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Abstract:

While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis,
much less is known about the cis-regulation important for specifying their expression in distinct
cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible
chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This
study spans four C, species, covering three distinct photosynthetic subtypes: Zea mays and
Sorghum bicolor (NADP-ME), Panicum miliaceum (NAD-ME), Urochloa fusca (PEPCK), along
with the Cs outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes
essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific
biases for C4 enzymes using chromatin accessibility data. Integrating these data with
phylogenetics revealed diverse co-option of gene family members between species,
showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that,
on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the
complexity and divergent nature of C4 evolution. Examining the evolutionary history of these
cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely
related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study
illuminates the dynamic and complex nature of CRE evolution in C4 photosynthesis, particularly
highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable
resource for future investigations, potentially aiding in the optimization of Cs crop performance
under changing climatic conditions.
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Introduction:

Photosynthesis is one of the most critical chemical reactions on the planet whereby CO.
is metabolized into glucose. Plants have evolved numerous variations of photosynthesis. The
most common type of photosynthesis uses the enzyme ribulose 1,5-biphosphate carboxylase
oxygenase (RuBisCO) which combines CO; with a five carbon compound ribulose 1,5-
biphosphate to create 3-phosphoglyceric acid. This three-carbon compound is then used in a
redox reaction within the Calvin Benson cycle, where sucrose is made. The production of this
three-carbon compound is what gives this type of photosynthesis, Cs, its name. However,
although widely evolved and found in many crop plants, Cs photosynthesis struggles to perform
in hot, arid conditions. In non-ideal conditions, O2 can competitively bind the RuBisCO active
site, causing the formation of a toxic intermediate, and reducing photosynthetic efficiency and
plant performance (1). Due to increasing temperature caused by anthropogenic climate change,
this reduction in photosynthetic capacity for key crop plants poses a major agricultural challenge
(2). However, other types of photosynthesis have evolved in hotter conditions and offer a model
to potentially alter key Cs crop plants to be more efficient.

The C,4 photosynthetic pathway is an example of a modified style of photosynthesis that
is able to perform in hot conditions. In brief, C4 typically works by sequestering key
photosynthetic enzymes into two different compartments in the leaf made up of different cell
types. These two cell types/compartments are bundle sheath (BS) cells, which in C4 plants
generally form a concentric ring around the vasculature, and mesophyll (MS) cells, which make
up large portions of the non-vascularized leaf internal cells (3). In the MS, CO is imported, and
converted to bicarbonate (HCO3-) by the enzyme carbonic anhydrase (CA). Bicarbonate is then
converted to a four-carbon molecule oxaloacetate (OAA) by the O2-insensitive
phosphoenolpyruvate carboxylase (PEPC). This OAA molecule made of a four-carbon
compound (where C4 derives its name) is finally converted into a stable metabolite, either
malate or aspartate. This intermediate molecule is then transported to the BS where it
undergoes a decarboxylation process, by one of three different types of decarboxylases, NAD-
dependent malic enzyme (NAD-ME), NADP-dependent malic enzyme (NADP-ME), or
phosphoenolpyruvate carboxykinase (PEPCK). This decarboxylation reaction releases a CO:
molecule that enters into the Calvin Benson cycle. The generation and processing of
intermediate molecules in cellular compartments allows for concentrated levels of CO; to
interact with RuBisCO, reducing the inefficiencies mentioned above. Additional types of C4
photosynthesis have been observed which don’t rely on division of metabolites between MS and
BS cell-types, but instead rely on using dimorphic chloroplast instead as in the species Bienertia
sinuspersici (4,5). Current C4 crops such as maize (Zea mays), sorghum (Sorghum bicolor),
pearl millet (Cenchrus americanus), foxtail millet (Setaria italica), and broomcorn millet
(Panicum miliaceum) excel in their ability to operate in adverse conditions.

Although the evolution of C4 photosynthesis is a complex process, there is tantalizing
evidence that engineering C; crops to do C4 photosynthesis might be possible. One piece of
evidence that points to this is that C4 photosynthesis has evolved independently 65 times in
different lineages of plants (6). These results indicate that most plant lineages have the genetic
material capable of evolving into C4 photosynthesizers. The Poaceae lineage of grasses
exemplifies this, as C4 photosynthesis has evolved independently at least 18 times (7).
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Interestingly, all of these species use the same core C4 enzymes and steps, but many use
different decarboxylation enzymes as mentioned above (8—10). Furthering this hypothesis is the
fact that many C, related genes originally evolved from either C; photosynthetic genes or key
enzymes critical in core metabolism (11,12). For instance, PEPC is a key metabolism enzyme in
the glycolytic pathways of the Krebs Cycle, with some copies being important in guard cell
metabolism (13-15). Instead of novel gene content being the main driver of C4 photosynthesis,
it's more likely due to the correct timing and compartmentalization of key enzymes into specific
cell types (16—18). This raises the question, how is gene expression of these key C4 enzymes
regulated? Moreover, as C4 has evolved multiple times convergently, have similar regulatory
networks and paradigms been co-opted to alter when and where these key genes are
expressed?

Cis-regulatory elements (CRES) are key players in gene regulation, as they both fine
tune expression and provide cell-type specificity (19-22). In brief, these regions operate as
binding sites for transcription factors (TFs). Transcription factors are proteins which are able to
alter transcription by binding DNA sequences and recruiting transcriptional machinery which
can either increase or decrease transcription (23). Thus TFs are able to significantly change
molecular phenotypes. Previous work has shown that CREs could be key players in the
transition to C4 photosynthesis. This was demonstrated by taking C4 genes from Z. mays and
transforming them into Oryza sativa, a Cs species (24,25), which revealed that CREs from Z.
mays genes were able to drive cell-type-specific expression in MS in O. sativa (24,25).
Additional analyses have implicated CREs as drivers in the evolution of C4 photosynthesis. In
the genus of plants Flaveria, which contains both C4 and Cs plants, one key difference in C4
plants was a specific CRE driving gene expression in MS cells. This 41 bp motif named
Mesophyll expression module 1 is critical for cell-type-specific expression of PEPC in MS cells,
a critical first step in the C4 pathway (19,26). Finally, four conserved non-coding sequences
were identified to be critical in MS-specific expression of PEPC in monocots (27). Furthermore,
a recent cross-species study examining the binding sites of GLK, a conserved TF regulating
photosynthetic genes, revealed that CREs can undergo rapid changes and result in diverse
gene expression patterns without the need of altering the TF itself (28). These findings show
that CREs are important genetic elements that plants use for the evolution of C4 photosynthesis.

Although some CREs critical for cell-type-specific expression of key photosynthetic
genes have been identified, they've been restricted to those nearby the transcriptional start
sites. This is due, in part, to the challenge of identifying CREs genome wide, as well as
limitations in the isolation of BS and MS cells which is labor intensive and challenging. However,
a recent study used a multi-omic approach in Z. mays BS and MS cells and found CREs
genome-wide that might be critical in the cell-type-specific regulation of genes (29). One
example is the identification of a potential distal CRE ~40 kb upstream of SULFATE
TRANSPORTER4 (ZmSFP4), a BS-specific sulfate transporter (29). These results highlight the
complexity of identifying loci involved in cis regulation. lIdentifying all CREs associated with C,4
loci is critical in enhancing our understanding of cis regulation of key C. genes, and would
greatly enhance attempts at engineering Cs crops. During the evolution of C4 photosynthesis, it's
unclear whether these CREs have been pre-established during evolution and co-opted for C4
photosynthesis or if they evolved independently numerous times. Understanding the ways in
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123  which cis regulation evolves to control timing and cell-type-specific expression of C,

124  photosynthesis genes would greatly assist efforts in engineering Cs plants to be more C, like.
125 To investigate the role of CREs and their potential contribution in controlling key C4
126  genes, we used single-cell indexed Assay for Transposase Accessible Chromatin sequencing
127  (sciATAC-seq) to identify cell-type-specific CREs from five grass species representing diverse
128  C, subtypes, as well as an additional Cs outgroup. We investigated the cell-type specificity of
129  both the core Cs enzymes, and those which are unique to each photosynthetic subtype. Further,
130 we identify CREs of C4 genes, and find previously unknown cell-type-specific CREs that might
131  be critical in C4 gene expression. We find that some of these regulatory regions appear not just
132  conserved in a single C4 subtype, but in all of the C4 species we studied. Finally, we leverage
133 these data to find transcription factor binding motifs enriched in MS and BS cell types and use
134  these motifs to catalog these regulatory loci.

