

Repeated LPS induces training and tolerance of microglial responses across brain regions

Jennifer Kim^{1,3}, Olivia Sullivan^{1,3}, Kristen Lee³, Justin Jao³, Juan Tamayo⁴, Abdullah Muhammad Madany⁴, Brandon Wong³, Paul Ashwood⁴, Annie Vogel Ciernia^{1,2,3*}

1. Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
2. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
3. Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
4. MIND Institute, University of California Davis, United States

*** Correspondence:**

Annie Vogel Ciernia
annie.ciernia@ubc.ca

1 **Abstract**

2 **Background:** Neuroinflammation is involved in the pathogenesis of almost every central nervous
3 system disorder. As the brain's innate immune cells, microglia fine tune their activity to a dynamic
4 brain environment. Previous studies have shown that repeated bouts of peripheral inflammation
5 can trigger long-term changes in microglial gene expression and function, a form of innate
6 immune memory.

7 **Methods and Results:** In this study, we used multiple low-dose lipopolysaccharide (LPS)
8 injections in adult mice to study the acute cytokine, transcriptomic, and microglia morphological
9 changes that contribute to the formation of immune memory in the frontal cortex, hippocampus,
10 and striatum, as well as the long-term effects of these changes on behavior. Training and
11 tolerance of gene expression was shared across regions, and we identified 3 unique clusters of
12 DEGs (2xLPS-sensitive, 4xLPS-sensitive, LPS-decreased) with different biological functions.
13 2xLPS-sensitive DEG promoters were enriched for binding sites for IRF and NFkB family
14 transcription factors, two key regulators of innate immune memory. We quantified shifts in
15 microglia morphological populations and found that while the proportion of ramified and rod-like
16 microglia mostly remained consistent within brain regions and sexes with LPS treatment, there
17 was a shift from ameboid towards hypertrophic morphological states across immune memory
18 states and a dynamic emergence and resolution of trains of rod-like microglia with repeated LPS.

19 **Conclusions:** Together, findings support the dynamic regulation of microglia during the formation
20 of immune memories in the brain and support future work to exploit this model in brain disease
21 contexts.

22

23 **Key words:** microglia, innate immune memory, microglia morphology, gene expression, gene
24 regulation

25

26 **Background**

27 Innate immune cells dynamically adjust their responses to immune challenges through
28 innate immune memory, a process influenced by their past encounters with inflammatory events.
29 (1–4) As the brain's resident immune cells, microglia rapidly respond to inflammation and engage
30 in classic immune functions including cytokine and chemokine production and phagocytosis of
31 pathogens and cellular debris. In addition to their responsibilities as immune cells, microglia play
32 critical roles in establishing and maintaining brain homeostasis including the regulation of neuron

33 and oligodendrocyte cell numbers (5), shaping of brain circuitry (6,7), and fine-tuning of neuronal
34 connections (3,8,9). Many of these processes are disrupted in brain disorders, supporting a key
35 role for microglia in health and disease. Several clinical and post-mortem studies point to a
36 neuroinflammatory component of brain disorder etiologies, including Schizophrenia, Autism
37 Spectrum Disorder, and Alzheimer's Disease, driven by increased activation of microglia. (10–13)
38 Microglia directly communicate with neurons and modulate their function by releasing and
39 responding to various molecular substrates in the brain environment including cytokines,
40 chemokines, and neurotransmitters. (14) Thus, dysregulated microglial responses can disrupt the
41 homeostatic brain environment and normal communication across cell types, ultimately altering
42 brain function and behavior.

43 Innate immune cells update their responses to inflammatory events based on previous
44 exposures to immune stimuli. (4,15,16) After the resolution of an initial immune activating event,
45 innate immune cells can remain in a 'trained' state, characterized by exaggerated responses to
46 subsequent immune challenges, or in a 'tolerized' state characterized by blunted responses. (4)
47 Both forms of innate immune memory serve as mechanisms that enhance an organism's ability
48 to respond effectively to recurring infections or damage, but can become detrimental if
49 dysregulated. While immune training allows proactive adaptation of immune responses that have
50 a protective benefit to the organism, this process can become maladaptive in the context of
51 disease or injury when inflammation cannot be resolved. (4) Similarly, tolerized immune
52 responses play a crucial role in averting chronic inflammatory conditions when encountering
53 commensal microbes. (4,17) However, these responses can be counterproductive when facing a
54 new pathogen. As the resident innate immune cells of the brain, microglia are unique in that they
55 are long-lived cells that locally self-renew over the lifespan (18,19), suggesting that formation of
56 innate immune memories in microglia could have long-lasting impacts on brain function and
57 disease development throughout life.

58 Innate immune cells, including microglia, express receptors that respond to microbe-
59 associated molecular patterns. Microglia Toll-like receptor 4 (TLR4) binds lipopolysaccharide
60 (LPS), a major structural component of gram-negative bacteria. Repeated peripheral injections of
61 low-dose LPS has recently been demonstrated as a robust model to study microglial immune
62 memory responses in the brain. (4,20) Repeated LPS induces long-lasting immune training and
63 tolerance in brain microglia that has been shown to persist for at least six months. (20) Similarly,
64 LPS preconditioning has also been shown to reduce damage in traumatic brain injury by
65 preventing tolerance (21). Interestingly, Wendeln et al., 2018 (20) showed that pathological
66 hallmarks of Alzheimer's disease and stroke in mouse models are exacerbated by LPS-induced

67 immune training and alleviated by immune tolerance. Long-term functional changes in microglia
68 were paralleled by long-term reprogramming of microglial enhancers and gene expression in
69 these models. Genes involved in hypoxia-induced factor-a (HIF-1 α) regulation, metabolic
70 glycolysis, and Rap1-mediated phagocytosis were increased several months after training but not
71 tolerance with repeated LPS. Together, findings in the literature support a model in which long-
72 term reprogramming of gene expression underlies long-term innate immune memory in the brain
73 relevant to disease contexts. However, the mechanisms involved in the initial formation of innate
74 immune memories are not as well characterized in microglia and hence form the major focus of
75 this study.

