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Motivation: Summary statistics imputation can be used to infer association sum-
mary statistics of an already conducted, genotype-based meta-analysis to higher ge-
nomic resolution. This is typically needed when genotype imputation is not feasible
for some cohorts. Oftentimes, cohorts of such a meta-analysis are variable in terms of
(country of) origin or ancestry. This violates the assumption of current methods that
an external LD matrix and the covariance of the Z-statistics are identical.
Results: To address this issue, we present variance matching , an extention to the ex-
isting summary statistics imputation method, which manipulates the LD matrix needed
for summary statistics imputation. Based on simulations using real data we find that
accounting for ancestry admixture yields noticeable improvement only when the total
reference panel size is > 1000. We show that for population specific variants this effect
is more pronounced with increasing FST .

1 Introduction

Genotype data for genome-wide association studies (GWASs) are often collected using DNA chips,
which cover only a small fraction of the variable genome. To be able to combine GWASs that
measured different sets of genetic markers (due to differences in the content of commercial arrays),
genetic information has to be inferred for a common set of markers. Such inference exploits the fact
the neighbouring SNVs are often in linkage disequilibrium (LD), which has been well-quantified
in different human populations. Statistical inference of these untyped SNVs in a study cohort,
therefore, relies on an external reference panel of densely genotyped or sequenced individuals. The
inference process is termed imputation, of which there are two main types. Genotype imputation
(Marchini and Howie, 2010) first estimates all haplotypes both in the reference panel and the
study cohort, then using a Hidden Markov Model every observed haplotype in the study cohort is
assembled as a probabilistic mosaic of reference panel haplotypes. The reconstruction facilitates
the computation of the probability of each genotype for every SNV of the reference panel in each
individual of the study cohort. Having imputed the genotype data set, one can then run an
association scan with an arbitrary trait and obtain association summary statistics. Summary
statistics imputation Pasaniuc et al. (2014) on the other hand starts off with association summary
statistics available for all genotyped markers and infers, combined with a reference panel, directly
the association summary statistics of SNVs available in the reference panel. More specifically,
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estimating the local pair-wise linkage disequilibrium (LD) structure of each genetic region using
the reference panel and combining it with association summary statistics allows to calculate a
conditional expectation of normally distributed summary statistics. This latter approach is the
central focus of our paper. Compared to genotype imputation, summary statistics imputation is
much less demanding on computational resources, and requires no access to individual level genetic
data.

Methods making use of summary statistics, such as calculating genetic correlation (Bulik-Sullivan
et al., 2015), approximate conditional analysis (Yang et al., 2012) or causal inference (Burgess et al.,
2013), have gained interest in recent years, because they bypass the need of genotype data, but
mimic it by making use of external reference panels. These methods could profit from summary
statistics being available on an arbitrarily chosen panel of SNVs – provided by summary statistics
imputation. However, it is not clear how to optimally combine different LD reference panels for
summary statistics emerging from a meta-analysis of a large number of different studies (coming
from different countries/regions), with potentially different ancestries. To ensure accurate impu-
tation of such “admixed” meta-analyses, we propose a method called variance matching that, for
each genomic region, optimally combines reference panels to best match the local LD pattern of the
underlying GWAS population. Using a simulation framework, we compare variance matching to
a benchmark solution and one of previously proposed approaches (Lee et al., 2015a,b; Park et al.,
2015).

2 Methods

2.1 Summary statistics imputation (SSimp)

We assume a set of univariate effect size estimates ai are available for SNVs i = 1, . . . , I from a
linear regression between a continuous phenotype y and the corresponding genotype gi measured
in N individuals. Without loss of generality we assume that both vectors are normalised to have

zero mean and unit variance. Thus ai = (gi)′·y
N and a = (a1, a2, . . . , aI)

′∼N (α,Σ). Σ represents
the pairwise covariance matrix of effect sizes of all i = 1, . . . , I SNVs.

To estimate the univariate effect size αu of an untyped SNV u in the same sample, one can use
the conditional expectation of a multivariate normal distribution. The conditional mean of the
effect of SNV u can be expressed using the effect size estimates of the tag SNVs (Eaton, 1983;
Pasaniuc et al., 2014):

âu = au|M = αu + ΣuMΣ−1MM(a−α) , (1)

whereM is a vector of marker SNVs, ΣuM represents the covariance between SNV u and allM
markers and ΣMM represents the covariance between all M markers.