135

136 Results:

137 Identification and Annotation of Cell Types in Diverse Species:

138 To investigate CREs in BS and MS cells potentially important in C4 photosynthesis, we
139 generated replicated sciATAC-seq libraries for four different C4 species, comprising three

140  different C4 subtypes NADP-ME (Z. mays, S. bicolor), NAD-ME (Panicum miliaceum), and

141  PEPCK (Urochloa fusca), and a C; outgroup species (O. sativa) (Figure 1A). Libraries were
142  filtered for high-quality cells by first pseudo-bulking the sciATAC-seq libraries, and identifying
143  accessible chromatin regions (ACRs). Using these ACRs, per nuclei quality metrics were then
144 calculated such as fraction of reads in peaks, transcriptional start site enrichment, and total
145  integration events per nucleus (Methods). Nuclei found to have a high proportion of organellar
146  reads were also removed, with values being adjusted on a per library basis (Methods).

147  Clustering of cells was done on genomic bins, and with additional cells removed that had a high
148 correlation with in-silico generated doublets, and clusters were removed that were skewed

149 towards one replicate by greater than 75% (Methods). After filtering on per nucleus quality
150 metrics, we identified 16,060 nuclei in Z. mays, 15,301 nuclei in S. bicolor, 7,081 nuclei in P.
151  miliaceum, 19,110 nuclei in U. fusca, and 5,952 nuclei in O. sativa (Supplemental Figure 1,
152  Supplemental Table 1).

153 Due to variation in genome size and content, cell-type annotation for each dataset was
154  done independently using the reference genome for each species (Figure 1B). We used

155 multiple approaches to annotate cell types. Orthologs of key marker genes from Z. mays and O.
156  sativa were identified using a phylogenetics based approach (Methods). This allowed for the
157 identification of marker genes for specific cell types in a cross species context. To gauge gene
158 activity of these marker genes, gene body chromatin accessibility was used as a proxy for

159  expression (Figure 1D) (21,30). Cell-type annotation was done manually taking into

160 consideration marker gene chromatin accessibility, marker enrichment in clusters, as well as
161  ontological relationships between cell types (Supplemental Figure 2-19). Due to the lack of
162  marker genes for many cell types in plants, as well as the challenge of annotating a broad

163  sample of species, we reduced resolution of our annotation across our datasets to ensure

164  accurate comparisons between variable species (Figure 1B).
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Deeper exploration of the list of marker genes from Z. mays showed conservation of
gene body chromatin accessibility in markers for certain cell types (Supplemental Table 2-3) .
As expected, for the C4 plants, RIBULOSE BISPHOSPHATE CARBOXYLASE SMALL
SUBUNIT1 (RBCS1) and RIBULOSE BISPHOSPHATE CARBOXYLASE SMALL SUBUNIT2
(RBCS2) were enriched in BS cells compared to MS cells (Figure 1C), a pattern that was not
found in O. sativa. Additionally, PEPC1 showed MS-specific chromatin accessibility in all of the
C. species sampled (Figure 1D). Additionally, we found conservation of marker genes like
SUCROSE TRANSPORTER 1 (SUT1) in companion cells and sieve elements, and GLOSSY1
(GL1) in epidermis cells, indicating that these historically described marker genes are likely
important in this diverse set of species. This analysis provides a first examination of core-C4
marker genes’ chromatin accessibility across a diverse sample of plant species at cell-type
resolution.
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Figure 1: Annotation of cell types in diverse grass species at single-cell resolution A) A
phylogeny indicating the relationship of various C3 and C4 photosynthesizers sampled. In this
sample, two NADP-ME subtypes are represented, one NAD-ME subtype, a PEPCK subtype, as
well as a C; species. B) UMAP embedding showing the annotation for each species. A cell type
legend is below. C) Dotplots for various marker genes used to annotate each species. The y-
axis represents cell types, and the x-axis is a list marker genes used to annotate different cell
types. The size of each circle is proportional to the number of cells within that cell type that
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showed chromatin accessibility of the marker. Color is z-score transformed values across
clusters of gene chromatin accessibility across the clusters. D) Screenshots of the PEPC locus
for all sampled species. For each screenshot, the top track shows the protein coding, the red
track is chromatin accessibility of MS cells, and the blue track is the chromatin accessibility of
the BS cells.

Chromatin Accessibility of Core C4 Enzymes Shows Similar Cell-Type Bias, but Differing
Evolutionary Origins:

We measured the chromatin accessibility bias of the Cs-associated enzymes. Due to the
diverse nature of the plants sampled, and the C4 photosynthetic subtypes, we separated
enzymes into core- and subtype-specific groups. This list comprised nine core C4 enzymes, and
nine variable enzymes. These enzymes were assigned to one of these two groups based on if
they are found in all C4 subtypes (core) or are specific to only one or two subtypes (variable).
One example of a core enzyme is carbonic anhydrase, which is used to generate bicarbonate
from COg, as well as for the regeneration of phosphoenolpyruvate from oxaloacetate in the BS
cells by means of PEPCK (Figure 2A). The list of gene families that we considered as core or
variable is found in (Supplemental Table 4).

To investigate the cell-type bias of these enzymes, we used chromatin accessibility of
the gene (gene body as well as 500 bp upstream of the transcriptional start site) (Figure 2B).
Cell-type bias was calculated as the log; fold change of BS/MS chromatin accessibility. To
identify core C4 enzymes across these species, we used OrthoFinder, named and numbered the
enzyme models based off of their relatedness to Z. mays copies of known core C, genes (31).
Using only cell-type-specific chromatin accessibility data, we observed expected cell-type bias
with many orthologs of the maize MS-specific core C4 genes showing MS-specific bias as
compared to BS (Figure 2C). For instance, in all C, species, PEPCK, which regenerates PEP
from OAA in BS cells, always showed a BS-specific bias (Figure 2 A & C). Additionally, PEPC,
which converts bicarbonate to OAA in MS cells, showed MS-specific bias for all species
sampled, except the Cs outgroup O. sativa (Figure 2A & C). These results highlight the quality
of the data and the cell-type annotations for these single-cell datasets.

When analyzing these data in tandem with the phylogenetic trees, we noticed that some
of the key enzymes showed different cell-type specificity based on their evolutionary origin
(Supplemental Figure 21-22). For instance, for carbonic anhydrase in P. miliaceum, the
orthologs that showed the largest bias between MS and BS cell types were not the copies that
were the most evolutionary closely related to the Z. mays and S. bicolor cell-type-specific copies
(Here PmCAL and PmCA2). Rather, a copy found in a separate clade (PmCA3) showed the
most MS-specific bias (Figure 2C). This indicates that during the evolution of C4, different sets
of carbonic anhydrases were likely co-opted for C4. One challenge using chromatin accessibility
in this context, however, is the fact that neighboring gene models can occlude cell-type-specific
signals. For instance, in the S. bicolor copy of RBCS1, a BS-specific gene has a neighboring
gene model directly upstream which shares a promoter region making measurement of the cell-
type-specific bias of some loci challenging when using chromatin accessibility data
(Supplemental Figure 23).

