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Abstract 
 

Extracellular matrix (ECM) organization influences cancer development and progression. It modulates 
the invasion of cancer cells and can hinder the access of immune cells to cancer cells. Effective 
quantification of ECM architecture and its relationship to the position of different cell types is, 
therefore, important when investigating the role of ECM in cancer development. Using topological 
data analysis (TDA), particularly persistent homology and Dowker persistent homology, we develop a 
novel analysis pipeline for quantifying ECM architecture, spatial patterns of cell positions, and the 
spatial relationships between distinct constituents of the tumour microenvironment. We apply the 
pipeline to 44 surgical specimens of lung adenocarcinoma from the lung TRACERx study stained with 
picrosirius red and haematoxylin. We show that persistent homology effectively encodes the 
architectural features of the tumour microenvironment. Inference using pseudo-time analysis and 
spatial mapping to centimetre scale tissues suggests a gradual and progressive route of change in ECM 
architecture, with two different end states. Dowker persistent homology enables the analysis of 
spatial relationship between any pair of constituents of the tumour microenvironment, such as ECM, 
cancer cells, and leukocytes. We use Dowker persistent homology to quantify the spatial segregation 
of cancer and immune cells over different length scales. A combined analysis of both topological and 
non-topological features of the tumour microenvironment indicates that progressive changes in the 
ECM are linked to increased immune exclusion and reduced oxidative metabolism. 
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Introduction 
 

Cancer is a major cause of mortality globally, with lung cancer accounting for 1.8M deaths annually 
[1]. The lethal progression of lung tumours from benign to metastatic is linked to both tumour cell-
intrinsic changes and paracrine interactions between cancer cells and the tumour microenvironment 
(TME). Within the TME, cancer cells interact with various cell types, including leukocytes, endothelial 
cells, cancer-associated fibroblasts (CAFs), and the extracellular matrix (ECM). The ECM directly 
influences tumour cell growth, invasion, and resistance to chemotherapy [2-4]. The ECM is also 
proposed to act as a barrier for immune cell access to tumours, thus modulating anti-tumour immunity 
and blunting responses to immunotherapy [4]. Developing a clear understanding of the roles of the 
ECM and the relative spatial positioning of cells in tumour progression and therapy responses requires 
quantitative descriptors that can be linked to other classes of data, such as transcriptomes, mutational 
profiles, and patient outcomes. Although certain metrics of ECM organisation, such as density and 
alignment, have been developed and have been shown to have prognostic value in many cancer types 
[5-10], there is no simple method for combining quantification of ECM and cellular information.  

Recent years have seen the development of a number of tools to analyse the spatial relationship 
between cells, including neighbourhood analysis [11, 12] and topological tumour graphs [13]. 
Although versatile and powerful, neighbourhood analysis is intended for thecharacterisation of cell 
clusters, not ECM fibres [11, 12]. Moreover, it cannot readily incorporate information about how 
patterns vary as a function of length scale. Topological data analysis (TDA), a field of computational 
mathematics, provides a suite of methods for studying spatial patterns. A popular technique of TDA, 
called persistent homology (PH), takes as input the point cloud of cell locations extracted from image 
data. It then builds a nested sequence of simplicial complexes, which are higher-dimensional 
analogues of graphs (Fig. 1B) [14-16]. The sequence of simplicial complexes is indexed by a scale 
parameter (denoted ε in Fig. 1B). PH then examines the birth and death of spatial features, such as 
clusters, loops, and voids across the simplicial complexes. The output of PH, called persistence 
diagrams (PD), summarises the parameters at which the spatial features appear and die (see Methods 
- dimension 0 PDs summarize the parameters at which components merge, analogous clustering, 
while dimension 1 PDs summarize the formation and filling-in of loops (Fig. 1B)). Persistence diagrams 
thus provide a multiscale and multidimensional descriptor of spatial patterns. The persistence 
diagrams can be vectorised for machine learning tasks [14-16]. The utility of PH is evident in its 
application to cellular patterns arising in histology images of breast and prostate cancer [17-23]. 
Moreover, the ability to describe loops and higher-dimensional features across length scales makes 
TDA well-suited to ECM analysis.  

While PH provides automatic and effective methods for summarising spatial patterns, its application 
is limited to the analysis of a single entity within a system – e.g., either ECM, cancer cells, or leukocytes. 
In particular, it does not elucidate how features associated with two systems or populations are 
related. Given two systems, Dowker persistent homology (Dowker PH) [24, 25] studies spatial patterns 
by forming simplicial complexes on one system whose construction depends on proximity to the other 
system (see Methods). While its closely related cousin Witness complexes enjoyed popularity as a tool 
to quickly and approximately compute persistent homology, only recently have Dowker complexes 
been utilised to study relational data, such as protein-ligand binding, PDF files and parser messages 
[26-28]. The outputs of Dowker PH, such as Dowker persistence diagrams (see Methods), which 
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summarise the length scale at which shared clusters or loops form and extinguish, can be made 
compatible with conventional statistics and machine learning via vectorisations [29].  

Understanding how tumours develop and evolve over time is crucial for improving cancer treatment. 
TRACERx (TRAcking non-small cell lung Cancer (NSCLC) Evolution through therapy (Rx); 
ClinicalTrials.gov: NCT01888601) is a prospective study of tumour evolution in patients with early-
stage resectable NSCLC. The TRACERx study is tracking the progression of tumours in a scheduled full 
cohort of 842 patients, including multi-region tissue sampling and detailed genomic, transcriptomic, 
and tumour microenvironment characterisation [30-36]. In this work, we study spatial patterns, as 
determined by persistent homology and Dowker persistent homology, in a subset of lung 
adenocarcinoma from the TRACERx study lung tumours (see Methods). In particular, we use persistent 
homology to study the architectural features of ECM, cancer cells, and leukocytes. Our analysis shows 
that TDA provides robust features that capture the patterns and organisation of ECM fibres, cancer 
cells, and leukocytes. Moreover, we deploy Dowker persistent homology in a novel way to quantify 
colocalization and exclusion between two constituents, with particular utility for classifying patterns 
of spatial segregation between cancer cells and leukocytes, termed immune exclusion. The application 
of ‘pseudo-time’ analysis suggests likely routes of transition between patterns of tissue organisation. 
Moreover, we demonstrate that spatial patterns inferred to be closely linked in time are also physically 
proximal in tissue, arguing for graded and progressive changes in tissue architecture. Lastly, we 
integrate spatial pattern information with transcriptomic data to derive a wholistic view of how the 
tumour microenvironment changes as lung adenocarcinomas evolve. 

 

Results 
 
Overview of pipeline for extracting topological features of lung adenocarcinoma  
To extract quantitative features of ECM, cancer cell, and leukocyte organisation in lung cancer, we 
established a data acquisition and analysis pipeline (Fig. 1). Diagnostic lung adenocarcinoma slides 
were stained with PicroSirius Red (PSR), highlighting fibrillar collagen I and III, and haematoxylin, which 
stains cell nuclei (we refer to this combined stain as PSRH). Following scanning, a colour deconvolution 
step was performed to separate the PSR ECM stain. In addition, a fully convolutional network 
Symmetric Distance Regularized Dense Inception Neural network (S-DRDIN) was used to identify 
cancer cells and leukocytes from the PSRH images (precision 0.90 and 0.84, respectively). The 
algorithm was also trained to identify red blood cells and anthracotic particulate pollution with high 
accuracy (0.92 and 0.94, respectively). The precision of identifying fibroblasts and necrotic cells was 
below 0.7 and these features were not used for subsequent topological data analysis. For ease of data 
processing, the large whole slide images (typically 15mm x 30mm) were divided into regions of interest 
(ROIs) of  4000 pixels x 4000 pixels, corresponding to 878µm x 878μm. Point clouds representing the 
cancer cell and leukocyte distributions were extracted from the machine learning method mentioned 
above, and point clouds representing the ECM were obtained by sampling from the ROIs (SI Fig. 1A-
C). Persistent homology was used to generate two topological descriptors, the 0-dimensional and 1-
dimensional persistence diagrams. The 0-dimensional persistence diagram summarises the merging 
of clusters in the data (Fig. 1B), while the 1-dimensional persistence diagram summarises the birth and 
death of loops (Fig. 1B). These topological descriptors were derived for the ECM, cancer cells, and 
leukocytes separately. The 0-dimensional and 1-dimensional persistence diagrams were then 
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vectorised to yield 20-dimensional and 400-dimensional vectors, respectively (see Methods and Supp. 
Fig. 1D). We refer to the resulting vectors as 0-dimensional and 1-dimensional PH features. Dowker 
persistent homology was applied to pairs of ECM points, cancer cells, and leukocytes. Similar to 
persistent homology, Dowker persistent homology also results in two topological descriptors; the 0-
dimensional Dowker persistence diagram summarises the birth and death of neighbouring clusters 
between the pair (Fig 1C, top) and the 1-dimensional Dowker persistence diagram summarises the 
birth and death of shared loops (Fig 1C, bottom). The Dowker 0-dimensional and 1-dimensional PDs 
were vectorised yielding 400-dimensional vectors. Together, these analyses summarise both the 
individual cluster and loop features of ECM, cancer cell, and leukocyte distributions, and their spatial 
inter-relationships.  