We assume that estimates for the two covariances are available from an external reference panel
with n individuals and denote them s = Σ̂Mu, S = Σ̂MM. The corresponding correlation matrices
are c = N · s and C = N · S (with γ and Γ as the corresponding true correlation matrices).
Further, by assuming that SNV u and the trait are independent conditioned on the M markers,
i.e. αu −ΣuMΣ−1MMα = 0, Eq. (1) becomes

âu = au|M = s′S−1a = c′C−1a (2)

One can also choose to impute the Z-statistic instead, as derived by Pasaniuc et al. (2014):

ẑu|M = c′C−1z (3)

with z = a
√
N , when the effect size is small (as is the case in typical GWAS).
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Similar to Pasaniuc et al. (2014), we chose M to include all measured variants within at least
250 Kb of SNV u. To speed up the computation when imputing SNVs genome-wide, we apply
a windowing strategy, where SNVs within a 1 Mb window are imputed simultaneously using the
same set of M tag SNVs the 1 Mb window plus 250 Kb flanking regions on each side.

Summary statistic imputation in the context of genomic data was first described by Wen and
Stephens (2010), where they inferred allele frequencies for an untyped SNV by a linear combination
of observed allele frequencies (BLIMP). Lee et al. (2013) then further extended the method to the
application of linear regression estimates (DIST). Later, Pasaniuc et al. (2014) included a sliding
window, which allowed partitioning of the genome into smaller pieces to facilitate imputation on
a larger scale, and introduced a different shrinkage approach (IMP-G). Since then a few exten-
sions have been published, that mainly concentrate on summary statistic imputation for admixed
populations (Lee et al., 2015a,b; Park et al., 2015) or including covariates (Xu et al., 2015).

Shrinkage of SNV correlation matrix

To estimate C (and c) we use an external reference panel of n individuals. Since the size of C often
exceeds the number of individuals (q � n), shrinkage of matrix C is needed to guarantee that it is
invertible. By applying shrinking, the modified matrix C becomes

Cλ = (1− λ)C + λI (4)

Even though c is not inverted, we still shrink it to curb random fluctuations in the LD estimation
in case of no LD.

cλ = (1− λ)c (5)

Inserting cλ and Cλ, Eq. (2) then becomes

âu = au|M = c′λC
−1
λ a (6)

Note that λ can vary between 0 and 1, with λ = 1 turning C to the identity matrix, while
λ = 0 leaves C unchanged. Here, we mainly focus on λ changing with the reference panel size n:
λ = 2/

√
n (Lee et al., 2014).

2.2 Optimal combination of reference panel subpopulations to match the GWAS
sample

For summary statistics imputation we would like to estimate the local LD structure of each region
in the GWAS population (ΣMM and ΣuM) and to do so we use a (sequenced) reference population,
yielding estimates C and c. Clearly, the closer these estimates are to the real values, the better
the imputation will be (i.e. smaller the estimation error in Eq. (6)). Our aim is to find a weighted
mixture of the reference sub-populations that has an LD structure as similar as possible to the LD
in the GWAS population.

Park et al. (2015) proposed an elegant, generalised approach to weight population LD structure.
Their algorithm Adapt-Mix choses weights (wam) based on optimising an objective function. In the
case of imputation the objective function is the MSE of the (re-)imputed Z-statistics at observed
SNVs. Lee et al. (2015a) developed Distmix, which minimises the Euclidean distance between allele
frequencies of the reference panels and the GWAS study, but ignores the variance-bias trade-off.

While the true LD structure of the actual GWAS population is rarely known, the GWAS allele
frequencies are routinely calculated (even if not always reported for out-dated privacy preserving
reasons) in meta-analytic studies. In the following we show how this information can be exploited
to improve summary statistics imputation.

First, suppose that the reference panel is made up of P subpopulations of sizes n(1), n(2), . . . , n(P ).
Next, we introduce a set of weights w = (n(1), n(2), . . . , n(P ))/n = w1, w2, . . . , wP , which can be
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viewed as the collection of weights that determine the reference population mixture, i.e.
∑P

p=1wp =
1 and wp ≥ 0.