76 Here, we used a mouse model of repeated LPS to identify how gene expression, cytokine
77 expression, and microglia morphology changes drive the formation of training and tolerance in
78 the brain. Unlike prior studies using the same repeated low-dose LPS paradigm, ours focused
79 specifically on characterizing immediate, acute microglial changes across multiple brain regions
80 including the frontal cortex, striatum, and hippocampus, which have known differences in
81 microglial morphology and function. (22,23) Furthermore, we assessed long-term impacts of
82 innate immune memory induction in a comprehensive battery of anxiety-like, depressive-like,
83 repetitive, and learning and memory behaviors and performed a systematic evaluation of LPS-
84 induced shifts in microglia morphological states across brain regions. We describe shared
85 patterns of gene expression across brain regions with shared and unique regulatory pathways.
86 We also describe the dynamic emergence and resolution of “trains” of rod-like microglia that align
87 end-to-end with the formation of immune priming and tolerance, a morphological phenotype which
88 has not previously been described in the context of repeated LPS. Together, these findings offer
89 new insight into microglial changes in the formation of immune memory and support future work
90 to further explore described mechanisms in the context of brain disease.

91

92 **Methods**

93 **Animals**

94 All experiments were conducted in accordance with the National Institutes of Health
95 Guidelines for the Care and Use of Laboratory Animals, with approval from the Institutional Animal
96 Care and Use Committee at the University of California, Davis and the Canadian Council on
97 Animal Care guidelines, with approval from the Animal Care Committee at the University of British
98 Columbia. Mice in experiments undertaken at the University of California, Davis (RNA-seq,
99 Luminex protein array) were housed in treatment-matched groups of two to four on a regular 12-

100 hr light/12-hr dark cycle and all experiments were performed in regular light during the mouse's
101 regular light cycle. Mice in experiments undertaken at the University of British Columbia (RT-
102 qPCR, microglia morphology, behavioral battery) were housed in treatment-matched groups of
103 two to four on a reversed 12-hr light/12-hr dark cycle. Because mice are nocturnal animals, all
104 behavior experiments were performed in red light during the mouse's dark cycle when they are
105 most active. All mice had ad libitum food and water and cages were changed biweekly.

106

107 ***In vivo* injections**

108 Adult male and female C57BL/6J mice (Jackson Laboratories, over 10 weeks old) were
109 given daily intraperitoneal injections of 0.5 mg/kg LPS (from *E. coli* O55:B5, Sigma-Aldrich L5418)
110 or an equal volume of vehicle solution (1xPBS; Phosphate buffered saline, Fisher Scientific
111 BP3991) for 4 days between 09:00 and 10:00 on each day. Animals received either four PBS
112 vehicle injections on four consecutive days (PBS), three vehicle injections on three consecutive
113 days followed by a single LPS injection on the fourth day (1xLPS), two vehicle injections on two
114 consecutive days followed by two LPS injections on the following two days (2xLPS), a single
115 vehicle injection followed by three LPS injections on the following three days (3xLPS, males only),
116 or four LPS injections (4xLPS). PBS, 1xLPS, 2xLPS, 3xLPS, and 4xLPS were the five
117 experimental groups analyzed in this study. (Fig. 1A) Body weight was measured right before
118 administering injections each day.

119

120 **Sickness behavior scoring and analysis**

121 Changes in sickness behavior were assessed 3 hours-post injection each day. Sickness
122 behavior was scored according to a 4-point grading scale (0 to 3 points total). Lethargy signified
123 by diminished locomotion and curled body posture, ptosis signified by drooping eyelids, and
124 piloerection signified by ruffled and greasy fur were each assessed individually for either 0, 0.5,
125 or 1 point. A total cumulative score of 0 indicated no symptoms of sickness behavior and a total
126 cumulative score of 3 points indicated that all symptoms of sickness behavior were maximally
127 present. We assessed how cumulative scores for each mouse on the last day of assessment (3
128 hours after final injection) changed with LPS treatment by fitting a non-parametric Aligned Ranks
129 Transformation (ART) model to measure scores as a factor of LPS Treatment (Total Score ~
130 Treatment) using the ARTTool R package. (24) The model was assessed using ART ANOVA and
131 tests between Treatment groups were corrected for multiple comparisons using the Benjamini-
132 Hochberg (BH) method. Corrected p-values < 0.05 were considered statistically significant.

133

134 **Behavioral battery**

135 Animals underwent a battery of behavioral tasks measuring anxiety-like behavior,
136 repetitive behavior, learning and memory, and depressive-like behaviors. All behavioral tests were
137 performed during the dark cycle under red light (40-100lux) between the hours of 0900-1700.
138 Behavioral testing began on day 9, or 5 days after the last injection, and ended on day 50. (Fig.
139 2B) ANY-maze tracking software was used to record and track animal movement during the task.
140 All statistical analyses of behavior were performed using GraphPad Prism 9 software. (Supp. File
141 S1) Behavior was analyzed using a one-way ANOVA assessing treatment as the main effect and
142 using the BH-correction for multiple comparisons. Corrected p-values < 0.05 were considered
143 statistically significant.

