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Abstract 
 
 
Background 
 
There is now convincing evidence that pleiotropy across the genome contributes to the 

correlation between human traits and comorbidity of diseases. The recent availability of 

genome-wide association study (GWAS) results have made the polygenic risk score 

(PRS) approach a powerful way to perform genetic prediction and identify genetic overlap 

among phenotypes.  

 

Methods and findings 

Here we use the PRS method to assess evidence for shared genetic aetiology across 

hundreds of traits within a single epidemiological study – the Northern Finland Birth 

Cohort 1966 (NFBC1966). We replicate numerous recent findings, such as a genetic 

association between Alzheimer’s disease and lipid levels, while the depth of phenotyping 

in the NFBC1966 highlights a range of novel significant genetic associations between 

traits.  

 

Conclusions 

This study illustrates the power in taking a hypothesis-free approach to the study of 

shared genetic aetiology between human traits and diseases. It also demonstrates the 

potential of the PRS method to provide important biological insights using only a single 

well-phenotyped epidemiological study of moderate sample size (~5k), with important 

advantages over evaluating genetic correlations from GWAS summary statistics only. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2017. ; https://doi.org/10.1101/203257doi: bioRxiv preprint 

https://doi.org/10.1101/203257
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 

The	emergence	of	large-scale	GWAS	results	has	demonstrated	an	enrichment	of	genetic	variants	

affecting	multiple	phenotypes,	 confirming	 that	pleiotropy	 is	a	common	 feature	of	 the	human	

genome	[1,2].	Several	statistical	genetics	methods	have	been	developed	to	quantify	this	shared	

genetic	architecture	formally,	such	as	bivariate	genome-wide	complex	trait	analysis	(GCTA),	LD	

Score	regression	and	the	polygenic	risk	score	(PRS)	approach	[3-5].	Applying	these	methods,	a	

large	 number	 of	 studies	 have	 tested	 shared	 genetic	 aetiology	 between	 two	 traits,	 and	more	

recently	these	have	been	expanded	to	estimate	pairwise	genetic	overlap	across	multiple	traits	

[6-8].	

 

The PRS approach utilises GWAS summary statistics to produce individual-level risk or 

profile scores and is, therefore, the technique that offers most hope for future 

personalised or precision medicine [9,10]. Single nucleotide polymorphisms (SNPs) 

associated with a phenotype below a specific P-value threshold are used to produce a 

score that predicts the risk of that clinical outcome or infers its trait values. Individual 

polygenic scores can then be used to predict other traits in a regression across a study 

sample to expose genetic overlap between traits. The key benefits of using the PRS 

method over alternatives relate to modelling flexibility and statistical power. Exploiting 

individual-level cohort data allows a greater number of phenotypes and models to be 

tested [11], relative to relying on GWAS summary statistics only. This can enable greater 

exposure of causal pathways than via application of LD Score Regression [6]. Moreover, 

GCTA requires large-scale (N > 10k) individual-level data on all tested phenotypes for 
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sufficient power, while LD Score Regression requires large-scale GWAS summary 

statistics on all phenotypes, yet the PRS method is well-powered from using only large-

scale GWAS data for the base phenotypes and relatively small-scale (N < 10k) individual-

level data on the target traits. A potential limitation of PRS analyses is that subject overlap 

between the GWAS samples and the target cohort samples can lead to false positive 

associations. However, this can be addressed directly by recalculating the base GWAS 

with overlapping cohorts removed, or mathematically by using their GWAS results in a 

recalculation of the meta-analysis GWAS excluding their effect (see Methods). 

 

For the current analysis, PRS were generated in the NFBC1966 participants in relation to 

48 phenotypes with large-scale GWAS results available. These PRS were used to predict 

over 100 traits in the NFBC1966 cohort data. The NFBC1966 contains detailed 

information on clinical outcomes and health-related behaviour, offering an opportunity to 

test many traits and combinations not previously investigated. Hence, the depth of 

phenotyping in the NFBC1966 offer a unique possibility to shed further light on the genetic 

overlap among phenotypes. 

