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Abstract 31 

Background Novel influenza viruses pose a potential pandemic risk and rapid detection of infections in 32 

humans is critical to characterizing the virus and facilitating the implementation of public health 33 

response measures. 34 

Methods We use a probabilistic framework to estimate the likelihood that novel influenza virus cases 35 

would be detected through testing in different community and healthcare settings (urgent care, 36 

emergency department, hospital, and intensive care unit (ICU)) while at low frequencies in the United 37 

States. Parameters were informed by data on seasonal influenza virus activity and existing testing 38 

practices. 39 

Results In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity 40 

to seasonal influenza viruses, the median probability of detecting at least one infection per month was 41 

highest in urgent care settings (72%) and when community testing was conducted at random among the 42 

general population (77%). However, urgent care testing was over 15 times more efficient (estimated as 43 

the number of cases detected per 100,000 tests) due to the larger number of tests required for 44 

community testing. In scenarios that assumed increased clinical severity of novel virus infection, median 45 

detection probabilities increased across all healthcare settings, particularly in hospitals and ICUs (up to 46 

100%) where testing also became more efficient. 47 

Conclusions Our results suggest that novel influenza virus circulation is likely to be detected through 48 

existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity 49 

profile. These analyses can help inform future testing strategies to maximize the likelihood of novel 50 

influenza detection. 51 

Keywords: influenza; H5N1; novel virus; detection; healthcare testing  52 

 53 

Introduction  54 

Novel influenza viruses are different from the seasonal influenza viruses currently circulating in humans 55 

(A/H3N2, A/H1N1, and B/Victoria). Human infections with novel influenza viruses are generally rare and 56 

isolated events that occur through exposure to infected animals (such as livestock) during recreational 57 

or occupational activities. At the time of writing (10 May 2024), widespread avian influenza A(H5N1) 58 

virus outbreaks occurring among wild and commercial birds since January 2022 have been associated 59 

with just two detected human cases of H5N1 in the United States: one individual who was exposed to 60 

infected poultry and one who was exposed to infected dairy cattle [1, 2]. The H5N1 viruses associated 61 

with these outbreaks do not easily bind to receptors in the human upper respiratory tract and the risk to 62 

the general public is currently low [1]. However, a novel influenza virus that transmits efficiently 63 

between humans could pose a pandemic risk. Rapid detection of human infection with a novel influenza 64 

virus is critical to characterizing the virus causing the infection and facilitating a rapid public health 65 

response [3].  66 

Testing is particularly important to distinguish novel influenza virus infection from seasonal influenza or 67 

other respiratory virus infections with similar symptom profiles [4]. Although active monitoring and 68 

testing of individuals with exposure to infected animals can identify new spillover infections [2], such 69 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2024. ; https://doi.org/10.1101/2024.02.02.24302173doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302173
http://creativecommons.org/licenses/by-nc-nd/4.0/


measures are not designed to detect cases in the wider community following sustained human-to-70 

human transmission. Public health surveillance systems must be equipped to detect novel influenza 71 

cases through testing in the community or in healthcare settings where infected individuals might seek 72 

care. 73 

We use a probabilistic framework to estimate the likelihood of detection of novel influenza virus cases 74 

once sustained human-to-human transmission is occurring at low frequencies within the United States 75 

(i.e., 1,000 total cases or less). We consider testing of individuals presenting to different healthcare 76 

settings with no known previous exposure to infected animals or humans and use information on testing 77 

for seasonal influenza viruses to develop assumptions about plausible testing probabilities. Our findings 78 

can help inform testing strategies to improve detection of novel influenza virus cases occurring at low 79 

frequencies. 80 

 81 

Methods 82 

Model 83 

We adapted an existing framework to estimate detection probabilities for a novel influenza virus in the 84 

United States [5]. For a given case of novel influenza virus infection, the probability of detection in a 85 

particular healthcare setting can be expressed as  86 

𝑝𝑑𝑒𝑡𝑒𝑐𝑡 =  𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) × 𝑝𝑑 × 𝑡𝑠𝑛 × 𝑝𝑓, 87 

where 𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) is the probability that someone is tested in that setting given that they are a case; 88 