144 **Light dark box:** The light-dark box test was performed to measure anxiety-like behavior.
145 The light chamber was an open-top 25cm x 25cm x 30cm (*lwh*) white box. The dark chamber was
146 a closed-top 16cm x 25cm x 30cm (*lwh*) black box that was connected to the light box through a
147 10cm x 5cm (*wh*) passage and sliding door. Mice were individually placed into the dark chamber
148 and were allowed to freely explore for 10 minutes once the sliding door was opened. Video
149 footage was recorded from above and ANY-maze recorded time spent in the light chamber.

150 **Open field test:** The open field test was performed to measure anxiety-like behavior. The
151 box was 65cm x 65cm x 40cm (*lwh*). One at a time, mice were placed in the center of the box and
152 allowed to explore freely for 20 minutes. Video footage was recorded from above and ANY-maze
153 recorded time spent in the inner and outer zones. The zone boundary was defined at 10cm from
154 the box wall.

155 **Marble burying test:** The marble burying test was performed to measure repetitive
156 behavior. To prepare for the task, a 30 cm x 19.4 cm x 39.4 cm rodent cage was filled with bedding
157 5cm deep and 20 marbles were equally spaced on top of the bedding in a 4x5 grid using a
158 premade stencil. Mice were placed into the centre of the box one at a time and recorded for 20
159 minutes. Video footage subsequently hand scored at a later time to count for the number of
160 marbles buried after 20 minutes. A marble was scored as buried if < 50% of the marble was
161 visible.

162 **Object Location Memory Test:** The OLM task was performed in an open-topped square
163 box 40cm x 40cm x 40 cm (*lwh*) lined with bedding ~1cm in depth. One wall of the box was lined
164 with duct tape as a visual cue. Objects were cleaned with 1:16 Saber solution (Rododonto, Cat #
165 09-12400-04) between trials and allowed to fully dry before re-use. The OLM took 8 days in total
166 with 6 days of habituation, 1 day of training and 1 day of testing (25). Bedding was kept in the
167 same box each day but shuffled around between mice. Mice were habituated for 10 minutes/day

168 for 6 days, where they were allowed to freely explore the same box each day with no objects
169 present. On the training day, mice were given 10 minutes to investigate two identical glass
170 beakers filled with dry cement. The 5-minute testing phase took place 24 hours after training.
171 During the test, one object was moved to a novel location and the other remained in the same
172 spot. An experienced scorer blinded to experimental conditions hand-scored the testing videos
173 for investigation time with the unmoved and moved objects. Investigation time was scored when
174 the mouse's nose was within 1cm of the object and pointing directly at the object. Looking over
175 or past the object and climbing on top of the object were not counted as investigation. For the
176 training and testing days, a discrimination index (DI) was calculated as $[(T_M - T_S) / (T_M + T_S)] * 100$,
177 where T_M is time investigating the moved object and T_S is time investigating the unmoved object.

178 **Self-Grooming:** Self-grooming was performed to measure repetitive-like behaviour. Mice
179 were placed in a cage without bedding and filmed straight-on for 20 minutes. The last 10 minutes
180 of video footage were hand-scored for the number of grooming bouts.

181 **Forced Swim Test:** Mice were placed individually into 1L glass beakers filled with 900mL
182 of 23-25°C water. Mice were recorded for 6 minutes and closely monitored during the task. Mice
183 were placed in a cage with dry paper towel on top of a heating pad after the task and were returned
184 to the home cage once they were dry and exhibiting normal motor and grooming behaviours. The
185 last four minutes of footage was hand-scored by a researcher blind to experimental conditions for
186 time spent immobile, defined as the absence of escape-related movements.

187

188 **Weight change analysis**

189 Body weights were measured 24 hours after each day before undergoing the behavioral
190 battery described above. (Fig. 2A) Mice received LPS or PBS injections on Days 1-4 and were
191 left alone to recover other than weight measurements on Days 5-8 before starting the behavioral
192 assessments (outlined in 'Behavioral Battery' section) on Day 9. Each animal's weights were
193 normalized to their weights taken before the start of injections to calculate % weight change. We
194 assessed how % weight differences change with LPS treatment in relation to experiment day by
195 fitting a linear mixed effects model to measure % weight change as a factor of treatment and
196 experiment day interactions with mouseID as a repeated measure (% weight change ~
197 Treatment*Timepoint + (1|MouseID)). The model was assessed using ANOVA and two separate
198 sets of posthoc analyses using the BH-method were run: 1) to correct across all comparisons
199 made between timepoints within Treatment groups (~Timepoint|Treatment) and 2) to correct
200 across comparisons made against PBS (1-4xLPS vs. PBS) within each timepoint
201 (~Treatment|Timepoint). BH-corrected p-values < 0.05 were considered statistically significant.

