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Abstract 

Background: Gene co-expression networks capture diverse biological relationships between genes, and are 

important tools in predicting gene function and understanding disease mechanisms. Functional interactions 

between genes have not been fully characterized for most organisms, and therefore reconstruction of gene 

co-expression networks has been of common interest in a variety of settings. However, methods routinely 

used for reconstruction of gene co-expression networks do not account for confounding artifacts known to 

affect high dimensional gene expression measurements. 

Results: In this study, we show that artifacts such as batch effects in gene expression data confound 

commonly used network reconstruction algorithms. Both theoretically and empirically, we demonstrate 

that removing the effects of top principal components from gene expression measurements prior to 

network inference can reduce false discoveries, especially when well annotated technical covariates are not 

available.  Using expression data from the GTEx project in multiple tissues and hundreds of individuals, we 

show that this latent factor residualization approach often reduces false discoveries in the reconstructed 

networks. 

Conclusion: Network reconstruction is susceptible to confounders that affect measurements of gene 

expression.  Even controlling for major individual known technical covariates fails to fully eliminate 

confounding variation from the data. In studies where a wide range of annotated technical factors are 

measured and available, correcting gene expression data with multiple covariates can also improve 

network reconstruction, but such extensive annotations are not always available. Our study shows that 

principal component correction, which does not depend on study design or annotation of all relevant 

confounders, removes patterns of artifactual variation and improves network reconstruction in both 

simulated data, and gene expression data from GTEx project. We have implemented our PC correction 

approach in the Bioconductor package ​sva​ which can be used prior to network reconstruction with a range 

of methods. 

Background 

Most cellular processes are carried out by groups of genes that function together, often supported by coordinated 

transcriptional regulation. Based on this, gene co-expression networks seek to identify transcriptional patterns that 

are indicative of functional interactions and regulatory relationships between genes ​[1–3]​, which are not yet fully 

characterized for most species, tissues, and disease-relevant contexts. Therefore reconstructing co-expression 
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networks from high-throughput measurements is of common interest. However, accurate reconstruction of such 

networks remains a challenging problem. 

Co-expression networks can be encoded as undirected graphs where nodes represent genes, and edges between 

nodes indicates correlated expression between genes. Edges indicate a potentially functional relationship between 

the genes ​such as a transcription factor and its gene targets, pairs of genes within a shared pathway, or genes 

within a protein complex​. Widely used network learning methods such as Weighted Gene Co-expression Network 

Analysis (WGCNA)​[4]​ and graphical lasso​[5]​ are based on pairwise associations between genes ​[4,5]​. Some 

specialized methods for reconstruction of co-expression networks consider confounding signals within their 

model​[6,7]​, however most commonly used methods do not directly account for artifacts such as batch effects, 

sequencing artifacts, and unwanted biological effects. It has been shown that these artifacts can affect inference of 

co-expression in high-dimensional gene expression data ​[8]​. Both biological and technical artifacts are known to 

influence expression measurements of gene expression data, sometimes substantially, introducing spurious signals 

including false correlations between genes which are not reflective of a functional relationship​(Chen et al. 2011; 

Leek and Storey 2007)​. Some of the major confounders known to impact RNA-seq measurements include RNA 

quality (like RNA integrity number, RIN), RNA extraction and library preparation batches, sequencing library 

size, mapping artifacts, and GC bias ​[11–14]​. Biological confounders such as age, sex, ancestry, cell type 

heterogeneity and others can lead to apparent co-expression of genes with no direct functional interaction. 

Additionally when gene expression data is collected from organ donors, covariates such as hardy scale, ICD-10 

code for cause of death,  core body temperature, and other subject specific attributes also significantly affect gene 

expression measurements ​[14]​. However, while it has been long known that known and hidden artifacts introduce 

erroneous correlations in the gene expression measurements, many studies yet do not employ any form of 

correction of gene expression data prior to network reconstruction (Supplementary Table 1). Correlations 

introduced by these confounders are often inferred as relationships between genes, leading to  inaccurate network 

structure and erroneous conclusions in downstream analyses ​[6,7,9,15,16]​. Therefore, it is critical to correct gene 

expression data for unwanted biological and technical variation without eliminating signal of interest before 

applying standard network learning methods.  