One unexpected result from this analysis was the lack of cell-type-specific bias for
MALATE PHOSPHATE ANTIPORT 1 (DIC1), also known as
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DICARBOXYLATE/TRICARBOXYLATE TRANSPORTER 1 (DTC1) in Z. mays. It has been
previously reported that DIC1 had BS-specific expression bias in Z. mays as well as in P.
miliaceum (32—34). However, there is not a clear signal based on the chromatin accessibility
data. This could indicate that some ACRs harbor multiple CREs active in different cell types that
are not obvious in chromatin accessibility data or that the cell-type-specificity observed is not
due to cis-regulation, possibly involving post-transcriptional processes (Figure 2C). Lastly, as
expected, there was very little bias in the C3 outgroup (O. sativa). In total, 12/13 of the core C4
enzymes showed cell-type-specific bias in Z. mays, 7/12 in S. bicolor, 16/21 in P. miliaceum,
11/13 in U. fusca, and finally 0/16 in O. sativa. These data demonstrate that chromatin-
accessibility data can be leveraged to investigate the cell-type regulation of C4 genes while also
taking into consideration their evolutionary relationships in a cross species context.
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249  Figure 2: Cell-type chromatin-accessibility bias for core enzymes in C4 and Cs species. A)
250 Schematic of the core C4 enzymatic pathway. Core C4 enzymes are defined as those which
251  maintain their cell-type-specificity in all C4 subtypes sampled. The red and blue squares

252  represent MS and BS cells, respectively. Enzymes are labeled in bold, and transporters are
253  denoted by shapes. Intermediate molecules are indicated by non-bolded text. B) Screenshot of
254  PEPCK in Z. mays. Blue tracks correspond to BS chromatin accessibility and red tracks show
255  MS chromatin accessibility. Tracks are equally scaled to facilitate comparison. C) Heatmaps of
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chromatin accessibility bias of the core C4 enzymes. Values within each heatmap correspond to
Log2(BS/MS). Blue indicates increased BS chromatin accessibility and red indicates increased
MS chromatin accessibility. Each species column and subtype was clustered independently,
and genes were assigned as being MS- or BS-specific (top/bottom of heatmap) based on
literature. Enzyme copies were distinguished phylogenetically.

Key C4 Subtype Enzymes Show Potential Convergent Evolution in Cell-type-specific
Bias:

We investigated the variable enzymes that give each C,4 subtype its unique properties by
focusing on two species (S. bicolor and Z. mays) from the NADP-ME subtype (Figure 3A). As
expected, chromatin accessibility bias was observed for enzymes previously reported as having
cell-type-specific expression patterns, similarly to the core C, enzyme set (29,35). Reassuringly,
one of the most biased enzymes identified was NADP-ME, the key enzyme of the redox step in
NADP-ME subtypes. More specifically, of the multiple copies of NADP-ME that exist in Z. mays,
we observed the expected cell-type bias for the known BS-specific copy, ME3, a key factor in Cs4
(here ZmMNADP-ME1) (Figure 3B). We noticed in S. bicolor, the BS-specific NADP-ME and the
MS-specific NADP-malate dehydrogenase (NADP-MDH) gene copies are recent tandem
duplications, each maintaining their respective cell-type specific chromatin accessibility (Figure
3B & C, Supplemental Figure 22). The malate transporters DICARBOXYLIC ACID
TRANSPORTER1/2 (DIT1/2) also demonstrated their expected cell-type-specific bias with DIT1
being MS specific and DIT2 being BS specific in both species (Figure 3B & C). However, upon
further inspection of the phylogenies of the DITs in S. bicolor, we noticed a pattern where the
most BS-biased copy, SbDIT4 (Sobic.004G035500), was phylogenetically more closely related
to the ZmDIT1. Something which has been previously reported (33,36). These results indicate
that over evolutionary time, even members of the same C4 photosynthetic subtype, which likely
share a C, ancestor, can use different paralogous loci to achieve cell-type-specific expression.
This highlights that C,4 evolution is an ongoing process.

NAD-ME subtypes in P. miliaceum are interesting, as the intermediate molecule being
passed between MS and BS doesn’t take the form of malate, but instead aspartate, alanine, and
oxaloacetate (Figure 3D). At least one copy of all of the key redox enzymes, NAD-ME and the
NAD-dependent malate dehydrogenase (NAD-MDH), show BS-biased chromatin accessibility
(Figure 3E & F). Interestingly, of the three copies of NAD-MDH analyzed, only two showed bias
for BS. Next, we evaluated two key enzymes associated with the generation of critical
intermediate metabolites, Aspartate aminotransferase (AspAT), and Alanine aminotransferase
(AIaAT). It has been reported that some AspAT have cell-type-specific expression patterns, with
the MS-specific copy of the protein being transported to the cytosol and the BS-specific copy
being transported to the mitochondria (Figure 3E & F) (37—-39). Of the four copies of AspAT we
examined, two (PmAspAT3/4) showed significant MS-specific bias, whereas the other two
copies (PmAspAT1/2) didn’t show significant deviation towards BS (Figure 3E). This possibly
indicates differing levels of regulation for the ASpAT copies that did not show the expected BS
bias, or missing copies of AspAT that we have not investigated. Within AlaAT, however, we
identified one copy, PmAIlaAT1, showing MS-specific bias, and PmAIaAT6 showing BS-specific
bias; something that has been previously hypothesized based on biochemical information (40).
Additionally, somewhat unexpectedly is that we didn't observe clear bias for sodium bile acid
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symporters (BASS) and sodium:hydrogen antiporters (NHD) (Figure 3E). These two proteins
together form a functioning sodium bile acid symporter system, which balances the ratio of
sodium and is important in the transport of pyruvate into the chloroplast of MS cells (41).
Although two copies of the BASS genes were MS biased, only a single copy of NHD was
slightly MS biased. Surprisingly, we do observe slight cell-type-specific chromatin accessibility
bias for malate transporter DIT1/DIT2 in P. miliaceum. This is somewhat surprising, as malate is
not the main 4-carbon intermediate used by NAD-ME subtypes (10). This highlights the flexible
nature of P. miliaceum in terms of its C4 photosynthetic style, as it has been implicated that it
can perform some of the metabolite shuttling as the NADP-ME subtype (10,42,43). The
potential flexibility of P. miliaceum in its style of C4 makes it an extremely interesting species to
study, especially when considering that it doesn’t share common C4 ancestry with Z. mays or S.
bicolor. This lack of evolutionary relationship between P. miliaceum and S. bicolor and Z. mays
makes the comparison between P.miliaceum and its closer relativeU. fusca all the more
valuable. These observations point to the complicated nature of some of these C4
photosynthetic subtypes. While the obvious subtype-specific enzymes show expected
chromatin-accessibility bias, others do not.

Using the PEPCK subtype in U. fusca, we evaluated cell-type bias of enzymes that
operate as an intermediate between NAD-ME and NADP-ME subtypes (Figure 3G). Copies of
NAD-ME and PEPCK showed significant BS bias (Figure 3H & I). Additionally, NADP-MDH was
significantly biased towards MS, reflecting its critical role in the regeneration of malate from
pyruvate (Figure 3H). We also observed one copy of BASS, which was heavily MS biased, as
well as the only copy of NHD being highly MS biased (Figure 3G) (44). Within the BASS family,
based on the phylogenies, it appears one clade of BASS genes was co-opted to be MS specific,
whereas the other clade remained somewhat BS specific. This potentially indicates that this co-
opted clade may have been predisposed for C4 photosynthesis at the common ancestor of P.
miliaceum and U. fusca. Additionally, we also find one MS-biased and one BS-biased version of
AlaAT (Figure 3H).

Finally, when evaluating genes in the C; outgroup O. sativa, we only observed significant
chromatin accessibility bias for three of the 14 enzymes. This is expected given the overall lack
of enzymatic bias seen in Cs species (Figure 3K). Interestingly though, we did find a single
instance where one copy of AspAT is BS specific, suggesting that this copy of AspAT might
slowly be co-opted into being more BS-specific (Figure 3K). Even more interesting is the slight
BS-specific bias of the rice NAD-MDH, a BS-specific enzyme in the NAD-ME subtypes. These
results show a series of complex evolutionary relationships where many different genes can be
co-opted into the C4 pathway, and highlights the myriad ways in which C4 evolution occurs.
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Figure 3: Cell-type chromatin accessibility bias for variable C4 genes associated with C,4
subtypes. A/D/G/J) Schematic of C4 enzymatic pathways for various C4 subtypes. The red and
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blue squares represent MS and BS cells. Enzymes are labeled in bold, and transporters are
denoted by shapes. Intermediate molecules are indicated by non-bolded text. For clarity, core
enzymes have been removed. B/E/H/K) Heatmaps of chromatin accessibility bias in C4 subtype
enzymes. Values within the heatmap correspond to Log2(BS/MS). Blue indicates increased BS-
chromatin accessibility and red indicates increased MS-chromatin accessibility. Genes were
labeled as being BS specific (blue) BS/MS specific (purple) or MS specific (red) based on
previous literature. C/F/l) Screenshot of various C, sub-type enzymes and their chromatin
accessibility profiles around the TSS. Blue tracks correspond to BS chromatin accessibility and
red tracks show MS chromatin accessibility. Tracks are equally scaled to facilitate comparison.