Persistent homology features are robust to image acquisition method 
An overarching goal in developing powerful data analysis methodology should be its independence 
from noise and the data acquisition technology. The success of PH across the sciences [37-39] is, in 
part, due to the stability theorem [40, 41] which states that topological features are robust to small 
noise perturbations. We tested the robustness of TDA features with respect to changes in input image 
resolution on 100 randomly selected ROIs. For each ROI, we first created lower-resolution ECM images 
by progressively downsizing the image and then resizing it to have the same number of pixels as the 
original image. We sampled point clouds representing ECM from the images of varying resolutions 
and computed the difference between the 1-dimensional persistence images from the lower-
resolution ECM images and the persistence images from the original ECM images (via the Frobenius 
norm of the two persistence images). As shown in Supp. Fig. 2A, the average difference between  two 
samplings of the same ROI was approximately 1.6 × 10−5 regardless of the extent of downsizing (upto 
16-fold downsizing was tested). For reference, the difference between persistence images in two 
distinct ROIs  is 7.9 × 10−5.    

These analyses show that the outputs of persistent homology will be robust when applied to images 
with pixel sizes in the range 0.2-2μm, which comfortably spans the resolution of light microscopy-
based methods. To explore this directly, we stained serial lung sections with PSRH and an antibody 
against collagen I. The antibody staining was acquired using the AKOYA Phenocycler platform with a 
resolution of 0.4μm/pixel, which contrasts with 0.22μm/pixel for the PSRH images. Supp. Fig. 2B shows 
the similarity of the persistence images from ECM stains obtained from two different data acquisition 
methods. 

Persistent homology features reliably discriminate patterns of ECM organisation 
Having established that TDA could be applied to ECM, we tested if it could effectively distinguish 
different ECM patterns in lung cancer. Four hundred 878 x 878μm2 regions of interest (ROIs) were 
selected based on diversity of ECM and cellular organisation from 44 different LUAD diagnostic 
samples from the lung TRACERx study [30, 31] (see Methods). Following colour deconvolution to 
separate the collagen, we sampled point clouds according to the density of ECM (Supp. Fig. 1A). We 
computed the 0-dimensional and 1-dimensional persistence diagrams which respectively summarize 
the clusters and loops in ECM. Their vectorizations, referred to as 0-dimensional and 1-dimensional 
PH features, were concatenated to a 420-dimensional vector (Fig. 2A).  

To analyse the PH feature vectors, we performed both UMAP and PCA dimensionality reduction. 
Applying UMAP on the ECM PH feature revealed 8 clusters, labelled 1 to 8. Points that were not 
assigned to the eight clusters occupied a similar region in the parameter space and were designated 
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cluster 9. Fig 2B shows exemplar PSRH and ECM stains for each cluster and  provides visual 
confirmation of the ability of our pipeline to group similar ECM patterns together. Visual inspection 
revealed that the first dimension of the UMAP corresponds primarily to ECM abundances in the ROIs, 
with cluster 1 having sparse ECM and clusters 7-9 having dense ECM. The relative ability of  0-
dimensional and 1-dimensional PH feature vectors to discriminate clusters is shown in Supp. Fig. 3B. 
PCA does not generate the discrete clusters visible in the UMAPs. However, it has the advantage that 
the principal components can be visualised as persistence images. The weighting of different regions 
of the 1-dimensional persistence images is shown in Supp. Fig. 3C.  The first principal component (PC1) 
weighting penalises small loops that fall within the dark patch (marked with white asterisk), while PC2 
favours larger loops that fall within the yellow/white patch (marked with orange asterisk). We 
associate low PC1 coordinates with ECM abundance as this generates many small loops (Supp. Fig. 
3D). High second principal component (PC2) coordinates are indicative of slightly larger loops, with 
low PC2 values reflecting a lack of such loops, which can arise from ECM that is uniformly distributed 
or from ECM whose structural organization occurs at a larger Supp. Fig. 3D). The interpretability of 
persistence images, coupled with the interpretability of the eigenvectors of PCA, enable the 
identification of the dominant ECM features in different ROIs. Analysis of intra-tumour heterogeneity 
of ECM illustrated that the majority of tumours contained ECM patterns that fell into different clusters 
(Supp. Fig. 3E). These analyses demonstrate the ability of persistent homology to describe ECM 
features, with downstream UMAP analysis identifying recurring classes of ECM organisation and PCA 
providing interpretable, low-dimensional description of the tissue pattern. 

To understand more precisely how the PH features relate to traditional ECM features, we subjected 
the same 400 ROIs to analysis of discrete fibres using CT-FIRE, gap analysis, and texture feature 
algorithms (Fu, Jenkins et al., in preparation). UMAP on these non-topological features shows less 
defined clustering than that based on PH features (Supp. Fig. 3F). Overlaying the cluster identities 
derived from the PH analysis (Fig. 2B) on the UMAP of non-topological features showed similar 
relationships among the 400 ROIs, albeit less well-defined (Supp. Fig. 3F). Supp. Fig. 3G shows how 
individual features of ECM density, gaps, fibre persistence, and fractal dimension relate to the UMAP 
of PH features (Fig. 2B). These suggest that cluster 1 has low ECM density, large circular gaps, and low 
fractal dimension, and that cluster 8 has opposite features. Together, these analyses demonstrate that 
PH features capture multiple aspects of the spatial patterns of ECM and that clustering on PH features 
leads to more well-defined clusters in comparison to non-topological features.  

 

Linkage of ECM patterns to clinical parameters 
Next, we sought to understand the relationship between the PH features of ECM, a pathologist’s 
classification of lung cancer architecture, and patient characteristics including age and gender. There 
was no clear association between ECM organisation and stage (Fig. 2C). There were also no clear links 
between ECM PH features and age, gender, smoking status, tumour mutational burden, or KRAS or 
TP53 mutation (Supp. Fig. 4A&B). Overlaying histological growth pattern information revealed that 
lepidic and papillary histologies were more common in cluster 1 (Fig. 2D). Also, the same histological 
growth pattern could have distinct ECM organisation, with solid histology spanning cluster 1 to 8. Thus, 
PH features of ECM can capture information that is additional to  histological growth patterns. 

Pollution has been linked to the development and progression of lung cancer [33]. Of note, particulate 
pollution, such as PM2.5, can be retained in the lungs for long periods of time and is visible as 
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anthracotic pigment in histological sections. Therefore, we explored the association between ECM 
organisation and regions containing particulate pollutants. The analysis revealed that clusters 7 and 9 
had elevated levels of particulate matter, suggesting that it may promote the transition of lung cancer 
tissue to fibrotic states (Supp. Fig. 4C). 

 

Inference of transitions between patterns of ECM organisation 
The analysis described above identifies quantitatively distinct classes of ECM organisation. We 
investigated the relative distance of the nine clusters by computing the Euclidean distance between 
the average feature vectors of each cluster. The distance matrix reveals similarities between many of 
the clusters, with a dominant diagonal trend evident: cluster 1 is most similar to cluster 2, cluster 2 
being most similar to clusters 1 & 3, and so on (Fig. 2E). Consistent with the HDBSCAN analysis, cluster 
9 is an outlier, although it shares some similarity with cluster 8. The relative similarity of the feature 
vectors of the clusters prompted us to explore the likely route of transition between different patterns 
of ECM organisation. Pseudotime analysis revealed that the most likely sequence of events could be 
described with 11 stages, initiating with cluster 1 and having two possible end states (Fig. 2F). The 
cluster 4/5 end state could be reached either via progression from cluster 3 or cluster 6/7. The cluster 
8/9 end state was reached via sequential transitions from cluster 1 to 2/3, 2/3 to 7, and then to clusters 
8/9. These analyses suggest that ECM changes in the lung begin along a common trajectory, with some 
bifurcations leading to a fully fibrotic state with high ECM density and few cancer cells. 

 

Persistent homology analysis of large tissue areas suggests ECM changes in a progressive manner 
To understand the spatial relationship and proximity among tissues with different ECM organisation, 
we selected 20 diagnostic LUAD sections (~15mm x 30mm) and decomposed them into 9,382 ROIs of 
size 878μm x 878μm. For each ROI, we computed the 0-dimensional and 1-dimensional PH features 
and concatenated them into a combined PH feature vector. Each ROI was then assigned to a cluster 
from Fig. 2B based on the shortest Euclidean distance between its PH vector and the average feature 
vector of the clusters in Fig. 2B. Fig. 3A shows an example of a whole slide PSR image overlaid with 
colour-coding to reflect the assigned cluster (further examples are shown in Supp. Fig. 5). Similar to 
Fig. 2, UMAP analysis suggested gradual transitions between ECM patterns (Fig. 3B). The use of whole 
slide images also enabled the analysis of tumour-adjacent, non-cancerous tissue via PH features. Fig. 
3C shows that the majority of non-cancerous ROIs fell within cluster 1 (Fig. 3B), which is consistent 
with the pseudo-time analysis being initiated from cluster 1 (Fig. 2F). However, there were many non-
cancerous regions that mapped to other clusters. Visual inspection of the ROIs revealed that even 
though the regions lacked cancer cells, the lung architecture was not entirely normal in these regions, 
with some clearly exhibiting increased PSR signal (Fig. 3C). These data indicate that transitions in ECM 
organisation can be observed in tissue adjacent to the tumour. 