We can calculate the covariance s as a function of these weights (s(w)), i.e. for each subpopulation
we calculate the covariance separately (s(p)), and then combine them, weighted by their weights w:

skl(w) =

P∑
p=1

wp

[
s
(p)
kl + t

(p)
kl

]
, (7)

where t
(p)
kl is the between-group covariance for variants k and l in population p:

t
(p)
kl =

(
ḡpk − ḡk

)(
ḡpl − ḡl

)
(8)

and s
(p)
kl denotes the covariance for variants k and l in population p:

s
(p)
kl =

1

n(p) − 1

n(p)∑
i∈Ip

(gi,k − ḡpk)(gi,l − ḡ
p
l ) (9)

gi,k refers to genotype of variant k for individual i. The overall, mean population genotype
dosage (i.e. twice the allele frequency) is naturally defined as the weighted mean sub-population
genotype dosage ḡk =

∑
pwp · ḡ

p
k and ḡpk being the average genotype dosage in population p:

ḡpk = 1
n(p)

∑
i∈Ip gi,k and Ip refers to the indices of individuals contained in population p.

While the reference panel population sizes are being fixed at n(p) and we defined wp ∝ np, we
could use any arbitrary weights w in order to match a GWAS population, which has different
population proportions than the reference panel. This manipulation of the covariance estimation
can be used to adapt the reference panel population structure towards the population structure
that is observed in GWAS summary statistics.

The corresponding correlation between SNV k and l from a reference panel with specific chosen
weights w is

cwkl =
skl(w)√

skk(w) · sll(w)
(10)

Our goal is to quantify the mean squared error (MSE) between the true GWAS LD matrix
(ΣMM) and the LD matrix estimated from the reference panel (Cw

MM). Since we cannot estimate
the off-diagonal values of the GWAS covariance matrix, we focus on its diagonal elements and
estimate them from the GWAS allele frequencies. The MSE of Eq. (7) for SNV k can be written as

MSE
[
skk(w)

]
= Bias2

[
skk(w)

]
+ Var

[
skk(w)

]
(11)

In short, the MSE of Eq. (7) depends on known quantities (mean genotype dosage ḡpk for SNV
k in population p; sample sizes n(p) of the reference panel population p; average genotype for SNV
k in the GWAS study: ḡobsk ) and the unknown mixing parameter w. Assuming Hardy-Weinberg
equilibrium (HWE), we showed that the variance term is a sixth-degree, while the squared bias is
a fourth-degree polynomial in w. Details to derivations of the MSE are provided in Supplement
A.2.

We aim to find a w that minimises the MSE in Eq. (11) for a set ofM SNVs, for which we know
the allele frequencies ḡobs in the GWAS population and can estimate ḡp from a reference panel:

wVM = arg min
w

M∑
k=1

MSE
[
skk(w)

]
(12)
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with
∑P

p=1wp = 1 and wp ≥ 0. We call this method variance matching (vm), as we are using

the GWAS allele frequencies to match genotype variances. Parameter wVM gives us an estimation
of the population weights used in Eq. (7).

Finally, we substitute wVM into Equation Eq. (10) and plug it into Eq. (6):

âu = au|M = cw
′

λ (Cw
λ )−1a (13)

Detailed derivations of Eqs. (7) to (12) can be found in Supplement A.

2.3 Reference panels

As reference panels we used genetic data from the 1000 Genomes Project Consortium (2010).

2.4 Simulation

2.4.1 Simulation of GWAS summary statistics

For simulation of GWAS summary statistics we used data from the five European subpopulations
CEU, GBR, FIN, TSI and IBR of the 1000 Genomes project (1KG). We chose to up-sample chromo-
some 15 using HAPGEN2 (Su et al., 2011) to 5′000 individuals for each subpopulation, yielding a
total of 25′000 individuals. Of these 5000 individuals per population we used half each to generate
a GWAS with an in silico phenotype. The remaining 12′500 individuals were used as reference
panel for summary statistic imputation.