𝑝𝑑 is the probability that testing occurs while virus is still detectable; 𝑡𝑠𝑛  is the test sensitivity; and 𝑝𝑓 is 89 

the probability a positive test is forwarded to a public health laboratory for further testing. Most 90 

commercial assays currently used for human influenza virus testing cannot distinguish novel influenza A 91 

viruses from seasonal influenza A viruses. Thus, further testing at a public health laboratory is required 92 

for a positive specimen to be identified as a novel virus (until tests specific for that virus become more 93 

widely available). We initially assumed 50% of positive specimens are forwarded (i.e., 𝑝𝑓 = 50%). This 94 

was informed by the average percentage of influenza A hospitalizations that were subtyped between 95 

2010–2019 [6]. However, we considered a range of forwarding levels (25, 50%, 75% and 100%) in 96 

sensitivity analyses. All specimens forwarded for further testing were assumed to be correctly identified 97 

as a novel influenza virus. 98 

The per case probability of being tested is the combined probability that a case will develop symptoms 99 

(𝑝𝑠𝑦𝑚𝑝), seek care for those symptoms in a particular healthcare setting (𝑝𝑠𝑒𝑒𝑘), and be tested in that 100 

setting (𝑝𝑡𝑒𝑠𝑡), i.e., 101 

 𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) = 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘 × 𝑝𝑡𝑒𝑠𝑡. 102 

For a certain incidence of novel cases each month, I, in a population of size N (where I is the fraction of 103 

the population infected with the novel influenza virus), we estimate the probability of detecting at least 104 

one novel case as 1 - the probability of detecting no cases among the entire population, or 105 

1 − (1 − 𝐼 × 𝑝𝑑𝑒𝑡𝑒𝑐𝑡)N 106 
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(see the supporting information for further details). The expected number of clinical tests used per 107 

month, 𝐸(𝑇), is the combined number of tests conducted among cases and non-cases. Non-cases 108 

represent individuals presenting at healthcare settings with respiratory illness symptoms that are not 109 

due to novel influenza virus infection. The expected number of tests can be expressed as 110 

𝐸(𝑇) = 𝐼 × 𝑁 ×  𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) + (1 − 𝐼) × 𝑁 × 𝑃(𝑡𝑒𝑠𝑡 |𝑛𝑜𝑡 𝑐𝑎𝑠𝑒), 111 

where 𝑃(𝑡𝑒𝑠𝑡 |𝑛𝑜𝑡 𝑐𝑎𝑠𝑒) is the probability that someone without novel influenza virus infection is 112 

tested. The latter quantity is estimated as the background rate of presentation with respiratory illness 113 

symptoms to a given healthcare setting among the general population (𝑏𝑠𝑒𝑒𝑘) multiplied by the 114 

probability of being tested in that setting (𝑝𝑡𝑒𝑠𝑡). To compare testing efficiency in different settings we 115 

estimated the expected number of detected cases per 100,000 clinical tests conducted as 116 

(𝐼 × 𝑁 × 𝑝𝑑𝑒𝑡𝑒𝑐𝑡  / 𝐸(𝑇)) × 100,000.  117 

Finally, we considered random testing in the general community as a supplemental strategy that could 118 

be deployed in addition to healthcare testing. Given that community testing does not depend on 119 

symptom presentation or care-seeking behavior, 𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) was simply the frequency of community 120 

tests conducted per month and the expected number of tests was 𝑁 ×  𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒). Similarly, 𝑝𝑑 was 121 

the approximate time (in months) that virus would remain detectable and was parameterized to capture 122 

individual variation in virus shedding dynamics. Since community testing would be initiated to seek out 123 

novel influenza virus infection, we did not adjust for specimen forwarding (i.e., we assumed all 124 

specimens would be tested to distinguish novel influenza virus from seasonal influenza viruses).   125 

