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Abstract

Background Novel influenza viruses pose a potential pandemic risk and rapid detection of infections in
humans is critical to characterizing the virus and facilitating the implementation of public health
response measures.

Methods We use a probabilistic framework to estimate the likelihood that novel influenza virus cases
would be detected through testing in different community and healthcare settings (urgent care,
emergency department, hospital, and intensive care unit (ICU)) while at low frequencies in the United
States. Parameters were informed by data on seasonal influenza virus activity and existing testing
practices.

Results In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity
to seasonal influenza viruses, the median probability of detecting at least one infection per month was
highest in urgent care settings (72%) and when community testing was conducted at random among the
general population (77%). However, urgent care testing was over 15 times more efficient (estimated as
the number of cases detected per 100,000 tests) due to the larger number of tests required for
community testing. In scenarios that assumed increased clinical severity of novel virus infection, median
detection probabilities increased across all healthcare settings, particularly in hospitals and ICUs (up to
100%) where testing also became more efficient.

Conclusions Our results suggest that novel influenza virus circulation is likely to be detected through
existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity
profile. These analyses can help inform future testing strategies to maximize the likelihood of novel
influenza detection.

Keywords: influenza; HSN1; novel virus; detection; healthcare testing

Introduction

Novel influenza viruses are different from the seasonal influenza viruses currently circulating in humans
(A/H3N2, A/HIN1, and B/Victoria). Human infections with novel influenza viruses are generally rare and
isolated events that occur through exposure to infected animals (such as livestock) during recreational
or occupational activities. At the time of writing (10 May 2024), widespread avian influenza A(H5N1)
virus outbreaks occurring among wild and commercial birds since January 2022 have been associated
with just two detected human cases of H5N1 in the United States: one individual who was exposed to
infected poultry and one who was exposed to infected dairy cattle [1, 2]. The H5N1 viruses associated
with these outbreaks do not easily bind to receptors in the human upper respiratory tract and the risk to
the general public is currently low [1]. However, a novel influenza virus that transmits efficiently
between humans could pose a pandemic risk. Rapid detection of human infection with a novel influenza
virus is critical to characterizing the virus causing the infection and facilitating a rapid public health
response [3].

Testing is particularly important to distinguish novel influenza virus infection from seasonal influenza or
other respiratory virus infections with similar symptom profiles [4]. Although active monitoring and
testing of individuals with exposure to infected animals can identify new spillover infections [2], such
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70 measures are not designed to detect cases in the wider community following sustained human-to-

71 human transmission. Public health surveillance systems must be equipped to detect novel influenza

72 cases through testing in the community or in healthcare settings where infected individuals might seek
73 care.

74  We use a probabilistic framework to estimate the likelihood of detection of novel influenza virus cases
75  once sustained human-to-human transmission is occurring at low frequencies within the United States
76  (i.e., 1,000 total cases or less). We consider testing of individuals presenting to different healthcare

77 settings with no known previous exposure to infected animals or humans and use information on testing
78  for seasonal influenza viruses to develop assumptions about plausible testing probabilities. Our findings
79  can help inform testing strategies to improve detection of novel influenza virus cases occurring at low
80 frequencies.

81
82 Methods
83 Model

84  We adapted an existing framework to estimate detection probabilities for a novel influenza virus in the
85 United States [5]. For a given case of novel influenza virus infection, the probability of detection in a
86  particular healthcare setting can be expressed as

87  Daetect = P(test |case) X pg X te X Dy,

88  where P(test |case) is the probability that someone is tested in that setting given that they are a case;
89  pg is the probability that testing occurs while virus is still detectable; ty;, is the test sensitivity; and py is
90 the probability a positive test is forwarded to a public health laboratory for further testing. Most

91 commercial assays currently used for human influenza virus testing cannot distinguish novel influenza A
92  viruses from seasonal influenza A viruses. Thus, further testing at a public health laboratory is required
93  for a positive specimen to be identified as a novel virus (until tests specific for that virus become more
94  widely available). We initially assumed 50% of positive specimens are forwarded (i.e., py = 50%). This
95  was informed by the average percentage of influenza A hospitalizations that were subtyped between
96 2010-2019 [6]. However, we considered a range of forwarding levels (25, 50%, 75% and 100%) in

97  sensitivity analyses. All specimens forwarded for further testing were assumed to be correctly identified
98  asa novel influenza virus.