We then examined whether certain patterns of ECM are typically located adjacent to other patterns 
of ECM. Given two clusters, we computed their neighbouring frequency, defined as the number of 
pairs of ROIs from each cluster that shared an edge. This frequency was compared to the neighbouring 
frequency after randomly shuffling the assigned cluster of each ROI (see Methods). The result was a 
set of pairwise comparisons indicating whether two clusters were neighbours with a greater than 
expected, expected, or less than expected frequency, as determined by calculating p-values from the 
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proportion of randomisations above or below the observed data (Fig. 3D). The significance of the p-
value is indicated by darkness of colour. Greater than expected interactions are shown in red whilst 
lower than expected interactions are shown in blue. The diagonal pattern (from top left to bottom 
right) of greater than expected interaction indicates that an ECM region with a given cluster identity 
is likely to neighbour another region of the same identity, or with a cluster identity one higher or lower 
than its own. For example, a cluster 8 region is likely to have neighbours from clusters 7, 8, or 9. An 
exception is cluster 1, that is only likely to have neighbours in cluster 1. This means that there are 
typically large areas of cluster 1. However, once the ECM begins to transition towards increased ECM 
density, then regions with similar pattern are likely to be located adjacent to each other. 

 

Combined PH features capture patterns of cancer cells and leukocyte distribution 
Immune cells play critical roles in cancer biology. Therefore, we focussed next on describing the 
distribution of cancer cells and leukocytes in the tumour regions described in Figure 2. computed four 
PH features: 0-dimensional and 1-dimensional PH features from cancer cells, and 0-dimensional and 
1-dimensional PH features from leukocytes (identified via the application of machine learning to PSRH 
images – see Methods). We concatenated the four feature vectors to one large combined PH feature 
vector and performed UMAP (Fig. 4A). Visual inspection confirmed that the clusters capture different 
patterns of tissue organisation. UMAP on each of the four PH features is shown in Supp. Fig. 6A, with 
colouring indicating the clusters assigned from the analysis of the combined PH feature vector in Fig. 
4A. The clustering derived from the combined PH feature vector is most clearly retained in the cancer 
cell UMAPs, suggesting that cancer cell distribution plays a dominant role in the analysis of the 
combined PH feature vectors. Of note, clusters 1, 2, and 10 identified regions within which cancer cells 
and leukocytes were excluded from one another. These clusters are also characterised by higher 
leukocyte densities, fewer cancer cells, and distinct ECM organisation (Fig. 4B and Supp. Fig. 6B). Cross-
referencing with histological growth patterns revealed that acinar histology was predominantly found 
in clusters 1 and 2, and lepidic and papillary histologies were dominant in clusters 4, 5, 7, and 8 (Supp. 
Fig. 6B).  No clear linkage was observed with KRAS or TP53 mutations (Supp. Fig. 6B). Principal 
component analysis on the combined PH feature indicates that the principal components encode 
relative abundance (PC1) and segregation (PC2) of cancer cells and leukocytes (Supp. Fig. 6C). 
Together, these analyses demonstrate the ability of PH features to reliably identify regions with similar 
spatial patterns of cancer cells and leukocytes, and they further suggest an association between ECM 
and cellular patterns. 

 

Dowker PH features enable quantification of immune cell exclusion from cancer cells 
By concatenating the PH features from cancer cells and leukocytes, we were able to identify 
characteristic patterns of immune cells in tumours. However, concatenating PH features does not 
explicitly capture the relative location of leukocytes to cancer cells. The relationship between cancer 
cells and leukocytes is critical as the spatial exclusion of leukocytes from cancer cells provides a 
mechanism for cancer cells to evade immune surveillance and is observed in many cancer types, 
including lung adenocarcinoma. To explore the spatial relationship of cancer cells and leukocytes, we 
computed Dowker PH features between cancer cells and leukocytes (Fig. 1D, Fig. 5A).  When 
computing Dowker PH, the simplicial complex is built on one class of data points, and the construction 
of the simplicial complex is contingent on the proximity to data points from the second class (see 
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Methods). In practice, this means that only cancer cell organisation near leukocytes is captured in the 
persistence diagram.  

We then performed PCA on the 0-dimensional Dowker PH features between cancer cells and 
leukocytes (Supp. Fig. 7A shows the weighting of different regions of the persistence images for PC1-
4 of 0-dimensional Dowker PH features between cancer cells and leukocytes). PCA revealed 
considerable diversity in the inter-relationship of cancer cell and leukocyte positions, with ROIs with 
spatially distinct and mutually exclusive localisation of the two cell types reflected in the first principal 
component (Fig. 5B&C). Low PC1 coordinates reflected clear immune exclusion, while high PC1 
coordinates reflected mixing of cancer cells and leukocytes. Intermediate values were associated with 
immune exclusion at shorter length scales. 

We next investigated the relations between 0-dimensional Dowker PH features and other features, 
such as ECM PH features, cancer density, and leukocyte density. The combination of 0-dimensional 
Dowker PH features with cancer and leukocyte density enabled the categorisation of ROIs into the 
three paradigmatic TME classes – inflamed/hot, excluded, and desert. Fig. 5D shows the relationship 
between PC1 from Fig. 5B (x-axis), which reflects separation of cancer and immune cells over longer 
length scales), and leukocyte density (y-axis). Furthermore, it additionally reflects cancer cell density 
(dot size), and UMAP1 from 0-dimensional PH features of ECM in Fig. 2B (dot colour), which reflects 
ECM abundance. ROIs with low leukocyte densities correspond to  ‘immune desert’ regions. ROIs with 
higher leukocyte numbers can be divided into ‘inflamed/hot’ and ‘excluded’ based on the PC1 
coordinate from Fig. 5B. Interestingly, PC1 is associated with distinct patterns of ECM organisation 
(note how the shading reflecting ECM organisation varies with PC1 values in Fig. 5D), potentially 
supporting an instructive role of the ECM in the relative spatial positioning of cancer cells and 
leukocytes. More detailed analysis indicated that spatial segregation of cancer cells and leukocytes 
was correlated with smaller gaps, altered gap shapes, lower fractal dimension, and altered long range 
texture features (Supp. Fig. 7C). No clear associations were observed with tumour stage or histological 
growth pattern (Supp. Fig. 7D).  

Dowker PH features can be computed on any pair of the TME constituents. There are thus six distinct 
Dowker PH features: the 0-dimensional and 1-dimensional Dowker PH features from (cancer, 
leukocytes), (cancer, ECM), and (ECM, leukocytes). Fig. 5E&F show PCA analysis of the 0-dimensional 
Dowker PH feature of ECM and leukocytes; interestingly,  high PC2 values identified regions with co-
localised clusters of leukocytes and ECM. These analyses illustrate the ulitility of Dowker PH for 
describing the spatial inter-relationships of different TME features. A correlation matrix summarising 
the relationships between all numerically quantifiable spatial (both PH and Dowker PH) and clinical 
features is shown in Supp. Fig. 8. 

 

Linkage of spatial patterns to transcriptomic data 
Both PH and Dowker PH features provide powerful descriptors of tissue organisation and reliably 
identify tumour regions with similar organisation. However, they do not provide insight into the 
possible mechanisms underpinning the different spatial patterns in lung adenocarcinoma. To obtain 
these insights we related the PH features and their clusters to other classes of data about the tumours, 
in particular, to data from transcriptomic analysis. The ROIs from the whole slide images used for the 
analysis presented thus far lack region-specific transcriptional analysis. Fortunately, the TRACERx lung 
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study includes regional biopsies that have been analysed by RNA sequencing and whole-exome 
sequencing [30-32] (see Methods). Cored tissue samples from multiple tumours and tumour regions 
were constructed into a tissue microarray (TMA). We stained the TMAs using the same PSRH protocol 
applied to the diagnostic blocks (see Overview of pipeline for extracting topological features of lung 
adenocarcinoma). 71 PSRH images from 44 tumour regions (22 patients) were taken forward for 
analysis. We computed the PH features, Dowker PH features, and cell type density metrics from our 
machine learning method (see Methods), and, for the 29 tumour regions with paired RNA sequencing 
data, linked these imaging features to transcriptional data.  