For each healthcare and community setting, we drew 10,000 parameter combinations from data-126 

informed distributions (outlined below) and calculated the quantities described above. All analyses and 127 

visualizations were generated in R version 4.0.3 using the data.table, truncnorm, here, 128 

scales, patchwork, colorspace and tidyverse packages [7-14].   129 

Healthcare settings and model parameterization 130 

We considered three distinct healthcare settings to reflect different care-seeking behaviors and testing 131 

practices: (i) outpatient urgent care and emergency departments (UC/ED); (ii) inpatient hospital settings; 132 

and (iii) intensive care units (ICU). Each setting was assumed independent such that a person presenting 133 

to both (for example, a hospital admission followed by a subsequent ICU admission) could be tested in 134 

both, according to the corresponding testing probabilities. Data were collated from various existing 135 

influenza surveillance platforms to inform parameters for each setting (Table 1). We defined N = 330 136 

million to approximate the U.S. population [15] and considered incidence values that corresponded to 137 

100 and 1,000 total novel influenza cases. 138 

Table 1. Baseline care-seeking and testing parameters. Surveillance platforms are Flu Near You (FNY), Outbreaks 139 
Near Me (ONM), VISION Vaccine Effectiveness Network, FluSurv-Net, and IBM MarketScan® Commercial Claims 140 
and Encounters Database (MarketScan) [16-19]. Further details of each platform are provided in the supporting 141 
information. 142 

Parameter Assumed distribution Source and available timeframe (if applicable) 

Proportion of novel cases 

developing symptoms, 𝑝𝑠𝑦𝑚𝑝   

Uniform with range:  
40–80% 

[20] 
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Care-seeking and presentation 
of novel symptomatic cases at 

specific sites, 𝑝𝑠𝑒𝑒𝑘: 
      UC / ED 
       
     Hospital 
      ICU 

Uniform with range: 
 
 
10–20% of symptomatic 
cases 
1–2% of symptomatic cases 
15–20% of hospitalizations 

 
 
 
FNY, ONM: 2018–2023 
 
CDC burden estimates: 2010-2021 [21] 
VISION: 2020-2021; FluSurv-Net: 2022–2023 

Testing of individuals with ARI, 

𝑝𝑡𝑒𝑠𝑡: 
      UC / ED 
      Hospital 
      ICU 

Truncated normal with  
mean / SD / range: 
50% / 10% / 10–90% 
53% / 10% / 20–95% 
46% / 10% /   1–95% 

VISION: December 2021–May 2022 

Community testing as a 
proportion of the general 
population, regardless of 
symptoms 

3–6% of general population 
per month 

Assumption following [22] 

Tests that occur while virus is 

detectable, 𝑝𝑑 
     Healthcare settings 
     Community settings 

Uniform with range: 
 
50–85% 
25–50% 

 
Proportion seeking care ≤7 days after symptom 
onset [23] 
Proportion of month that virus is detectable [24] 

Test sensitivity, 𝑡𝑠𝑛  Uniform with range 80–100% [25] 

Proportion of positive 
specimens that are forwarded 
to a public health laboratory, 

𝑝𝑓  

50% Assumption following [6] 

Background occurrence in the 

general population, 𝑏𝑠𝑒𝑒𝑘 , of: 
   ILI* 
   Hospital ARI admissions 
   ICU ARI admissions 

Uniform with range: 
 
0.6–6% 
0.03–0.1%  
0.02–0.03% 

 
 
FNY, ONM: 2019, 2022 
MarketScan: 2015–2021 
MarketScan: 2015–2021 

Abbreviations: UC = urgent care; ED = emergency department; ICU = intensive care unit; ILI = influenza-like-illness; ARI = acute 143 
respiratory illness; SD = standard deviation. 144 
*Background ILI occurrence is multiplied by care-seeking probabilities in urgent care or emergency departments (𝑝𝑠𝑒𝑒𝑘) to 145 
estimate the rate of presentation to urgent care or emergency departments with influenza symptoms in the general 146 
population. We omitted data from 2020 and 2021 due to atypically low levels of respiratory virus circulation.   147 

 148 

Our baseline scenario reflected a novel influenza virus with similar severity to seasonal influenza. 149 

However, we also considered increased severity scenarios that ranged from severity that was similar to 150 

COVID-19, to the severity of recent H5N1 virus infections in humans (Table 2). For these scenarios, we 151 

assumed similar or increased probabilities of developing symptoms and seeking care in each healthcare 152 

setting, while ensuring that the combined percentages did not exceed 100%. We initially assumed 153 

testing probabilities were fixed (Table 1) but explored alternative scenarios with increased testing (𝑝𝑡𝑒𝑠𝑡 154 

mean = 90%) to compare the effect of enhanced surveillance across healthcare settings.  155 