99  The per case probability of being tested is the combined probability that a case will develop symptoms
100 (psymp), seek care for those symptoms in a particular healthcare setting (pseex), and be tested in that
101  setting (ptest), i-€.,

102 P(test |case) = Dsymp X Dseek X Ptest-

103 For a certain incidence of novel cases each month, /, in a population of size N (where / is the fraction of
104  the population infected with the novel influenza virus), we estimate the probability of detecting at least
105 one novel case as 1 - the probability of detecting no cases among the entire population, or

106 1- (1 —Ix pdetect)N
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107 (see the supporting information for further details). The expected number of clinical tests used per
108  month, E(T), is the combined number of tests conducted among cases and non-cases. Non-cases
109 represent individuals presenting at healthcare settings with respiratory illness symptoms that are not
110  due to novel influenza virus infection. The expected number of tests can be expressed as

111 E(T) =1x N x P(test |case) + (1 —1I) X N X P(test |not case),

112 where P(test |not case) is the probability that someone without novel influenza virus infection is
113  tested. The latter quantity is estimated as the background rate of presentation with respiratory illness
114  symptoms to a given healthcare setting among the general population (bg,.; ) multiplied by the

115  probability of being tested in that setting (pies:). To compare testing efficiency in different settings we
116  estimated the expected number of detected cases per 100,000 clinical tests conducted as

117 (I X N X pgetect / E(T)) x 100,000.

118  Finally, we considered random testing in the general community as a supplemental strategy that could
119 be deployed in addition to healthcare testing. Given that community testing does not depend on

120  symptom presentation or care-seeking behavior, P(test |case) was simply the frequency of community
121  tests conducted per month and the expected number of tests was N X P(test |case). Similarly, p; was
122 the approximate time (in months) that virus would remain detectable and was parameterized to capture
123 individual variation in virus shedding dynamics. Since community testing would be initiated to seek out
124 novel influenza virus infection, we did not adjust for specimen forwarding (i.e., we assumed all

125  specimens would be tested to distinguish novel influenza virus from seasonal influenza viruses).

126  For each healthcare and community setting, we drew 10,000 parameter combinations from data-

127 informed distributions (outlined below) and calculated the quantities described above. All analyses and
128 visualizations were generated in R version 4.0.3 using the data.table, truncnorm, here,

129 scales, patchwork, colorspace and tidyverse packages [7-14].

130  Healthcare settings and model parameterization

131  We considered three distinct healthcare settings to reflect different care-seeking behaviors and testing
132  practices: (i) outpatient urgent care and emergency departments (UC/ED); (ii) inpatient hospital settings;
133  and (iii) intensive care units (ICU). Each setting was assumed independent such that a person presenting
134  to both (for example, a hospital admission followed by a subsequent ICU admission) could be tested in
135 both, according to the corresponding testing probabilities. Data were collated from various existing

136 influenza surveillance platforms to inform parameters for each setting (Table 1). We defined N = 330
137 million to approximate the U.S. population [15] and considered incidence values that corresponded to
138 100 and 1,000 total novel influenza cases.

139 Table 1. Baseline care-seeking and testing parameters. Surveillance platforms are Flu Near You (FNY), Outbreaks
140 Near Me (ONM), VISION Vaccine Effectiveness Network, FluSurv-Net, and IBM MarketScan® Commercial Claims
141 and Encounters Database (MarketScan) [16-19]. Further details of each platform are provided in the supporting
142 information.

Parameter Assumed distribution Source and available timeframe (if applicable)

Proportion of novel cases Uniform with range: [20]
developing symptoms, Psymy | 40-80%
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Care-seeking and presentation
of novel symptomatic cases at
specific sites, Pgeek:

UC/ED

Hospital
ICU

Uniform with range:

10-20% of symptomatic
cases

1-2% of symptomatic cases
15-20% of hospitalizations

FNY, ONM: 2018-2023

CDC burden estimates: 2010-2021 [21]
VISION: 2020-2021; FluSurv-Net: 2022-2023

Testing of individuals with ARI,
Ptest:

UC/ED

Hospital

ICU

Truncated normal with
mean / SD / range:
50% / 10% / 10-90%
53% / 10% / 20-95%
46% /10% / 1-95%

VISION: December 2021-May 2022

Community testing as a
proportion of the general
population, regardless of
symptoms

3-6% of general population
per month

Assumption following [22]