In this study, we provide a framework for data correction leveraging the structure of scale-free networks. It has 

been shown that real world networks including co-expression networks often have scale-free topology, i.e. the 

node degree distribution of these networks follow a power law​[17–19]​. These networks are characterized by a 

small number of influential hub nodes that link to the remainder of the lower degree nodes. This makes scale-free 

networks more stable and more robust to random perturbations ​[20–25]​. Several studies have employed the 

assumption of scale-free topology to infer high-dimensional gene co-expression and splicing networks ​[4,26]​. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/202903doi: bioRxiv preprint 

https://paperpile.com/c/7ZaXFE/NzmK5
https://paperpile.com/c/7ZaXFE/1uiEb
https://paperpile.com/c/7ZaXFE/1uiEb+NzmK5
https://paperpile.com/c/7ZaXFE/jNRT+SSxK
https://paperpile.com/c/7ZaXFE/KeiPm
https://paperpile.com/c/Jwgzg1/od8K+ao6u
https://paperpile.com/c/Jwgzg1/od8K+ao6u
https://paperpile.com/c/7ZaXFE/0cYky+VLTOi+O8gxx+8VBWA
https://paperpile.com/c/7ZaXFE/8VBWA
https://paperpile.com/c/7ZaXFE/uFAhw+GSFIQ+1twLM+jNRT+SSxK
https://paperpile.com/c/7ZaXFE/MOdTN+Pajfl+zvhCS
https://paperpile.com/c/7ZaXFE/RkkK+nXyK+GZSS+Hx6j+fnEu+RjMZ
https://paperpile.com/c/7ZaXFE/NzmK5+Ss61x
https://doi.org/10.1101/202903
http://creativecommons.org/licenses/by/4.0/


Here, we show that for scale-free networks, principal components of a gene expression matrix can consistently 

identify components that reflect artifacts in the data rather than network relationships.​ ​The number of principal 

components can be estimated in multiple ways, here we use a permutation based scheme​[27]​ for estimating the 

number of principal components as implemented in the sva package​[28]​. We prove that under a scale free network 

that these principal components can then be removed without affecting the signal arising from the true gene 

associations, enabling improved network reconstruction. While not every biologically meaningful network 

structure will satisfy these assumptions, this framework provides a useful and simple approach for removing 

major confounding signals while preserving many biologically relevant relationships. 

Results 

Principal components of gene expression matrix reflect artifacts in the data 

It is now well-known that technical confounders can have broad impact on genomic measurements ​[10,15,29,30]​. 

Since the signal from unmeasured or unmodeled artifacts often accounts for a large fraction of variance in 

genomic data, latent variable methods such as principal components analysis, factor analysis or surrogate variable 

analysis can be used to detect and estimate these artifacts, which can then be adjusted for in downstream analyses 

[31,32]​. These approaches have been successfully applied to gene expression data with methods such as 

RUV​[33]​, SVA​[10]​, and PEER​[29]​. Similar approach have also been applied to identify and control for 

confounders in genetic association studies with methods like EIGENSTRAT​[30,34]​.  

In differential expression analysis, unmeasured confounders may lead to pervasive spurious signal across many 

features (genes) simultaneously​[10,11,33]​. However, it is also possible that a strong biological signal of interest - 

for example cancer versus control status - may lead to biologically meaningful changes in gene expression for 

many genes. When we are interested in differential expression analysis with a single or small set of desired 

biological factors, supervised latent variable methods such as SVA, RUV, and PEER can adjust the estimation of 

latent confounders to ensure that relevant biological signal is retained​[10,15,29]​. In contrast, in genome-wide 

association studies investigating association between genotype and complex traits, adjustment for latent factors 

has been used successfully without supervision, because broad correlation between genotypes generally reflects 

population structure rather than desired functional biological signal of interest.  Unfortunately, co-expression 

analysis is more complicated than either differential expression or GWAS because the potential for arbitrary 

unknown confounders remains, and can affect sets of genes in ways that resemble co-expression. When 

commonly measured covariates such as RIN, batch, exonic rate, gene GC%, and others are available their effect 

from gene expression data can be regressed out using a linear model. Unfortunately more detailed annotations are 

generally not available for a wide range of confounding variables such as post mortem interval, environmental 
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factors, or detailed technical records. Furthermore, in many cases when densely annotated data is available for 

technical and biological artifacts, they are not complete, i.e. some covariates are not recorded for all observations 

thereby making correction more challenging. 