We split chromosome 15 into 74 disjoint regions of 1.5 Mb. Due to the sliding window imputation
approach we did not include regions at the very start and end of the chromosome. In each region
we chose a causal variant g randomly from all SNVs with minor allele frequency between 0.05
and 0.2. We simulated an in silico phenotype y using a normal linear model y = βg + ε with
ε ∼ N (0, 1− β2 · 2q(1− q)), where q is the allele frequency of the causal SNV and β was selected
such that the explained variance β2 · 2q(1 − q) is set to 0.02. To obtain the association summary
statistics we ran linear regression for each variant k in the 1.5 Mb region, yielding effect size and
standard error estimates ak, se(ak), from which we calculated the standardised effect size estimate
ak/se(ak)/

√
N (N being the sample size).

2.4.2 Applying summary statistics imputation and comparing methods

We constructed GWAS genotype datasets with a fraction w+ of Finnish individuals. The total
number of individuals in the GWAS genotype dataset was constant at 2’500. Next, we calculated
a re-weighted C from our reference panel (with weight w). We then created different scenarios
by repeating this procedure for many different GWAS compositions (i.e. we varied the Finnish
fraction w+ between 0 and 1 in 0.2 increments) and weights w of Finnish for the correlation matrix
of the reference panel (which we varied between 0 and 1 in 0.05 increments). For each scenario,
we calculated three MSE for a set of imputed SNVs (Eq. (14)): first, the MSE of the standardised
effect size; second, for the variance matching approach we calculated the MSE of (the diagonal of)
matrix C estimated from the reference panel; third, for the Adapt-Mix approach we calculated the
MSE of the standardised effect sizes of observed SNVs, as described in Park et al. (2015).

h(w) =

M∑
m=1

(
cw

′
(Cw)−1a−m − am

)2
(14)

By minimising each error measurement over all w, the first MSE will determine w∗, which gives
the theoretically best possible solution.
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w∗ = arg min
w

h(w) (15)

In our approach, the estimated MSE of matrix C will determine wVM. While in the best
competing algorithm, Adapt-Mix, the minimised MSE of the reimputed Z-statistics determines the
value of wAM. We chose to vary the proportion of the Finnish population, as it differs the most
from other populations in Europe in terms of allele frequencies and LD structure Lim et al. (2014),
McEvoy et al. (2009). The remaining four populations of the European 1000 Genomes populations
share equal weights in all scenarios. In our simulation we are looking at HapMap SNVs only as
tag SNVs. There are between 167 and 1103 tag SNVs per region with mean 635. We imputed on
average 1’743 SNVs per region (out of 74 in total).

3 Results

Summary statistics imputation works through combining summary statistics from a set of SNVs
with pairwise SNV LD information obtained from an external reference panel. We extended the
most recent summary statistics method (Pasaniuc et al., 2014) by an optimal assembly of the LD
matrix from a mixture of reference panels. Because our approach optimises the diagonal of the
covariance matrix, we term our method variance matching . We compare our it to Adapt-Mix by
Park et al. (2015) and a benchmark solution.

3.1 Simulation framework

To assess variance matching we used upsampled datasets, yielding 25′000 European individuals in
total. GWASs were simulated using in silico phenotypes. This semi-simulation framework allowed
us to study the impact of the reference panel sizes (up to 12′500) and their composition.

In brief, for various ancestry compositions of simulated GWAS sample we computed association
summary statistics, masked a fraction of SNVs and imputed them. When imputing a single SNV
we used tag SNVs within at least 250 Mb. For the imputation of an entire region we used a sliding
window of 1 Mb with 250 Kb flanking regions on each side.

More specifically, for each simulated GWAS, we fixed the proportion of the Finnish subpopulation
of the European reference panel of 1000 Genomes Project Consortium (2010) in the GWAS, then let
the proportion of this population vary in the reference panel used for LD estimation. We repeated
this for different Finnish proportions in the GWAS and in the reference panel (varying from 0 to
1), calculated each time the MSE between the estimated and the imputed standardised effect sizes
(h(w), Eq. (14)) and determined the benchmark weight that yields a minimal MSE (denoted as w∗,
Eq. (15)). In parallel, we applied for each fixed proportion of Finnish in the GWAS the variance
matching and the Adapt-Mix approach to determine their optimal weight — wVM and wAM — in
the reference panel (Figure S1). To identify other factors that influence the choice of weights, we
grouped the 637′153 SNVs into population specific (76′013) and population non-specific (561′140)
groups (based on FST ≥ 1% vs FST < 1%, respectively), and ran the simulation from small to large
reference panels (n = {500, 1′000, 2′500, 5′000, 12′500}).

