weights generalize to a separate dataset (S1200n). We further
describe the main principles of twin and sibling-based heritability analysis and replication of
these findings using individual features instead of PPS-s, and replication in a separate dataset
(S1200n). Finally, the software and packages used are listed.
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Fig. 1. Associations between body mass index (BM1) and (A) cognitive test scores, and (B)
personality traits (B). Error bars represent 95% confidence intervals. See Dataset S1, section 1
for explanation of cognitive tests. Numerical values are reported in Dataset S1, section 2.
EF=executive function; FFM=Five-Factor Model; FDR=false discovery rate; Imp=(lack of)
impulsivity; Lang=language; Mem=memory; Neg=negative affect; Perc=perception;
PWB=psychological well-being; Soc=social relationships; SSE=stress and self efficacy;

WM =working memory.
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Fig. 2. Associations between body mass index (BM1) and brain morphometry. (A) cortical
thickness. (B) medial temporal and subcortical regional brain volume. Error bars represent 95%
confidence intervals. Numerical values are reported in Dataset S1, section 2. FDR=false
discovery rate; Fro=frontal, Ins=insula; L=left; Occ=occipital; Par=parietal; R=right;
Tem=temporal; MTL=medial temporal lobe; SC=subcortical.
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Fig. 3. Brain maps of the associations between body massindex (BM1) and (A) cortical thickness
and (B) medial temporal and subcortical regional brain volume on a standard brain template in
MNI space. Values are the same asin Fig. 2. Colour bar appliesto both sub-plots. L=left;
R=right.
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Fig. 4. Heritability analysis of the association between poly-phenotype scores (PPS) and body
mass index (BMI). (A) Heritability of each trait. BMI has multiple estimates, since it was entered
into abivariate analysis with each PPS separately. (B) Genetic correlations between BMI and
each PPS. The genetic correlations are positive, because the PPS-s are designed to positively
predict BMI. (C) Heritability of the significant phenotypic correlation between BMI and PPS.
Horizontal lines depict 95% confidence intervals. Cogn=PPS of cognitive tests; corr=correlation;
CT=PPS of cortical thickness, MTL=PPS of medial temporal lobe volume; Pers=PPS of

personality tests; SC=PPS of subcortical structure volumes.
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Supplementary Information Text

Methods

Participants
Data were provided by the Human Connectome Project (24) WU-Minn Consortium (Principal

Investigators. David Van Essen and Kamil Ugurbil; 1U54MH091657, RRID:SCR_008749)
funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington University,

The analyzed data were split between the S900 data rel ease (964 participants) and the S1200 data
release (236 additional participants). We treated the S900 as the main analysis sample and results
from this sample are reported throughout the paper. At times, we used unique participants from
the S1200 release for replication, referred to as S1200n. For the main analysis sample, we
applied the following exclusion criteria, as these might confound brain-obesity associations:
people with missing values on crucial variables, such as age, BMI, education, income, gender,
race, and ethnicity (n=6), hypo/hyper thyroidism (n=4), other endocrine problems (n=16),
underweight (BM1 <=18, n=9), and women who had recently given birth (n=9). In addition, as
we used family information to control for participants' relatedness, we excluded participants that
were half-siblings to other participants (n=31). The same exclusions were applied to S1200n
(n=11).

The final main analysis dataset consisted of 895 participants, demographics of which are
summarized in Table 1. The sample had good gender balance and variation in BM1 and income.
As limitations, the sample was relatively young and well educated, and BMI distribution was
dightly less obese compared to current prevalence estimates for Missouri or the US as awhole
(MO: 31.7%, US: 36.5%, ref: , 49). Most people were white and non-Hispanic, however other
races-ethnicities were also represented. The participants were nested into 384 families, typically
having 1 to 3 siblingsin the dataset. For comparison, we also provide the same statistics for the
S1200n sample, as well as a subset of S1200n sample in which no participant is related to the
S900 sample.