Cell-type-specific Accessible Chromatin Regions of Both Core- and Subtype-Specific
Enzymes:

Although measuring the gene body chromatin accessibility of C4 enzymes is valuable, it
doesn’t inform us about the cell-type-specific cis-regulatory environment controlling these
genes, as we only included 500 bp upstream in this initial analysis. To identify all potential CREs
important for regulation of C, enzymes, we identified cell-type-specific ACRs using a modified
entropy metric (Methods; Supplemental Figure 33-34). In short, cell-type-specific ACRs are
those which are unique to either a single cell-type or two or three cell-types in contrast to
broadly accessible ACRs which are accessible in many different cell-types. For each C4
enzyme, in both the core and the non-core set, we identified ACRs around them. We only
considered ACRs to be potential regulators of a locus based on distance, with assigned ACRs
needing to be less than 200 kb away from the target enzyme, and requiring that no other gene
intervenes between the ACR and enzyme in question. In total, across all variable and core
enzymes and taking into consideration only C4 species, we find that on average, C4 genes have
between 2-3 cell-type-specific ACRs, with an additional 2-3 broadly-accessible ACRs (Figure
4A, Supplemental Table 5).

For all C4 subtypes, the key redox enzymes all showed BS cell-type-specific ACRs,
potentially identifying critical CRESs for proper cell-type-specific expression. For instance, in Z.
mays, NADP-ME1 had five BS-specific ACRs, in S. bicolor, NADP-ME2 had five BS-specific
ACRs, in P. miliaceum, NAD-ME1 had four BS-specific ACRs, and in U. fusca, PEPCK, had
three BS-specific ACRs (Figure 4 A & C). Additionally, of the MS-specific enzymes, we
consistently observed numerous cell-type-specific ACRs around the carbonic anhydrase family.
On average, there were 3.5 MS-specific ACRs for each copy of carbonic anhydrase across all of
the species. This likely reflects the fact that carbonic anhydrase is critical in the initial steps of
C4, and also important in CO; sensing (45). We also noticed an intriguing pattern where
enzymes which were accessible in one cell type had cell-type-specific ACRs of the other cell
type. For instance, around RBCS2, a BS-specific enzyme, we found a series of MS-specific
ACRs (Figure 4D). On average, we found 2.5 BS-specific ACRs around RBCS and 1.5 MS-
specific ACRs. This contrasting pattern was observed in key photosynthetic enzymes in all of
the C4 subtypes. This likely indicates that some of these ACRs contain CREs that negatively
regulate RBCS in MS, as cell-type-specific CRE usage has been implicated as being an
important driver in proper compartmentalization (46,47). The identification of ACRs around key
C, enzymes provides a detailed map about potential cis-regulators of these loci, which provides
the basis for future investigation into the direct function of each of these ACRs and how they
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385  might be altering transcription in multiple different ways. These results show that there are likely
386  multiple ACRs important to cell-type specificity of these enzymes.

387 Traditionally, the field has focused on cis-regulation within a set distance from the

388 transcriptional start site, often 1-2 kb, which is thought to generally encompass the promoter
389  (48). However, we observed abundant distal cell-type-specific ACRs for many of these key

390 genes (Figure 4B). For instance, the average distance of an ACR to its C4 enzyme is 10,080 bp
391 (Z.mays), 3,017 bp (S.bicolor), 4,260 bp (P. miliaceum), 2,358 bp (U. fusca), and 4,730 bp (O.
392  sativa), indicating that the cis-regulatory space for these enzymes is far greater than previously
393  appreciated, where a majority of the focus in the literature is on putative promoters. To test this,
394  we compared the identified ACRs to a series of previously reported cloned promoters. We found
395 that for Zea mays and Sorghum bicolor the ACR space identified includes significantly more
396 regions that are distal to their target gene (Supplemental Figure 23C, Supplemental Table 6)
397  (25,49,50).

398 The genome of Z. mays emphasizes this point, as the subtype-specific enzyme NADP-ME has
399 three cell-type-specific BS ACRs distal to the transcriptional start site, with the furthest being
400 34,336 bp away (Figure 4C). These distal ACRs provide critical regulatory loci to further

401 investigate. Interestingly, we found some enzyme/ACR pairs with opposite cell-type-specificity
402  (i.e. BS-specific enzyme, MS-specific ACR). Many of these ACRs were distally located. For
403 example, in Z. mays, the MS-specific ACR of RBCS was 36,171 bp upstream (Figure 4D).

404  When investigating ACRs around promoters, we were struck at how often cell-type-specific
405 ACRs occurred outside of the bounds of previously analyzed promoters. For example, in PEPC
406 in P. miliaceum, a recent analysis demonstrated that a series of conserved non-coding

407  sequences found between species were able to drive MS expression (27). When we looked at
408 chromatin accessibility data of the promoter fragment which was cloned from PEPC, we

409 identified many MS-specific ACRs within the cloned fragment, but an additional one upstream.
410  This results shows the advantage of using SCATAC-seq data to identify candidate CREs for
411  certain genes, removing the guesswork of cloning fragments to investigate and providing a

412  detailed cell-type-specific regulatory map of the locus (Figure 4E). Thus, SCATAC-seq greatly
413 improves the search space of the active CREs potentially driving cell-type-specific gene

414  expression patterns.

415
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Figure 4: Investigating the number and distance of cell-type-specific ACRs around C4 enzymes
across subtypes. A) Dot plots showing the number of cell-type-specific ACRs around each
enzyme. The x-axis indicates which cell type these enzymes are found in. The y-axis is counts
of ACRs. The graph is further subdivided with the top panel being broad ACRs, middle panel

BS-specific ACRs, and the bottom being MS-specific ACRs. Enzymes are labeled. B) Dotplots
showing the mean distance of cell-type-specific ACRs to their closest C4 enzyme. The x-axis
indicates which cell type these enzymes are found in. The x-axis is the genomic distance to the
C. enzyme in question. If an enzyme had multiple cell-type-specific ACRs, the distance was
averaged (mean). C) Screenshot of NADP-MEL in Z. mays. Blue tracks correspond to BS
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chromatin accessibility and red tracks show MS chromatin accessibility. Tracks are equally
scaled to facilitate comparison. All genes found within this window are shown. D) Screenshot of
RBCS2 in Z. mays. Blue tracks correspond to BS chromatin accessibility and red tracks show
MS chromatin accessibility. Tracks are equally scaled to facilitate comparison. All genes found
within this window are shown. E) Screenshot of PEPCL1 in P. miliaceum. The green fragment
represents the cloned promoter from Gupta et al 2020, which was identified by minimap2
alignment. Blue tracks correspond to BS chromatin accessibility and red tracks show MS
chromatin accessibility. Tracks are equally scaled to facilitate comparisons.