3.2 Improving summary statistics imputation via variance matching

Ultimately, we are interested in two comparisons. First: the optimisation of weights versus the
ad-hoc reference panel (which has roughly equal weights in the European sub-panel, i.e. w =
0.2). Second: how Adapt-Mix and our notvel method variance matching perform compared to the
benchmark estimation (the best possible choice if we were to know the true effect size). These two
comparisons are presented in Fig. 1, where we compare the MSE of the three optimal weights (wVM,
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wAM, w∗) determined by each method relative to the MSE when using equal weights: MSE-ratio
= h(w)/h(w = 0.2), with h denoting the MSE between the estimated and the imputed effect sizes
described in Eq. (14).

From the extensive simulation results (Fig. 1) it is clear, that the ad-hoc reference panel with
equal weights works best (i.e. MSE-ratio close to 1) in two scenarios: for an equally partitioned
GWAS (independent of reference panel size or whether the variants are population specific) and
when the reference panel is small in size (n <= 1000). For all other scenarios, i.e. either n > 1000 or
the fraction of Finnish in the GWAS is not 0.2, the MSE-ratio is well below 1, therefore indicating
a smaller MSE for the optimisation scenario. Note that the benchmark MSE-ratio is, by definition,
always lower than Adapt-Mix and variance matching (as it the best theoretically possible MSE).

When comparing variance matching and Adapt-Mix to the benchmark solution, we find that
both optimising methods show a similar trend (greater advantage of using specific weights for
population specific markers, large reference panel and heterogeneous GWAS). Except for three
instances (population non-specific variants when imputed with a reference panel with 5′000 indi-
viduals and a GWAS with 40% or 80% Finnish individuals, and specific variants when imputed
with a reference panel with 12′500 individuals and a GWAS with 100% Finnish individuals), vari-
ance matching offers equal or lower MSE than Adapt-Mix . When comparing the median MSE-ratio
of the optimisation methods to the benchmark , Adapt-Mix is performing worst among population
specific variants, a reference panel size of 500 and a GWAS with Finnish individuals only. Variance
matching is performing worst in similar conditions, but when the GWAS consists of no Finnish
individuals.

For a reference panel of 500 individuals, population specific variants and a GWAS with 80%
Finnish individuals we observe a median MSE-ratio for the theoretically best possible reference
panel composition of 0.886, while it is 0.892 for variance matching and 0.926 for Adapt-Mix . When
increasing sample size to 12′500 the MSE-ratio for the benchmark solution using becomes 0.648
and 0.658 for variance matching and Adapt-Mix , respectively.

For variants that are not population specific we see a similar trend with increasing fraction of
Finnish individuals and reference panel size, but as expected, less pronounced. For a reference
panel of 500 individuals, population unspecific variants and a GWAS with 80% Finnish individuals
we observe a median MSE-ratio of 0.957, while it is 0.959 for variance matching and 0.966 for
Adapt-Mix . When increasing sample size to 12′500 it drops to 0.742, 0.747 and 0.751, for w∗,
variance matching and Adapt-Mix , respectively.

For details to wVM, w∗ and wAM check Fig. S1.

4 Discussion

Summary statistics are used more and more frequently for downstream analyses, but are not always
available for all desired variants. These missing summary statistics can, however, be directly
imputed from publicly available data using summary statistics imputation. The covariance matrices
required for this are difficult to estimate from publicly available reference panels due to their
size and population structure, requiring their careful adjustment with shrinkage parameters. To
address these limitations, we extended the summary statistics imputation method as presented in
Pasaniuc et al. (2014) with an optimal combination of covariance matrices form reference panel
subpopulation.