 

Methods 

5404 participants with genotype data on 364,590 SNPs were available in the NFBC1966 

[12]. Baseline data were collected on maternal and offspring demographic, clinical and 

anthropometric traits in early life. Follow-up data were collected at 14 and 31 years of age 

on a range of traits, including blood pressure, BMI, cardiovascular fitness, atopy, asthma, 
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infections and lifestyle traits. Blood samples for DNA, lipids, glucose, insulin and 

hormones were also taken. Polygenic risk scores were calculated for each of the 5404 

individuals using their genome-wide data and 48 publicly available GWAS (see S1 Table). 

These were tested for their association with 143 traits measured in the NFBC1966 (see 

S2 Table). Subject overlap between the GWAS summary statistics and the NFBC1966 

would cause inflation of the results and so the contribution of the NFBC1966 to the 

discovery GWAS was either: (1) removed directly by reanalyzing the discovery GWAS 

with the NFBC1966 data excluded, or if this was not an option then, (2) by recalculating 

what the meta-analysis GWAS results would have been had the NFBC1966 data been 

removed based on the effect size estimate and corresponding standard error for each 

SNP based on GWAS (conducted in the same way as the meta-analysis GWAS) 

performed on the NFBC1966 only. The latter was enabled via the inverse-variance meta-

analyses formulae (this recalculation is approximate if the less commonly used sample-

size weighted meta-analysis method was used in the discovery GWAS) as follows:  

 

𝛽"## = 	
𝛽&𝜔&(

&)*

𝜔&(
&)*

																																																																																																																															(1) 

𝑆𝐸"## = 	
1

√ 𝜔&(
&)*

																																																																																																																															(2) 

where 𝛽"## is the effect size estimate meta-analysed across n cohorts, where the 𝛽& for 

each cohort i is weighted by the inverse variance of its standard error such that its weight, 

𝜔&, equals 1 𝑆𝐸&2.  

So, to find the effect size estimate,	𝛽"45, and SEADJ, , with cohort k removed, by definition: 
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The polygenic risk score software PRSice [13] was used for the data analysis, which 

involved performing linear (continuous traits) or logistic (binary traits) regression of 
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NFBC1966 target phenotypes on PRS, with PRS computed in relation to each of the 48 

GWAS summary statistic results, to test for their association. The SNPs in the base 

(discovery GWAS) had ambiguous SNP genotype calls removed and strands flipped 

where necessary. SNPs in linkage disequilibrium (LD) were “clumped” using a threshold 

of r2 < 0.1 across 250kb windows to ensure that those analysed are largely independent 

[13]. Ancestry informative covariates were generated from the target genotype data using 

Principal Component Analysis (PCA), and the first 10 PCs were included in the 

regressions to control for population stratification. Further analyses also controlled for 

sex, socio-economic status and BMI to potentially increase power or expose mediation 

effects (e.g. see S3 Fig, S4 Fig, S5 Fig, S6 Fig and S7 Fig). High-resolution scoring was 

performed in PRSice to identify the most predictive PRS for each trait from the large 

number of PRS that can be formed by inclusion of groups of SNPs with different GWAS 

association P-values thresholds [13]. While this makes the P-value for association 

between the PRS and target phenotypes over-fit, we apply a significance threshold of P 

= 0.004 for each association test based on a permutation study for high-resolution scoring 

by Euesden et al. [13]. Bonferroni correction for the large number of genetic-phenotype 

tests performed (6864) produces a conservative significance threshold of P < 5x10-7 

(0.004/6864), with thresholds of P < 0.001 and P < 0.01 used to indicate potential 

associations in the data. 

Traits pertaining to socio-economic status and exercise measures were originally coded 

with the highest number on the questionnaire pertaining to the lowest measure of each 
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trait (e.g. “5” for the lowest ability for “running 5km”; see S3 Table), so these were recoded 

in the opposite direction to provide greater clarity in the results. 

PRS-sex interactions were also tested for the 162 genetic-phenotype associations that 

exceeded the significance threshold (P < 5x10-7) in linear models with the corresponding 

outcome trait regressed on PRS, sex, 10 PCs and PRS*sex interaction term. Bonferroni 

correction for the number of interactions tested produces a conservative significance 

threshold of P < 3x10-4 (0.05/162). 

Results 

PRS were calculated for 5404 participants with genotype data available in NFBC1966 

using publicly available GWAS summary statistics (see S1 Table). The PRS across the 

sample were tested for associations with phenotypes from data collected both in early life 

and at 31 years in the NFBC1966 participants. Data included anthropometric 

measurements, blood measurements (e.g. cardiometabolic risk factors), hormone levels, 

and questionnaire data at baseline and 31 years, socio-economic factors, medical history 

and health related behaviours. Details of all phenotypes are provided in S3 Table. 