Here we show mathematically, through simulation, and through real data examples that reconstruction of gene 

co-expression networks resembles the parameter regime of genetic association studies, i.e. we  expect that most 

real co-expression networks are sparse which means that there are few true biological connections between genes. 

When such networks satisfy the small world property, the signals from the network will not be sufficiently broad 

across genes to influence the latent variable estimates from PCA. Thus the principal components will primarily 

estimate the latent confounders which can then be regressed from the expression data before network 

reconstruction is performed on subsequent residuals (​Supplementary Note 1​). 

Confounders can introduce spurious relationships in co-expression networks - a simulated example 

Using a small simulated example, we illustrate how confounders in gene expression data can impact 

reconstruction of co-expression networks and how this can be corrected (​Figure 1​). We used three versions of 

data -- (a) simulated gene expression data from a sparse network with no batch effects  (​Figure 1a​); (b) simulated 

data with a batch effect added (​Figure 1d ​); and (c) confounded data from (b) corrected by regressing out the top 

principal component (​Figure 1g​). With each version of the data, we first computed empirical correlation matrix 

(​Figure 1b,e,h ​). Next, we reconstructed co-expression networks using graphical lasso​[5,35]​. Confounders in the 

simulated data that affected genes 2 through 6 was evident through the block pattern in the data matrix (​Figure 

1d ​). Likewise a large block of high (spurious) correlation between the same genes was observed in the empirical 

correlation matrix (​Figure 1e​). Moreover all genes that were affected by confounders were connected to each 

other in the inferred network while two true dependencies ​E(3,1) ​ and ​E(4,7) ​ were lost (​Figure 1f​). 
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Figure 1. A simulation example. ​This simulation example shows reconstruction of gene co-expression networks is affected 
by confounders. True underlying network structure can be reconstructed after principal component correction of gene 
expression data as described in the paper. 

Next we corrected the confounded data using a linear model with the top principal component in the confounded 

data as an explanatory variable. We then reconstructed the network using the residuals from this regression 

(​Methods ​) The structure and pattern of heatmap and correlation matrices of the corrected data resembled the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/202903doi: bioRxiv preprint 

https://doi.org/10.1101/202903
http://creativecommons.org/licenses/by/4.0/


original simulated data with some additional negative correlation (​Figure 1a-b and g-h ​). Additionally, graphical 

lasso correctly estimated the network structure obtained from corrected data, which was same as the true network 

structure that was obtained from the original simulated data (​Figure 1c and i​). 

Principal component correction improves reconstruction of co-expression networks in GTEx tissues 

To demonstrate the effect of latent confounders and principal component correction on reconstruction of 

co-expression networks from real large-scale human gene expression measurements, we applied our method to 

RNA-seq data from the Genotype Tissue Expression (GTEx) project v6p release. We considered data from eight 

diverse tissues containing between 304 and 430 samples each: Subcutaneous adipose, Lung, Skeletal muscle, 

Thyroid, Whole blood, Tibial artery, Tibial nerve and Sun-exposed skin. We used two popular methods for 

network reconstruction: (a) weighted gene co-expression network analysis ​[4,36]​, and (b) graphical lasso​[5,35]​. 

Since the true underlying co-expression network structure is not known, we assessed the networks using genes 

annotated to function in the same pathways, and transcription factor with known target genes as the ground truth 

(​Methods ​).  