Choice of reference panel

Formulae for summary statistics imputation have two components: GWAS summary statistics and
LD matrix estimates which represent the correlation between SNVs. The latter matrix is highly
dependent on the reference panel composition: if the ancestry is different between the GWAS and
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Figure 1: Comparison of methods accounting for population structure. This figure shows
the comparison of each w-optimisation method with respect to choosing the full European
panel of 1000 Genomes project (which corresponds to equal weights). Each vertical line
represents a summary of 74 simulated regions (the dot being the median, the line range
representing 0.025 to 0.975 quantile). The x-axis shows the three different strategies:
using theoretical best possible weights in black (if the estimated effect sizes were to
be known), variance matching in green and Adapt-Mix in blue. The y-axis shows the
MSE-ratio. The MSE-ratio represents the MSE when choosing the weights according
to the respective optimisation relative to the MSE when choosing equal weights for all
populations (hence a weight of 0.2 for all five populations), i.e. in black h(w∗)/h(0.2), in
green h(wVM)/h(0.2), and in blue h(wAM)/h(0.2). Function h(w) is the MSE between
the estimated and the imputed effect sizes described in Eq. (Eq. (14)). Values on the
y-axis smaller than 1 show a smaller MSE in imputation with a specific w compared to
the choice of an unadjusted reference panel with equal weights, while values larger than 1
indicate a higher MSE. Each row represents a subset of different sizes of reference panels,
while a msubset of the different Finnish fractions in the GWAS populations are grouped
by column. Variants are also grouped according to FST , with population specific results
being on the lower and population unspecific results on upper part of the graph. Figure
S3 shows the same graph for all reference panel sizes and GWAS compositions. Table
Table 1 provides the same information in a text file. Table B provides the results for all
reference panel sizes and fraction of Finnish in the GWAS.
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FST Sample size Method Fraction Finnish in GWAS
reference panel 20% 60% 80%

0-1% 500 w∗ 0.996 (0.97-1) 0.974 (0.925-1) 0.957 (0.886-0.996)
0-1% 500 wVM 1 (0.996-1.01) 0.975 (0.929-1.02) 0.959 (0.89-1.02)
0-1% 500 wAM 1 (0.984-1.02) 0.985 (0.935-1.03) 0.966 (0.892-1)

0-1% 5000 w∗ 1 (0.974-1) 0.923 (0.798-0.976) 0.8 (0.652-0.927)
0-1% 5000 wVM 1 (0.999-1.02) 0.924 (0.803-0.997) 0.805 (0.656-0.937)
0-1% 5000 wAM 1 (0.997-1.03) 0.93 (0.821-0.981) 0.805 (0.667-0.947)

0-1% 12500 w∗ 1 (0.975-1) 0.891 (0.769-0.966) 0.742 (0.582-0.884)
0-1% 12500 wVM 1 (0.996-1.02) 0.892 (0.77-0.977) 0.747 (0.596-0.895)
0-1% 12500 wAM 1 (0.994-1.03) 0.9 (0.774-0.969) 0.751 (0.591-0.913)

1-100% 500 w∗ 0.979 (0.781-1) 0.928 (0.637-1) 0.886 (0.596-1)
1-100% 500 wVM 1 (0.983-1.02) 0.937 (0.781-1.1) 0.892 (0.66-1.12)
1-100% 500 wAM 1 (0.936-1.15) 0.969 (0.805-1.04) 0.926 (0.733-1.07)

1-100% 5000 w∗ 0.996 (0.906-1) 0.853 (0.555-0.99) 0.708 (0.377-0.951)
1-100% 5000 wVM 1 (0.986-1.03) 0.861 (0.559-1.09) 0.722 (0.38-1.06)
1-100% 5000 wAM 1 (0.982-1.1) 0.875 (0.56-1.05) 0.736 (0.386-1)

1-100% 12500 w∗ 0.995 (0.908-1) 0.814 (0.507-0.975) 0.648 (0.334-0.908)
1-100% 12500 wVM 1 (0.99-1.03) 0.83 (0.522-1.03) 0.658 (0.34-0.951)
1-100% 12500 wAM 1 (0.968-1.08) 0.845 (0.522-1.01) 0.658 (0.341-0.944)

Table 1: This table presents the results corresponding to Figure Fig. 1: each entry represents the
median MSE (in bold) and the 0.025 - 0.975 quantile in brackets for different Finnish
fractions in the GWAS populations are (columns), FST , different methods (w∗, wVM and
wAM) and reference panel size.
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the reference panel, the LD estimation will be biased and yield erroneous summary statistics. An
adequate reference panel is therefore critical to the accuracy of summary statistics imputation,
unlike genotype imputation where the Hidden Markov Model makes panel composition much less
relevant. Most often, the reference panel for summary statistics imputation is often chosen ad-hoc,
guessing the underlying GWAS population admixture.