202

203 **Brain tissue collection**

204 In each of the separate cohorts outlined here, mice were euthanized 3 hours after the final
205 injection immediately after the final day's sickness behavior was scored. Mice were quickly
206 anesthetized with isofluorane and transcardially perfused with 15ml of 1xPBS before brains were
207 extracted for downstream experiments. For the RNAseq and Luminex cohort: one hemisphere
208 from each brain was microdissected for brain regions (frontal cortex, striatum, hippocampus) for
209 RNAseq and the other hemisphere was microdissected for brain regions (frontal cortex, striatum,
210 hippocampus, cerebellum) for Luminex protein arrays. Dissected brain regions were immediately
211 flash-frozen on dry ice and stored at -80°C until RNA and protein extractions for RNAseq and
212 Luminex protein arrays, respectively. For the microglia morphology & RT-qPCR cohort: one
213 hemisphere from each brain was collected for downstream histology analysis and the other
214 hemisphere was microdissected for brain regions (frontal cortex, striatum, hippocampus) for RT-
215 qPCR. Extracted hemispheres for histology were immersion-fixed in 4% paraformaldehyde for 48
216 hours before cryoprotecting in 30% sucrose for 48 hours prior to cryosectioning. Cryoprotected
217 brains were then sectioned at 30um on the cryostat, collected in 1xPBS for long-term storage,
218 and processed for immunohistochemistry. Dissected brain regions were immediately flash-frozen
219 on dry ice and stored at -80°C until RNA extractions for RT-qPCR. For the isolated microglia
220 experiments (Fig. S4C,E): cortex from both hemispheres was collected for microglia isolations,
221 subsequent RNA extractions, and downstream RT-qPCR.

222

223 **RNA-seq library preparation**

224 RNA was extracted from whole tissue in the hippocampus, striatum and frontal cortex
225 using the RNA/DNA Miniprep Plus Zymo Kit (Cat D7003) with on-column DNase digestion as
226 described in the kit manual. RNA quality was assessed by bioanalyzer and all samples had RNA
227 Integrity Numbers >7 (Supp. Table S3). QuantSeq 3'mRNA sequencing FWD (RNAseq) libraries
228 (Lexogen, Cat No 015) were prepared per manufacturer's instructions using 75ng of total input
229 RNA per sample and 17 cycles of PCR amplification. All samples were prepared with
230 incorporation of Unique Molecular Identifiers as part of the second strand synthesis step
231 (Lexogen, Cat No 081) and sample unique, dual index barcodes. All samples were then pooled,
232 exonuclease VII treated and sequenced across two lanes of a HiSeq4000 to generate Single End
233 100 base pair reads.

234

235 **RNA-Seq alignment**

236 Raw fastq sequencing reads were assessed for quality control using FastQC
237 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and multiqc (27)
238 (PreTrim_multiqc_report.html). The UMI index was then added to the header of each read using
239 custom scripts from Lexogen (umi2index). Reads were then trimmed to remove the first 11 bases,
240 adapter contamination, polyA read through and low-quality reads using BBDuk from BBtools
241 (sourceforge.net/projects/bbmap/). All samples were then re-assessed for quality using FastQC
242 and multiqc (PostTrim_multiqc_report.html). Each sample was then aligned to the mouse genome
243 (GRCm38.92) using STAR(28). Aligned bam files were then filtered for unique UMIs using custom
244 Lexogen script (collapse_UMI_bam). Alignments for unfiltered and UMI filtered bam files were
245 then compared using multiqc (STARAlignment_multiqc_report.html). All subsequent analysis was
246 performed on UMI filtered bam files. These files were indexed using samtools(29) and then reads
247 per ensembl gene (Mus_musculus.GRCm38.92.gtf) were counted using FeatureCounts(30) with
248 options for forward strand (-s 1). Counts were then assessed using multiqc
249 (Counts_collapsedUMI_multiqc_report.html) and read into R for statistical analysis using
250 EdgeR(31) and LimmaVoom(32). All scripts and R code are available on the CierniaLab github.
251

252 **Differential Expression (DE) analysis**

253 Low expressing genes were removed by filtering for genes with more than 1 count per
254 million (CPM) in at least 4 samples (Figure S1C). The remaining genes (n=16,788) were then
255 normalized using Trimmed Mean of M-values (TMM) to correct for library composition using
256 calcNormFactors, method= TMM (Figure S1E). To evaluate the contribution of each factor to the
257 overall gene expression profile, Multi-Dimensional Scaling (MDS) plots were constructed for Brain
258 Region, LPS Treatment, and Hemisphere (Figure S1B). CPM values were then fed into voom
259 using a model design matrix for LPS treatment differences in gene expression which vary with
260 brain region (~0 + Treatment:BrainRegion). Individual contrast comparisons for each brain region
261 were then called using contrasts.fit followed by eBayes. Differentially expressed genes (DEGs)
262 were identified for each comparison of interest using TopTreat with a BH p-value correction
263 (significance at adjusted p-values < 0.05 and fold change > +/- 2). Heatmaps of normalized CPM
264 values of significant DEGs (n=432) were made using the pheatmap R package. CPM values for
265 each gene were first scaled within each brain region and then scaled across brain regions as
266 input for the DEG heatmap (Fig. 3A), before hierarchical clustering. Breaks between each color
267 of the heatmap scale were adjusted to fit the distribution of the normalized gene expression values
268 such that 10% of the data was contained within each color break of the inferno color palette from
269 the viridisLite R package (Fig. S1A). This allowed for the stark visualization of the strongest

270 patterns of gene expression across brain regions and characterization of cluster IDs as 2xLPS-
271 sensitive, 4xLPS-sensitive, and LPS-decreased.