Table 2. Scenarios for increased symptom severity. All parameters are assumed to follow a Uniform distribution 156 
with the reported range. 157 

Scenario Symptomatic UC / ED† Hospital ICU§ Source(s) 

Baseline  40–80% 10–20% 1–2% CHR† 15–20% [20, 21] 

COVID-like 40–80% 10–20% 1–2% IHR‡ 20–30% [22, 26] 

Intermediate 1 25% > baseline* 25% > baseline* 4.5–5.5% IHR‡ 30–40% [22] 
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Intermediate 2 50% > baseline* 50% > baseline* 9.5–10.5% 
IHR‡ 

45–55% [22] 

Recent H5-like 50% > baseline* 50% > baseline* 60–70% IHR‡ 75–85% [1] 
Abbreviations: UC = urgent care; ED = emergency department; ICU = intensive care unit; CHR = case-hospitalization ratio; IHR = 158 
infection-hospitalization ratio. 159 
*Up to a maximum of 100%. 160 
†Expressed as a percentage of symptomatic individuals. 161 
‡Expressed as a percentage of infected individuals. 162 
§Expressed as a percentage of hospitalizations. 163 
 164 

We also considered scenarios in which testing practices changed according to seasonal influenza activity. 165 

For example, clinicians may be less likely to test for influenza viruses during summer months when 166 

background respiratory virus activity is low. To explore this, we first defined distinct probability 167 

distributions for the background rates of presentation to each healthcare setting, 𝑏𝑠𝑒𝑒𝑘 , during peak 168 

(November – February) and off-peak (May – August) time periods (Table 3). We then simulated the 169 

model for each time period and healthcare setting, assuming the care-seeking behavior of novel 170 

influenza cases did not change but that testing in off-peak periods was either equal to, or 50% of, testing 171 

in peak periods. 172 

 Table 3. Baseline occurrence of ILI or ARI symptoms partitioned by peak vs off-peak activity.  173 

Abbreviations: ILI = influenza-like-illness; ARI = acute respiratory illness; ICU = intensive care unit; FNY = Flu Near You; ONM = 174 
Outbreaks Near Me. 175 
*Background ILI occurrence is multiplied by care-seeking probabilities in urgent care or emergency departments (𝑝𝑠𝑒𝑒𝑘) to 176 
estimate the rate of presentation to urgent care or emergency departments in the general population. We omitted data from 177 
2020 and 2021 due to atypically low levels of respiratory virus circulation.   178 

 179 

Results 180 

We first simulated the model with baseline severity assumptions and no distinction between peak and 181 

off-peak time periods. At the lowest incidence (100 novel cases in the population), the median 182 

probability of detecting at least one case was highest in community and UC/ED settings, at 77% (95th 183 

percentile: 56–91%) and 72% (44–92%), respectively (Figure 1C; Baseline scenario). In comparison, 184 

median detection probabilities in hospital and ICU settings were less than 15%. The probability of 185 

detection increased across all settings when there were 1,000 assumed novel cases in the population, to 186 

100% (100–100%) in UC/EDs and the community, 74% (47–94%) in hospitals, and 19% (9–35%) in ICUs. 187 

Testing in UC/ED settings was always most efficient and detected more cases per 100,000 tests than 188 

other settings (Figure 1E). Notably, community testing was least efficient due to the greater number of 189 

tests required (more than 10 million per month; Figure 1D), and no setting detected more than 3% of all 190 

Parameter Range of uniform distribution Period Source and available timeframe 

Occurrence of: 
ILI* 
       
 
Hospital ARI admission 
  
 
ICU ARI admission 

 
1.0–6.0%  
0.6–2.5%  
 
0.04–0.10% of general population 
0.03–0.09% of general population 
 
0.014–0.035% of general population 
0.010–0.030% of general population 

 
Peak 
Off-peak 
 
Peak 
Off-peak 
 
Peak 
Off-peak 

 
FNY, ONM: 2019, 2022 
 
 
MarketScan: 2015–2021 
 
 
MarketScan: 2015–2021 
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novel cases under our assumptions (Figure 1F). Increasing the percentage of influenza positive 191 

specimens forwarded to public health laboratories to 75% or 100% increased detection probabilities and 192 

test efficiency across all healthcare settings (Figure S1). For example, the median detection probability in 193 