For the heritability analysis between each neurocognitive factor and BMI, we randomly chose

one sibling pair per family, ensuring that the pair had complete data. Non-twin sibling pairs were
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considered equivalent to dizygotic twin pairs with respect to heritability analyses once data was
residualized for age and gender. If multiple sibling pairs within afamily had complete data, we
prioritized choosing monozygotic twin pairs and dizygotic twin pairs over non-twin sibling pairs.
Depending on the neurocognitive factor, the heritability analysis was conducted on 46-111 pairs
of monozygotic twins (median=97) and 60-202 pairs of dizygotic twins and siblings
(median=176).

M easures

Psychological measures.

Participants completed an extensive set of questionnaires and cognitive tests (see 53, 54 for an
overview). In the current analysis, we included 22 questionnaires and 18 cognitive tests (see Fig.
2 and Dataset S1, section 1 for complete list). Here we refer to the set of questionnaire results as
personality variables, as personality encompasses various patterns of what people want, say, do,
feel, or believe (55). Based on our previous review (6) we chose cognitive tests capturing aspects

of executive function, memory, and language.

Cortical thickness.

All T1-weighted MRI images were processed using the CIVET pipeline (version 2.0) (29, 56,
57). Processing was executed on the Canadian Brain Imaging Network (CBRAIN) High
Performance Computing platform for collaborative sharing and distributed processing of large
MRI datasets (58). Briefly, native T1-weighted MRI scans were corrected for non-uniformity
using the N3 algorithm (59). The corrected volumes were masked and registered into stereotaxic
space, and then segmented into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF)
and background using a neural net classifier (60). The white matter and gray matter surfaces
were extracted using the Constrained Laplacian-based Automated Segmentation with Proximities
algorithm (61, 62). The resulting surfaces were resampled to a stereotaxic surface template to
provide vertex based measures of cortical thickness (63). All resulting images were visually
inspected for motion artefacts by experienced personnel and then subsequently processed
through a stringent quality control protocol, which only 641 of the 894 participantsin our initial
cohort passed. In the S1200n, 144 of the 214 passed. For those participants who passed, cortical

thickness was then measured in native space using the linked distance between the two surfaces
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across 81924 vertices and a 20mm surface smoothing kernel was applied to the data (64). The
Desikan—Killiany—Tourville (DKT) atlas was used to parcellate the surface into 64 cortical
regions (65). Cortical thickness was averaged over all verticesin each region of interest for each
subject (66) and the effect of mean cortical thickness was regressed to allow for regional analysis
(67). After participant exclusions, data was available for 591/137 participantsin the
S900/S1200n samples.

V olumetric estimates.

Because the CIVET cortical thickness method does not cover all medial temporal and subcortical
structures, we used volumetric estimates for these brain regions. For subcortical volumetric
estimation, T1-weighted scans of the subjects were pre-processed through a computerized
pipeline (n=899). Image denoising (68), intensity non-uniformity correction (59), and image
intensity normalization into range (0-100) using histogram matching were performed. After
preprocessing, all images werefirst linearly (using a 9-parameter rigid registration) and then
nonlinearly registered to an average template (MNI ICBM152) as part of the ANIMAL software
(30, 69). The subcortical structures, i.e., thalamus, putamen, caudate, and globus pallidus were
segmented using ANIMAL by warping segmentations from ICBM 152 back to each subject using
the obtained nonlinear transformations. The medial temporal lobe structures, i.e. hippocampus,
amygdala, temporal pole, and parahippocampal, entorhinal and perirhinal cortices, were
segmented using an automated patch-based |abel-fusion technique (70). The method selects the
most similar templates from alibrary of labelled MRI template images, and combines them with
amaority voting scheme to assign the highest weighted label to every voxel to generate a
discrete segmentation. Quality control was performed on the individual registered images as well
as the automated structure segmentations by visual inspection, and inaccurate results were
discarded. In S900, 648 participants passed the quality control for medial temporal |obe
structures, ad 895 for subcortical structures. Within S1200n, of the 214 participants, 212 passed
the quality control for subcortical structures, and 174 passed the quality control for medial
temporal lobe. After exclusions, the S900/S1200n samples included data from n=828/204, 8
parcels per subjects for the subcortica structures, and n=594/166, 12 parcels for the medial
temporal lobe structures.
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Data Analysis

Analyzing each feature.