We focussed on determining transcriptional programmes linked to features of ECM architecture. Fig. 
6A shows  PCA of 1-dimensional PH features on ECM for 62  samples for which ECM PH features were 
calculated (derived from 38 tumour regions, 20 patients). The points are coloured according to the 
closest clusters in Fig. 2B. We observed similar transitions among clusters as the transitions in Fig. 2B, 
with increasing ECM density reflected in PC1 and ECM texture in PC2. We categorised the tumour 
regions into those with values above or below the median for each PC in turn. We then performed 
gene set enrichment analysis on the subset of samples for which paired RNA sequencing data were 
available to interrogate Hallmark pathways [42] enriched in regions characterised as having an above-
median versus below-median PC value and vice-versa (see Methods). Of note, the dimension 
corresponding to increasing ECM density (PC1) is associated with metabolic changes, including a 
downregulation of genes linked to oxidative phosphorylation, fatty acid metabolism, and reactive 
oxygen species. To expand on our analysis of individual principal components, we also compared gene 
expression patterns among ROIs assigned to different ECM organisation clusters (41 samples, 25 
tumour regions, 17 patients) (see Methods). For this transcriptomics analysis, we further grouped 
clusters together based on the pseudotime analysis in Fig. 2F to ensure that each group being 
compared had sufficient samples within it (five or more). Interestingly, this identified inflammatory 
signalling and epithelial to mesenchymal transition as higher in the partial fibrosis end-stage defined 
by clusters 4 and 5 compared to other clusters, including the fully fibrotic end-stage (Fig. 6B). Thus, PH 
features enabled transcriptional correlates of spatial ECM patterns to be discovered. 

 

An integrated understanding of spatial changes in the tumour microenvironment 
Lastly, we sought to combine information from the PH features and pairwise Dowker PH features to 
provide an integrated perspective on spatial patterns in lung adenocarcinoma. To this end, we 
generated a UMAP after concatenating all the PH features and Dowker PH feature vectors (Supp. Fig. 
9A). Once again, the analysis confirmed the ability of topological features to group tumour regions 
with similar spatial patterns of tumour microenvironment organisation, with individual clusters having 
interpretable features. We next returned to the pseudo-time analysis of 0-dimensional and 1-
dimensional PH features of ECM and overlaid other features on the inferred temporal sequence. This 
revealed that the density, branch points, and fractal dimension of the ECM increased with pseudo-
time, while the size of gaps reduced (Supp. Fig. 9B). These changes were more pronounced in the 
pseudo-time end stage containing ECM clusters 8&9, which reflects almost total tissue fibrosis. 
Increasing pseudo-time was also accompanied by increasing leukocytic infiltrate and decreasing 
numbers of cancer cells (Fig. 7A). More notably, the cancer cell – leukocyte Dowker feature (PC1 from 
0-dimensional Dowker PH feature between cancer cells and leukocytes) decreased as pseudo-time 
increased (Fig. 7A). This phenomenon is reflective of spatially exclusive patterns of cancer cells, 
indicating that immune exclusion increases with time (CC-L Dim0_PC1 in Fig. 7A). Interestingly, 
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immune exclusion was less pronounced in the end-stage reflecting partial fibrosis. Consistent with 
this, the ECM – leukocyte feature reflecting immune cell localisation away from ECM-rich areas (ECM-
L Dim0_PC2in Fig. 7A) was high in the partial fibrosis end-stage, but low in the fully fibrotic end-stage. 
This indicates that not all features undergo progressive and linear changes over time. Collectively, our 
analysis supports a model in which cancer initiates in tissue with relatively normal ECM organisation, 
although some thickening of the ECM is observed in non-cancerous tissue and may precede cancer 
initiation. There are then progressive changes, with increasing ECM density, fractal dimension, and 
reducing gap sizes. These can lead to two different end states: one with elevated ECM, but with 
leukocytes not restricted to ECM areas, and the other reflecting a highly fibrotic state, with few cancer 
cells and high levels of immune exclusion. 

 

Discussion 
In this study, we quantify spatial patterns within lung adenocarcinomas so that similar tumour 
microenvironments can be identified and grouped together, and so that spatial patterns can be 
related to other features of the disease. Specifically, we focus on analysing the ECM and its 
relationship to cellular distributions. We employ methods from topological data analysis to describe 
spatial patterns because they are adept at capturing density and clustering information, which is highly 
relevant for cells, and quantifying loops and gaps, which is pertinent to ECM organisation. Moreover, 
by employing Dowker persistent homology, we develop a framework for quantitatively describing the 
inter-relationship of different TME components across different length scales. 

Numerous groups have developed features for the analysis of ECM fibres [43-45] (Fu, Jenkins et al., in 
preparation). These include quantitative measurements of ECM density, fibre numbers, fibre 
branching, fibre alignment, fractal feature, texture features, and gaps. These features have provided 
useful insights into how ECM structure changes as disease progresses, and they have been linked with 
patient outcomes [10, 46]. However, these methods are not well suited to incorporating information 
about cellular position, although this can be done via post-hoc spatial statistics. Other studies have 
sought to relate cell position to tumour stroma boundaries, usually via simple distance metrics [47]. 
These are valuable, but by reducing to a one-dimensional metric, information about the broader 
spatial organisation of the cells and tumour stroma boundary is lost. Tumour topological graphs are 
better able to describe longer range organisation of cells as they build local graphs of cell positions 
and can determine the frequency with which two cells have a third cell type between them [13]. 
However, this type of analysis has not been applied to ECM, partly because ECM is a continuous 
material that is not readily discretised in the way that cells are. By treating both cell positions and ECM 
as point clouds and with attention paid to sampling – specifically greater sampling of the ECM to reflect 
its more continuous nature – we use  topological methods to analyse the relative position of different 
cell types and the ECM in cancer tissue. Excitingly, Dowker PH captures the spatial relationship 
between two cells types, or between one cell type and the ECM. This is of utility for the analysis of 
tumour-immune surveillance, which involves leukocytes engaging with cancer cells. High levels of 
leukocyte infiltration, particularly of CD8 T-cells, are a favourable prognostic indication in many cancer 
types [48-53]. In contrast, either an absence of leukocytes or their location in compartments at 
distance from cancer cells is unfavourable. We show that Dowker PH can quantitatively capture these 
classes of tissue organisation. In the future, it will be interesting to use further variations of TDA to 
quantify the spatial organisation of tumours. Analysis of the vectorised persistence images can be 
tailored to probe spatial patterns over length scales of particular interest. Multiparameter persistence 
examines the spatial features as multiple parameters vary, and has been deployed to relate hypoxic 
regions to the distribution of immune cells [38]. Systems consisting of more than two features of 
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interest can be interrogated using the recently-developed tools of multispecies Witness filtration [28] 
and Chromatic Alpha complex [54]. 

Although changes in ECM architecture in cancer have been described by many researchers [2-9], it is 
less clear in what order these changes might occur. This is partly due to the impracticality of taking 
repeated biopsies from patients. By sampling a large number of regions spanning diverse ECM 
patterns and utilizing topological methods to capture patterns across different length scales, we are 
able to derive a rich dataset of metrics for ECM architecture. The high dimensional nature of the data 
is suitable for methods that infer likely routes of transition between different ECM states. By applying 
such methods to our data, we derive likely trajectories of transitions in ECM organisation. This begins 
with normal lung organisation and is associated with increasing ECM deposition. Interestingly, we 
observe some similar changes in adjacent non-cancerous lung tissue which indicates that some 
modest changes in ECM organisation may precede tumour initiation. Moreover, our analysis of 
neighbouring ROIs suggest that ECM changes propagate laterally in tissue. Our analysis also indicates 
two different end states; one reflects extensive fibrosis while the other retains ECM gaps. The multi-
faceted nature of our analysis enables us to track other changes that accompany altered ECM 
architecture. ECM patterns were not simply reflective of either tumour stage or histological sub-type. 
This likely indicates that structural changes in the stroma are not tightly coupled to cancer cell growth. 
Transcriptional analysis suggests a down regulation of oxidative metabolism and an increase in some 
inflammatory signalling. Consistent with this, leukocyte numbers increase along the ECM pseudo-time 
trajectory; however, this is also accompanied by a decrease in PC1 of Dowker PH features between 
cancer cells and leukocytes, which reflects an increase in immune exclusion. This argues that the 
progressive changes in ECM that occur in tumours protect the cancer cells from immune surveillance. 

The focus of this study was to understand how different ECM patterns relate to each other and to the 
distribution of different cell types. The limited cohort size (44 patients) precluded analysis of 
association between topological features and patient outcomes. The future application of TDA to large 
patient cohorts with clinical follow up will enable spatial patterns associated with disease progression 
or recurrence to be identified. Given the concept of immune exclusion preventing immunotherapy 
efficacy [55], it will be interesting to probe how the relationship between distinct immune cell types 
and the ECM impacts on the response to immunotherapies. As we demonstrate, this could be 
measured using Dowker PH. Additionally, the relationship between CD8 T-cells and immune-
suppressive myeloid cells could be queried by the same methodology. 

