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Abstract

Background

There is now convincing evidence that pleiotropy across the genome contributes to the
correlation between human traits and comorbidity of diseases. The recent availability of
genome-wide association study (GWAS) results have made the polygenic risk score
(PRS) approach a powerful way to perform genetic prediction and identify genetic overlap

among phenotypes.

Methods and findings

Here we use the PRS method to assess evidence for shared genetic aetiology across
hundreds of traits within a single epidemiological study — the Northern Finland Birth
Cohort 1966 (NFBC1966). We replicate humerous recent findings, such as a genetic
association between Alzheimer’s disease and lipid levels, while the depth of phenotyping
in the NFBC1966 highlights a range of novel significant genetic associations between

traits.

Conclusions

This study illustrates the power in taking a hypothesis-free approach to the study of
shared genetic aetiology between human traits and diseases. It also demonstrates the
potential of the PRS method to provide important biological insights using only a single
well-phenotyped epidemiological study of moderate sample size (~5k), with important

advantages over evaluating genetic correlations from GWAS summary statistics only.
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Introduction

The emergence of large-scale GWAS results has demonstrated an enrichment of genetic variants
affecting multiple phenotypes, confirming that pleiotropy is a common feature of the human
genome [1,2]. Several statistical genetics methods have been developed to quantify this shared
genetic architecture formally, such as bivariate genome-wide complex trait analysis (GCTA), LD
Score regression and the polygenic risk score (PRS) approach [3-5]. Applying these methods, a
large number of studies have tested shared genetic aetiology between two traits, and more
recently these have been expanded to estimate pairwise genetic overlap across multiple traits

[6-8].

The PRS approach utilises GWAS summary statistics to produce individual-level risk or
profile scores and is, therefore, the technique that offers most hope for future
personalised or precision medicine [9,10]. Single nucleotide polymorphisms (SNPs)
associated with a phenotype below a specific P-value threshold are used to produce a
score that predicts the risk of that clinical outcome or infers its trait values. Individual
polygenic scores can then be used to predict other traits in a regression across a study
sample to expose genetic overlap between traits. The key benefits of using the PRS
method over alternatives relate to modelling flexibility and statistical power. Exploiting
individual-level cohort data allows a greater number of phenotypes and models to be
tested [11], relative to relying on GWAS summary statistics only. This can enable greater
exposure of causal pathways than via application of LD Score Regression [6]. Moreover,

GCTA requires large-scale (N > 10k) individual-level data on all tested phenotypes for
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sufficient power, while LD Score Regression requires large-scale GWAS summary
statistics on all phenotypes, yet the PRS method is well-powered from using only large-
scale GWAS data for the base phenotypes and relatively small-scale (N < 10k) individual-
level data on the target traits. A potential limitation of PRS analyses is that subject overlap
between the GWAS samples and the target cohort samples can lead to false positive
associations. However, this can be addressed directly by recalculating the base GWAS
with overlapping cohorts removed, or mathematically by using their GWAS results in a

recalculation of the meta-analysis GWAS excluding their effect (see Methods).

For the current analysis, PRS were generated in the NFBC1966 participants in relation to
48 phenotypes with large-scale GWAS results available. These PRS were used to predict
over 100 traits in the NFBC1966 cohort data. The NFBC1966 contains detailed
information on clinical outcomes and health-related behaviour, offering an opportunity to
test many traits and combinations not previously investigated. Hence, the depth of
phenotyping in the NFBC1966 offer a unique possibility to shed further light on the genetic

overlap among phenotypes.