UC/EDs increased to 85% (58–98%) and 92% (69–99%) at the lowest incidence, respectively. Conversely, 194 

a decrease in the percentage forwarded to 25% decreased detection probabilities and test efficiencies, 195 

although the relative ordering of setting efficiency was preserved. Thus, for a novel influenza virus with 196 

similar severity to seasonal influenza, UC/ED settings are likely to provide greatest opportunities for case 197 

detection. 198 

 199 

200 
Figure 1. Probabilities of detection and test usage under different severity scenarios. (A) Assumed probabilities of 201 

presentation to a particular setting, calculated as 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘  for UC/ED, hospital, and ICU settings. All cases 202 

are assumed to be in the community, resulting in a probability of one for that setting (not shown). (B) Assumed 203 
proportion of individuals with ILI or ARI tested in UC/ED, hospital and ICU settings, or proportion of all individuals 204 
tested in the community. (C) Estimated probability of detecting at least one novel case per month. Panels indicate 205 
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different assumed levels of incidence (100 and 1,000 novel cases). (D) Expected number of clinical tests used per 206 
month. (E) Estimated test efficiency, calculated as the number of detected novel cases per 100,000 tests. (F) 207 
Percent of all novel cases detected per month. In all panels, points represent median values across 10,000 208 
simulations, inner shaded bands show 50th percentiles, and outer shaded bands show 95th percentiles. 209 
Abbreviations: UC = urgent care; ED = emergency department; H = hospital; ICU = intensive care unit; Int 1 = 210 
Intermediate 1; Int 2 = Intermediate 2; ILI = influenza-like illness; ARI = acute respiratory illness. 211 

 212 

Given uncertainty in the potential severity of a novel influenza virus, we explored additional scenarios in 213 

which cases were more likely to develop symptoms and/or present to a particular healthcare setting 214 

than the baseline severity scenario (Table 2; Figure 1A). As severity increased, the probability of 215 

detection also increased across all healthcare settings due to the greater probability of requiring medical 216 

attention (Figure 1C). The difference between detection probabilities in UC/ED compared with hospital 217 

and ICU settings also decreased as cases were more likely to be severe and require admission to the 218 

latter. For example, median detection probabilities for ICU settings increased from 2% (1–4%) and 19% 219 

(9–35%) at baseline with 100 and 1,000 novel cases, respectively, to 100% (98–100%) and 100% (100–220 

100%) in the “Recent-H5” scenario. There were also substantial increases in testing efficiency in hospital 221 

and ICU settings (Figure 1E) and increases in the percent of novel cases detected (for example, from a 222 

maximum of 0.3% in hospital settings at baseline to 16% in the Recent H5 scenario; Figure 1F). Test 223 

usage is driven primarily by background seasonal influenza virus testing and thus did not change across 224 

severity scenarios (Figure 1D). Simulating an increase in clinical testing probabilities (𝑝𝑡𝑒𝑠𝑡 mean = 90%) 225 

substantially increased detection probabilities and test usage for all healthcare settings but did not 226 

impact the relative performance among settings (Figure S2).  227 

Finally, we assessed how seasonal changes in background activity could impact probabilities of case 228 

detection and testing efficiency. Assuming testing practices did not change seasonally led to equal 229 

probabilities of detection in peak and off-peak periods, although testing efficiencies were increased in 230 

off-peak periods due to the lower number of background tests conducted (Figure S3). Conversely, 231 

assuming a 50% reduction in testing across all healthcare settings in off-peak periods (Figure 2B) 232 

reduced the corresponding probabilities of detection (Figure 2C). However, for the most severe 233 

scenarios (Intermediate 1, Intermediate 2, and Recent H5) there was always at least one healthcare 234 

setting with a median detection probability greater than 60% in off-peak periods at the lowest 235 

incidence.  236 

Discussion 237 

We modeled the likelihood of detection of novel influenza virus cases occurring at low incidence in the 238 