The Evolutionary Relationships of ACRs Associated with C4 Genes is Complex and
Variable:

Next, we explored the evolutionary histories of these ACRs. Due to the fact that the C4
subtypes come from different radiation events, (with Z. mays and S. bicolor likely sharing a C4
ancestor and U. fusca and P. miliaceum sharing a different C, ancestor), we were curious to
evaluate if a majority of the ACR space around these genes were either novel, or shared among
these species. We implemented a pairwise sequence based approach by identifying sequence
conservation of ACRs between the study species using BLAST (Methods). The majority of
important C4 genes have both novel, and conserved ACRs. For example, PPDK, a MS-specific
enzyme, shares ~25% of its ACRs across all species examined including the O. sativa Cs
outgroup (Figure 5A). Interestingly, RUBISCO ACTIVASE (RCA), a critical enzyme in
photosynthesis which removes inhibitory molecules from the RuBisCO active site, had novel
ACRs in all of the C4 species examined, whereas RCA in the C3 species O. sativa shared one
ACR with all of the C4 species. This might indicate that each of the C4 species gained regulatory
sequences at RCA or that O. sativa might have lost them (Figure 5A). Focusing on NADP-ME
revealed notable divergence in its associated ACRs, even among closely related species. For
example, in Z. mays, two out of nine ACRs linked to NADP-ME1 were unique, lacking
counterparts in other species (Figure 5A). This is particularly striking given that S. bicolor,
belonging to the same C4 subtype, diverged from Z. mays only 13 million years ago (51).
Similarly, in S. bicolor, the BS-specific NADP-ME2 variant exhibited two out of five unique
ACRs. This pattern underscores the rapid and distinct evolutionary trajectories of ACRs in C4
plants. A full list of gene families, and gene models, and their relative conservation is found in
Supplemental Figure 25A. Using this same approach to study all of the core class of C4
enzymes did not reveal a generalizable pattern associated with gain or loss of ACRs around C4
genes (Supplemental Figure 25A). Our findings not only confirm the dynamic evolution of cis-
regulatory sequences in C4 enzymes but also align with existing research that highlights rapid
cis-regulatory changes among closely related species (48,52).

While investigating the ACRs around the C4 genes is interesting, understanding how
cell-type specificity is achieved across C. subtypes is needed for efforts to engineer C,
photosynthesis. When looking at just the cell-type-specific ACRs around key C4 loci, we find a
similar pattern where there is a mix of both conserved and novel ACRs. For example, we
discovered that some of the MS-specific ACRs associated with PPDK and PEPC are highly
conserved in all of the studied species. Interestingly, the MS-specific ACRs around PEPC were
only found in the C,4 species, and not in the Cs outgroup, O.sativa (Figure 5B). This indicates
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that some of the CREs that allow PEPC expression in MS likely evolved after the split between
the most recent common ancestors. We also observed that NADP-ME possessed humerous
BS-specific ACRs that were conserved in all species, including O. sativa (Figure 5B).
Considering the fact that proper compartmentalization of NADP-ME in BS cells is only critical in
two of the three C,4 subtypes, this was surprising. However, in both S. bicolor and Z. mays, there
were novel BS-specific ACRs associated with each key NADP-ME. In Z. mays, one out of the
five BS-specific ACRs was novel to Z. mays, and in S. bicolor two out of the five were novel to
S. bicolor. Upon inspection of all the NADP-ME loci in genome browsers, we were struck by the
complexities and shuffling that occurred at these BS cell-type-specific ACRs (Figure 5C). These
results highlight that extensive cis-regulatory evolution is occurring in each of these species,
and in particular on a cell-type-specific level. Additionally, this may point to the fact that the
novel BS-specific ACRs found in S. bicolor and Z. mays may be more important for proper BS-
specific expression than the conserved regulatory elements.

Although binary classification of ACRs was useful to decipher larger scale patterns
between key enzymes, we next tested if larger segments of sequence were conserved around
some C,4 genes as compared to others. We profiled the relative amount of conserved sequence
at each of these ACRs, as alignment of sequence between species gives greater resolution
about important ACRs. One interesting observation from this analysis was the fact that the cell-
type-specific ACRs around PEPCK appear to be novel between Z. mays and U. fusca (Figure
5D, Supplemental Figure 29-30). This suggests that these regulatory loci emerged
independently, and yet are still likely important in cell-type-specific expression of PEPCK.
Additionally, around the NAD-ME loci in P. miliaceum, we found diverse evolutionary histories
with both copies NAD-ME1 and NAD-ME2 having both conserved and novel BS-specific ACRs
(one out of four ACRs were novel for NAD-ME1, and zero out of the two were conserved for
NAD-MEZ2) (Figure 5D). The ACRs from NADP-MEL1 are conserved in U. fusca, whereas all
three BS-specific ACRs are conserved in relation to P. miliaceum. Pointing to the fact that the
ACRs have likely maintained their cell-type specificity, and are likely critical drivers in the correct
expression of NAD-ME loci. These results highlight the dynamic evolution of cell-type-specific
ACRs around key C. loci, and that even closely related subtypes have evolved novel ACRs
potentially critical in terms of proper gene expression, as well as compartmentalization.
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Identification of de novo TF-Binding Motifs from Cell-type-specific Chromatin Data
Reveals Rapid Sequence Diversification of ACRs

Leveraging the cell-type-resolved datasets, we identified de novo cell-type-specific TF motifs in
BS and MS ACRs (Figure 6 A & B; Methods ; Supplemental Figure 31). We selected the BS-
specific motifs based on motif similarity within C4 species for BS, and motif similarity seen
across all species for MS. Additionally for the identification of BS specific motifs, we identified
motifs which didn’t appear to have a corresponding motif in O. sativa (Methods). Reassuringly,
within the BS-specific motifs, we identified a DOF TF motif, which is a key driver in the switch to
C4 photosynthesis (29,53,54). In brief, the DOF TFs have been implicated as being potential
drivers of proper gene expression in Z. mays Cs genes, both as repressors and activators. For
example, ZmDOF30 has been implicated as being important in driving BS specific gene
expression (29,53,54). In total we identified three BS-specific motifs, and four MS-specific de
novo motifs that are shared between the species sampled (Figure 6 A & B ; Supplemental
Figure 31). Using motif comparison tools, we were able to assign five out the of the six motifs to
a putative TF family, implicating potential novel regulators in BS-and MS-specific gene
expression (Methods ; Supplemental Figure 29). We surveyed the C4 ACRs for the presence
and absence of these motifs to determine if they provide the information needed for cell-type
specificity. We additionally overlaid our BLAST results from the previous analysis in order to
explore the relationship between these motifs and conservation (Figure 6C). A substantial
number of motifs were present within the non-conserved regions of the ACRs. For instance, in
one MS-specific ACR associated with ZmCA3,12/13 MS-specific motifs were found in non-
conserved regions, suggesting these regions could be critical for driving the cell-type-specificity
of this locus (Figure 6D).

We expanded the analysis of BS- and MS-specific motifs in conserved and non-
conserved regions of ACRs across key loci in the C4 species. On average the MS-specific
motifs are more conserved than the BS-specific motifs (Figure 6E-F; Supplemental Figure 32
). Agreeing with previous models of C4 evolution where some motifs that are MS specific have
been co-opted to operate in C4 photosynthesis (Figure 6D) (11). Interestingly, we noticed a
pattern where around PPDK, many of the MS-specific motifs appeared to be in hon-conserved
sequences for all of our species sampled (Figure 6E). This pattern is further highlighted in both
NADPME, and NADME loci, where a majority of the BS-specific motifs occurred in non-
conserved ACR regions for NADPME. This pattern is more nuanced in the NADME ACRs, as P.
miliaceum and U. fusca share a significant amount of conserved sequence containing BS-
specific motifs in the ACRS, suggesting that the BS-specific regulatory changes associated with
these motifs are important (Figure 6F). These results highlight the capacity of genome-wide
single-cell cis-regulatory maps to pinpoint key TF motifs important for the evolution of cell-type
specificity.
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566  Figure 6: Identification of cell-type-specific TF motifs reveal a complex relationship between
567  sequence conservation and motif preschece. A subsample of MS- (A) and BS-specific (B) de
568 novo TF motifs identified. Left) De novo motifs were clustered by the correlation of their PWMs
569 and a correlation based tree was generated. Right) Representative PWMs from de novo
570 discovery. C) Screenshot of the ZmCAS locus. ACRs are color coded based on their cell-type
571  specificity. MS- and BS-chromatin accessibility tracks are equally scaled for comparison.
572  Sequence conservation is identified by the ACR having sequence homology to other CA ACRs
573  from a different species. D) An example of the conservation and motif landscape of one MS-
574  specific ACR at ZmCA3. Left, the location of the motifs in ACRs with MS- and BS-specific motifs
575 labeled. Orange highlighted regions correspond to the region of sequence conservation seen
576  above. Right, quantification of the motifs found in the ACR. X-axis is the motif count, and the y-
577 axis is the motif. E) The counts of TF motifs in conserved and non-conserved ACRs for three
578 different genes across all five species. Y-axis is the number of ACRs of a given type, and the x-
579 axis indicates the type of ACR. F) Odds ratio of four motifs when comparing their enrichment in
580 conserved versus non-conserved regions. A higher odds ratio indicates that the motif is more
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often found in non-conserved regions within ACRs, whereas a lower odds ratio means the motif
is in conserved regions. The cell-type-specific motifs found in A/B are colored in red and blue,
respectively.

