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Abstract

Shifts in land-use patterns and increased human-livestock-wildlife interactions have
generated numerous possibilities for pathogen spillover. This demands increased efforts of
pathogen surveillance in wildlife, especially in changing landscapes with high biodiversity.
We investigated adenovirus diversity in small mammals, an understudied host taxon, from a
forest-plantation mosaic in the Western Ghats biodiversity hotspot. Using PCR-based
screening followed by Sanger sequencing and phylogenetic analyses, we attempted to detect
and characterize adenovirus diversity in seven species of small mammals. We observed high
prevalence (up to 38.8%) and identified five lineages of adenoviruses with unique mutations
in the endemic and dominant small mammal species, Rattus satarae. These lineages
significantly differed from other known Murine adenoviruses (p-distance > 25%), indicating
the likelihood of novel adenovirus diversity in this endemic small mammal. Collectively, our
results highlight the potential for unexplored diversity of DNA viruses like adenovirus in

poorly explored host taxa inhabiting human-used landscapes and its zoonotic implications.
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1. Introduction

Adenoviruses are a diverse group of non-enveloped, double-stranded DNA viruses known to
infect vertebrates, including humans (MacNeil et al., 2023). These generalists are speculated
as efficient pathogens of global threat causing mild to severe infections, ranging from
gastrointestinal diseases, common cold, encephalitis, respiratory and hemorrhagic diseases
often resulting in death (Saint-Pierre Contreras et al., 2023). Research efforts have mainly
focused on understanding adenovirus infections in humans and livestock, (e.g.
Ghebremedhin, 2014), while their prevalence and diversity in animal reservoirs, specifically
in small mammals remain relatively unexplored. Existing eco-epidemiology of adenoviruses
in small mammals (Ochola et al., 2022; Zheng et al., 2016) provides poor insights into the

diversity of adenoviruses in species-rich mammals, specifically in India.

As the most species-rich mammalian group, small mammals are predicted reservoirs for
many novel zoonotic pathogens (Luis et al., 2015). Anthropogenic disturbance can increase
small mammal densities, enhancing the risk of emerging infectious diseases (Mescht et al.,
2013). Regions where high mammal diversity intersects with land-use change can result in
novel species assemblages, promoting subsequent zoonotic spillovers (Allen et al., 2017).
Therefore, understanding the diversity of generalist viruses like adenovirus in small mammal
communities is of significant public health interest. Here, we investigated the prevalence and
diversity of adenovirus in a small mammal community, comprising rodents and shrews in a
forest-plantation mosaic located in the biodiverse Western Ghats in southern India, which is
also inhabited by other free-ranging mammals, livestock, and humans. Due to their proximity
to humans and potential interactions with other wildlife species, in such mixed-use

landscapes, small mammals have the prospect of acting as natural maintenance and
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intermediate hosts for adenovirus transmission. By investigating adenovirus in these often-
overlooked hosts, we aimed to gain valuable insights into the broader epidemiologic

implications of small mammals in changing landscapes.

2. Methods

2.1 Study area and samples

We leveraged already collected small mammal (rodents and shrews) samples from Kadamane
forest-plantation mosaic in Karnataka state in Southern India (Ansil et al., 2021). This region
is part of the Western Ghats biodiversity hotspot, has high human density and rapid
modification of natural habitats and high human-animal interactions. This makes it an
important landscape to understand viral diversity associated with wildlife. Small mammals
were captured from different land-use types; forest fragments, grasslands, and human
habitations (Figure 1) between January and March 2018 (NCBS-Institutional Animal Ethics
Committee approval-NCBS-IAEC-2016/10-[M]). Samples included 136 small mammal
individuals representing seven distinct species, (previously reported in Ansil et al., 2021,
2023); Rattus satarae, R. rattus, Mus cf. fernandoni, M. cf. famulus, M. cf. terricolor,
Platacanthomys lasiurus, and Suncus niger. In the forests, R. satarae was the most abundant
species (n= 67, Figure 1), followed by M. cf. fernandoni (n=2) and M. cf. famulus (n=2). P.
lasiurus was rare, and only one individual was captured during the sampling. In grasslands,
M. cf. fernandoni (n=21) and M. cf. famulus (n=20) exhibited nearly equal abundance,
whereas M. cf. terricolor had relatively lower abundance (n=6). In human habitation, R.

rattus was most abundant (n=10), followed by M. cf. famulus (n=5) and S. niger (n=2).
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Figure 1: Study area in the Western Ghats, in Southern India. The gray shaded area and
enlarged area with satellite imagery shows Karnataka state and Kadamane forest-plantation
mosaic respectively. The stacked bar plots show relative abundance of various small mammal
species captured during the sampling. Except for Platacanthomys lasiurus, all the small

mammal samples were tested for adenovirus.