To conclude, we demonstrate that TDA, namely PH and Dowker PH, is a powerful tool for describing 
and comparing spatial patterns. Moreover, the resulting high dimensional descriptions of spatial 
pattern can be interrogated using the same methods as other high dimensional data, including UMAP, 
PCA, and pseudo-time analysis. Using the latter method, we show how the ECM architecture changes 
progressively over time. It is likely that ECM patterns are particularly suited to this analysis as they 
change over longer timescales than cell positions, especially leukocytes that can move at speeds of 
several microns per minute [56]. By cross-referencing the progression of ECM patterns with other data 
for the same regions of tissue, we are able to construct a holistic view of how the tumour 
microenvironment evolves over time in lung adenocarcinoma. We believe that our approach has the 
power to transform our understanding of how spatial patterns develop over time in pathological 
conditions. 
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Methods 
 

Data analysed in this study 

The data from this study are those for a subset of the first 421 patients prospectively recruited to and 
with tumour profiling undertaken for the TRACERx study (TRAcking non-small cell lung Cancer (NSCLC) 
Evolution through therapy (Rx); https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an 
independent research ethics committee, 13/LO/1546). Informed consent for entry into the TRACERx 
study was mandatory and obtained from every patient. Methods for data obtention, including the 
tissue sampling approach during surgery, have been previously described in [30, 31].  

Tumour diagnostic blocks (whole slide and ROI analyses): 44 whole slides (typically 15mm x 30mm) 
were obtained from lung adenocarcinoma (LUAD) tumour diagnostic blocks from surgically resected 
tissue. Details of central histopathological review undertaken on LUAD diagnostic slides to confirm 
tumour subtype and assign growth pattern information are provided in [35]. Four hundred 878μm x 
878μm regions of interest (ROIs) were selected from these whole slide images based on diversity of 
ECM and cellular organisation. Tumour-level clinical and mutations data used in this manuscript were 
derived as described in [31]. Tumour mutational burden (mutations/megabase) in Supp. Figs. 4 and 8 
was calculated using a harmonized approach [57] using the TRACERx mutation WES calls from [31]. 

Tumour region-level samples (Figure 6): Snap frozen multi-region tumour samples within a surgical 
resection specimen were processed to formalin fixed paraffin embedded (FFPE) blocks after first 
taking sufficient material for DNA and RNA sequencing. A single representative core was taken from 
each regional FFPE block (1.5mm diameter) and cores arranged into tissue microarrays. 71 lung 
adenocarcinoma cores (71 samples, 44 tumour regions, 22 patients) were taken forward for TDA 
analysis. Region-level RNA data were available for 29 of these tumour regions from 18 patients and 
were processed and gene expression values derived as described in [32].  

PSRH staining 
Samples were stained using a combination of Weigert’s iron haematoxylin solution (Sigma HT1079) 
and a Picrosirius Red Kit (Abcam ab150681). Briefly, slides were deparaffinised and hydrated, before 
incubation in Weigert’s Haematoxylin solution for 10 minutes and then in Picrosirius red solution for 
60 minutes, rinsing twice in acetic acid, then alcohol dehydration, and finally mounting. Slides were 
then scanned at 20× using Zeiss Axio Scan Z1. 

Identification of cell types in sections 
1. Dataset preparation The dataset for training and validating the cell identification model was 
collected from 10 picrosirius-red-stained whole slide images (WSI) of lung adenocarcinoma. We 
denoted regions of interest on the WSI and dot-annotated every single cell identifiable within the 
regions. Cells were assigned one of five types based on their morphology; the five cell types 
correspond to cancer cells, normal epithelial cells, leukocytes, fibroblasts, and blood cells. We also 
labelled necrosis, black pigments, and other cell types without determinable identities. The 10 slides 
were randomly split into training and testing datasets with an 8:2 ratio. For the 8 slides of the training 
dataset, regions containing annotations were scaled to a resolution of 0.44 μm/pixel and were then 
cropped into 224×224 patches with a stride of 120 pixels. Patches were carefully inspected to ensure 
every cell and tissue element identifiable on the patch were labelled, which gave rise to 12240 
annotations on 286 patches in total. For the testing dataset, we collected 1213 annotations from 2 
WSIs. A breakdown of annotations for each category in the training and testing datasets is shown 
below. 
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Cell types Training Testing 

Cancer/Epithelial 5283 567 

Leukocytes 5039 198 

Necrosis 390 31 

Fibroblast 792 139 

Pollution 346 72 

Red blood cells 246 133 

Others 144 73 

Total 12240 1213 

        

2. Model training and testing We used a double-branch model S-DRDIN [58] to predict element 
locations and classes simultaneously. The model has been shown to outcompete single-task models 
by benefiting from the integration of cell detection and classification features [58]. To train the model, 
we converted dot annotations on 224x224 patches into classification masks of nine channels, with 
each channel representing locations of one category, and the last channel being a background mask 
representing locations without any element present. We prepared another detection mask per patch 
denoting all elements identified on the patch without categorical information. Data augmentation of 
horizontal and vertical flipping was performed. The model was trained with both detection and 
classification masks as inputs. We trained the model for 100 epochs with a batch size of 4. Weights 
were initialized using uniform glorot [59] and optimized using Adam [60] with a learning rate of 0.001.  

The trained model was applied to regions of interest to generate a probability map of cell locations. 
The map was binarised by a threshold of 0.05, followed by the identification of connected 
components. Components smaller than 60 pixels were discarded to reduce false positive detection. 
The predicted locations of elements were determined by the local maxima within a sliding window of 
size 15x15 pixels. We then averaged the predicted values of each category in a 49x49 pixel square 
centred at the detected element. An element was assigned the category with the highest average 
probability. For elements predicted as others, the second most probable category was assigned. Cells 
predicted as cancer cells or normal epithelial cells were merged into one single epithelial group. 

The derived cell predictions were tested against manual annotations in the testing dataset. A 
predicted cell was regarded as a true positive if it was located within 15 pixels of a manually annotated 
cell of the same category. In general, S-DRDIN achieved an accuracy of 0.864 and a weighted F1 score 
of 0.860 for six categories, with the F1 score being 0.935, 0.623 and 0.747 for epithelial cells, 
fibroblasts, and leukocytes respectively – shown below.    

Cell types Precision Recall F1 score 

Cancer/Epithelial 0.903 0.969 0.935 

Fibroblast 0.618 0.627 0.623 
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Leukocytes 0.837 0.674 0.747 

Necrosis 0.538 0.467 0.500 

Red blood cells 0.917 0.901 0.909 

Pollution 0.937 0.983 0.959 

 
Topological data analysis (TDA) 
TDA uses tools from topology to study the shape and structure of data.  

Simplicial complexes and homology 

A simplicial complex is a generalization of a graph that consists of vertices, edges, triangles, and their 
higher-dimensional analogues. Given point cloud data, one popular way of constructing a simplicial 
complex is to use the distances among the data points as follows. Fix some distance parameter. Take 
the data as the vertex set. For each pair of points whose distance is at most 𝜀𝜀 , create an edge between 
the corresponding vertices. Equivalently, one can draw balls of radius 𝜀𝜀

2
 around each point and create 

an edge between vertices when the balls intersect. For each tuple of points, if all the pairwise distances 
among the three points are at most 𝜀𝜀, then create a triangle among the three corresponding vertices. 
If (𝑛𝑛 + 1) points have pairwise distances at most 𝜀𝜀, then we add a higher-dimensional version of a 
triangle, called an 𝑛𝑛 -simplex (Fig. 1B). Let 𝑋𝑋 denote the resulting simplicial complex.  

Properties of 𝑋𝑋 , such as connected components, loops, and voids, are computed via homology. The 
0-dimensional homology of 𝑋𝑋 , denoted 𝐻𝐻0(𝑋𝑋), is a vector space whose dimension equals the number 
of connected components in 𝑋𝑋 . The 1-dimensional homology, denoted 𝐻𝐻1(𝑋𝑋), is a vector space whose 
dimension equals the number of loops in 𝑋𝑋 . The 𝑛𝑛 -dimensional homology, denoted 𝐻𝐻𝑛𝑛(𝑋𝑋), is the 
vector space whose dimension equals the number of -dimensional features in 𝑋𝑋 . 

Persistent homology 

Given a point cloud, we first create a sequence of simplicial complexes 

𝑋𝑋𝜀𝜀1 ⊆ 𝑋𝑋𝜀𝜀2 ⊆ ⋯ ⊆ 𝑋𝑋𝜀𝜀𝑁𝑁  

where  𝑋𝑋𝜀𝜀𝑖𝑖 is the simplicial complex with distance parameter 𝜀𝜀𝑖𝑖  as constructed above. Persistent 
homology summarizes the birth and death of topological features (𝐻𝐻0 and 𝐻𝐻1) across the sequence. 
To study the birth and death of 𝑛𝑛 -dimensional topological features, we examine the changes in the 
𝑛𝑛 -dimensional homology  𝐻𝐻𝑛𝑛 across the sequence. A feature that is born at parameter 𝑏𝑏  and dies at 
parameter 𝑑𝑑  is represented by a point with coordinates (𝑏𝑏,𝑑𝑑). The collection of such points is referred 
to as the 𝑛𝑛 -dimensional persistence diagram. The evolution of clusters is summarized in a 0-
dimensional persistence diagram. A point (𝑏𝑏,𝑑𝑑) indicates that a cluster is born at parameter and dies 
at parameter by merging with another cluster.  The evolution of loops is summarized in a 1-
dimensional persistence diagram. A point (𝑏𝑏,𝑑𝑑) indicates that a loop forms at parameter 𝑏𝑏  and that 
this loop is filled-in by a collection of triangles at parameter 𝑑𝑑 (Fig. 1B). 