We obtained the most recent version (2016) of curated gene sets annotated as canonical pathways on MsigDB​[37] 

available on the Enrichr library, containing information from KEGG, Reactome, Biocarta and Pathway Interaction 

Database. False discovery rate was used to evaluate and compare the performance of co-expression networks 

inferred from data after correcting for known or latent confounders.  We evaluated networks inferred using a) 

uncorrected expression data, the residuals after regressing out b) RNA integrity number (RIN), c) exonic rate - a 

mapping covariate that corresponds to fraction of reads mapped to exons, d) sample specific estimate of GC bias, 

all shown to be common confounders in mRNA gene expression data, and e) residuals from multiple regression 

model using covariates that explained at least 1 percent of expression variance (adjusted ,.01R2 ≥ 0  

Supplementary Table 4)​[12,38–41]​. 

WGCNA identifies groups of genes that form coexpressed modules based on a power transform of the pearson 

correlation coefficient for all pairs of genes ​[4]​. For each tissue we inferred weighted, signed co-expression 

networks using the most variable 5000 genes (​Methods ​). Co-expression gene modules were identified based on 

fully-connected sub-graphs of the network. We find that for most tissues networks obtained from data corrected 

for latent confounders showed fewer false discoveries compared to those obtained from uncorrected data, or from 

correcting for individual covariates including  RIN, exonic rate (a quality metric from RNA-seq mapping), or 

sample-specific GC bias (​Figure 2, Supplementary Figure 1, 3, 6​). Improved performance of networks obtained 

from PC corrected data was more evident in whole blood, skeletal muscle, tibial artery, tibial nerve, subcutaneous 

adipose and thyroid. But for some tissues such as lung, PC correction only contributes to moderate improvement 
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on false discovery rates in the reconstructed networks. It is possible that in these cases, the networks may violate 

the small world assumption. We also observed that correcting gene expression data with multiple technical 

covariates (approximately 9 - 17 were used per tissue) sometimes improved reconstruction of co-expression 

networks obtained by WGCNA(​Figure 2, Supplementary Figure 1​). We also inferred signed WGCNA networks 

with varying values of the power transform parameter, and unsigned co-expression networks at varying 

cut-heights of the hierarchical dendrogram. With varying power transform we found that PC correction improved 

reconstruction of WGCNA networks in all tissues (​Supplementary Figure 15​). Most tissues except subcutaneous 

adipose showed reduced false discoveries in unsigned WGCNA networks. (​Supplementary Figure 14)​.  

Figure 2. False discovery rate of WGCNA modules based on canonical pathways.​ FDR of WGCNA networks obtained at 

a varying cut-heights. Each point corresponds to FDR of the network obtained at a specific cut-height. Each color represents 

networks reconstructed with a specific correction approach 

Similarly we examined the effect of confounders on networks reconstructed with graphical lasso using the same 

5000 most variable expressed genes in each tissue. To test the effect of sparsity we varied the penalty parameter in 

graphical lasso (​𝜆​=[0.3,1.0]). For each tissue, using the non-zero entries in the estimated precision matrix as the 

edges of the graph, we computed false discoveries for the inferred networks (​Methods ​). 

We found that glasso networks estimated with principal component corrected data showed fewer false discoveries 

compared to the networks estimated with uncorrected, RIN corrected or multiple covariates corrected data 

(​Figure 3, Supplementary figure 2​). We observed that in general improved performance on false discoveries in 

PC corrected networks was better in whole blood, skeletal muscle, tibial artery and tibial nerve. Jointly correcting 

the gene expression data for multiple technical covariates that affect expression measurements, improved 

reconstruction of co-expression networks with graphical lasso in some tissues such as whole blood, thyroid, and 

tibial artery, while it showed little to no improvement over uncorrected data in lung, muscle, tibial nerve, and sun 
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exposed skin(​Figure 3, Supplementary figure 2​). However we observed that across all tissues PC correction still 

shows fewer false discoveries compared to multiple technical covariate based correction. Similar to WGCNA we 

observed that there was no visible improvement in network reconstruction between using uncorrected data and 

residuals from RIN or exonic rate; thereby suggesting that RIN, exonic rate or GC bias individually is not a 

sufficient alternative for the wide range of confounding variation found in gene expression data (​Figure 3, 

Supplementary Figure 4, 7, 9, 11​).  