A schematic pipeline of the analysisis displayed in SI Appendix Fig. S1. Datafrom all
neurocognitive factors were first residualized for control variables (age, ethnicity, gender,
handedness, race) using multiple linear regression. When presenting phenotypic associations, we
used a linear mixed model, adding arandom intercept for family (SI Appendix Fig. S1), and also
varied the involvement of income and education. As BMI was skewed (long-tail at the upper end
of the scale), it was log-transformed to achieve a normal-like distribution. Handedness was also

log normalized.

For each factor category (cognition, personality, cortical thickness, medial temporal volume,
subcortical volume), factor-BMI relationships were assessed using univariate correlation
between each brain parcel or test score and BMI. Weiinitialy also tried using a partial least
squares (PLS) correlation approach, which is a multivariate technique suited to handling
correlated predictors (71, 72). However, the PLS estimates were extremely close to univariate
correlations, therefore univariate correlations were preferred for smplicity. As aresult, we
received an estimate of the relative contribution (weight) of each predictor within a given factor.
Estimates used in this study are presented in Dataset S1, section 2.

Creating poly-phenotype scores.

To summarize effects for each neurocognitive factor, we created an aggregate BMI risk score or
poly-phenotype score (PPS) for each neurocognitive factor. Thiswas inspired by the polygenic
risk score approach, where the effects of single-nucleotide polymorphisms are added up to form
atotal genetic score (73). Specifically, we used the correlation-derived weights to multiply each
participant's measured values, and aggregated the resultsinto a single composite variable for a
given factor, the PPS. A PPS would reflect the total association that a given factor has with BMI.
Even though only some features within a neurobehavioural factor had significant effects on BMI,
and certain features correlated with each other (see Datasets S3-S7), both our testing (see Sl
Results) and recommendations by others (74) lead us to not apply p-value cutoffs, clumping, or
pruning, as excluding these steps does not hurt predictive ability and improves transparency (74).

PPS-s have a mean of 0 but varying standard deviation, depending on the number of features and
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their effect sizes (Dataset S1, section 8).

We used cross-validation principles to avoid and test for overfitting. Namely, we divided
participants into 10% folds. Each 10% fold received the correlation weights from the remaining
90% of the sample. Asthe result, we received one PPS vector for each factor, where each
participant’s score was based on out-of-sample prediction. When creating the 10% folds, we
created folds for each factor separately, as each factor has a different number of available data
points, ensuring that folds were as equal in size as possible. We also ensured that siblings from
the same family were in the same fold. Therefore, no data from family members were used in

calculating both the correlation weights and performing out of sample predictions.

To test the robustness of PPS-s, we first tested the impact of not pruning and applying p-value
cutoffs. In apruned PPS, features are omitted that @) correlate above criterion to another feature
and b) have lower correlation with BMI than the other feature (75). In a PPS with p-value cut-
off, features are omitted that have an above-criterion uncorrected p-value when correlated with
BMI Neither pruning nor a p-value cutoff improved the predictive ability of the PPS-s (see SI
Results).

We further tested the predictive ability of PPS scores by applying the weights created on the full
S900 release to predict BMI in the S1200n release (new participants only), which we did not
touch before predicting. As 101 participants within the S1200n were related to participantsin the
S900, we also tested the predictive ability in the subset of S1200 that was not related to S900
(n=124).

Heritability analysis.