Methods

5404 participants with genotype data on 364,590 SNPs were available in the NFBC1966
[12]. Baseline data were collected on maternal and offspring demographic, clinical and
anthropometric traits in early life. Follow-up data were collected at 14 and 31 years of age

on a range of traits, including blood pressure, BMI, cardiovascular fitness, atopy, asthma,
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infections and lifestyle traits. Blood samples for DNA, lipids, glucose, insulin and
hormones were also taken. Polygenic risk scores were calculated for each of the 5404
individuals using their genome-wide data and 48 publicly available GWAS (see S1 Table).
These were tested for their association with 143 traits measured in the NFBC1966 (see
S2 Table). Subject overlap between the GWAS summary statistics and the NFBC1966
would cause inflation of the results and so the contribution of the NFBC1966 to the
discovery GWAS was either: (1) removed directly by reanalyzing the discovery GWAS
with the NFBC1966 data excluded, or if this was not an option then, (2) by recalculating
what the meta-analysis GWAS results would have been had the NFBC1966 data been
removed based on the effect size estimate and corresponding standard error for each
SNP based on GWAS (conducted in the same way as the meta-analysis GWAS)
performed on the NFBC1966 only. The latter was enabled via the inverse-variance meta-
analyses formulae (this recalculation is approximate if the less commonly used sample-

size weighted meta-analysis method was used in the discovery GWAS) as follows:

n
=1 Biw;
Ba, = “—— ¢))
ALL Z?=1 wi
1
SEALL - n— (2)

where B,;; is the effect size estimate meta-analysed across n cohorts, where the g; for

each cohort iis weighted by the inverse variance of its standard error such that its weight,
w;, equals 1/SE?.

So, to find the effect size estimate, f,p;, and SEapy, , with cohort k removed, by definition:
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The polygenic risk score software PRSice [13] was used for the data analysis, which

involved performing linear (continuous traits) or logistic (binary traits) regression of
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NFBC1966 target phenotypes on PRS, with PRS computed in relation to each of the 48
GWAS summary statistic results, to test for their association. The SNPs in the base
(discovery GWAS) had ambiguous SNP genotype calls removed and strands flipped
where necessary. SNPs in linkage disequilibrium (LD) were “clumped” using a threshold
of # < 0.1 across 250kb windows to ensure that those analysed are largely independent
[13]. Ancestry informative covariates were generated from the target genotype data using
Principal Component Analysis (PCA), and the first 10 PCs were included in the
regressions to control for population stratification. Further analyses also controlled for
sex, socio-economic status and BMI to potentially increase power or expose mediation
effects (e.g. see S3 Fig, S4 Fig, S5 Fig, S6 Fig and S7 Fig). High-resolution scoring was
performed in PRSice to identify the most predictive PRS for each trait from the large
number of PRS that can be formed by inclusion of groups of SNPs with different GWAS
association P-values thresholds [13]. While this makes the P-value for association
between the PRS and target phenotypes over-fit, we apply a significance threshold of P
= 0.004 for each association test based on a permutation study for high-resolution scoring
by Euesden et al. [13]. Bonferroni correction for the large number of genetic-phenotype
tests performed (6864) produces a conservative significance threshold of P < 5x107
(0.004/6864), with thresholds of P < 0.001 and P < 0.01 used to indicate potential

associations in the data.

Traits pertaining to socio-economic status and exercise measures were originally coded

with the highest number on the questionnaire pertaining to the lowest measure of each
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trait (e.g. “5” for the lowest ability for “running 5km”; see S3 Table), so these were recoded

in the opposite direction to provide greater clarity in the results.

PRS-sex interactions were also tested for the 162 genetic-phenotype associations that
exceeded the significance threshold (P < 5x10) in linear models with the corresponding
outcome trait regressed on PRS, sex, 10 PCs and PRS*sex interaction term. Bonferroni
correction for the number of interactions tested produces a conservative significance

threshold of P < 3x10™ (0.05/162).

Results

PRS were calculated for 5404 participants with genotype data available in NFBC1966
using publicly available GWAS summary statistics (see S1 Table). The PRS across the
sample were tested for associations with phenotypes from data collected both in early life
and at 31 years in the NFBC1966 participants. Data included anthropometric
measurements, blood measurements (e.g. cardiometabolic risk factors), hormone levels,
and questionnaire data at baseline and 31 years, socio-economic factors, medical history
and health related behaviours. Details of all phenotypes are provided in S3 Table.
Altogether, PRS were computed using 48 GWAS meta-analysis summary statistics and
were tested for their association with 143 NFBC1966 phenotypes, corresponding to 6864

tests in total.