Figure 3. False discovery rate of networks inferred with graphical lasso based on canonical pathways.​ Each point in the 

figure corresponds to false discovery rates of networks obtained at a specific L1 penalty parameter value. Each color 

represents networks reconstructed with a specific correction approach - uncorrected, multi-covariate, RIN, and PC corrected 

We also computed the amount of expression variance explained by known technical covariates in each tissue. 

Based on this, we found that gene expression measurements of whole blood was most confounded, followed by 

lung, skeletal muscle, tibial nerve, sun-exposed skin, thyroid and subcutaneous adipose. With both WGCNA and 

graphical lasso, we also found that networks inferred from principal component corrected data were much more 

sparse compared to uncorrected, and RIN, exonic rate or GC bias corrected counterparts (​Figure 4​). We also 

observed that tissues that were more confounded, such as blood and lung had denser networks reconstructed by 

graphical lasso than less confounded tissues such as thyroid (​Figure 4, Supplementary Table 2​). 
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Figure 4. Density of networks inferred from PC-corrected data are sparser.​ a-c Each point corresponds to number of 
edges in networks inferred by WGCNA at a cut-height. d-e Each point corresponds to number of edges inferred by graphical 
lasso in networks obtained at a specific L1 penalty parameter value. Networks inferred by PC corrected data have fewer 
edges compared to uncorrected or RIN corrected data. 

Discussion and conclusion 

Overall we show that network reconstruction methods are vulnerable to latent confounders present in gene 

expression data. The simulation study demonstrates that graph estimation methods that do not account for 

confounders make a large number of false discoveries and may lose true dependencies. Similarly, in empirical 

analysis using GTEx data we see that the networks inferred from the expression data without any correction 

methods in general performed poorly compared to principal component corrected data. In addition, co-expression 

networks obtained from gene expression data corrected for effects of RIN, exonic rate, or GC bias individually 

show little improvement on false discoveries compared to uncorrected data. Thereby our analysis shows that 

routinely available covariates such as RIN, exonic rate, and GC bias alone are not a sufficient surrogate for the 

diverse sources of confounding variation in gene expression data and do not fully eliminate patterns of this 

artifactual variation.. When extensive, well annotated covariates are measured and available, correcting gene 

expression data jointly with multiple covariates can sometimes improve reconstruction of coexpression networks. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/202903doi: bioRxiv preprint 

https://doi.org/10.1101/202903
http://creativecommons.org/licenses/by/4.0/


Although, this improvement is still usually not as large as observed for networks reconstructed with PC corrected 

data. Unfortunately, most studies do not have extensive covariate annotations that could have confounding effects 

on gene expression and co-expression available. Additionally, a few studies that do have well annotated covariate 

metadata do not always have them recorded for all samples. Latent factor correction based approaches have been 

successfully applied to address batch effects and other artifacts in differential expression analysis, GWAS, and 

eQTL mapping​[11,28,29]​. Our principal component based correction is a simple, yet effective approach to 

address confounding variation on gene co-expression networks. We do note that overall false discovery rate is 

high on an absolute scale, regardless of the choice of method and data. However, this is not unique to our analysis, 

and  co-expression network reconstruction frequently yields a high false discovery rate despite enrichment in 

aggregate for biologically meaningful relationships ​[6,7]​. Also, for particularly dense or connected sub-graphs in 

the underlying biological system that may not match the small-world assumption, removing principal components 

may remove relevant biological signal and, as with any data cleaning methodology, should be used with caution. 

We have implemented our PC correction approach in the ​sva ​ Bioconductor package which can be used prior to 

network reconstruction with a range of methods. 