The DITs in the NADP-ME Subtypes Demonstrate Dynamic CRE Evolution

Upon analyzing the malate transporters DICARBOXYLIC ACID TRANSPORTER'’s (DITs
also known as the DCTs) we noticed the DITs in the NADP-ME subtypes showed an interesting
pattern where the copies of DIT1 in Z. mays and S. bicolor showed MS-specific chromatin
accessibility, but the BS-specific copies of the DITs showed a more complex evolutionary
history (Figure 3B; Figure 7A). We generated a phylogeny with additional species, and found
that the BS-specific copy of ZmDIT2 is related to two additional copies of DITs which are not
BS-specific in S. bicolor (Here SbhDIT2.2 and SbDIT2.1) (Figure 7A). S. bicolor has a BS-
specific copy of SbDIT4, which shares a clade with ZmDIT1. These results are consistent with
earlier studies that found similar patterns and gene expression profiles of these copies of the
DITs in Z. mays and S. bicolor (33,36,55). Although previous studies have documented changes
in cell-type-specific gene expression for the BS-specific copies of the DITs, the mechanisms
underlying these changes remain unclear. By using cell-type-specific ACRs, we explored if
expression changes are associated with changes in the number of cell-type-specific cis-
regulatory elements over evolutionary time.

To understand how cell-type specificity changed in these DITs due to changes in cis-
regulation, we compared the ACRs associated with the DITs, and mapped the TF-binding motifs
found within each ACR (Methods). For the MS-specific DIT1s, we focused on a MS-specific
ACR located at the 3' end of DIT1 in Z. mays (Figure 7B). Upon comparing this ACR to S.
bicolor, we were struck that the sequence found in the Z. mays ACR was actually split in two in
S. bicolor, neither of which demonstrated cell-type specificity in S. bicolor (Figure 7B ;
Supplemental Figure 33). A closer inspection of motifs in these ACRs showed many MS-
specific motifs (Figure 7B-C). These motifs might promote MS-specific gene expression of this
locus. However, many S. bicolor MS-specific ACRs were not found in regions with any
homology to Z. mays (Figure 7C). These results point to the rapid change of candidate CREs
(cCRES) in this locus, and likely indicate that cCREs important in cell-type-specific gene
expression might not be only found in conserved regulatory regions (56). Rather, selection of
MS-specific gene expression is ongoing, and may yield significantly different regulatory
environments in relatively short evolutionary time scales.

Next, we examined the BS-specific ZmDIT2 and its two orthologs SbDIT2.1 and
SbDIT2.2 , which are not BS specific (Figure 7A, D). The BS-specific ACR around ZmDIT2 has
many DOF TF motifs (Figure 7E). These motifs are interesting, as expression changes within
the DOF TF family could be important in driving BS-specific gene expression in C4 plants
(29,53,57). When comparing the BS-specific ACRs around ZmDIT4 to the more closely related
copies of SbDIT2.1 and SbDIT2.2, we found no conservation of these DOF TF motifs, and
rather a significant lack of BS-specific TF motifs (Figure 7F). Considering the fact that neither of
these DIT copies in S. bicolor show BS-specific expression, this result makes sense. Potentially
providing a model where the ZmDIT4 locus either gained these cCREs allowing for this copy of
ZmDIT2 to have BS specific gene expression, or S. bicolor lost these BS-specific motifs, and
had a gain in SbDIT4 specificity. In either scenario, it demonstrates the rapid pace of CRE
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625  evolution, and how these regions might be altering cell-type-specific gene expression. These
626  results are in contrast to SbDIT4, where the ACRs around this locus are BS specific, and

627  contain BS-specific motifs identified in our previous analysis (Figure 7F). In total, these results
628  highlight the rapid rate of regulatory change around key Cj4 loci, and highlight the fact that there
629 are likely key regulatory switches outside of conserved sequences. Finally, these results

630 emphasize the fast pace in which cell-type specificity changes in plants
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634  Figure 7: A) Phylogenetic tree showing the evolutionary relationship of the DITs in the

635 monocots. DITs for Z. mays and S. bicolor are colored by their observed cell-type specificity,
636  with red being MS specific, and blue being BS specific. Additional species have been added to

637 increase resolution B) A screenshot of the DIT1 between Z. mays (top) and S. bicolor (bottom).
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Yellow boxes indicate ACR sequences with conserved homology C/E/F) Motif location of BS
and MS specific motifs in each ACR. The x-axis is the location within the ACR, and the y-axis is
the motif count. Yellow bars indicate regions of sequence homology. Within each histogram, the
x-axis is binned into 20bp regions for ease of graphing. Roman numerals in the top corner
highlight the corresponding ACR found in the screenshot. (I-IX) top) X-axis the genomic
coordinates of the given ACR. Yellow blocks denote the sequence homology as seen above. Y-
axis, the motif score as calculated by motifmatchR, higher scores indicate a more confident
motif. bottom) The count of each motif identified in the ACR. Note that BS and MS de-novo
identified motifs are in blue and red respectively. D) A screenshot of the BS specific DITs loci
between Z. mays (top) and S. bicolor (bottom). For the S. bicolor versions of the DITs, DIT4 is
colored blue for its observed BS specificity and DIT2.1 and DIT2.2 are colored green. Yellow
boxes indicate sequence homology.

Discussion:

Understanding the evolution of cis-regulation associated with C4 photosynthesis has
been a long standing goal in the field of plant biology. In this study, we demonstrated the utility
of single-cell ATAC-seq data to investigate many aspects of the evolution of C4 photosynthesis.
By identifying cell-type-specific chromatin accessibility from four C4 species composed of three
different C,4 subtypes, as well as a single C3 outgroup, we were able to compare and contrast
key genes and their ACRs which define and distinguish C4 photosynthesis. We have shown that
by using gene-body chromatin accessibility data, we can measure cell-type-specific bias of both
core, and subtype-specific C4 enzymes. When taken into consideration with the gene family
trees of many of these enzymes, we show diverse co-option of enzymes into the C, pathway.
Additionally, we identify cell-type-specific ACRs surrounding these key C4 enzymes. We find
numerous cell-type-specific ACRs surrounding key C4 enzymes, many of which fall outside of
the core promoter region. Additionally we find that around all of the C4 enzymes there is a mix of
both conserved and novel cell-type-specific ACRs indicating that regulatory evolution of these
regions is ongoing. Finally, we use cell-type-specific ACRs to identify a series of de-novo
binding motifs which appear to be cell-type specific, and show that these motifs surround C4
loci, and have a mixed relationship with conservation depending on the motif. This indicates that
cell-type-specific TF motifs are rapidly changing around C4 loci.