United States. We adapted a simple probabilistic framework that accounted for symptom severity, care-239 

seeking behavior, and testing practices in different healthcare settings, and used care-seeking and 240 

testing information from recent influenza seasons to inform model parameters. We found that the most 241 

efficient setting for detection depends on the severity profile of the novel influenza virus. Although the 242 

percent of total novel influenza cases detected was relatively low, the probabilities of detecting at least 243 

one case, and thus identifying novel influenza virus circulation, were high in at least one setting across a 244 

range of different testing, severity, and specimen forwarding assumptions. 245 

 246 
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247 
Figure 2. Probabilities of detection and test usage in healthcare settings assuming reduced testing probabilities 248 
during periods of off-peak seasonal activity. Incidence is fixed at 100 novel cases in the population. (A) Assumed 249 

probabilities of presentation to a particular setting, calculated as 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘. Ranges are constant in peak and 250 

off-peak periods. (B) Assumed proportion of individuals with ILI or ARI tested in peak and off-peak periods. Ranges 251 
are constant across severity scenarios. (C) Estimated probability of detecting at least one novel case per month. (D) 252 
Expected number of clinical tests used per month. (E) Estimated test efficiency, calculated as the number of 253 
detected novel cases per 100,000 tests. (F) Percent of all novel cases detected per month. In all panels, points 254 
represent median values across 10,000 simulations, inner shaded bands are the 50th percentiles, and outer shaded 255 
bands are the 95th percentiles. Abbreviations: UC = urgent care; ED = emergency department; H = hospital; ICU = 256 
intensive care unit; Int 1 = Intermediate 1; Int 2 = Intermediate 2; ILI = influenza-like illness; ARI = acute respiratory 257 
illness. 258 

 259 

The high probabilities of detecting at least one case that we have estimated here are relevant for public 260 

health pandemic preparedness. The detection of one case would facilitate the implementation of public 261 

health actions including increased testing strategies, further virus characterization, vaccine development 262 
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(if warranted), the implementation of appropriate public health control measures, and updated 263 

recommendations for the use of influenza antiviral medications. One key parameter influencing the 264 

detection probability was the probability of testing in each healthcare setting. We found that detection 265 

probabilities could decrease if influenza testing is substantially reduced below in-season values (for 266 

example, during off-peak months). However, it is also possible that clusters of cases and outbreaks could 267 

be more likely to be detected and tested during off-peak months if clinicians remain vigilant for evidence 268 

of atypical respiratory virus signs or symptoms. The detection probability was also influenced by 269 

assumptions about the forwarding of clinical specimens. Our baseline value of 50% was informed by 270 

subtyping information from hospitalized influenza infections between 2010–2019 [6]. However, we 271 

included a lower bound of 25% to reflect recent post-COVID-19 pandemic trends and potentially 272 

reduced forwarding in UC/ED outpatient settings [18]. We also included higher values up to 100% to 273 

explore maximum attainable detection probabilities if all tests were forwarded and found a substantial 274 

improvement in our estimates. Therefore, during the current H5N1 situation, it is critical that clinicians 275 

maintain high testing frequencies and forward influenza A positive specimens to public health 276 

laboratories for further testing when recommended. Finally, given the severity of prior H5N1 cases (for 277 

example, there has been a 50% case-fatality proportion in cases identified since 1997 [1]), additional 278 

strategies to increase testing in ICU settings may help increase the likelihood of detection and testing 279 

efficiency, particularly during summer months when background acute respiratory illness rates are low. 280 

Although the probability of detecting one case was generally high, the percent of total cases detected 281 

was low, especially in the lower severity scenarios. This finding assumes there are no immediate 282 

changes to testing or healthcare seeking behavior once the first case is detected, and arises because 283 

detection of influenza through clinical settings requires someone to become symptomatic, seek care, be 284 

tested in a timely manner, and have a positive specimen forwarded for further characterization. 285 

Although community testing removes these barriers to identification, it is resource intensive and would 286 

need to occur even in the absence of perceived novel influenza virus spread to be effective, potentially 287 

requiring over 100 million tests per year at the level modeled in this analysis. Similarly, at-home or self-288 

administered tests could alleviate issues associated with care-seeking and clinical testing practices. 289 