272

273 **Gene Ontology (GO) enrichment analysis**

274 Enrichment for gene ontology (GO) terms was subsequently performed on the DEG
275 clusters using the clusterProfiler (version 4.4.4) and org.Mm.eg.db (version 3.15.0) R packages
276 to further explore the functional role of the identified genes. GO enrichment was run on all 3 DEG
277 cluster lists together using the compareCluster function in clusterProfiler with the “enrichGO”
278 option and a p-value cutoff < 0.01 and BH-adjusted q-value cutoff < 0.05 against the Biological
279 Processes (BP) ontology, with all genes interrogated in the experiment as background. Dotplot
280 and cnetplot functions within the clusterProfiler package was used to create visualizations of the
281 significant GO enrichments.

282

283 **MGErichment analysis**

284 Gene list enrichment analysis was performed using the 2024 database of the
285 MGErichmentApp (33) with all genes interrogated in the experiment as background. Significant
286 enrichments against mouse microglial gene lists in MGErichment were tested by a one-tail
287 Fischer’s exact test and BH-corrected to reach significance at an adjusted p-value < 0.01. Target
288 % and Background % values for significant gene list enrichments were plotted using ggplot in R.
289

290 **HOMER promoter motif enrichment analysis**

291 HOMER Motif Analysis Software, v4.11 (<http://homer.ucsd.edu/homer/>) (34) was used to
292 find motif enrichments within promoters (+1000, -200 to transcription start site) for significant
293 DEGs in each cluster identified (2xLPS-sensitive, 4xLPS-senstive, LPSDownregulated) and run
294 against background genes (all genes interrogated in the experiment, n=16,788) using the
295 following command: findMotifs.pl [cluster-specific genes file] mm10_promoters [output directory]
296 -bg [background genes file] -start -1000 -end 200 -p 12. Enrichment output was interpreted
297 according to recommendations on the HOMER website (<http://homer.ucsd.edu/homer/>). Top-
298 ranked *de novo* motifs were defined as having p-values < 1e-10 and not marked as a possible
299 false positive in the Homer *de novo* Motif Results output (Supp. File S2-S4). Top-ranked known
300 motifs were defined as having BH-corrected q-values < 0.05 in the Homer Known Motif
301 Enrichment Results output. (Supp. File S2-S4) Target % and Background % values for significant
302 promoter enrichments were plotted using ggplot in R. All known motifs were concatenated into
303 one file and used as input to determine target gene promoter locations with known motifs using

304 the following command: findMotifs.pl [cluster-specific genes file] mm10_promoters [output
305 directory] -find [all known motifs file] > [desired name of output file] -bg [background genes file] -
306 start -1000 -end 200 -p 12. Identified instances of significant known motifs in each gene promoter
307 were binarized (yes = present, no = not present) and plotted side-by-side with each gene's
308 normalized gene expression using the R package pheatmap.

309

310 **Published ChIP-seq promoter enrichment analysis**

311 Publicly available ChIP-seq peaks (35–39) from relevant microglia and bone marrow-
312 derived macrophage (BMDM) studies were downloaded from the NCBI GEO repository and
313 processed using sort-bed functions and -intersect and -difference options within the bedops
314 software (version 2.4.41) (40) to isolate out ChIP-seq mm10 promoter peaks and to characterize
315 lost vs. gained promoter peaks in any studies with treatment conditions, respectively. Final ChIP-
316 seq peaks were curated into collections for each study to use as input for analysis, according to
317 the requirements outlined in the LOLA R package. ChIP-seq peak promoter enrichment analysis
318 was performed using LOLA and significant enrichments were defined as BH-corrected adjusted
319 p-values < 0.05. Target % and Background % values for significant enrichments were plotted
320 using ggplot in R.

321

322 **Luminex protein arrays**

323 As described previously (26), blood was collected by cardiac punch and brain tissue for
324 each region (frontal cortex, striatum, hippocampus, and cerebellum) was collected and flash
325 frozen. Blood was placed on ice and subsequently processed into serum by centrifugation. Brain
326 tissue was lysed in cell lysis buffer (Cell Signaling Technologies, Danvers, MA, USA) containing
327 protease and phosphatase inhibitors and incubated with agitation for 20 min on ice followed by
328 sonication for 30 seconds. The cell lysate was then vortexed for 30 seconds and centrifuged at
329 20,000× g for 10 min at 4°C. Protein concentrations were measured using a Bio-Rad Benchmark
330 Plus Spectrophotometer system and all samples were standardized to 70 µg/mL for subsequent
331 immunoassays.

332 Analysis of serum cytokines was performed using a multiplex mouse 25-plex bead
333 immunoassay (Milliplex Mouse Cytokine/Chemokine Magnetic Bead Panel
334 #MCYTMAG70PMX25BK). The following cytokines were quantified: G-CSF, GM-CSF, IFN-γ, IL-
335 1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-
336 10, KC, MCP-1, MIP-1α, MIP-1β, MIP-2, RANTES, and TNF-α. Standards and reagents were all
337 prepared according to the manufacturers' recommendations. Each serum and brain sample were