Tests that occur while virus is
detectable, p4
Healthcare settings
Community settings

Uniform with range:

50-85%
25-50%

Proportion seeking care <7 days after symptom
onset [23]
Proportion of month that virus is detectable [24]

Test sensitivity, gy,

Uniform with range 80-100%

[25]

Proportion of positive
specimens that are forwarded
to a public health laboratory,

Pr

50%

Assumption following [6]

Background occurrence in the
general population, by, of:
I
Hospital ARl admissions
ICU ARl admissions

Uniform with range:

0.6-6%
0.03-0.1%
0.02-0.03%

FNY, ONM: 2019, 2022
MarketScan: 2015-2021

MarketScan: 2015-2021

Abbreviations: UC = urgent care; ED = emergency department; ICU = intensive care unit; ILI = influenza-like-illness; ARI = acute
respiratory illness; SD = standard deviation.
*Background ILI occurrence is multiplied by care-seeking probabilities in urgent care or emergency departments (pgeer) to
estimate the rate of presentation to urgent care or emergency departments with influenza symptoms in the general
population. We omitted data from 2020 and 2021 due to atypically low levels of respiratory virus circulation.

Our baseline scenario reflected a novel influenza virus with similar severity to seasonal influenza.

However, we also considered increased severity scenarios that ranged from severity that was similar to
COVID-19, to the severity of recent H5N1 virus infections in humans (Table 2). For these scenarios, we
assumed similar or increased probabilities of developing symptoms and seeking care in each healthcare
setting, while ensuring that the combined percentages did not exceed 100%. We initially assumed
testing probabilities were fixed (Table 1) but explored alternative scenarios with increased testing (Ptest
mean = 90%) to compare the effect of enhanced surveillance across healthcare settings.

Table 2. Scenarios for increased symptom severity. All parameters are assumed to follow a Uniform distribution

with the reported range.

Scenario Symptomatic uc/ED' Hospital ICUs Source(s)
Baseline 40-80% 10-20% 1-2% CHR? 15-20% [20, 21]
COVID-like 40-80% 10-20% 1-2% IHR* 20-30% [22, 26]
Intermediate 1 25% > baseline” 25% > baseline” 4.5-5.5% IHR* 30-40% [22]
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Intermediate 2 50% > baseline” 50% > baseline” 9.5-10.5% 45-55% [22]
IHR*
Recent H5-like 50% > baseline” 50% > baseline” 60-70% IHR? 75-85% [1]
158 Abbreviations: UC = urgent care; ED = emergency department; ICU = intensive care unit; CHR = case-hospitalization ratio; IHR =
159 infection-hospitalization ratio.
160 *Up to a maximum of 100%.
161 *Expressed as a percentage of symptomatic individuals.
162 *Expressed as a percentage of infected individuals.
163 SExpressed as a percentage of hospitalizations.

164

165  We also considered scenarios in which testing practices changed according to seasonal influenza activity.
166 For example, clinicians may be less likely to test for influenza viruses during summer months when

167  background respiratory virus activity is low. To explore this, we first defined distinct probability

168  distributions for the background rates of presentation to each healthcare setting, bgeer, during peak

169 (November — February) and off-peak (May — August) time periods (Table 3). We then simulated the

170 model for each time period and healthcare setting, assuming the care-seeking behavior of novel

171  influenza cases did not change but that testing in off-peak periods was either equal to, or 50% of, testing
172 in peak periods.

173 Table 3. Baseline occurrence of ILI or ARl symptoms partitioned by peak vs off-peak activity.

Parameter Range of uniform distribution Period Source and available timeframe

Occurrence of:

ILI* 1.0-6.0% Peak FNY, ONM: 2019, 2022
0.6-2.5% Off-peak

Hospital ARl admission | 0.04-0.10% of general population Peak MarketScan: 2015-2021

0.03-0.09% of general population Off-peak

ICU ARI admission 0.014-0.035% of general population | Peak MarketScan: 2015-2021
0.010-0.030% of general population | Off-peak
174 Abbreviations: ILI = influenza-like-illness; ARI = acute respiratory iliness; ICU = intensive care unit; FNY = Flu Near You; ONM =

175 Outbreaks Near Me.

176 *Background ILI occurrence is multiplied by care-seeking probabilities in urgent care or emergency departments (pgeex) to
177 estimate the rate of presentation to urgent care or emergency departments in the general population. We omitted data from
178 2020 and 2021 due to atypically low levels of respiratory virus circulation.