Variance matching and Adapt-Mix

To tackle this problem, Park et al. (2015) proposed Adapt-Mix and we propose variance matching
(Eqs. (12) and (13)). Both methods assume that the GWAS sample is composed of a mixture (or
admixture) of populations and that we have a separate reference panel for each population. They
then calculate the local LD structure as a linear combination of population-specific estimates, where
the weight of each population depends either on the Z-statistics (Adapt-Mix ) or the allele frequency
(variance matching). Variance matching performed consistently, yet not significantly better than
Adapt-Mix in 57 out of 60 subgroups that we explored (95% quantile ranges are overlapping in
Figure S3). We also found, that variance matching offers performance very close to the best
possible reference panel composition w∗.

Variance-bias tradeoff

Although the aim is to approximate the true mixing weights in the GWAS sample, the weights
returned will usually deviate from that in an attempt to minimise the MSE. For example, given
a GWAS performed in an exclusively Finnish population and using the 1000 Genomes project
reference panel, we could either use only the 99 Finnish individuals (weight of 1 for the Finnish
population, 0 for others), or select all 503 individuals of the European panel (weight of about
0.2 for the Finnish population). Using only Finnish individuals would more closely match the
GWAS allele frequencies and reduce bias, however using the full panel would increase the precision
of the estimated correlation matrix, reducing variance (Figure S2). Our approach aims to strike
a balance between bias and variance by finding an optimal weight, somewhere between 0.2 and
1 in this example. We find that for smaller reference panels (n = 500) the optimal weight tends
towards lower values, relying more on information from other populations, whereas for larger panels
(n = 12′500) the optimal weights tend to be closer to the true underlying population composition
in the GWAS (Fig. 2).

Limitations

Variance matching assumes that the population admixture that is reflected in the variance of tag
SNVs (diagonal in matrix C) is the same as the covariance between tag SNVs (off-diagonal of C)
as well as between tag SNVs and SNVs to impute (matrix c). Furthermore, our analytical solution
to Eq. (11) involves approximations of the variance and the bias (Eq. (S7) and (S8)).

In general, finding a reference panel whose ancestry composition matches that of the GWAS
is difficult because the mixture/admixture of populations is usually unknown. With variance
matching we are addressing this by composing a matching LD matrix. However, there are other
challenges too: publicly available reference panels have a limited number of populations with a
limited number of individuals. To this end, we could not validate our approach in real data as
diverse reference panels with sample sizes > 500 per population are not publicly available at this
time.

Due to lack of large, sequenced reference panels we used an upsampling technique called HAP-
GEN2 (Su et al., 2011), which limits the lower bound of the global allele frequency to 1/(2 · 503).
Finally, the outcome used for the simulated GWAS is based on one causal variant with an explained
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Figure 2: Comparing w determined by different methods. This figure compares the weights
chosen by all three optimisation methods for population specific variants: w∗ as best
possible weight (black), wVM by variance matching (green), and wAM by Adapt-Mix
(blue). w∗ represents the benchmark weight: the best possible choice if we were to know
the true effect size, but given the same reference panel as for Adapt-Mix and variance
matching . The x-axis displays the weights for the reference panel chosen by each method,
and the y-axis shows the density. The results are split into columns and rows, with the
rows for different reference panel sizes and the columns different Finnish fractions in
the GWAS populations (also highlighted with the vertical dashed line). Each window
contains w∗, wVM and wAM for each of the 74 regions.
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variance of 0.02, therefore it might not be fully representative for a polygenic phenotype with more
than one causal variant.

Finally, our method is not applicable to GWAS studies that decided not to share allele frequency
information.

5 Conclusion

With variance matching we present an extension to the published summary statistics imputation
method (Pasaniuc et al., 2014) by allowing the LD structure to be adaptively estimated according
to population admixture. To evaluate this extension, we performed GWAS on upsampled 1000
Genomes project data in combination with a simulated phenotypes. Due to the bias-variance
trade-off, accounting for differences in population admixture between GWAS and reference panel
yields better results with increasing panel size.
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