The points on a persistence diagram with a large death parameter and a small birth parameter, which 
occupy the region that is far from the diagonal line, are usually considered significant features while 
points that are closer to the diagonal are considered noise.  

Dowker persistent homology 
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Dowker persistent homology [24, 25] allows the study of structural relations between pairs of point 
clouds. Let 𝑃𝑃 and 𝑄𝑄 be two point clouds. Given a distance parameter 𝜀𝜀, we first construct a Dowker 
complex 𝑊𝑊𝑃𝑃,𝑄𝑄

𝜀𝜀  that has 𝑃𝑃 as the potential vertex set. We add an edge (a 1-simplex) between points 
𝑝𝑝0,  𝑝𝑝1 ∈ 𝑃𝑃  if there exists a point 𝑞𝑞 ∈ 𝑄𝑄 whose distances to 𝑝𝑝0 and 𝑝𝑝1 are both at most 𝜀𝜀. We add a 
triangle (a 2-simplex) among three points 𝑝𝑝0,  𝑝𝑝1,  𝑝𝑝2 ∈ 𝑃𝑃 if there exists a point 𝑞𝑞 ∈ 𝑄𝑄 whose distances 
to 𝑝𝑝0,  𝑝𝑝1,𝑝𝑝2 are at most 𝜀𝜀. Similarly, we add an 𝑛𝑛 -simplex [𝑝𝑝0,  … ,  𝑝𝑝𝑛𝑛] if there exists a point 𝑞𝑞  ∈
𝑄𝑄 whose distances to 𝑝𝑝0,  … ,  𝑝𝑝𝑛𝑛 are at most 𝜀𝜀. We then create a nested sequence of Dowker 
complexes for varying distance parameter 

𝑊𝑊𝑃𝑃,𝑄𝑄
𝜀𝜀1 ⊆ 𝑊𝑊𝑃𝑃,𝑄𝑄

 𝜀𝜀2 ⊆ ⋯ ⊆ 𝑊𝑊𝑃𝑃,𝑄𝑄
𝜀𝜀𝑁𝑁  

. 

We again study the evolution of 𝑛𝑛 -dimensional topological features by examining the change in 
homology 𝐻𝐻𝑛𝑛 across the sequence. The birth and death of -dimensional features are summarized in a 
𝑛𝑛 -dimensional persistence diagram. To distinguish from the standard persistence diagram, we refer 
to the result as 𝑛𝑛 -dimensional Dowker persistence diagram. By Dowker’s Theorem [24, 25] the 
Dowker persistence diagram that results from the above sequence (with 𝑃𝑃 as the vertex set) is 
identical to the Dowker persistence diagram that results from the following sequence that uses 𝑄𝑄 as 
the vertex set:  

𝑊𝑊𝑄𝑄,𝑃𝑃
𝜀𝜀1 ⊆ 𝑊𝑊𝑄𝑄,𝑃𝑃

 𝜀𝜀2 ⊆ ⋯ ⊆ 𝑊𝑊𝑄𝑄,𝑃𝑃
𝜀𝜀𝑁𝑁 . 

Vectorizations of topological descriptors 

We vectorize (Dowker) persistence diagrams using persistence images [61] Given a (Dowker) 
persistence diagram PD, consider PD as a collection of birth-death coordinates. We first transform PD 
by mapping each point (birth, death) to (birth, death − birth). Let T(PD) denote the transformed 
persistence diagram. We then create a surface by taking a weighted sum of Gaussian distributions 
centered at each of T(PD). The Gaussians are weighed proportional to death − birth of the center. The 
resulting surface is discretized into an array. The 0-dimensional persistence diagram is discretized to 
a vector of length 20, and the 1-dimensional persistence diagram is discretized to an array of size 20 
by 20, which we refer to as the persistence image (PI). The 1-dimensional PI is flattened into a vector 
of size 400 prior to analysis. See Supp. Fig. 1D for a visualization of the vectorization process. 

Analysis of tissue microarray data and linkage to transcriptional profiles 
71 TMA-embedded LUAD tumour sections were stained with PSRH. Each section represented tissue 
from a single tumour region acquired by TRACERx multi-region sampling, as described in [31]. 44 
distinct tumour regions from 22 patients were represented in the 71 sections (>1 tumour region n=13 
patients, 1 tumour region n=9 patients). TDA features were paired with RNAseq data generated from 
paired region-level samples [32] to analyse the relationship between TDA and transcriptomic features. 
27 tumour regions were represented twice in the TMAs, and statistical analyses were adapted to 
adjust for these duplicates as described below.  

TDA features were extracted for ECM for 62 of the 71 samples using the pipeline already described. 
The first two principal components were extracted from PCA of the dimension 1 PH features of ECM 
data (PC1, PC2) and samples assigned as either High or Low for each principal component in turn based 
on splitting each principal component by its respective median. Any tumour region represented by 
two tissue samples for which one tissue sample had a High coordinate value and the other Low was 
excluded from analysis to prevent identical transcriptomic data contributing to both the High and Low 
category for a single principal component.  
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Data remaining after these inclusions/exclusions comprised: PC1: High 11 tumour regions, 10 patients; 
Low 11 tumour regions, 7 patients; PC2: High 14 tumour regions, 10 patients; Low 9 tumour regions 8 
patients. Differential Gene Expression Analysis (DGEA) was run on the remaining data between High 
and Low categories in the following way, as detailed in [32]. First, trimmed mean of M-values 
normalization from the edgeR (v.3.26.5)[62] R package was performed on RNA-Seq by Expectation-
Maximization (RSEM) raw counts. Genes with expression <30 counts/million in <70% of the smallest 
group size were removed using the function filterByExpr() with min.count set to 30. Expression 
differences were performed at the region level through the limma-voom analytical pipeline, taking 
tumour as a blocking factor, by performing within-tumour expression correlations and including them 
within the voom model estimate using the duplicateCorrelation() function. Following DGEA, gene-set 
enrichment analysis (GSEA) was run using the R package fgsea (v.1.10.1)[63] using the t-statistic 
generated by limma as input and with default parameters to identify individual MSigDB Hallmark Gene 
Sets (v2023.1) (https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#H) [42] which 
were significantly up- or down-regulated between High and Low levels of each coordinate value 
(padj<0.05).  

For the comparison of Hallmark Gene Set expression by ECM cluster, gene set variation analysis was 
performed on RSEM-TPM values for the 29 tumour regions for which RNA sequencing data was 
available, with RSEM-TPM values calculated as described in [32]. Specifically gene set variation 
analysis was implemented using the R library GSVA (v1.44.5) [64], invoking the gsva function 
(method="gsva",min.sz=5, max.sz=500, kcdf="Poisson", mx.diff=TRUE, parallel.sz=1) to derive a 
single-sample-level geneset enrichment score for each Hallmark Gene Set. The gplots::heatmap.2 
function in R (v3.1.3) was then used to plot these enrichment scores for the 41 samples with paired 
RNA sequencing and ECM cluster information (41 samples, 25 tumour regions, 17 patients). 

Pseudo-time Analysis  
For the pseudo-time analysis we used the Python library pyVIA, developed in [65]. The 420 by 1 
concatenated ECM PH arrays for each of the sample ROIs was passed directly to pyVIA with true_label 
being given by our cluster ids for ECM PH in Figure 2B and with the root selected to be Cluster 1. 
Various choices of pyVIA parameters were explored, with default parameters providing the most 
robust results. We set random_seed=4 for reproducibility.   

Cluster Neighbourhood Adjacency Analysis 
The ROIs from WSI were assigned a closest cluster. For each cluster ID, we identified the ROIs with 
the given cluster ID and recorded the cluster IDs of their neighbouring ROIs using 4-connectivity. We 
then calculated the frequency that each pairwise set of clusters neighbour each other. To assess 
whether these frequencies of cluster neighbours occurred more or less often than chance, we 
randomly shuffled the cluster IDs over all ROIs while conserving the total number of each cluster ID 
and computed pairwise neighbouring cluster frequencies. We repeated the random shuffle 1999 
times to give a total sample of 2000 including the observed data. For each pairwise cluster neighbour 
frequency we ranked the data and generated a two-tailed p-value based on where in the ranked list 
our observed data fell. We also recorded the tail of this significance i.e. whether the observed 
frequency is above or below expectation from random chance to provide information on whether 
the clusters are attractive or repulsive. For significance over all WSI, we calculated the median p-
value and sign (attractive or repulsive) for each pairwise interaction of cluster neighbours. This 
approach controls for clusters occupying differing numbers of grid-points. 
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Implementation 
All code and analysis are available at https://github.com/irishryoon/lung_cancer_TDA.  Persistent 
homology was computed using the Julia packages Eirene [66] and Ripser [67] Dowker persistent 
homology was computed in Julia using https://github.com/irishryoon/Dowker_persistence. The 
persistence diagrams were vectorized using https://github.com/mtsch/PersistenceDiagrams.jl. 
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Figure Legends 
Figure 1 
Pipeline for constructing topological feature vectors. A. Given a PSRH image, we obtain an ECM image 
via colour deconvolution and sample points from the ECM image according to pixel intensity. We 
extract locations of cancer cells and leukocytes via an  in-house deep neural network. We use tools in 
topological data analysis, namely persistent homology and Dowker persistent homology, which result 
in   topological descriptors, called persistence diagrams, that summarize the presence of structural 
elements (connected components and loops). The topological descriptors are vectorised and analysed 
via dimensionality reduction. B. Upper panel: Persistent homology pipeline. Given a point cloud and a 
parameter 𝜀𝜀, one creates a graph by placing a line between two points if their distance is at most 𝜀𝜀. 
This process is equivalent to placing balls of radius 𝜀𝜀