338 diluted to a standardized concentration and run in duplicates. 25uL of sample, standards, or
339 blanks was loaded into a 96-well plate with appropriate amounts of assay buffer and matrix
340 solution. The plate was then incubated overnight with antibody-coupled magnetic beads. The
341 following day, after a series of washes, the plate was incubated with a biotinylated detection
342 antibody on a shaker for 1 hour. Streptavidin-phycoerythrin was added and incubated while
343 shaking continued for 30 minutes. Plates were washed using a Bio-Plex handheld magnet (Bio-
344 Rad Laboratories, Hercules, CA, USA). After the final wash, the plate was analyzed using a Bio-
345 Rad Bio-Plex 200 plate reader (Bio-Rad Laboratories, Hercules, CA, USA) and analyzed using
346 Bio-Plex Manager software (Bio-Rad Laboratories, Hercules, CA, USA). The following were the
347 minimal amounts of detectable cytokine concentrations: G-CSF: 1.7 pg/mL; GM-CSF: 10.9 pg/mL;
348 IFNy: 1.1 pg/mL; IL-1 α : 10.3 pg/mL; IL-1 β : 5.4 pg/mL; IL-2: 1.0 pg/mL; IL-4: 0.4 pg/mL; IL-5: 1.0
349 pg/mL; IL-6: 1.1 pg/mL; IL-7: 1.4 pg/mL; IL-9: 17.3 pg/mL; IL-10: 2.0 pg/mL; IL-12 (p40): 3.9
350 pg/mL; IL-12 (p70): 4.8 pg/mL; IL-13: 7.8 pg/mL; IL-15: 7.4 pg/mL; IL-17: 0.5 pg/mL; IP-10: 0.8
351 pg/mL; KC: 2.3 pg/mL; MCP-1: 6.7 pg/mL; MIP-1 α : 7.7 pg/mL; MIP-1 β : 11.9 pg/mL; MIP-2: 30.6
352 pg/mL; RANTES: 2.7 pg/mL; TNF- α : 2.3 pg/mL. As per previous studies, sample concentrations
353 that fell below minimal detection value were given a proxy value of half the limit of detection for
354 statistical comparisons using non-parametric Mann–Whitney U analyses and BH-correction for
355 multiple comparisons.

356

357 **Immunohistochemistry**

358 30um brain sections were stained for immunofluorescent analysis with a commonly used
359 microglia marker, purinergic receptor P2Y12 (P2ry12), to analyze microglial morphology. Free-
360 floating brain sections were washed 3 times for 5 minutes each in 1xPBS, permeabilized in 1xPBS
361 + 0.5% Triton (Fisher BioReagents BP151-500) for 5 minutes, and incubated in blocking solution
362 made of 1xPBS + 0.03% Triton + 1% Bovine Serum Albumin (BSA; Bio-technne Tocris 5217) for
363 1 hour. After the blocking steps, sections were incubated overnight at 4°C in primary antibody
364 solution containing 2% Normal Donkey Serum (NDS; Jackson ImmunoResearch Laboratories Inc.
365 017-000-121) + 1xPBS + 0.03% Triton + primary antibody (rabbit anti-P2RY12: 1:500, Anaspec
366 AS-55043A). After primary antibody incubation, sections were washed 3 times for 5 minutes each
367 with 1xPBS + 0.03% Triton before incubating for 2 hours in secondary solution containing 2%
368 NDS + DAPI (1:1000; Biolegend 422801) + secondary antibodies (Alexafluor 647 donkey anti-
369 rabbit: 1:500, Jackson ImmunoResearch Laboratories Inc. 711-606-152). Sections were washed
370 3 times for 5 minutes each with 1xPBS + 0.03% Triton before being transferred into 1xPBS for
371 temporary storage before mounting. Sections were mounted onto microscope slides (Premium

372 Superfrost Plus Microscope Slides, VWR CA48311-703) and air dried before being coverslipped
373 with mounting media (ProLong Glass Antifade Mountant, Invitrogen P36980; 24x60mm 1.5H High
374 Performance Coverslips, Marienfeld 0107242).

375

376 **Imaging and microglia morphology analysis**

377 All mounted brain sections were imaged on the ZEISS AxioScan 6 microscope slide
378 scanner at 20x magnification with a step-size of 1um using the z-stack acquisition parameters
379 within the imaging software (ZEISS ZEN 3.7). During image acquisition, Extended Depth of Focus
380 (EDF) images were created using maximum projection settings and saved as the outputs in the
381 final .czi files. Maximum projection EDF images only compile the pixels of highest intensity at any
382 given position in a z-stack to construct a new 2D image which retains the 3D information. Using
383 ImageJ, we created .tiff images of each fluorescent channel from .czi files and selected and saved
384 .tiffs of brain regions of interest (ROIs) to use as input for downstream morphological analysis in
385 MicrogliaMorphology and MicrogliaMorphologyR, as detailed in Kim et al., 2023 (41). The
386 parameters used for MicrogliaMorphology included: auto local thresholding using the Mean
387 method and radius 100 with an area filter of 0.01613 - 0.1808 in² (or 153.3358 – 1718.73 um²
388 with .czi conversion applied factor of .325um/pixel applied to scale). After performing principal
389 components analysis on the 27 morphology measures output from MicrogliaMorphology, the first
390 3 principal components were used as input for K-means clustering in MicrogliaMorphologyR to
391 define four distinct classes of microglia morphology (ameboid, hypertrophic, rod-like, ramified).
392 We focused our analyses on multiple brain regions including the hippocampus, frontal cortex, and
393 striatum. Images of coronal brain sections containing these regions were aligned to the Allen
394 Brain Atlas (mouse.brain-map.org) (42) using the ImageJ macro FASTMAP (43). We assessed
395 how percentages of morphological clusters for each mouse changed with LPS treatment by fitting
396 a generalized linear mixed model to measure percentage changes as a factor of cluster and
397 treatment interactions for each brain region and sex with mouselD as a repeated measure
398 (percentage ~ ClusterID*Treatment + (1|MouselD)) using MicrogliaMorphologyR, which calls to
399 the glmmTMB R package. (41,44) We had to analyze each sex and brain region separately
400 because the males had an additional treatment group (3xLPS) that was not present in the females
401 and the model converged when considering ClusterID*Treatment*BrainRegion interactions
402 together. The model was assessed using ANOVA and tests between groups were corrected
403 across for comparisons made within each cluster (~Treatment|Cluster) using the BH method.
404 Corrected p-values < 0.05 were considered statistically significant.