2.2 Adenovirus screening

We extracted DNA from pooled tissues (liver, spleen, lungs, kidney, and intestine), oral
swabs, and rectal swabs, using Quick-DNA/RNA Miniprep Plus Kit-D7003 (Zymo Research
Corporation) following manufacturer’s protocol. All the DNA samples were screened for the

presence of adenovirus using a set of degenerate primers targeting a short fragment of 270
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95  base pair (bp) of the DNA polymerase (DPOL) gene of the adenovirus (Wellehan et al.,
96  2004). We purified the prospective positive samples, sequenced them at the NCBS Sanger
97  sequencing facility. The study was approved by NCBS Institutional Biosafety Committee

98  (TFR: NCB:23_IBSC/2017).

99  Chromatograms of Sanger sequencing reads (DPOL gene- forward and reverse) for each
100 positive sample were visually inspected, primer binding sites were trimmed, and a consensus
101  sequence was generated in Geneious v8.1.5 (Biomatters, Auckland, New Zealand). The
102  consensus sequences were compared against the NCBI database (www.ncbi.nlm.nih.gov)
103  using standard nucleotide BLAST (Altschul et al., 1990) to confirm sequence similarity and
104  adenovirus identity. Specific parameters used for BLAST searches is as follows;

105 optimization- somewhat similar sequences (blastn), E-value threshold- 0.05. All other

106  general, filtering and masking parameters were kept as default.

107

108 2.3 Sequence analyses: phylogenetic reconstruction and haplotype network

109  We further investigated the evolutionary relationship between the sequences obtained from
110 this study and other known adenovirus sequences. A 242 bp short fragment DPOL gene
111 alignment was created using the MAFFT alignment tool (v7.490) (Katoh & Standley, 2013)
112  after being cleaned using Gblocks online tool with default settings (Talavera & Castresana,
113  2007) to detect and remove poorly aligned regions (e.g., gaps). In addition to the Murine
114  adenoviruses, other known mammalian adenovirus sequences (Mastadenoviruses) and one
115  Fowl adenovirus (Aviadenovirus; KT862812) sequence were downloaded from NCBI and
116  included in the alignment. The best nucleotide substitution model for the alignment was
117  determined, and phylogenies were reconstructed using 1Q-TREE v1.6.12 (Trifinopoulos et

118 al., 2016) with 1000 bootstrap replicates. The resulting bootstrap consensus tree was
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119  visualized and annotated using ITOL (Letunic & Bork, 2021). The Fowl adenovirus was used

120  as an outgroup to root the phylogenetic tree.

121  Besides, we reconstructed a median-joining haplotype network to understand the relationship
122  between sequences generated in this study. The alignment of DPOL gene (242 bp) was

123  imported to POPART (Leigh & Bryant, 2015), and a median-joining network was created.

124

125  2.3. Pairwise genetic distance and private mutations

126  We calculated pairwise genetic distance (p-distance) between the sequences generated in this
127  study and other murine adenoviruses (NC_ 012584 & NC _014899). We used a maximum

128  composite likelihood model with uniform substitution rates and 1000 bootstrap iteration in
129 MEGA 11 (Tamura et al., 2021). Using FastaChar (Merckelbach & Borges, 2020), we further
130 identified private mutations in the short fragment of DPOL gene within our samples in

131  comparison with other murine adenoviruses

132

133 3. Results

134 3.1 Adenovirus prevalence in small mammals

135  We detected the presence of adenovirus only in pooled tissue samples, all swabs tested

136  negative. Adenovirus prevalence varied among small mammals tested (0-38.8%, Table 1)
137  with an overall prevalence of 21.21% (n=132). Prevalence was calculated as the proportion of
138 individuals positive for adenovirus in the samples tested. Interestingly, we observed a high
139  prevalence of adenovirus in R. satarae (38.8%, n= 66), an endemic small mammal in the

140  Western Ghats, as compared to other species in the community (Table 1). Among the other
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141  species in the community, Mus cf. terricolor showed high prevalence (16.6%, n=6) followed
142 by Mus cf. fernandoni (4.3%, n=22). None of the R. rattus and S. niger tissue samples tested

143  were positive for adenovirus, potentially due to lower prevalence and low sample size.

144

145 Table 1: Adenovirus prevalence in various small mammals tested from Kadamane forest-
146  plantation mosaic. Pooled tissue consists of liver, spleen, kidney, lungs, and intestine

147  samples.

Adenovirus prevalence: number of positives / number of

samples tested (%)
Pooled tissue Oral swabs Rectal swabs
Rattus satarae 26/66 (38.8) 0/64 (0) 0/66 (0)
Mus cf. fernandoni  1/22 (4.3) 0/2 (0) 0/2 (0)
Mous cf. famulus 0/26 (0) 0/2 (0) 0/6 (0)
Mus cf. terricolor 1/6 (16.6) - -
Rattus rattus 0/10 (0) - 0/8 (0)
Suncus niger 0/2 (0) - 0/2 (0)
Total 28/132 (21.2) 0/68 0/84

148

149  Phylogenetic relationships, genetic distance and private mutations

150  All the 28 positive samples identified (26 from R. satarae, one from M. cf. fernandoni, and
151  one from M. cf. terricolor) were verified for adenovirus using BLAST search (Table S1), The
152  BLAST results suggested 75-78% similarity with Murine adenoviruses sequences (E value:
153  7e55), classified as a part of the Mastadenovirus group by the International Committee on
154  Taxonomy of Viruses (ICTV). However, only the 26 samples generated from R.