179
180 Results

181 We first simulated the model with baseline severity assumptions and no distinction between peak and
182  off-peak time periods. At the lowest incidence (100 novel cases in the population), the median

183 probability of detecting at least one case was highest in community and UC/ED settings, at 77% (95t
184  percentile: 56-91%) and 72% (44-92%), respectively (Figure 1C; Baseline scenario). In comparison,

185 median detection probabilities in hospital and ICU settings were less than 15%. The probability of

186  detection increased across all settings when there were 1,000 assumed novel cases in the population, to
187 100% (100-100%) in UC/EDs and the community, 74% (47-94%) in hospitals, and 19% (9—35%) in ICUs.
188  Testing in UC/ED settings was always most efficient and detected more cases per 100,000 tests than

189  other settings (Figure 1E). Notably, community testing was least efficient due to the greater number of
190 tests required (more than 10 million per month; Figure 1D), and no setting detected more than 3% of all
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novel cases under our assumptions (Figure 1F). Increasing the percentage of influenza positive
specimens forwarded to public health laboratories to 75% or 100% increased detection probabilities and
test efficiency across all healthcare settings (Figure S1). For example, the median detection probability in
UC/EDs increased to 85% (58—-98%) and 92% (69—-99%) at the lowest incidence, respectively. Conversely,
a decrease in the percentage forwarded to 25% decreased detection probabilities and test efficiencies,
although the relative ordering of setting efficiency was preserved. Thus, for a novel influenza virus with
similar severity to seasonal influenza, UC/ED settings are likely to provide greatest opportunities for case
detection.
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Figure 1. Probabilities of detection and test usage under different severity scenarios. (A) Assumed probabilities of
presentation to a particular setting, calculated as Psymp X Pseek for UC/ED, hospital, and ICU settings. All cases
are assumed to be in the community, resulting in a probability of one for that setting (not shown). (B) Assumed
proportion of individuals with ILI or ARI tested in UC/ED, hospital and ICU settings, or proportion of all individuals
tested in the community. (C) Estimated probability of detecting at least one novel case per month. Panels indicate
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206 different assumed levels of incidence (100 and 1,000 novel cases). (D) Expected number of clinical tests used per
207 month. (E) Estimated test efficiency, calculated as the number of detected novel cases per 100,000 tests. (F)
208 Percent of all novel cases detected per month. In all panels, points represent median values across 10,000

209 simulations, inner shaded bands show 50t percentiles, and outer shaded bands show 95th percentiles.

210 Abbreviations: UC = urgent care; ED = emergency department; H = hospital; ICU = intensive care unit; Int 1 =
211 Intermediate 1; Int 2 = Intermediate 2; ILI = influenza-like illness; ARI = acute respiratory illness.

212

213 Given uncertainty in the potential severity of a novel influenza virus, we explored additional scenarios in
214  which cases were more likely to develop symptoms and/or present to a particular healthcare setting
215  than the baseline severity scenario (Table 2; Figure 1A). As severity increased, the probability of

216  detection also increased across all healthcare settings due to the greater probability of requiring medical
217 attention (Figure 1C). The difference between detection probabilities in UC/ED compared with hospital
218 and ICU settings also decreased as cases were more likely to be severe and require admission to the

219 latter. For example, median detection probabilities for ICU settings increased from 2% (1-4%) and 19%
220 (9-35%) at baseline with 100 and 1,000 novel cases, respectively, to 100% (98—100%) and 100% (100—
221 100%) in the “Recent-H5” scenario. There were also substantial increases in testing efficiency in hospital
222 and ICU settings (Figure 1E) and increases in the percent of novel cases detected (for example, from a
223 maximum of 0.3% in hospital settings at baseline to 16% in the Recent H5 scenario; Figure 1F). Test

224 usage is driven primarily by background seasonal influenza virus testing and thus did not change across
225  severity scenarios (Figure 1D). Simulating an increase in clinical testing probabilities (p¢ess mean = 90%)
226  substantially increased detection probabilities and test usage for all healthcare settings but did not

227  impact the relative performance among settings (Figure S2).