2
 around each point and creating a line between 

two points if the balls intersect. One then fills in any triangles, tetrahedra, and higher-dimensional 
objects of the graph. We refer to the resulting object as a simplicial complex at parameter 𝜀𝜀. Persistent 
homology records the birth and death of topological features as the parameter 𝜀𝜀 increases. The 0-
dimensional persistence diagram records the parameters at which clusters merge. The 1-dimensional 
persistence diagram summarize the parameters at which loops emerge and die. Lower Panel: Example 
output of Dowker persistent homology on a pair of point clouds. The 0-dimensional Dowker persistent 
homology summarizes boundaries and shared connected components between a given pair. The 0-
dimensional Dowker persistence diagram from segregated point clouds lack points near the origin in 
comparison to the 0-dimensional Dowker persistence diagram from mixed point clouds.  

Figure 2  
Persistent homology features reveal patterns of ECM architecture. A. Construction of PH feature 
vectors. From each PSRH image, we only consider the ECM points. We apply persistent homology to 
the ECM points and obtain 0-dimensional persistence diagrams and 1-dimensional persistence 
diagrams, which summarize the birth and death of clusters and loops. The location of the loop 
highlighted in magenta in the persistence diagram is indicated by the magenta dot. We vectorised the 
persistence diagrams and concatenated the resulting vectors. All analysis was performed on the 
concatenated vector, which we refer to as ECM PH feature.  B. (Left) Applying UMAP on the ECM PH 
feature reveals 8 clusters, labelled 1 to 8. Points not assigned to clusters were manually identified to 
occupy a similar area of parameter space and designated cluster 9. (Right) Representative images of 
clusters. Each image is 878µm x 878µm. C. Tumour stage is overlaid on UMAP of ECM PH features. D. 
Histological growth pattern is overlaid on UMAP of ECM PH features. E. Distance matrix shows 
pairwise distances between the clusters computed by the Euclidean distance between the average PH 
feature vectors of each cluster. F. Pseudo-time analysis demonstrates likely trajectories from Cluster 
1 to terminal endpoints at clusters 4&5 and 8&9. Circles represent clusters predicted by the pseudo-
time PARC algorithm, with proportions of clusters from Figure 2B shown. 

Figure 3 
Persistent homology analysis of large tissue areas suggests ECM changes in a progressive manner.  
A. Visualization of a whole-slide tumour, with smaller regions coloured by the closest cluster in Fig. 
2B. The whole-slide ECM stain was split into tiles of size 878μm x 878μm. For each tile, we computed 
the Euclidean distance between its PH feature vector and the average feature vector of each cluster 
in Fig. 2B. We then assigned the cluster with the shortest distance and coloured the tile according to 
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the assigned cluster. B. UMAP of 9382 regions analysed from 20 whole-slide images. Colours indicate 
the assignment to the previously described clusters (Fig. 2B). C. Non-cancerous adjacent regions are 
highlighted in the UMAP plot, together with two exemplar images of adjacent tissue. Green dot and 
box highlight non-cancerous tissue falling cluster 1 and orange dot and box highlight non-cancerous 
tissue grouping in cluster 6. Coloured PSRH image is 2.5mm x 5mm and grayscale image showing only 
collagen is 878µm x 878µm. D. Matrix shows the relative ‘adjacency’ of different clusters to each 
other. For each pair of clusters, the frequency of neighbouring ROIs was determined and ranked 
against 1999 randomly generated spatial distributions of ROIs to provide a p-value. A red colour 
indicates adjacency with a greater than expected frequency, a blue colour indicates a lower expected 
frequency with values given on a log10 scale. 

Figure 4 
Combined PH features of cancer cells and leukocytes capture patterns of cancer cell and leukocyte 
distribution. A. Four PH features (dimension-0 and dimension-1 PH features on cancer cells and 
leukocytes) are concatenated to form a combined PH feature vector. (Left) Applying UMAP on the 
combined PH features reveals 10 clusters, labelled 1 to 10 and assigned distinct colours. Points not 
assigned to clusters were distributed in different areas of parameter space and are labelled NC. (Right) 
Representative examples from each of the clusters. The numbering and border colour indicate the 
cluster to which the image belongs. Each image is 878µm x 878µm. B. UMAP of combined PH feature 
overlaid with (left) histological growth pattern, reflected in dot colours, (middle) KRAS mutation (dot 
size, wt – wildtype, C – clonal, S – sub-clonal) and TP53 mutation (dot colour, wt – wildtype, C – clonal, 
S – sub-clonal), and (right) machine learning-derived leukocyte densities. 

Figure 5 
Dowker PH features capture immune exclusion and reveal links to ECM patterns. A. Pipeline for 
computing Dowker PH features. Given an ROI, we computed 0-dimensional Dowker PH features from 
the locations of cancer cells and leukocytes. The persistence diagram was vectorized into a persistence 
image of size 20 by 20, which was then flattened into a vector of size 400. B. PCA on the 0-dimensional 
Dowker PH features between cancer cells and leukocytes. C. Example ROIs with high and low PC1 (first 
principal component) and PC2 (second principal component) coordinates. A comparison of example 
ROIs with high and low PC1 coordinates indicate that PC1 encodes exclusion between cancer cells and 
leukocytes. In particular, the persistence image for ROIs in with low PC1 coordinates have small values 
(black) near the origin. A comparison of example ROIs with high and low PC2 coordinates suggest that 
PC2 can capture colocalizations between cancer cells and leukocytes. D. Plot shows PC1 coordinates 
from panel B (x-axis), leukocyte density (y-axis), UMAP component 1 of 0-dimensional PH features 
from ECM (colour), and cancer cell density (dot size). Three representative ROIs are shown alongside 
the position of cancer cells (purple) and leukocytes (yellow). Together, these features enable the 
distinction of regions that are lacking leukocytes (desert), replete with leukocytes but excluded from 
cancer cells (excluded), or replete with leukocytes interspersed with cancer cells (inflamed). E. PCA on 
0-dimensional Dowker PH features on ECM and leukocytes. F. Example ROIs with high and low PC1 
and PC2 coordinates in panel E suggest that the principal components encode abundance (PC1) and 
colocalization (PC2) of ECM and leukocytes. Each image is 878µm x 878µm. 

Figure 6 
Linking topological features to transcriptional programmes. A. PCA of 1-dimensional PH features of 
ECM of 62 tissue microarray-derived lung adenocarcinoma samples (38 tumour regions, 20 patients). 
Colours indicate the ECM cluster (as defined in Figure 2) to which each sample belongs. Plot is divided 
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into quadrants based on the median values for PC1 and PC2, and genesets enriched in samples 
assigned as High compared to Low or Low compared to High PC1 or PC2 values are shown alongside 
the plot accordingly, with the length of the bar reflecting the normalised enrichment score. Numbers 
of tumour regions contributing to GSEA analysis - PC1: High 11 tumour regions, 10 patients; Low 11 
tumour regions, 7 patients; PC2: High 14 tumour regions, 10 patients; Low 9 tumour regions 8 patients. 
B. Heatmap shows the differential expression of the indicated Hallmark genesets [42] in ECM clusters 
1-3 (reflecting early stages of ECM changes), clusters 4-5 (reflecting one of the end stages), clusters 6-
7 (reflecting later intermediate stages), and cluster 8 (reflecting almost fully fibrotic tissue), performed 
using single-sample gene set variation analysis and ECM clusters as defined in Figure 2. Analysis 
performed for 41 samples, 25 tumour regions, 17 patients (clusters 1-3: 14 samples, 9 tumour regions, 
6 patients; clusters 4-5: 10 samples, 9 tumour regions, 9 patients; clusters 6-7: 5 samples, 5 tumour 
regions, 5 patients; cluster 8: 12 samples, 9 tumour regions, 8 patients). 

Figure 7 
Changes in the TME that accompany progressive ECM remodelling. A. Plots show how the indicated 
features vary as a function of pseudo-time cluster (x-axis). The colour of the dot reflects the 
predominant ECM cluster (based on Figure 2) at that time point. B. Scheme showing information 
distilled from the preceding figures. Initial ECM organisation is similar to that found in normal lung 
tissue. The trajectories and changes associated with the two different end stages are shown. Grayscale 
images show collagen staining extracted from PSRH images. Each image is 878µm x 878µm. 