We grouped the results into 6 categories of related target phenotypes: medical conditions
(Fig 1), metabolic traits (Fig 2), lifestyle and social factors (Fig 3), health (S1 Fig), and

anthropometrics (S2 Fig). We present the results corresponding to each category by heat
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maps depicting the associations between each PRS and each target phenotype, with

significant associations highlighted by asterisks.

Given the unusually large number of results that an analysis of this kind produces, and
its relative novelty, we recommend considering the following points while inspecting the
results: (i) the statistical power is a function of the sample sizes of both the discovery
GWAS and target data, and while we have removed those that are highly underpowered
there remains high variation in power among the results, (ii) the observation of genetic
associations limits the opportunity for confounding to produce spurious associations but
the results here do not distinguish between two main plausible explanations for
associations: horizontal pleiotropy (genetic effect is on the two traits directly) and vertical
pleiotropy (genetic effect is on one trait, which has a downstream effect on the second
trait) [2] and the order of any causation is not necessarily from discovery to target trait
(see Discussion), (ii) the same basic adjustment for covariates (see Methods) is
performed across all tests, so results may change qualitatively with adjustment of risk
factors particularly relevant to the target trait under study, (iv) given the lack of
mechanistic insight and replication in these results, they should be viewed more as
hypothesis-generating than confirmatory. Our hope is that particular results will motivate
and guide follow-up investigations by researchers with expertise in the corresponding
phenotypes. The results that we highlight and summarise below reflect only those that we
consider some of the more interesting results and are necessarily only a subset of the

potentially important results.
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Fig 1. Heat map showing associations between polygenic risk scores from GWAS
traits (X-axis) and NFBC1966 traits (Y-axis) for self-reported diseases, medical
and psychiatric conditions, verified or treated by a doctor. Asterisks denote
different levels of evidence according to P-value: *** = P < 5x107, ** = P<0.001, *= P
< 0.01. Red rvalues indicate positive correlations, while blue r values indicate negative

correlations.

Fig 1 shows associations between the 48 PRS and 46 NFBC1966 medical conditions
that were either self-estimated by the participant or self-reported as being verified by a
physician; these include metabolic disorders, psychiatric disorders, infectious diseases
and allergies. None of the associations in this category were significant after applying the

stringent Bonferroni correction for multiple testing, which may reflect the small number of
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cases of many of the conditions in the sample. However, there were a number results
with suggestive evidence (P < 0.001) that confirm expectations or that may of interest for
follow-up studies. For example, the associations between schizophrenia PRS and
depression, schizophrenia and psychosis are as expected, as is that between Parkinson’s
disease PRS and self-reported neurological disease [14-16]. The positive association
between heart disease PRS and migraine is supported by epidemiological research
[17,18], but is in contrast with previous genetic studies suggesting that the genetic
component for migraine with aura is protective for heart disease [19]. Moreover, the PRS
for HDL cholesterol, a proposed protective factor for cardiovascular diseases [20], was
negatively associated with gallstones [21], follicle stimulating hormone with self-reported
cancer [22], and thyroid stimulating hormone with asthma [23]. The Cannabis smoking
PRS was positively associated with asthma, inborn heart disease and cardiac
insufficiency [24,25]. There are also several suggestive associations relating to
psychological trait PRS. Positive affect PRS is positively associated with reduced eczema
[26], extraversion PRS is positively associated with chlamydia, supporting literature
linking extraversion to high risk sexual behaviour [27], the openness PRS is positively
associated with mental health problems [28-30], while the PRS on environmental

sensitivity is negatively correlated with angina and cancer [31,32].
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Fig 2. Heat map showing genetic associations between polygenic risk scores of
GWAS traits (X-axis) and NFBC1966 traits (Y-axis) for cardiometabolic
measurements from blood samples. Asterisks denote different levels of evidence
according to P-value: *** = P<5x10”, ** = P< 0.001, * = P< 0.01. Red rvalues indicate

positive correlations, while blue r values indicate negative correlations.