405 Events of rod-like microglia trains were manually quantified within each brain region of

406 interest (ROI) for every image using ImageJ software. Manual counts were normalized to the
407 areas of the ROIs to calculate densities of event observations for each brain region analyzed.
408 Microglial density was quantified by dividing the number of microglia analyzed in each ROI by the
409 area of each ROI. We assessed how rod train event densities and microglial densities change
410 with LPS treatment across brain regions by fitting separate linear mixed effects models to
411 measure either rod-train density or microglial density as a factor of treatment and brain region
412 interactions with mouseID as a repeated measure, for each sex separately (RodTrainDensity ~
413 Treatment*BrainRegion + (1|MouseID) and MicroglialDensity ~ Treatment*BrainRegion +
414 (1|MouseID)). Both models were assessed using ANOVA and tests between groups were
415 corrected across for comparisons made within each brain region (~Treatment|BrainRegion) using
416 the BH method. Corrected p-values < 0.05 were considered statistically significant.

417

418 **Microglia isolations**

419 Isolated cortical tissue from each mouse was placed on individual petri dishes on ice with
420 1mL of digestion buffer, made up of 10ul DNase I (STEMCELL Technologies; Cat. 07900) + 990ul
421 activated Papain solution (Worthington Biochemical, Cat. LS003124), added to each brain sample
422 before it was minced into small (<1mm) pieces using a scalpel. Minced samples in digestion
423 solution were transferred to individual wells within a 24-well cell culture plate and incubated on
424 ice for 30 minutes. Digested brain solution was transferred into a glass dounce homogenizer on
425 ice with 5 mL ice-cold flow cytometry (FACS) buffer comprising 2.5% bovine serum albumin (BSA;
426 Tocris Bioscience Cat. 5217/100G) and 1 M ethylenediaminetetraacetic acid (EDTA; Invitrogen
427 Cat. 17892) in Hanks' Balanced Salt Solution (HBSS). Brains were slowly and gently
428 homogenized 20 times using a loose pestle, followed by 2 times using a tight pestle. Brain
429 homogenate was strained through a 70um nylon mesh strainer (Thermo Fisher, Cat. 08-771-1)
430 with FACS buffer into 50ml tubes on ice. 50ml tubes were centrifuged at 300xg for 10 minutes at
431 4C, at the machine's minimum brake setting. After carefully and discarding the supernatant, cell
432 pellets were gently resuspended in 30% Percoll solution and transferred to new 15ml tubes, where
433 2ml of 37% Percoll solution was gently underlaid. To make the Percoll solutions, 3.6ml of Isotonic
434 Percoll (Millipore Sigma, Cat. GE17-0891-02) was added to 0.4ml 10xHBSS per brain to make a
435 100% Percoll solution, which was diluted down to 30% Percoll and 37% Percoll in 1xHBSS. 15ml
436 tubes containing the layered Percoll gradients were centrifuged at 700xg for 10 minutes at 4C, at
437 the machine's minimum brake setting. Myelin layers and supernatant layers were discarded using
438 a transfer pipette, leaving 1ml of the 37% layer at the bottom of the tube. Cell pellets were gently
439 resuspended and topped up to 10ml with ice-cold FACS buffer then centrifuged at 300xg for 10

440 minutes at 4C, at the machine's minimum brake setting. Supernatant in tubes was discarded down
441 to 200ul, 5ml of ice-cold FACS buffer added, and tubes spun again at 300xg for 10 min at 4C at
442 the machine's minimum brake setting. Finally, supernatant was removed and cells resuspended
443 in 200ul remaining FACS buffer before being counted on the hemocytometer. After counting,
444 samples were diluted to a concentration of 2.5×10^7 cells/ml in 0.05-0.2ml of FACS buffer and
445 transferred to a round-bottom, non-adherent 96-well plate (Corning, Cat. 3788). CD11b+
446 microglial cells were isolated by magnetic bead enrichment using the EasySep™ Mouse CD11b
447 Positive Selection Kit (STEMCELL Technologies, Cat. 18970), according to the manufacturer's
448 protocol.

449

450 **RT-qPCR**

451 Isolated brain region tissues and isolated microglia cells were homogenized using
452 QIAshredder columns (Qiagen 79656). RNA from homogenized tissue was isolated using the
453 Monarch Total RNA Miniprep kit, according to the manufacturer's protocol (New England Biolabs
454 T2010S). For isolated microglia, cells were homogenized and RNA extracted using the Total RNA
455 Purification from Cultured Mammalian Cells version of the protocol for the Monarch Total RNA
456 Miniprep kit. Isolated RNA from brain regions and purified microglia was converted to cDNA and
457 prepared for Real Time quantitative PCR (RT-qPCR) reactions using the LunaScript® RT
458 SuperMix Kit (New England Biolabs E3010) and Luna® Universal qPCR Master Mix (New
459 England Biolabs M3003), according to the manufacturer's Protocol for Two-step RT-qPCR. The
460 primers in Table 1 were used for RT-qPCR reactions and RT-qPCR reactions were loaded into
461 MicroAmp™ Fast Optical 96-Well Reaction plates (Thermo Fisher Scientific 43-469-07) sealed
462 with optical adhesive film (Thermo Fisher Scientific AB-1170). All biological samples were tested
463 in triplicates. Reactions were run on the QuantStudio 6 qPCR machine (Life Technologies,
464 California, USA) and samples were analyzed by the comparative CT method ($\Delta\Delta CT$). The ΔCT
465 was calculated by subtracting the average CT value of the housekeeping gene hypoxanthine
466 phosphoribosyltransferase 1 (*Hprt1*) from the average CT value from the gene of interest. $\Delta\Delta CT$
467 values were calculated by subtracting the ΔCT from the gene of interest by the average ΔCT from
468 its respective control. Fold change was calculated by using the equation $2^{-\Delta\Delta CT}$. We assessed how
469 expression of each target gene changes with LPS treatment by fitting a linear mixed-effects model
470 to measure fold change values as a factor of LPS Treatment for each gene independently (gene
471 fold change ~ Treatment + (1|MouseID)) using the nlme R package. We analyzed each sex
472 separately, as the males had an additional treatment group, 3xLPS, that was not present in the
473 females. The model was assessed using ANOVA and tests between LPS treatments were