228 Finally, we assessed how seasonal changes in background activity could impact probabilities of case
229  detection and testing efficiency. Assuming testing practices did not change seasonally led to equal
230 probabilities of detection in peak and off-peak periods, although testing efficiencies were increased in
231  off-peak periods due to the lower number of background tests conducted (Figure S3). Conversely,
232 assuming a 50% reduction in testing across all healthcare settings in off-peak periods (Figure 2B)

233 reduced the corresponding probabilities of detection (Figure 2C). However, for the most severe

234 scenarios (Intermediate 1, Intermediate 2, and Recent H5) there was always at least one healthcare
235 setting with a median detection probability greater than 60% in off-peak periods at the lowest

236  incidence.

237 Discussion

238  We modeled the likelihood of detection of novel influenza virus cases occurring at low incidence in the
239 United States. We adapted a simple probabilistic framework that accounted for symptom severity, care-
240 seeking behavior, and testing practices in different healthcare settings, and used care-seeking and

241  testing information from recent influenza seasons to inform model parameters. We found that the most
242 efficient setting for detection depends on the severity profile of the novel influenza virus. Although the
243 percent of total novel influenza cases detected was relatively low, the probabilities of detecting at least
244  one case, and thus identifying novel influenza virus circulation, were high in at least one setting across a
245 range of different testing, severity, and specimen forwarding assumptions.

246
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248 Figure 2. Probabilities of detection and test usage in healthcare settings assuming reduced testing probabilities
249 during periods of off-peak seasonal activity. Incidence is fixed at 100 novel cases in the population. (A) Assumed
250 probabilities of presentation to a particular setting, calculated as Psymp X Pseek- Ranges are constant in peak and
251 off-peak periods. (B) Assumed proportion of individuals with ILI or ARI tested in peak and off-peak periods. Ranges
252 are constant across severity scenarios. (C) Estimated probability of detecting at least one novel case per month. (D)
253 Expected number of clinical tests used per month. (E) Estimated test efficiency, calculated as the number of
254 detected novel cases per 100,000 tests. (F) Percent of all novel cases detected per month. In all panels, points
255 represent median values across 10,000 simulations, inner shaded bands are the 50t percentiles, and outer shaded
256 bands are the 95th percentiles. Abbreviations: UC = urgent care; ED = emergency department; H = hospital; ICU =
257 intensive care unit; Int 1 = Intermediate 1; Int 2 = Intermediate 2; ILI = influenza-like illness; ARI = acute respiratory
258 iliness.
259
260  The high probabilities of detecting at least one case that we have estimated here are relevant for public
261 health pandemic preparedness. The detection of one case would facilitate the implementation of public
262 health actions including increased testing strategies, further virus characterization, vaccine development


https://doi.org/10.1101/2024.02.02.24302173
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.02.02.24302173; this version posted May 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

263 (if warranted), the implementation of appropriate public health control measures, and updated

264  recommendations for the use of influenza antiviral medications. One key parameter influencing the

265  detection probability was the probability of testing in each healthcare setting. We found that detection
266 probabilities could decrease if influenza testing is substantially reduced below in-season values (for

267  example, during off-peak months). However, it is also possible that clusters of cases and outbreaks could
268 be more likely to be detected and tested during off-peak months if clinicians remain vigilant for evidence
269  of atypical respiratory virus signs or symptoms. The detection probability was also influenced by

270  assumptions about the forwarding of clinical specimens. Our baseline value of 50% was informed by

271  subtyping information from hospitalized influenza infections between 2010-2019 [6]. However, we

272 included a lower bound of 25% to reflect recent post-COVID-19 pandemic trends and potentially

273 reduced forwarding in UC/ED outpatient settings [18]. We also included higher values up to 100% to

274  explore maximum attainable detection probabilities if all tests were forwarded and found a substantial
275 improvement in our estimates. Therefore, during the current H5N1 situation, it is critical that clinicians
276  maintain high testing frequencies and forward influenza A positive specimens to public health

277 laboratories for further testing when recommended. Finally, given the severity of prior H5N1 cases (for
278  example, there has been a 50% case-fatality proportion in cases identified since 1997 [1]), additional
279 strategies to increase testing in ICU settings may help increase the likelihood of detection and testing
280  efficiency, particularly during summer months when background acute respiratory illness rates are low.

281  Although the probability of detecting one case was generally high, the percent of total cases detected
282  was low, especially in the lower severity scenarios. This finding assumes there are no immediate

283 changes to testing or healthcare seeking behavior once the first case is detected, and arises because
284  detection of influenza through clinical settings requires someone to become symptomatic, seek care, be
285  tested in a timely manner, and have a positive specimen forwarded for further characterization.