Fig 2 depicts the associations between the 48 PRS and 19 NFBC1966 cardiometabolic
traits. There are a large number of significant results here, including many that would be
expected based on the epidemiological literature. Some associations have been
observed in the genetic literature previously, such as between BMI PRS and the major

lipids (LDL, HDL, cholesterol) and C-reactive protein [33], while others are novel, such as
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between the lipids and testosterone, sex hormone binding globulin and insulin [34]. A
genetic overlap between Alzheimer’s disease and plasma lipids HDL, LDL and
triglycerides was replicated [35], but there were additional associations with total
cholesterol and VLDL here. VLDL also shows suggestive evidence of associations with
the PRS of childhood IQ, ADHD and cigarette smoking, indicating a potentially greater
role for this lipoprotein than previously thought [38,39]. The associations between
cardiovascular disease and diabetes PRS and the lipids are as expected from the
epidemiological literature [36,37], while the suggestive evidence for associations between
anorexia and neuroticism PRS and insulin support the proposed role for genetics in the

shared aetiology between insulin and cognitive function [40].
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Fig. 3 Heat map showing genetic associations between polygenic risk scores of
GWAS traits (X-axis) and NFBC1966 traits (Y-axis) from questionnaires on
lifestyle and social factors. Asterisks denote different levels of evidence according to
P-value: *** = P< 5x107, ** = P< 0.001, * = P< 0.01. Red r values indicate positive

correlations, while blue r values indicate negative correlations.

Fig 3 shows the associations between the 48 PRS and 38 NFBC1966 lifestyle and social
factors, mostly comprising occupation, smoking and alcohol consumption measures. The
results pertaining to education highlight the potential for mediation by lifestyle to produce
genetic pleiotropy; for example, the college and ‘years in education’ PRS are negatively

associated with beer/cider and wine amount but positively associated with wine
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frequency, which may reflect the adoption of different social lifestyles according to
attendance at university and adulthood socio-economic position. This is supported by the
associations between the education PRS and socio-economic status measures here, and
also by twin studies linking education and health behaviours [41, 42]. The PRS for HDL
is positively correlated with most of the alcohol consumption measures and negatively
correlated with the smoking measures, while the opposite pattern is observed for the
Triglycerides PRS. However, both the HDL and Triglycerides PRS have strong positive
associations with the Oral Contraceptive Pill (OCP), which most likely reflects the impact
of increased lipid levels among individuals on OCP in the lipids GWAS samples; that is,
genetic factors affecting uptake of OCP may have been captured by the lipids GWAS due
to the lipid-altering effect of OCP. Birth weight PRS was positively associated with both
mother’s age and father’s age. This reflects findings in the literature linking lower maternal
age with increased odds of low birth weights, although the association is U-shaped [43].
It has been suggested that social disadvantage underlies the low maternal age-low birth
weight link [44]; nevertheless, our data suggest that whatever the underlying causal factor

is, it is under a degree of genetic control.

S1 Fig and S2 Fig display the associations between the 48 PRS and anthropometrics
and health traits. The associations relating to traits such as height, weight, blood
pressure, physical activity and diabetes are as expected based on the literature [45-47],
but the heat maps also reveal potentially novel insights. For example, exercise, especially

running, is positively correlated with the PRS for childhood IQ, years in education, bipolar
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disorder and positive affect, but negatively correlated with the ADHD PRS, which may
highlight a potentially important, but mixed, role of physical activity in psychiatric
disorders. Exercise has been shown to alleviate psychiatric symptoms [48,49] but since
there are relatively few individuals in our data with psychiatric disorders then these
associations may be more likely due to mediation by exercise rather than its therapeutic
effects. Likewise, the PRS for breast cancer, Crohn’s disease and diabetes are
associated with several physical activity measures as expected from epidemiological

findings [50,51].