Methods 

Simulation Example 

We constructed a true underlying network with eight nodes that represent genes and three edges that represent 

conditional dependencies between the genes. Next, we simulated 10,000 observations from a multivariate normal 

distribution that encode the conditional dependencies corresponding to three edges as non-zero entries in the 

precision matrix (​Figure 1a​). Then, to introduce confounding in the data, we simulated a sample specific term 

from a standard normal distribution, and added a scalar multiple of that to genes 2 through 6 (​Figure 1d ​). Finally, 

to correct the data, we regressed out the first principal component from the confounded data (​Figure 1g​). We used 

graphical lasso to reconstruct networks using the three versions of the data. The code for this simulation example 

and network reconstruction can be found at: 

https://github.com/leekgroup/networks_correction/blob/master/publication_rmd/simulation_example_fig1/figure1

.Rmd 

Reconstruction of co-expression networks 

To evaluate our correction method and its effect on reconstruction of co-expression networks, we used two 

methods to infer the structure of gene co-expression networks: a) weighted gene co-expression networks 

(WGCNA)[10] and b) graphical lasso[11] 
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● WGCNA: Weighted Gene Co-expression Network Analysis (WGCNA) identifies relationships between 

genes through a power transform of the Pearson correlation coefficient. The algorithm first computes the 

pairwise correlation between genes ​i ​ and ​j ​: 

 |(corr(x , x )|aij =  i  j
β  

where .  is the soft-thresholding parameter and it’s value is selected such that the networksβ > 1 β  

obtained are scale free. This is assessed by setting a scale-free topology fit at least 0.85, betweenR2  

and where  is the fraction of nodes with at least k neighbors[12, 10, 13, 14].Next,og(p(k))l og(k)l (k)p  

the adjacency matrix between genes is transformed into a topological overlap matrix (TOM) [12]. The 

TOM is then input into an average linkage hierarchical clustering algorithm to identify network modules – 

defined as ‘groups of nodes with high topological overlap and indicates high levels of  co-expression [12]. 

● Graphical Lasso: Given our gene expression data contains  multivariate gaussian observations each ofN  

dimension , i.e. for each observation, we have expression measurements for  genes, graphical lassop p  

estimates the structure of the co-expression network over genes by maximizing -penalized logL1  

likelihood of a multivariate gaussian with mean μ and covariance  over :Σ Θ  

r(SΘ) λ||Θ||log det Θ − t −  1  

Here is the empirical covariance matrix and is the inverse covariance matrix. The  penaltyS Θ = Σ−1 L1  

on  induces and controls the amount of sparsity in the solution [11]. Hence, if an entry  is , thenΘ Θi,j 0  

variable  is conditionally independent of variable  given other variables. We used ‘QUIC’ package[15]i j  

in R to infer co-expression network structure with graphical lasso. 

 

Determining sample specific estimates of GC bias 

Studies have shown that GC content of genes have significant impact on sequencing read coverage in DNA-seq 

and RNA-seq experiments. This eventually introduces sample specific biases in expression quantification. To 

quantify the effect of GC bias, using transcript level fasta files from Gencode v25 we first computed the GC% of 

each transcript  by:R  

C%(R)  G = (#G + #C)
(#A + #T  + #G + #C)  
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We summarized GC content of genes, by averaging over all transcripts belonging to the gene. Suppose k

transcripts were transcribed from gene  then,Gi  

C%(G ) G i =  k

C%(R )∑
k

j = 1
G j

 

Next using a linear model, we obtain sample specific estimates of GC content of genes: 

 μEi =  + βi × G  

where,  is the vector of expression values of all protein coding genes in sample ,  is the GC content of eachEi i G  

gene, and  is the estimate of GC bias in sample .βi i  

Principal component based correction of gene expression 

Using a permutation based approach as described in​[27]​ , we first determined the number of principal components 

‘​p’​ to correct the data for with the ‘num.sv’ function in the Bioconductor package ​sva ​ (​Supplementary Table 3​). 