 

Supplementary Figure 1 – linked to Figure 1 
ECM point sampling and vectorisation of a persistence diagram. A. An illustration of the ECM point 
sampling process. Given an ECM stain, we first invert the pixel values and scale them so that the pixel 
values live in the range [0, 1]. A pixel value of 1 corresponds to black and a pixel value of 0 corresponds 
to white. For each pixel location, if 𝑝𝑝 is the pixel value, we sample a point according to the Bernoulli 
distribution with a success probability of 𝑝𝑝2. This results in a binary image in which the black pixels 
indicate the points sampled. We then remove points of low density (“speckles”) as follows. For each 
point 𝑥𝑥, we consider a square region of size 50 pixels by 50 pixels centred at 𝑥𝑥. If such neighbourhood 
contains less than 5 points, then we remove 𝑥𝑥. Such speckle points are indicated by red crosses. This 
process removes speckles of high intensity2. Lastly, we downsample the remaining points to a target 
number of points. The target number of points in an ROI is determined according to the mean ECM 
pixel value as shown in panel B. B. Given an ECM stain, the number of ECM points is determined by 
the stain density. (Left) A histogram of the mean ECM pixel values for the 400 ROIs studied. Most ECM 
stains have mean pixel values close to zero. The orange and teal vertical lines indicate the bottom and 
top 1% values. (Right) A function whose input is the mean ECM pixel value of an image and whose 
output is the number of ECM points to sample. For ECM stains whose mean pixel value is   at bottom 
1%, we sampled 100 points. For ECM stains whose mean pixel value is within the top 1%, we sampled 
5,000 points. For all other ECM stains, the number of points is determined via linear interpolation. C. 
Example ECM stains and sampled ECM points with varying levels of ECM density. D. Vectorisation of 
a persistence diagram. Given a 0-dimensional persistence diagram, we create a weighted sum of 
Gaussians centered at each point of the persistence diagram and discretize into a vector of length 20. 
Given a 1-dimensional persistence diagram, denoted 𝑝𝑝𝑝𝑝, we first transform 𝑝𝑝𝑝𝑝 by mapping each point 
(birth, death) in 𝑝𝑝𝑝𝑝 to (birth, death - birth). Let 𝑇𝑇(𝑝𝑝𝑝𝑝) denote the transformed diagram. We then create 
a surface by taking a weighted sum of Gaussians centered at each point of 𝑇𝑇(𝑝𝑝𝑝𝑝). The surface is then 
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discretized into an array of size 20 by 20, which we refer to as a persistence image. Lastly, we flatten 
the persistence image to obtain a vector of length 400. 

 

Supplementary Figure 2 – linked to Figure 1 
Robustness of topological features to image resolution and acquisition method. A. Two ROIs 
(labelled 1 & 2), their ECM stains, ECM points, 1-dimensional persistence diagrams (PD) and 
persistence images (PI) are shown on the left. In addition, ROI1 is shown down-sampled 4:1 along with 
the corresponding point cloud, PD, and PI. For ROI1 and ROI2, the difference in topological features 
(as measured by the Euclidean distance between the persistence images) is 7.9 x 10-5. The right-hand 
plot illustrates the robustness of topological features. For 100 randomly sampled ROIs (out of 400), 
we decreased their resolution by factors of 1, 4, 8, and 16. At scale factor 1, we are simply analysing 
the difference in persistence images that arise from resampling ECM point cloud from the same image. 
We computed the difference in persistence images and report the box plot of the difference values 
for each scale factor. Note that the differences consistently stay under 7.9 x 10-5, which is the 
difference in persistence images for ROI1 and ROI2 in panel A. B. We show the similarity of topological 
features (persistence images) obtained from the collagen I stain and the colour deconvolution of PSRH 
image for 4 exemplar ROIs (one ROI per row). Columns from left to right show the collagen I stain, the 
colour deconvolution of the PSRH image, the collagen I image-sampled point cloud, the deconvolved 
PSRH-sampled point cloud, the collagen I-derived persistence image, and the PSRH-derived 
persistence image. 

Supplementary Figure 3 – linked to Figure 2 
Topological features reveal patterns of ECM architecture. A. Applying UMAP on the 0-dimensional 
PH features from ECM (left) and 1-dimensional PH features from ECM (right) with cluster identities 
from Fig. 2B overlaid reveals that 0-dimensional PH features effectively separates clusters 1 – 4 and 1-
dimensional PH features separates clusters 5 – 8. B. PCA on 1-dimensional PH feature vectors of ECM. 
C. A visualization of the first two eigenvectors of the PCA allows interpretation of the principal 
components in terms of the persistence images. The dark regions indicate a lack of points in the 
persistence diagram in comparison to the mean, and the bright regions indicate an abundance of 
points in the persistence diagram in comparison to the mean.  D. Example ROIs with high and low PC1 
and PC2 coordinates. A comparison of R1 and R2 indicates that the PC1 encodes ECM density. A 
comparison of R3 and R4 indicates that PC2 encodes the presence of high-persistence loops with birth 
parameter of approximately 350. E. Chart shows intra-tumour heterogeneity of patterns of ECM 
organisation (as defined by clusters in Fig. 2B). Each column represents an individual tumour. F. 
Applying UMAP to features identified using existing spatial tools, including CT-FIRE, gap analysis, and 
texture features, with colour coding to reflect clusters identified in Fig. 2B. G. Features quantified using 
non-topological tools are represented by varying dot colours on UMAP of ECM PH features in Fig. 2B. 
Lighter yellow colours indicate higher values. Panels show high density ECM (HDM), average weighted 
mean (AWM) of gap shape Euler analysis, mean fibre persistence, fractal dimension, AWM of gap 
shape circularity, and 99th percentile of gap size. 

Supplementary Figure 4 – linked to Figure 2 
Linkage of ECM PH features to additional clinical parameters. A. Charts show a lack of relationship 
between ECM organisation and (left) smoking status and (right) gender.  B. UMAP of ECM PH feature 
is overlaid with (left) age, (middle) tumour mutational burden calculated in mutations/megabase, and 
(right) KRAS TP53 tumour-level mutation status. C. (Left) Plot shows the density of particulate matter, 
predominantly 2.5 - 10µm in size, in ROI assigned to different ECM clusters. * indicates p<0.05. Clusters 
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7 and 9 had elevated levels of particulate matter. (Right) Representative PSRH images with high and 
low particulate levels.  Each image is 878 x 878µm. 

Supplementary Figure 5 – linked to Figure 3 
Whole-slide analysis of ECM patterns. A. Visualization of a whole-slide tumour with smaller regions 
coloured by the closest cluster. The whole-slide ECM stain was split into patches of sizes 878μm x 
878μm. For each patch, we computed the distance between its topological feature vector and the 
average feature vector of each cluster (as designated in Fig. 2B). The cluster with the shortest distance 
was assigned to the patch. The colours indicate the cluster closest to the patch. Inset images show 
H&E images of a serial section. Scale bar is 2mm. 

Supplementary Figure 6 – linked to Figure 4 
A. UMAPs on 0-dimensional and 1-dimensional PH features on cancer cells and leukocytes. Dot colour 
indicates the cluster assigned to the ROI in the analysis of the combined PH feature in Fig. 4A. NC 
indicates outlier points not assigned to a cluster. B. UMAP on combined PH feature in Fig. 4A coloured 
according to cancer cell density and UMAP1 coordinate of 1-dimensional PH feature of ECM. The 
clusters identified by the combined PH feature are correlated with cancer cell density and ECM 
organisation. C. PCA on 0-dimensional and 1-dimensional PH feature vectors on combined cancer cell 
and leukocyte positions. Representative images of the ROIs highlighted in the PCA plot are shown. 
Cancer cells are purple, leukocytes are mustard yellow. Images are 878µm x 878µm. 

Supplementary Figure 7 – linked to Figure 5 
Dowker PH features and correlation of metrics. A. Visualization of the first four eigenvectors from 
PCA of 0-dimensional Dowker PH features of cancer cells and leukocytes (Fig. 5B) as persistence 
images. The dark regions indicate a lack of points in the persistence diagram in comparison to the 
mean, and the bright regions indicate an abundance of points in the persistence diagram in 
comparison to the mean. The first eigenvector indicates that ROIs whose persistence images with a 
high value in the yellow region will have a high PC1 coordinate. B. Visualization of the first four 
eigenvectors from PCA of 0-dimensional Dowker PH features of ECM and leukocytes (Fig. 5E) as 
persistence images. C.  PC1 of 0-dimensional Dowker PH features of cancer cells and leukocytes (x-
axis), leukocyte density (y-axis), and histological growth pattern (dot colours). D. Plot shows PC1 of 0-
dimensional Dowker PH features of cancer cells and leukocytes (x-axis), leukocyte density (y-axis), and 
tumour stage (dot colours).  

Supplementary Figure 8 – linked to Figure 5 
Plot shows the Pearson correlation of the indicated metrics. Blue indicates positive correlation, red 
indicates negative correlation. 

Supplementary Figure 9 – linked to Figure 7 
Integrated analysis of all features. A. (Left) UMAP generated on a concatenation of all PH features 
and Dowker PH features. (Right) Representative images from the six main clusters. B. Plots show how 
features vary as a function of pseudo-time cluster (x-axis). 
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Supplementary Figure 6
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Supplementary Figure 8
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Supplementary Figure 9
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