In the heritability analysis, atypical behavioural genetics decomposition uses relatedness
assumptions between individualsto divide variancein atrait to the following components:
genetic variance (A, additive and interactive effects), shared environmental variance (C, family
and shared school effects), and unique environmental variance (E, unique experience and
measurement error). The assumptions are: 100% of genetic variance shared between
monozygotic twins, 50% of genetic variance shared between dizygotic twins and sex-and gender

residualized siblings, 100% of family environment shared by all siblings, 0% unique variance
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shared between siblings. Such decomposition is called univariate heritability.

Besides establishing univariate heritability, one can also conduct heritability analysis on the
covariance between two traits. For instance, a genetic correlation is the correlation between the A
components of trait 1 and trait 2. A bivariate heritability analysis decomposes the phenotypic

correlation between trait 1 and trait 2 into A, C, and E components.

Heritability analysis was conducted on PPS scores not residualized for family structure, asthis
information is used in heritability modelling. We then ran bivariate heritability analyses
separately between each PPS and BMI, which provided univariate heritability estimates of the
PPS-s and BMI, genetic and environmental correlations between the univariate estimates of PPS-
sand BMI, and bivariate decomposition of the phenotypic correlation between each PPS and
BMI. We used the AE model, since BMI was best explained by an AE model, as opposed to an
ACE model, based on Akaike Information Criterion (AIC) (Dataset S1, section 9). Similar AIC
patterns were present for bivariate models (SI Appendix Fig. S12, Dataset S1, section 12). We
report only standardized A estimates in the main results, asin the univariate and bivariate
analysis of the AE model, E=100-A. Also, no environmental correlations were significant. All
standardized and unstandardized estimates are reported in the supplementary materials (Datasets
S10-S11).

Analysis software.

Analysis was conducted in Microsoft R Open 3.4.0 (76), using May 2017 version of packages
abind, car, caret, cowplot, corrplot, ggplot2, Ime4, MuMIn, pbkrtest, plyr, psych, synthpop, tidyr,
WriteX LS (77-92). Cortical thickness was plotted using Surfstat (93) in MATLAB (94).
Heritability analysis was conducted using OpenM X (95), adapting scripts provided by the
Colorado International Twin Workshop (96).

Sl Results

Control variables
Age, gender and race related to BMI, demonstrating the need for residualizing (Sl Appendix Fig.

S2). Marginal R? explaining only fixed effects was 0.07, and conditional R? explaining both
fixed and random effects was 0.38, highlighting the effect of family structure. When controlling

for education and income, education was a significant additional predictor, with total model R
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being 0.09 and conditional R? 0.37. Further, controlling for family structure in a nested model as
random intercept improved model fit (AIC dropped from 7006 to 6895 / 6978 to 6885 when
controlling for education and income), suggesting that family nesting needs to be taken into

account.

Robustness of PPS-s
Similarly to genetic literature (74), we found that pruning features or applying a p-value

threshold does not change the predictive ability of the PPS-s (SI Appendix Fig. S5 & S6).

To test the generalizability of the PPS approach, we used weights obtained from the full S900
release (SI Appendix Fig. S3 right and $4 right) to predict the BMI of new participantsin the
S1200 release (S1200n, n=236), which were not used in any of the initial assessments. As certain
participants in the S1200n release were related to participants in the S900, we also tested the PPS
performance when they were excluded. As can be seenin Sl Appendix Fig. S7, cortical thickness
estimates are very similar, no matter the training or testing dataset. Cognition PPS effect sizes
were similar to each other, but did not reach statistical significance in the replication sample
(S1200n). Personality PPS had unexpectedly high correlation with BMI in the new data. Further
research is needed to determine if such effect sizes would further replicate. Medial temporal lobe
PPS-s also did not replicate.