However, such tests would need to be specific to the novel influenza virus and undergo potentially 290 

lengthy development and authorization procedures before being available for widespread use. 291 

Pandemic planning efforts should therefore include strategies to rapidly increase testing of acute 292 

respiratory illness cases in clinical settings once human-to-human spread of a novel influenza virus has 293 

been identified or is likely. Such strategies should account for the possibility that many cases may not be 294 

detected, even with increased testing. 295 

There are several caveats to our modeling framework. First, as our primary aim was to estimate 296 

detection capabilities once sustained human-to-human transmission is occurring within the United 297 

States, we did not consider surveillance for earlier events that might spark such transmission, such as 298 

spillover from infected animals or introductions from outside the United States. It is possible that these 299 

events would be associated with a greater probability of testing due to relevant exposure histories, and 300 

thus have a greater likelihood of being detected compared with our estimates. Second, we did not 301 

stratify detection probabilities by age. The severity of seasonal influenza can vary substantially among 302 

different age groups [27], and age patterns of severity may differ for a novel influenza virus compared to 303 

seasonal influenza viruses due to immunological imprinting and age-related exposures to previous 304 

circulating viruses [28, 29]. Age may also impact testing probabilities and healthcare seeking behavior 305 
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[30, 31], although mean testing probabilities for children <18 years were similar to those of adults ≥18 306 

years in the VISION data used to parameterize 𝑝𝑡𝑒𝑠𝑡 (for example, 55 vs. 50% in UC/ED for children and 307 

adults, respectively). Including age in the current framework would require additional assumptions 308 

regarding the cross-reactivity of the novel influenza virus with seasonal influenza viruses to infer age-309 

specific severity distributions, and thus reduce the generalizability of our results. Third, we did not 310 

explicitly incorporate delays in case admission to hospital or ICU that could reduce the window for viable 311 

virus detection relative to other settings. These delays are likely on the order of several days and are 312 

captured within our conservative range for the proportion of care-seekers who are tested while virus is 313 

still detectable [32]. Fourth, we modeled the United States as a single population and did not explicitly 314 

consider spatial or other heterogeneities in care-seeking and testing practices. If such data were 315 

available, our analysis could be replicated at finer resolution to assess local response and detection 316 

capabilities. Fifth, data were not available to fully inform our test forwarding assumptions. Although we 317 

considered a range in sensitivity analyses, further information would increase the accuracy of our 318 

detection probability estimates. We also assumed perfect sensitivity and specificity for all forwarded 319 

tests in line with evaluation of real-time RT-PCR tests for novel H1N1 variant influenza viruses [33]. 320 

Although minor reductions in sensitivity should not substantially impact our detection probability 321 

estimates, reductions in specificity could lead to false positive results that we have not considered. 322 

However, the number of false positive results is likely to be small unless testing reaches extremely high 323 

levels, such as considered here in the community setting.  324 

Finally, our assumed inputs for baseline testing and background activity were informed by previous 325 

influenza seasons and may not reflect future changes to these values. Where possible, we developed 326 

parameter distributions based on data from multiple influenza seasons, before and after the COVID-19 327 

pandemic, to account for broad fluctuations in care-seeking behavior, testing practices, and seasonal 328 

influenza dynamics. We also explored scenarios with increased testing to capture the potential impacts 329 

of changes to healthcare surveillance following additional policy recommendations. More generally, our 330 

estimates of detection probabilities and test efficiency reflect the combined uncertainty in each 331 

underlying parameter value and should thus be robust to small changes in any single parameter. 332 

Novel influenza viruses pose a potential pandemic risk, and prompt detection is critical to characterizing 333 

the virus causing the infection and facilitating a rapid public health response. Here we demonstrate how 334 

a simple probabilistic framework can be used to estimate novel influenza virus detection probabilities 335 

through testing in different community and healthcare settings, and can help inform the targeting of 336 

future testing efforts. Our work was motivated by the 2022–2024 H5N1 situation in the United States 337 

but could be applied more broadly to other locations and/or other potential novel influenza viruses.  338 
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