Investigation of the CREs driving cell-type-specific expression of C4 genes is
challenging. This often requires evaluation using transgenic plants, which limits the number of
CREs that can be tested. This has greatly hampered efforts at understanding how cis-regulation
of C4 genes evolves, whether by co-option of existing CREs or emergence of new ones. Our
results show the complex nature of CRE evolution of C4 genes, including those specific to Cq4
subtypes. While we observe conservation of ACRs around many C. genes, we do see
interesting examples where the subtype-specific enzymes have evolved novel ACRs (NAD-
ME’s in P. miliaceum, and PEPCK in U. fusca). These results support that there is likely a
combination of both co-opting pre-existing CRES, as well as evolving new ones to facilitate
proper expression and cell-type-specification of genes. This is further exemplified by the
analysis of the DIT family of transporters, where we show striking accumulation of cell-type-
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681 specific TF motifs in non-conserved regions of ACRs between two closely related species. This
682  highlights that the regions of the genome promoting cell-type-specific gene expression are likely
683  found in both conserved, and novel regions. Another recent single-cell genomic study of the
684  evolution of CREs important for photosynthesis using a comparison between O. sativa and S.
685  hicolor reached similar conclusions (57). They frequently found different ACRs and TF motifs in
686  promoters of orthologous C4 genes (57). Future efforts to assay these candidate CREs using
687  reporter assays, transgenesis and genome editing will be required. Additionally, expanding

688 these analysis outward to all genes associated with photosynthesis might provide valuable

689 insights into how genes in the Calvin-Benson cycle alter their regulation in their adaptation to C4
690 photosynthesis. Fortunately, these high-resolution maps of cell-type-specific ACRs of these key
691  genes/species provide a strong foundation to build upon.

692 Although these studies provide a blueprint for the study of key candidate CREs

693  associated with C, enzymes, profiling cell-type-specific chromatin accessibility of additional

694  species would be greatly beneficial. Although O. sativa is an invaluable outgroup for this study,
695 additional more closely related Cs species might make these comparisons simpler, and add
696  additional resolution. For instance the C; grass species Dichanthelium oligosanthes is more
697  closely related to U. fusca and P. miliaceum and has a recently completed reference genome
698  (58). Adding more species would enable greater resolution in the comparison of cell-type-

699  specific ACRs, as the genetic distance between the species we examined and O. sativa make
700 identification of conserved and novel ACRs challenging. As an example, the ACRs associated
701  with NAD-ME’s in P. miliaceum might be co-opted instead of novel, however, based on our

702  sampling, we cannot say.

703 Genome editing analysis of many of these ACRs would significantly advance which

704  ACRs, and more specifically which CREs within the ACRs are most important for cell-type-

705  specific expression (22). However, currently generating genome edits in monocots is

706 challenging, time consuming and expensive. Fortunately, improvements to transgenesis are
707  constantly improving making achieving these goals more likely in the future (59). It's also

708 important to consider that mutational analysis of CREs is not straightforward, often requiring
709  numerous editing events of the cis-regulatory landscape of each gene. Previous studies have
710 shown that deletions of many CREs produce variable molecular and morphological phenotypes,
711 further complicating our understanding of the cis-reglatory code (60—62). And finally, many

712  species, including P. miliaceum and U. fusca have to date never been transformed. This

713  highlights the need to continually improve transgenesis methods to help facilitate the molecular
714  dissection of CRE. In conclusion, this study provides a comprehensive map of cell-type-specific
715 ACRs around key C4 genes, which reveals the dynamic evolution and diversity of cis-regulation
716  of C4 genes.

717
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Methods:

Plant Growth Conditions and Sampling:

Seedlings of all five plant species, including maize (Zea mays B73), sorghum (Sorghum bicolor
BTx623), proso millet (Panicum miliaceum L. CGRIS 00000390), and browntop signalgrass
(Urochloa fusca LBJWC-52), along with the C; plant rice (Oryza sativa Nipponbare), were grown
under the conditions of 12:12 Light/Dark cycles at 30°C Light/22°C Dark and at 50% humidity.
The sampling of the C,4 species was timed to coincide with a specific developmental stage,
identified when the ligule of the third leaf became visible, marking the third leaf unfolding, yet
prior to the appearance of the fourth leaf. For the C; species, rice, 18-day-old leaves were used
to correspond with the equivalent stage of the C4 species.

Library Preparation:

Nuclei isolation for the experiments was conducted using fresh seedlings of both the C, and C;
species at their respective developmental stages. The methodology for nuclei extraction,
encompassing the buffer composition and the subsequent steps, was used with procedures
outlined for single-nucleus combinatorial indexing with transposed-based ATAC-seq library
construction, as detailed in a prior study (63).

Genomes:

The Z. mays genome version 5 was downloaded from MaizeGDB (64,65). The O. sativa
genome was downloaded from rice.uga.edu. The S. bicolor version v5.1 was downloaded and
used from Phytozome version 13, as well as the U. fusca genome version 1.1 (66). Finally the
P. miliaceum genome was downloaded from NCBI, bioproject number PRINA431363 (43).

Barcode Correction Read Alignment and Mapping of Tn5 Insertions:

Read UMIs were processed using cutadapt (version 4.5) to identify UMIs (67). First, the index
adapter sequences were trimmed from the reads. Next, the well barcodes and Tn5 barcode
within the reads were identified, removed from the original sequencing read, and appended to
the read header. Finally, a shell script is used to integrate all barcode information from the
reads' headers and label them correspondingly in the paired-end sequencing fastq files. Reads
were aligned using BWA (version 0.7.17) (68). Reads were filtered using samtools (version
1.16.1) for mapping quality of >10 for Z. mays , S. bicolor , U. fusca, and O. sativa. P. miliaceum
required a greater threshold of 30 given its recent whole genome duplication event increasing
the rate of multi-mapping reads (69). Duplicate reads were removed using picard tools (version
2.25.0) (70). Single-base pair Tn5 integration events were mapped using the python script
‘makeTn5bed.py” found in the GitHub utils directory
(https://github.com/Jome0169/Mendieta.C4_manuscript). Finally, for each barcode only unique
Tn5 integrations sites were used for analysis. So if a nuclei had the same identical fragments
multiple times, only a single event was considered.
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Isolating High-Quality Cells:
Cells were filtered using Socrates (21). In short, Fraction of Reads in Peaks (FRIiP) scores were
calculated for each cell by pseudo bulking the libraries and identifying peaks. For each
individual cell, FRiP was calculated by intersecting Tn5 integration events with peaks. Cells with
a FRIP score greater than 0.2 were used. Additionally, TSS enrichment was calculated by
looking at the number of Tn5 integrations around TSS. Cells that had a TSS enrichment greater
than 0.15 were used. Finally, cells were compared to a random sample of low quality cells which
did not pass filtering, representing the “background” of cells, and correlation was calculated
between passing cells and background cells using the corr package in R. Cells which had a
correlation lower than 0.3 percent as compared to background cells were used for further
analysis.

UMAP embeddings were then calculated for each species utilizing genomic bins (71).
For each dataset, bins of 500 bp were calculated. To reduce the size of features to cluster on,
bins had to show accessible chromatin in at least 0.005% of total cells (roughly 50~100 cells in
each species). Additionally, bins that were broadly accessible across greater than 10% of cells
in the given dataset were also discarded to remove regions of the genome which were
constitutively accessible and wouldn't facilitate clustering. Finally, regions of the genome which
were associated with either blacklist (21), or genes which were known to be related to cell cycle
and circadian rhythms were removed. The final resulting matrix, which represented cell
barcodes X genomic regions (here bins), were then put through the term-frequency inverse-
document-frequency (TF-IDF) algorithm to identify genomic regions more descriptive of the
entire dataset (30). The resulting matrix was then input into Singular Value Decomposition, and
clustering was then done on the remaining features with the number of principal components
(PCs) equaling 50, and any PC with a correlation to read depth greater than 0.5 removed (72)
(30). Clustering was done using the Louvain clustering algorithm in order to bin cells into similar
groups based off of the PCs calculated above, with parameters “res = 1.5, k.near = 30, m.dist =
.01” in order to set K nearest neighbors to 30, minimum louvain distance to .01 in euclidean
space (73). Using the UMAP embeddings, doublets were removed using the software Scrublet
as implemented in Socrates software (74). At random, 5,000 cells were used to generate in-
silico doublets, and cells which were scored as being likely doublets were removed. Adaptive
thresholds were set on a per library basis. The doublet rate from Scrublet was compared
against a mixed library where genotypes of Z. mays were mixed Mo17 and B73, and genotype
doublets were identified. We found that Scrublet, on average, removed more cells in a
conservative fashion than the birthday problem and genotype doublets identified, so we utilized
the Scrublet doublet scores to be conservative. For the P. miliaceum dataset, replicates were
found to integrate poorly in the UMAP embedding. Harmony (version 0.1.1) was used adjust
replicate overlap with parameters “theta = 2, nclust=4, and var = “samplelD” (75). After
integration, clusters which skewed greater than 75% towards one replicate were removed from
downstream analysis.