155  satarae showed satisfactory quality (>90%) for phylogenetic analysis. All these sequences
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156  are deposited in GenBank (www.ncbi.nlm.nih.gov) under the accession number OR906154 -

157  OR906179.

158  Our phylogenetic analysis revealed five distinct adenovirus lineages from R. satarae (Figure
159  2A) belonging to six haplotypes (Figure 2B). Collectively, all these lineages share common
160  ancestry with Murine adenovirus (NC_012584) in our phylogeny. Lineage 1 showed

161  phylogenetic affinity with Murine adenovirus (NC_012584) by forming a sister taxon (p-
162  distance = 0.27, S2). The remaining lineages (2-5) formed a distinct monophyletic group,
163  with lineages four and five being sister to each other, while lineages two and three are basal
164  to this cluster (Figure 2A). All these four lineages had significant genetic distance (p

165 distance) of 0.33 - 0.37 (mean = 0.355) from Murine adenovirus (NC_012584; Table S2).

166

167  Most of the adenovirus sequences from R. satarae (n=23) were part of lineage four and five
168  represented by three unique haplotypes (Figure 2B). The remaining three sequences formed
169 three unique haplotypes (p-distance = 0.3- 0.38, mean = 0.34) corresponding to lineage one,
170  two, and three. Further, we identified six to 17 private mutation which are unique to the new

171  lineages described in this study (Table S3).
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173  Figure 2: (A) Maximum likelihood phylogenetic tree of adenovirus based on 242 bp of
174  DPOL short fragment. The phylogeny was rooted using Fowl adenovirus (KT862812).
175  Numbers around nodes represent bootstrap values. Unique lineages identified in this study
176  are colored differently. (B) A haplotype network showing different adenovirus lineages
177  (DPOL) identified in R. satarae. The number next to the edges indicates the number of
178  nucleotide differences between haplotypes. Colors in the haplotype network correspond to
179  the novel lineages in the phylogenetic tree identified in this study.
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180 4. Discussion

181 In this study, we used molecular detection and sequencing to characterize circulating
182  adenovirus diversity in small mammals inhabiting human managed forest-plantation mosaic
183 insouthern India. Our results reveal previously undetected adenovirus diversity associated

184  with endemic small mammals inhabiting the Western Ghats biodiversity hotspot.

185  We report a high overall prevalence of adenovirus in the small mammal community with
186  high prevalence in the most abundant small mammal Rattus satarae, potentially suggesting
187  density-dependent transmission as observed in numerous other viral and host systems

188  (Renwick et al., 2007). Interestingly, within our datasets, all individuals of R. rattus, a

189  synanthropic species known to carry several virulent pathogens (Gravinatti et al., 2020),

190 tested negative for adenoviruses, aligning with the previously reported Bartonella prevalence
191  inthe species (Ansil et al., 2021).

192

193  Till date, three prominent adenoviruses from small mammals have been characterized

194  (Murine adenovirus 1, Murine adenovirus 2, and Murine adenovirus) globally with the

195 advent of whole genome sequencing (Hemmi & Spindler, 2019). Recent reports suggest a
196  widespread diversity of adenoviruses associated with small mammals, especially from

197 tropical areas (Diffo et al., 2019; Ochola et al., 2022; Zheng et al., 2016), through sequencing
198  of a short fragment of the DNA polymerase gene. The phylogenetic pattern observed in our
199 dataset supported the existence of five distinct adenovirus lineages in R. satarae, all of which
200  showed genetic differences (more than 25%) substantially higher than the cutoff of 5% -15%
201  difference in polymerase gene to be considered as distinct lineages (Diffo et al., 2019). The

202  presence of private mutations within these lineages (Table S3), along with their unique
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203  phylogenetic position (monophyletic lineages, except lineage one), further substantiate our
204  results.

205

206  Given these results, we strongly recommend the isolation and further characterization of

207  adenoviruses from R. satarae from the Western Ghats. High prevalence of adenoviruses in
208  small mammals in these mixed-use landscapes have major implications for the health of other
209  wildlife including small carnivores (secondary consumers) which inhabit these landscapes, as
210 they can acquire infections through feeding on infected hosts (Thiry et al., 2007). We contend
211  that long-term efforts with broader spatial coverage are essential to elucidate the role of

212 species diversity, as opposed to species identity, in shaping the dynamics and evolution of
213  novel adenovirus variants in mixed-use landscapes. Our study is one of the few initial

214  attempts to understand the adenovirus diversity in wildlife in the region, which can provide
215  impetus to establish standardized model systems to investigate the implications of the novel
216  adenovirus variants.
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