Heritability replication
We tested whether the PPS-based bivariate analysis patterns would replicate in the S900 dataset,

but using unaggregated top individual features within the PPS-s. We chose the 5 individual
features from the top predictors of cognition and cortical thickness. As shown in SI Appendix
Fig. S8, theindividual tasks are comparable with the PPS-sin terms of univariate heritability,
genetic correlations, and heritability of phenotypic correlation. However, with genetic
correlations, the estimates are non-significant (SI Appendix Fig. S8 B1&B?2), suggesting that we
are not powered to establish significance of the smaller correlations. Further, the standardized
estimates for heritability of the phenotypic correlations (SI Appendix Fig. S8 C1&C2) are noisier
and the estimator often failed at estimating standardized confidence intervals. Such failures at
individual feature levels highlight the value of PPS-s, which provide more stable estimates at
these sample sizes.
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We further used participants only in the S1200n release to replicate the bivariate heritability
analysis resultsin new data. PPS weights were obtained from the S900 release. We focused only
on participants who did not have siblings in the S900 release. Granted, the power is low because
of fewer complete twin pairs available (29 MZ pairs and 30 DZ pairs). The univariate estimate
for BMI heritability was [A=64% [95% CI: 41%;79%]. In the bivariate analysis, we were also
able to replicate the patterns seen in the main dataset (SI Appendix Fig. S9), however the
confidence intervals were often covering O or not estimated, likely due to small sample size.

Figures
Cortical
thickness (64
parcels)
Residualise for BMI — parcel
Structural MTL volume controls + SES correlztion Appendix
MRI (12 parcels) + family info
Residualise f .
SC volume (8 estduatise for BMI — parcel Parcelwise
parcels) controls + correlation interpretation
family info P
tPe;so(na_Izltzy) Residualise for BMI — parcel Build PPSs | Heritability
ests In= controls correlation with CV analysis
Cognitive l
tests (n=18) External
prediction

Fig. S1. A schematic diagram of the analysis pipeline. All steps were conducted on all

neurocognitive factors separately. BMI=body mass index; CV=cross-validation; MTL=medial

temporal lobe; MRI=magnet resonance image; PPS=poly-phenotype score; SC=subcortical;

SES=socio-economic status (education and income).
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Fig. S2. Regression weights of amultilevel linear model nested for family. Lines mark standard
95% confidence intervals. Intercept is 27.37 (standard error: 2.16). For interpretability, regular
BMI isunscaled here. Reference groups. Gender: male, Race: white, Ethnicity: not
Hispanic/unknown. Am.=American; BC=birth control; Is.=Islander
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Fig. S3. Associations between body massindex (BMI), cognitive test scores (A), and personality
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traits (B), either when controlling for education, income, and family structure (left), or not
controlling for these variables (right). Error bars mark 95% confidence intervals. See Dataset S1,
section 1 for explanation of cognitive test names. Numerical values are reported in Dataset S1,
section 2. EF=executive function; FFM=Five-Factor Modd; FDR=false discovery rate;
Imp=(lack of) impulsivity; Lang=language; Mem=memory; Neg=negative affect;
Perc=perception; PWB=psychological well-being; Soc=social relationships, SSE=stress and self
efficacy; WM=working memory
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Fig. $4. Associations between body massindex (BM1), cortical thickness (A) and regional brain
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volume (B), either when controlling for education, income, and family structure (left), or not
controlling for these variables (right). Error bars mark 95% confidence intervals. Numerical
values are reported in Dataset S1, section 2. FDR=false discovery rate; Fro=frontal, Ins=insula;
L=left; Occ=occipital; Par=parietal; R=right; Tem=temporal;
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Fig. S5. Low impact of pruning to the poly-phenotype scores’ (PPS) associations with BMI.
PPS-s were trained and tested within the Human Connectome Project’s S900 release, using
cross-validation. Pruning means excluding features that have a higher correlation than set
criterion with another feature that associates with BMI. A pruning criterion equal to 1 means no
pruning was done. Cogn=PPS of cognitive tests, CT=PPS of cortical thickness, MTL=PPS of
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medial temporal lobe volume; Pers=PPS of personality tests.
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Fig. S6. Low impact of excluding features by p value to the poly-phenotype scores (PPS)
associations with BMI. PPS-s were trained and tested within the Human Connectome Project’s
S900 release, using cross-validation. Features with ap value higher than criterion were excluded
from the PPS. A p criterion of 1 means no exclusion was done. Cogn=PPS of cognitive tests,
CT=PPS of cortical thickness, MTL=PPS of medial temporal lobe volume; Pers=PPS of
personality tests.
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Fig. S7. Comparison of poly-phenotype scores (PPS) performance in correlating with BMI,
depending on training data and test data.