Altogether, PRS were computed using 48 GWAS meta-analysis summary statistics and 

were tested for their association with 143 NFBC1966 phenotypes, corresponding to 6864 

tests in total. 

 

We grouped the results into 6 categories of related target phenotypes: medical conditions 

(Fig 1), metabolic traits (Fig 2), lifestyle and social factors (Fig 3), health (S1 Fig), and 

anthropometrics (S2 Fig). We present the results corresponding to each category by heat 
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maps depicting the associations between each PRS and each target phenotype, with 

significant associations highlighted by asterisks. 

 

Given the unusually large number of results that an analysis of this kind produces, and 

its relative novelty, we recommend considering the following points while inspecting the 

results: (i) the statistical power is a function of the sample sizes of both the discovery 

GWAS and target data, and while we have removed those that are highly underpowered 

there remains high variation in power among the results, (ii) the observation of genetic 

associations limits the opportunity for confounding to produce spurious associations but 

the results here do not distinguish between two main plausible explanations for 

associations: horizontal pleiotropy (genetic effect is on the two traits directly) and vertical 

pleiotropy (genetic effect is on one trait, which has a downstream effect on the second 

trait) [2] and the order of any causation is not necessarily from discovery to target trait 

(see Discussion), (iii) the same basic adjustment for covariates (see Methods) is 

performed across all tests, so results may change qualitatively with adjustment of risk 

factors particularly relevant to the target trait under study, (iv) given the lack of 

mechanistic insight and replication in these results, they should be viewed more as 

hypothesis-generating than confirmatory. Our hope is that particular results will motivate 

and guide follow-up investigations by researchers with expertise in the corresponding 

phenotypes. The results that we highlight and summarise below reflect only those that we 

consider some of the more interesting results and are necessarily only a subset of the 

potentially important results. 
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Fig 1. Heat map showing associations between polygenic risk scores from GWAS 

traits (X-axis) and NFBC1966 traits (Y-axis) for self-reported diseases, medical 

and psychiatric conditions, verified or treated by a doctor. Asterisks denote 

different levels of evidence according to P-value: *** = P < 5x10-7, ** = P < 0.001, * = P 

< 0.01. Red r values indicate positive correlations, while blue r  values indicate negative 

correlations. 

 

Fig 1 shows associations between the 48 PRS and 46 NFBC1966 medical conditions 

that were either self-estimated by the participant or self-reported as being verified by a 

physician; these include metabolic disorders, psychiatric disorders, infectious diseases 

and allergies. None of the associations in this category were significant after applying the 

stringent Bonferroni correction for multiple testing, which may reflect the small number of 
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cases of many of the conditions in the sample. However, there were a number results 

with suggestive evidence (P < 0.001) that confirm expectations or that may of interest for 

follow-up studies. For example, the associations between schizophrenia PRS and 

depression, schizophrenia and psychosis are as expected, as is that between Parkinson’s 

disease PRS and self-reported neurological disease [14-16]. The positive association 

between heart disease PRS and migraine is supported by epidemiological research 

[17,18], but is in contrast with previous genetic studies suggesting that the genetic 

component for migraine with aura is protective for heart disease [19]. Moreover, the PRS 

for HDL cholesterol, a proposed protective factor for cardiovascular diseases [20], was 

negatively associated with gallstones [21], follicle stimulating hormone with self-reported 

cancer [22], and thyroid stimulating hormone with asthma [23]. The Cannabis smoking 

PRS was positively associated with asthma, inborn heart disease and cardiac 

insufficiency [24,25]. There are also several suggestive associations relating to 

psychological trait PRS. Positive affect PRS is positively associated with reduced eczema 

[26], extraversion PRS is positively associated with chlamydia, supporting literature 

linking extraversion to high risk sexual behaviour [27], the openness PRS is positively 

associated with mental health problems [28-30], while the PRS on environmental 

sensitivity is negatively correlated with angina and cancer [31,32]. 
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Fig 2. Heat map showing genetic associations between polygenic risk scores of 

GWAS traits (X-axis) and NFBC1966 traits (Y-axis) for cardiometabolic 

measurements from blood samples. Asterisks denote different levels of evidence 

according to P-value: *** = P < 5x10-7, ** = P < 0.001, * = P < 0.01. Red r values indicate 

positive correlations, while blue r values indicate negative correlations. 