Identification of Putative Orthologs:

To annotate species with less marker gene information, we identified putative orthologs or
marker genes using OrthoFinder (version 2.5.4) (31). For each species, the primary protein
sequence of the transcript was used as input to Orthofinder. In the resulting orthofinder outputs,
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811 the script “find_markers.orthofinder.py” was used to parse the resulting phylogenies and return
812  back putative orthologs (https://github.com/Jome0169/Mendieta.C4_manuscript). For all C4
813 genes analyzed, each orthogroup was additionally annotated by hand in order to ensure

814  accurate assignment of nearest orthologs phylogenetically.

815

816  Annotation of Cell Types:

817  Cell types were annotated by calculating gene chromatin accessibility for marker genes in each
818 genome on a per cell basis. These values were then visualized on the UMAP embedding, and
819 clusters with numerous marker genes associated with the same cell-type were used as

820 evidence. Additionally, for each louvain cluster, enrichment of marker genes was calculated by
821  comparing the cluster average as compared to a random shuffle of random cells. The top five
822  most enriched markers were used in tandem with the UMAPS to ascertain cell-type identity. We
823 also tested the statistical significance of the marker gene using Presto, a modified Wilcoxon
824  rank-sum test in order to identify the most unique marker gene in each cluster (76). Additionally,
825  for specific clusters showing mixed signals from marker genes, sub-clustering was done by
826  isolating the cluster in question, and then re-clustering these cells on a new UMAP manifold.
827 The same steps were done to visualize marker genes, as well as test this enrichment, and

828  statistical significance. Finally, to bolster our set of marker genes across species, we used our
829  most confident cell-type annotation in Z. mays to de novo discover marker genes. To do so, we
830 utilized our gene-body-accessability metrics for each annotated cell-type, and ran DESeq2

831  (version 1.42.0) in a replicate aware fashion using all other cells as a null (77). Only statistically
832  significant markers were kept which had a fold change greater than 1.5, and a log fold standard
833  error of less than .6. OrthoFinder was used as mentioned above to find orthologs. To ensure
834  that we were comparing similar cell-types, we also took an orthogonal approach where we

835 compared the gene accessibility of the top 2000 most variable orthologs between our species. A
836 linear model was used for each species comparison where the mean gene accessibility was
837 taken into consideration, and the species was one-hot-encoded. Variation was calculated as the
838 average variation between both datasets. The resulting residuals were used to generate the
839 cell-type correlations.

840

841  Peak Identification:

842  To identify peaks, cells of the same annotation type were pseudo bulked in a replicate aware
843  fashion. Within each replicate MACS2 (version 2.2.9.1) was run with parameters “--nomodel --
844  keep-dup auto --extsize 150 --shift -75 --qvalue .05” and variable genome size flag ‘-g’ (78).
845  Summits for each peak identified in each replicate were extended by 250 bp in either direction.
846  Only peaks which overlapped between replicates were used. To merge peaks from various cell
847  types and select peak boundaries, the p-value associated with each peak in each cell type was
848 compared by calculating the chromatin accessibility score for each peak per million, with those
849  peaks with the highest accessibility score being selected as the representative peak. This

850 method of identifying the most representative peaks across cell-types was inspired by previous
851  single cell ATAC-seq papers (30,79,80). Additionally, bigwigs were generated for each cell type
852 by normalizing each dataset to the number of reads/per million scaling factor. Implementation of
853  this algorithm is found in the script call_scACRs.py for ease of use and replication in other

854  experiments.
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Identifying Cell-type-specific ACRs:

To identify cell-type specific ACRs, a modified bootstrapping method was used which drew
inspiration from the modified entropy metrics found in (79). On a per ACR basis, Tn5
integrations per cell-type were summed and counts per million (CPM) normalized. These values
were then converted to a probability by using the following equation (below, equation 1) where
pi is the CPM value for the focal cell-type and qi is the total sum of all CPMs. From this
probability statement, a modified shannon entropy metric was calculated, followed by a metric of
specificity Qpt. For robust cell-type-specific ACR identification, the annotated cell-type was
bootstrapped 5000 times, taking a sample of 250 cells from the cell population in question, and
calculating both entropy and specificity scores. This was done to attempt to get a robust signal
of specificity, which takes into consideration the variation in cell quality present in each cell-type
annotation. To generate the null distribution of specificity scores, individual cell annotations
were scrambled to generate an equal number of null cell-type classifications. For each null
value, the entropy and specificity score were calculated. Finally to calculate a p-value, a non-
parametric approach was used to identify how many of the real bootstraps fell outside of the null
distribution using a one tailed test. ACRs which had a p-value of <0.001 were considered to be
significant. ACRs were finally classified by the number of cell types they were specific to. ACRs
specific to greater than three were classified as broadly accessible, less than or equal to three
as cell type restricted, and a single cell-type as cell-type specific.

. oqi
D ri= 3o

2) Hp =-Xptlog,(pt)
3) Qpt = Hp — log,(pt)

Identifying Conserved ACRs Across Species

Since a majority of the C4 genes identified were not in synteny with one another, we took a
gene family based approach to identify conserved and non-conserved ACRs associated with
our C4 genes. In short, all ACRs within two gene models of a C4 gene are utilized for
comparison. Sequences from the ACR were isolated using “bedtools getfasta” (version 2.31)
(81). Then in a pairwise fashion each species had their ACRs from one C4 gene family
compared to the corresponding genomic loci of the same gene family in a different species.
Comparisons were made using Blastn (version 2.2.29) with the following parameters “ -task
blastn-short -evalue 1le-3 -max_target_seqs 4-word_size 7 -gapopen 5 -gapextend 2 -penalty -1
-reward 1 -dust no -outfmt 6” (82). The output blast files were further filtered requiring sequence
alignment to be greater than 20 nts, and have an evalue of .001. This analysis and the detailed
commands ran can be found in the following snakemake file titled
“ID_syntenic_orthologous.ACRs.snake”, and found in the snakemake directory in the associated
github.

Identifying Cell-type-specific Motifs:

De-novo cell-type-specific motifs were identified by using XSTREME (version 5.5.3) of the
MEME suite (version 5.5.5) package (83,84). In brief the sequences underlying the cell-type-
specific ACRs were isolated, and equally matched null set of broadly-accessible ACRs were
used the comparison for genomic enrichment. These null ACRs were matched in terms of GC
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content, and were only allowed to be 5% different from the cell-type-specific set in question and
generated using the script “gen_null_fa.py”. Upon generation, motifs were analyzed using the
universalmotifs package in R (version 3.18) (85). Motifs were first compared using HELL
distance, and motifs which had a low correlation were discarded. In order to generate
representative motifs, highly correlated motifs were merged using the function “merge_motifs” in
found in the universalmotifs package. To identify the location of motifs, the R package
motifmatchR were used, with a significant value cut off of .0005 (86).

Motifs Comparison:

In order to compare de novo identified motifs, position weight matrices were compared to using
TomTom (version 5.5.5). Motifs were compared either against the non-redundant TF database
for JASPAR plant TF binding motifs, or compared versus the consensus sequences found in
Zenker et al 2024. The most significant motif was used to assign to potential TF families (87—
89).

Data availability:

SCIATAC-seq data for Z. mays, S. bicolor, U. fusca, and P. miliceum is found in NCBI under the
following bioproject PRINA1063172. Leaf data for O.sativa can be found under the following
SRR bioproject PRINA100757. All scripts used for processing and analyzing data in this
manuscript can be found at the following github repository:
https://github.com/Jome0169/Mendieta.C4 manuscript . Additionally, all datasets with both MS
and BS specific accessibility profiles, their ACRs, as well as their BLASTN relationships can be
found on the epigenome browser https://epigenome.genetics.uga.edu/PlantEpigenome. All
datasets can be found under the sub-folder Mendieta et _al.C4 project.
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