PRS*Sex interactions

Interactions between PRS and sex were also investigated (see Methods). The top results
from the interaction analyses are presented in Fig 4. A significant effect modification by
sex of the association between HDL PRS and sex hormone binding globulin levels (P =
8.13x10®) was observed, while several other interactions were only marginally significant
(P < 0.05). These results reflect the general finding in the literature that the autosomal
genetic influence of complex traits is largely similar between males and females, with
genotype by sex interactions having very small effect sizes compared to the main effects

[52].
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SHBG ~ PRS(HDL)-

BMI ~ PRS(HDL)

Running ~ PRS(Cigarettes)-

SHBG ~ PRS(Breast cancer)-

HDL ~ PRS(BMI)-

PRS with sex interaction predictng phenotype

CRP ~ PRS(BMI)

-0.20 0.00 0.20 0.28
Adjusted correlation (R)

Fig 4. Bar plot showing top-ranking sex interactions with r values for males and
females. Y-axis shows phenotype predicted in regression with predicting PRS in
parenthesis. Asterisks denote evidence for association in terms of P-value: ** = P< 3x10°

4 * = P<0.05. Full results in S2 table.
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Discussion

Here we performed a large-scale systematic survey of genetic-phenotype associations
using a set of 48 GWAS summary statistics and 143 phenotypes measured in the
Northern Finland Birth Cohort 1966 (NFBC1966). Novel associations and replications
were identified across a broad array of clinical, cardiometabolic, anthropometric,
infectious disease, psychiatric and lifestyle traits. While this study is among a growing
number of large cross-trait studies investigating shared genetic aetiology among human
phenotypes, it represents the largest medically focused such study using the polygenic
risk score (PRS) approach to date [6,7]. The use of the PRS method here highlights the
potential for exploiting a single epidemiological study to gain insights into the underlying
aetiology of a huge number of phenotypes, given the rich phenotyping typical of such
studies. This is in contrast to the popular LD Score regression method [4], which requires
large GWAS to have been performed on all traits under study and does not allow control

for covariates.

The large number of GWAS exploited here and depth of phenotyping of the NFBC1966
meant that patterns of genetic-phenotype associations corresponding to related traits
emerged, offering both internal support for associations as well as highlighting apparently
conflicting results that deserve specific follow-up. For instance, associations between
education PRS and a range of alcohol and smoking measures that potentially indicate
mediation via socio-economic position, are supported by associations between the

education PRS and socio-economic status variables. However, while the PRS for HDL
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and Triglycerides had associations in the opposite direction across almost all target traits,
they had the same strong positive correlation with the oral contraceptive pill. Therefore,
a profile of associations is observed among related traits, particularly useful for
highlighting potential causal pathways and guiding follow-up investigations.

The central limitation of such a large-scale systematic study is that the testing performed
on any specific phenotype is inevitably superficial in nature. While some of the genetic-
phenotype associations observed suggest particular aetiological explanations, especially
when considering groups of related associations, other than sex-interaction analyses we
performed no further statistical testing to gain additional insights. However, we believe
that this large-scale hypothesis-free approach to investigating shared genetic aetiology
among human phenotypes has much value: within a single consistent analysis we have
revealed evidence for shared genetic aetiology among hundreds of traits and provided
what may be considered a ‘treasure trove’ of avenues for follow-up investigations. As
similar studies are performed on different data sets and populations, patterns of
replicating associations will emerge. The possibility of ‘collider bias’ [53] should be
considered in relation to any of the observed associations but should be minimized by the
use of a birth cohort, in which the vast majority of births in Northern Finland in 1966 were
included and a high proportion of these genotyped. While spurious pleiotropy is also
possible [2], the fact that these are genetic associations should be a greater indication of
genuine causation than classical epidemiological associations. For instance, the
associations observed here between alcohol consumption, smoking, education and

socio-economic status suggest causal links between these factors, which has implications
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for epidemiology, in which these measures are often considered as only confounded by
each other. However, such inference relating to these associations is only speculative

until rigorous follow-up investigations are performed to uncover causal mechanisms.

This study has demonstrated that taking a hypothesis-free polygenic risk score approach
to the investigation of shared genetic aetiology among phenotypes is an effective way of
replicating previous, and uncovering novel, genetic-phenotype associations. The key
advantage of requiring a relatively small target sample is the opportunity to exploit a
greater depth of phenotyping, revealing a higher resolution profile of genetic overlap than
possible otherwise. Our hope is that these genetic-phenotype associations provide a
foundation and guide for investigations to reveal the pathways that lead to disease, both

internally within the body, and externally through mediation via behavior and lifestyle.
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