 

Fig 2 depicts the associations between the 48 PRS and 19 NFBC1966 cardiometabolic 

traits. There are a large number of significant results here, including many that would be 

expected based on the epidemiological literature. Some associations have been 

observed in the genetic literature previously, such as between BMI PRS and the major 

lipids (LDL, HDL, cholesterol) and C-reactive protein [33], while others are novel, such as 
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between the lipids and testosterone, sex hormone binding globulin and insulin [34]. A 

genetic overlap between Alzheimer’s disease and plasma lipids HDL, LDL and 

triglycerides was replicated [35], but there were additional associations with total 

cholesterol and VLDL here. VLDL also shows suggestive evidence of associations with 

the PRS of childhood IQ, ADHD and cigarette smoking, indicating a potentially greater 

role for this lipoprotein than previously thought [38,39]. The associations between 

cardiovascular disease and diabetes PRS and the lipids are as expected from the 

epidemiological literature [36,37], while the suggestive evidence for associations between 

anorexia and neuroticism PRS and insulin support the proposed role for genetics in the 

shared aetiology between insulin and cognitive function [40].  
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Fig. 3 Heat map showing genetic associations between polygenic risk scores of 

GWAS traits (X-axis) and NFBC1966 traits (Y-axis) from questionnaires on 

lifestyle and social factors. Asterisks denote different levels of evidence according to 

P-value: *** = P < 5x10-7, ** = P < 0.001, * = P < 0.01. Red r  values indicate positive 

correlations, while blue r values indicate negative correlations. 

 

Fig 3 shows the associations between the 48 PRS and 38 NFBC1966 lifestyle and social 

factors, mostly comprising occupation, smoking and alcohol consumption measures. The 

results pertaining to education highlight the potential for mediation by lifestyle to produce 

genetic pleiotropy; for example, the college and ‘years in education’ PRS are negatively 

associated with beer/cider and wine amount but positively associated with wine 
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frequency, which may reflect the adoption of different social lifestyles according to 

attendance at university and adulthood socio-economic position. This is supported by the 

associations between the education PRS and socio-economic status measures here, and 

also by twin studies linking education and health behaviours [41, 42]. The PRS for HDL 

is positively correlated with most of the alcohol consumption measures and negatively 

correlated with the smoking measures, while the opposite pattern is observed for the 

Triglycerides PRS. However, both the HDL and Triglycerides PRS have strong positive 

associations with the Oral Contraceptive Pill (OCP), which most likely reflects the impact 

of increased lipid levels among individuals on OCP in the lipids GWAS samples; that is, 

genetic factors affecting uptake of OCP may have been captured by the lipids GWAS due 

to the lipid-altering effect of OCP. Birth weight PRS was positively associated with both 

mother’s age and father’s age. This reflects findings in the literature linking lower maternal 

age with increased odds of low birth weights, although the association is U-shaped [43]. 

It has been suggested that social disadvantage underlies the low maternal age-low birth 

weight link [44]; nevertheless, our data suggest that whatever the underlying causal factor 

is, it is under a degree of genetic control. 

 

S1 Fig and S2 Fig display the associations between the 48 PRS and anthropometrics 

and health traits. The associations relating to traits such as height, weight, blood 

pressure, physical activity and diabetes are as expected based on the literature [45-47], 

but the heat maps also reveal potentially novel insights. For example, exercise, especially 

running, is positively correlated with the PRS for childhood IQ, years in education, bipolar 
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disorder and positive affect, but negatively correlated with the ADHD PRS, which may 

highlight a potentially important, but mixed, role of physical activity in psychiatric 

disorders. Exercise has been shown to alleviate psychiatric symptoms [48,49] but since 

there are relatively few individuals in our data with psychiatric disorders then these 

associations may be more likely due to mediation by exercise rather than its therapeutic 

effects. Likewise, the PRS for breast cancer, Crohn’s disease and diabetes are 

associated with several physical activity measures as expected from epidemiological 

findings [50,51]. 