286  Although community testing removes these barriers to identification, it is resource intensive and would
287  need to occur even in the absence of perceived novel influenza virus spread to be effective, potentially
288 requiring over 100 million tests per year at the level modeled in this analysis. Similarly, at-home or self-
289  administered tests could alleviate issues associated with care-seeking and clinical testing practices.

290 However, such tests would need to be specific to the novel influenza virus and undergo potentially

291  lengthy development and authorization procedures before being available for widespread use.

292 Pandemic planning efforts should therefore include strategies to rapidly increase testing of acute

293 respiratory illness cases in clinical settings once human-to-human spread of a novel influenza virus has
294  been identified or is likely. Such strategies should account for the possibility that many cases may not be
295 detected, even with increased testing.

296  There are several caveats to our modeling framework. First, as our primary aim was to estimate

297  detection capabilities once sustained human-to-human transmission is occurring within the United

298 States, we did not consider surveillance for earlier events that might spark such transmission, such as
299  spillover from infected animals or introductions from outside the United States. It is possible that these
300 events would be associated with a greater probability of testing due to relevant exposure histories, and
301  thus have a greater likelihood of being detected compared with our estimates. Second, we did not

302  stratify detection probabilities by age. The severity of seasonal influenza can vary substantially among
303 different age groups [27], and age patterns of severity may differ for a novel influenza virus compared to
304  seasonal influenza viruses due to immunological imprinting and age-related exposures to previous

305 circulating viruses [28, 29]. Age may also impact testing probabilities and healthcare seeking behavior
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306 [30, 31], although mean testing probabilities for children <18 years were similar to those of adults >18
307  yearsinthe VISION data used to parameterize p;.s: (for example, 55 vs. 50% in UC/ED for children and
308  adults, respectively). Including age in the current framework would require additional assumptions

309 regarding the cross-reactivity of the novel influenza virus with seasonal influenza viruses to infer age-
310 specific severity distributions, and thus reduce the generalizability of our results. Third, we did not

311 explicitly incorporate delays in case admission to hospital or ICU that could reduce the window for viable
312  virus detection relative to other settings. These delays are likely on the order of several days and are
313 captured within our conservative range for the proportion of care-seekers who are tested while virus is
314  still detectable [32]. Fourth, we modeled the United States as a single population and did not explicitly
315 consider spatial or other heterogeneities in care-seeking and testing practices. If such data were

316  available, our analysis could be replicated at finer resolution to assess local response and detection

317  capabilities. Fifth, data were not available to fully inform our test forwarding assumptions. Although we
318 considered a range in sensitivity analyses, further information would increase the accuracy of our

319  detection probability estimates. We also assumed perfect sensitivity and specificity for all forwarded
320 tests in line with evaluation of real-time RT-PCR tests for novel HIN1 variant influenza viruses [33].

321  Although minor reductions in sensitivity should not substantially impact our detection probability

322 estimates, reductions in specificity could lead to false positive results that we have not considered.

323 However, the number of false positive results is likely to be small unless testing reaches extremely high
324  levels, such as considered here in the community setting.

325 Finally, our assumed inputs for baseline testing and background activity were informed by previous

326 influenza seasons and may not reflect future changes to these values. Where possible, we developed
327 parameter distributions based on data from multiple influenza seasons, before and after the COVID-19
328 pandemic, to account for broad fluctuations in care-seeking behavior, testing practices, and seasonal
329 influenza dynamics. We also explored scenarios with increased testing to capture the potential impacts
330 of changes to healthcare surveillance following additional policy recommendations. More generally, our
331  estimates of detection probabilities and test efficiency reflect the combined uncertainty in each

332  underlying parameter value and should thus be robust to small changes in any single parameter.

333 Novel influenza viruses pose a potential pandemic risk, and prompt detection is critical to characterizing
334  the virus causing the infection and facilitating a rapid public health response. Here we demonstrate how
335 a simple probabilistic framework can be used to estimate novel influenza virus detection probabilities
336  through testing in different community and healthcare settings, and can help inform the targeting of
337  future testing efforts. Our work was motivated by the 2022-2024 H5N1 situation in the United States
338  but could be applied more broadly to other locations and/or other potential novel influenza viruses.
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