Next we standardized the data such that the expression of each gene was centered at mean and had unit standard 

deviation. We compute the principal component loadings ​L ​of the standardized expression matrix with singular 

value decomposition (SVD). Using a linear model as described below, we regressed the top ​‘p’ ​ principal 

components (​p ​ as determined by ‘num.sv’) on the each gene , from the expression data and computed theEi  

residuals .Ei
ˆ  

μ βEi =  i +  i × L1:p  

E [μ β )]Êi =  i −  i + ( i × L1:p  

Reconstruction of co-expression networks with GTEx data 

Based on sample size we used gene expression RNAseq data from eight tissues in the GTEx project​[14]​ that 

included whole blood, lung, skeletal muscle, tibial artery, sun-exposed skin, tibial nerve, subcutaneous adipose, 

and thyroid. In each tissue we filtered for non-overlapping protein coding genes that had scaled expression (counts 

scaled by the total coverage of the sample) of at least of total number of observations. Next, we log2.1 5%0 ≥ 2  

transformed the scaled gene expression data, and performed following steps to select the most variable 5000 genes 

across all tissues. 
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● For each tissue, assign a rank to each gene by variance, such that the most variable gene is ranked first 

and least variable gene is ranked in last. 

● Using the ranked list of genes from each tissue, assign an average rank to each gene across eight tissues. 

● Select top 5000 genes from the average rank list for network reconstruction. 

We used multiple approaches to correct gene expression data from each tissue individually as described below: 

● Residuals from RIN/Exonic Rate/ GC bias: Using a linear model, we regressed the RNA integrity number 

(RIN), exonic rate or sample specific estimate of GC bias on the expression data and computed the 

residuals 

● Residuals from multiple covariate correction: In each tissue individually, we estimated expression percent 

variance  explained by the known technical confounders. Next, using a linear model we regressed theR2  

technical covariates with in a tissue and computed the residuals. ​(Supplementary Table 4​) .01R2 ≥ 0  

● Residuals from principal components: For each tissue, principal component based gene expression 

residuals were computed as described in above.  

Prior to reconstructing co-expression networks with WGCNA and graphical lasso, we transformed the 

uncorrected and corrected expression of each gene to a Gaussian distribution by projecting the expression of each 

gene to the quantiles of a standard normal.  

To reconstruct signed weighted gene co-expression networks with WGCNA, we identified lowest power for 

which scale-free fit  between  and exceeds 0.85. Here  is the fraction of nodes in theR2 og(p(k))l og(k)l (k)p  

network with at least  neighbors. Then we used the ​‘blockwisemodules’ ​ function in the WGCNA CRANk  

package to identify co-expression modules at varying cut-heights of hierarchical dendrogram ranging from 0.9 to 

1.0. For networks reconstructed with WGCNA, we considered all genes in the same module to be a 

fully-connected subgraph. 

For reconstruction of co-expression networks with graphical lasso, we first computed the gene covariance matrix 

and used then used `QUIC` function in the ​QUIC ​R package to infer co-expression networks with penalization 

parameter  ranging from 0.3 to 1.0λ  

Evaluation of co-expression networks 

Since the underlying network structure is generally unknown, we used genes known to be functional in the same 

pathways as ground truth to assess these networks. 
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● Canonical pathway databases: We downloaded the latest pathway information (2016) from KEGG, 

Biocarta and Pathway Interaction Database from Enrichr[18, 19], that were also annotated as canonical 

pathways by MSigDB​[37]​. The number of pathways/genesets in each of these databases were: 

– KEGG - 293 

– Biocarta - 237 

– Reactome - 1530 

– Pathway Interaction Database - 209 

Any pair of genes that have at least one pathway in common were assumed as true connection. An edge 

that was observed between a pair of genes in the inferred network (from WGCNA or graphical lasso) and 

was also present in the list of real connections was called as a true positive (TP). We defined false 

positive (FP) to be an edge that was observed between a pair of genes in the inferred network, however 

was absent in the list of real connections. False negatives (FN) were the edges that were missing in the 

inferred network but were present in the list of real connections. Using this definition of true positive, 

false positive and false negative, we compute false discovery rate for the networks inferred by WGCNA 

and graphical lasso with different forms of corrected and uncorrected data. 

● Shared true positives: We obtained a refined list of real connections described above by restricting to 

pairs of genes that were present in at least two pathway databases. 

All TP, FP and FN were computed with genes restricted to the most variable 5000 genes that were used for 

reconstructing co-expression networks. Using the above mentioned definitions of TP, FP and FN, we compute 

false discovery rate as given below: 

DR F =  F P
T P  + F P  

List of Abbreviations 

WGCNA - Weighted gene co-expression networks 
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