 

PRS*Sex interactions 

Interactions between PRS and sex were also investigated (see Methods). The top results 

from the interaction analyses are presented in Fig 4. A significant effect modification by 

sex of the association between HDL PRS and sex hormone binding globulin levels (P = 

8.13x10-6) was observed, while several other interactions were only marginally significant 

(P < 0.05). These results reflect the general finding in the literature that the autosomal 

genetic influence of complex traits is largely similar between males and females, with 

genotype by sex interactions having very small effect sizes compared to the main effects 

[52]. 
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Fig 4. Bar plot showing top-ranking sex interactions with r values for males and 

females. Y-axis shows phenotype predicted in regression with predicting PRS in 

parenthesis. Asterisks denote evidence for association in terms of P-value: ** = P < 3x10-

4, * = P < 0.05. Full results in S2 table. 
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Discussion 

Here we performed a large-scale systematic survey of genetic-phenotype associations 

using a set of 48 GWAS summary statistics and 143 phenotypes measured in the 

Northern Finland Birth Cohort 1966 (NFBC1966). Novel associations and replications 

were identified across a broad array of clinical, cardiometabolic, anthropometric, 

infectious disease, psychiatric and lifestyle traits. While this study is among a growing 

number of large cross-trait studies investigating shared genetic aetiology among human 

phenotypes, it represents the largest medically focused such study using the polygenic 

risk score (PRS) approach to date [6,7]. The use of the PRS method here highlights the 

potential for exploiting a single epidemiological study to gain insights into the underlying 

aetiology of a huge number of phenotypes, given the rich phenotyping typical of such 

studies. This is in contrast to the popular LD Score regression method [4], which requires 

large GWAS to have been performed on all traits under study and does not allow control 

for covariates.  

 

The large number of GWAS exploited here and depth of phenotyping of the NFBC1966 

meant that patterns of genetic-phenotype associations corresponding to related traits 

emerged, offering both internal support for associations as well as highlighting apparently 

conflicting results that deserve specific follow-up. For instance, associations between 

education PRS and a range of alcohol and smoking measures that potentially indicate 

mediation via socio-economic position, are supported by associations between the 

education PRS and socio-economic status variables. However, while the PRS for HDL 
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and Triglycerides had associations in the opposite direction across almost all target traits, 

they had the same strong positive correlation with the oral contraceptive pill. Therefore, 

a profile of associations is observed among related traits, particularly useful for 

highlighting potential causal pathways and guiding follow-up investigations.  

The central limitation of such a large-scale systematic study is that the testing performed 

on any specific phenotype is inevitably superficial in nature. While some of the genetic-

phenotype associations observed suggest particular aetiological explanations, especially 

when considering groups of related associations, other than sex-interaction analyses we 

performed no further statistical testing to gain additional insights. However, we believe 

that this large-scale hypothesis-free approach to investigating shared genetic aetiology 

among human phenotypes has much value: within a single consistent analysis we have 

revealed evidence for shared genetic aetiology among hundreds of traits and provided 

what may be considered a ‘treasure trove’ of avenues for follow-up investigations. As 

similar studies are performed on different data sets and populations, patterns of 

replicating associations will emerge. The possibility of ‘collider bias’ [53] should be 

considered in relation to any of the observed associations but should be minimized by the 

use of a birth cohort, in which the vast majority of births in Northern Finland in 1966 were 

included and a high proportion of these genotyped. While spurious pleiotropy is also 

possible [2], the fact that these are genetic associations should be a greater indication of 

genuine causation than classical epidemiological associations. For instance, the 

associations observed here between alcohol consumption, smoking, education and 

socio-economic status suggest causal links between these factors, which has implications 
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for epidemiology, in which these measures are often considered as only confounded by 

each other. However, such inference relating to these associations is only speculative 

until rigorous follow-up investigations are performed to uncover causal mechanisms.  

 

This study has demonstrated that taking a hypothesis-free polygenic risk score approach 

to the investigation of shared genetic aetiology among phenotypes is an effective way of 

replicating previous, and uncovering novel, genetic-phenotype associations. The key 

advantage of requiring a relatively small target sample is the opportunity to exploit a 

greater depth of phenotyping, revealing a higher resolution profile of genetic overlap than 

possible otherwise. Our hope is that these genetic-phenotype associations provide a 

foundation and guide for investigations to reveal the pathways that lead to disease, both 

internally within the body, and externally through mediation via behavior and lifestyle. 
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