S900CV—S900: PPS-s within S900 rel ease trained and tested with cross-validation to avoid
bias. These PPS-s are used in heritability analysis.

S900— S1200n: PPS-s trained on S900 and tested in full S1200n sample.

S900—S1200n (unrelated): PPS-s trained on S900 and tested in S1200n sample not related to
S900.

Cogn=PPS of cognitivetests; CT=PPS of cortical thickness, CV=cross-validated; MTL=PPS of
medial temporal lobe volume; Pers=PPS of personality tests; S900 — Participants in Human
Connectome Project’ s S900 release; S1200n — participants only in the S1200 release; SC=PPS of

subcortical structure volumes;
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Fig. S8. Heritability analysis of the association between poly-phenotype scores (PPS) of

cognitive test scores (A1-C1) and cortical thickness (A2-C2), compared with most significant

individual features of each PPS. (A) Heritability of each trait. The effect of unique environment
(E) is not shown, since E=100-A. (B) Genetic correlations between BMI and each PPS or
between BMI and each feature. The PPS-based genetic correlations are positive, because the

PPS-s are designed to positively predict BMI. However, individual features can have negative

genetic correlations. (C) Heritability of the phenotypic correlation between BMI1 and PPS or

between BM | and each feature. Horizontal lines depict 95% confidence intervals. The estimator

failed at estimating certain features. Corr=correlation; L=Left hemisphere; herit=heritability;

R=right hemisphere.
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Fig. SO. Heritability analysis of the association between poly-phenotype scores (PPS) and body
mass index (BMI) in the S1200n sample unrelated to S900. (A) Heritability of each trait. BMI
has multiple estimates, since it was entered into a bivariate analysis with each PPS separately.
The effect of unique environment (E) is not shown, since E=100-A. (B) Genetic correlations
between BM| and each PPS. The genetic correlations are positive, because the PPS-s are
designed to positively predict BMI. None of the environmental correlations were significant and
therefore not shown. (C) Heritability of the phenotypic correlation between BMI and PPS.
Horizontal lines depict 95% confidence intervals. Estimates not shown for PPS-s that did not
have significant phenotypic association with BMI. Cogn=PPS of cognitive tests;
corr=correlation; CT=PPS of cortical thickness; herit=heritability; MTL=PPS of medial temporal
lobe volume; Pers=PPS of personality tests; SC=PPS of subcortical structure volumes
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Fig S10. Heritability analysis of the association between poly-phenotype scores (PPS) and body

mass index (BMI), when controlling for education and income within the S900 sample (top
panel) and in the S1200 sample, where S1200n is added to the S900 sample (bottom panel). As
in previous analyses, the PPS weights of S1200n sample are based on S900 sample, S1200n

sample just adds statistical power to the S900 based findings. Depending on the neurocognitive

factor, the heritability analysis in the combined sample was conducted on 59-135 pairs of

monozygotic twins (median=108.5) and 85-259 pairs of dizygotic twins and siblings

(median=179). (A) Heritability of each trait. BM | has multiple estimates since it was entered into

a bivariate analysis with each PPS separately. (B) Genetic correlations between BMI and each

PPS. The genetic correlations are positive, because the PPS-s are designed to positively predict
BMI. (C) Heritability of the significant phenotypic correlation between BMI and PPS. Horizontal

lines depict 95% confidence intervals. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS
of cortical thickness; MTL=PPS of medial temporal |obe volume; Pers=PPS of personality tests;

SC=PPS of subcortical structure volumes.
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Fig. S11. Phenotypic (upper triangle) and genetic (lower triangle) correlations between PPS-s
used for heritability analysis. Phenotypic correlations account for family structure. FDR-
corrected significant correlations are highlighted with color. Correlations are multiplied by 100
for clarity. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical thickness;
MTL=PPS of medial temporal |obe volume; Pers=PPS of personality tests, SC=PPS of
subcortical structure volumes
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Fig. S12. Akaike Information Criteria (AIC) for BMI-PPS (poly-phenotype score) bivariate
heritability decompositions. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical
thickness, MTL=PPS of medial temporal |obe volume; Pers=PPS of personality tests, SC=PPS
of subcortical structure volumes.


https://doi.org/10.1101/204917
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/204917; this version posted August 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table S1. Descriptive statistics of samples analyzed.

S1200n
Variable S900 S1200n unrelated
N 895 225 124
Age (years) X1 =_28.83 X[ =_28.85 X[ =_29.31
(SD=3.67) (SD=3.84) (SD=3.83)
X 1=27.27 x[1=26.51 X[1=26.32
BMI (kg/m?) (SD=5.77) (SD=5.21) (SD=5.18)
BMI groups
Normal weight (BM1 18-24.9) 375 (41.9%) 101 (44.9%) 56 (45.2%)
Overweight (BMI 25-29.9) 285 (31.8%) 74 (32.9%) 45 (36.3%)
Obese (BMI 30+) 235 (26.3%) 50 (22.2%) 23 (18.5%)
Drug test positive
No 777 (86.8%) 195 (86.7%) 105 (84.7%)
Yes 118 (13.2%) 30 (13.3%) 19 (15.3%)
Education (years) X :_14.85 xD:_15.06 x[ :_14.83
(SD=1.82) (SD=1.72) (SD=1.8)
Ethnicity:
Hispanic/Latino 819 (91.5%) 198 (88%) 114 (91.9%)
Not Hispanic/Latino/unknown 76 (8.5%) 27 (12%) 10 (8.1%)
Families 384 151 66
1 sibling 37 (10.4%) 19 (20%) 19 (28.8%)
2 siblings 107 (30.1%) 49 (51.6%) 36 (54.5%)
3 siblings 163 (45.9%) 20 (21.1%) 11 (16.7%)
4 siblings 43 (12.1%) 6 (6.3%) 0 (0%)
5 siblings 5 (1.4%) 1(1.1%) 0 (0%)
Gender
Male 413 (46.1%) 120 (53.3%) 61 (49.2%)
Female no birth control 143 (16%) 24 (10.7%) 16 (12.9%)
Female with birth control 339 (37.9%) 81 (36%) 47 (37.9%)
Handedness X 1=65.07 x[1=68.93 x[1=70.73
(SD=45.13) (SD=41.03) (SD=36.97)
Income
<$10,000 65 (7.3%) 16 (7.1%) 9 (7.3%)
10K-19,999 79 (8.8%) 12 (5.3%) 9 (7.3%)
20K-29,999 116 (13%) 24 (10.7%) 15 (12.1%)
30K-39,999 104 (11.6%) 30 (13.3%) 17 (13.7%)
40K-49,999 98 (10.9%) 23 (10.2%) 13 (10.5%)
50K-74,999 181 (20.2%) 46 (20.4%) 25 (20.2%)
75K-99,999 119 (13.3%) 28 (12.4%) 14 (11.3%)
>=100,000 133 (14.9%) 46 (20.4%) 22 (17.7%)

Race
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White 664 (74.2%)
Other/unknown 45 (5%)
Black or African Am. 145 (16.2%)
Asi gr}/NaI. Hawaiian/Other 41 (4.6%)
Pacific Is.

176 (78.2%)
21 (9.3%)
13 (5.8%)

15 (6.7%)

95 (76.6%)
11 (8.9%)
8 (6.5%)

10 (8.1%)

BMI=body mass index; Is=islander; Nat=native
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Additional Dataset S1 (separatefile)
Seefirst tab of file“SI_Dataset_1.xIsx” for table of contents.
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