474 corrected for multiple comparisons using the BH method. Corrected p-values < 0.05 were
475 considered statistically significant.

476

Primer Target (mouse)	Forward (5' > 3')	Reverse (5' > 3')
<i>Hprt1</i>	CAGTACAGCCCCAAAATGGTTA	AGTCTGGCCTGTATCCAACA
<i>Cxcl16</i>	ATCAGGTTCCAGTTGCAGTC	TTCCCATGACCAGTTCCAC
<i>S100a9</i>	GGAATTTCAGACAAATGGTCCAAG	CATCAGCATCATACACTCCTCA
<i>Il1β</i>	TTGTCGTTGCTTGTCTCTTC	GTGCTGTCTGACCCATGT
<i>Tnfα</i>	GTCTTGAGATCCATGCCATTG	AGACCCTCACACTCAGATCA

477

478 **Table 1.** RT-qPCR primer sequences used in this study

479

480 **Results**

481 **Repeated LPS produces robust priming and tolerance of acute sickness behaviors, but not** 482 **long-term behavioral change**

483 In our experimental model, mice were given daily intraperitoneal injections of low-dose
484 LPS (0.5 mg/kg) or vehicle (1xPBS) over a span of four days and sickness behavior was scored
485 3 hours following the final treatment of PBS, 1xLPS, 2xLPS, 3xLPS or 4xLPS. (Fig. 1A-B)
486 Repeated LPS injections produced both training and tolerance of sickness behaviors: sickness
487 behavior peaked and the greatest drop in body weight was observed across treatment groups
488 after the second injection of LPS relative to PBS. (Fig. 1B, 2A; BH-adjusted p<0.05, Supp. Table
489 S2) Sickness behavior showed recovery towards baseline levels after the third and fourth LPS
490 injections (Fig. 1B, 2A). While body weights recovered by 2 days after peak weight loss from the
491 second exposure to LPS across treatment groups, weights in LPS-treated groups was still
492 significantly lower than that of the PBS group for up to 6 days after peak loss (BH-adjusted p<0.05,
493 Supp. Table S2) and none of the mice in the LPS-treated groups fully recovered to their pre-
494 treatment body weights prior to the start of the behavioral experiment (Fig. 2A; BH-adjusted
495 p<0.05, Supp. Table S2). However, there were no long-term differences in anxiety-like,
496 depressive-like, learning and memory, nor repetitive behaviors across treatment groups when
497 behaviors were then assessed, indicating that all treatment conditions had fully recovered and did
498 not have long-term detrimental impacts of repeated LPS. (Fig. 2B; BH-adjusted p<0.05, Supp.
499 File S1)

500

501 **Cytokine and chemokine protein levels increase first in serum and then in brain**

502 To examine protein levels of known inflammatory proteins, including chemokines,
503 cytokines, and other signaling molecules, we performed a Luminex multiplex protein quantification
504 on serum and tissue collected from four different brain regions (frontal cortex, hippocampus,
505 striatum, cerebellum) 3 hours after final injections. We identified significant changes in protein
506 levels of both pro- and anti-inflammatory molecules (Fig. 1C; BH-adjusted $p<0.05$, Supp. Table
507 S1). In serum, we found significant increases of G-CSF, IL-6, IP-10, KC, MCP-1, MIP-1a, MIP-1b
508 and RANTES in response to 1xLPS that was maintained in response to 2xLPS and then returned
509 to baseline level in most cases after 3xLPS and 4xLPS. In frontal cortex we found significant
510 increases in G-CSF, IL-6, and IP-10 to 1xLPS, but the majority of changes were in response to
511 the 2xLPS (10 proteins), most of which again were no longer significant after 3xLPS and 4xLPS.
512 Similar patterns were observed in hippocampus, striatum, and cerebellum with the majority of
513 significant increases occurring after 2xLPS (Fig. 1C; BH-adjusted $p<0.05$, Supp. Table S1). We
514 further explored these findings in males and females using RT-qPCR on RNA isolated from frontal
515 cortex tissue for *Il-1 β* and *Tnf- α* , two hallmark pro-inflammatory cytokines that are known to be
516 produced by microglia during immune activation. Similar to the patterns observed in the protein
517 analysis, we found the greatest induction of *Il-1 β* and *Tnf- α* in response to 2xLPS, which returned
518 towards baseline levels after 3xLPS and 4xLPS (Fig. 1D; BH-adjusted $p<0.05$, Supp. Table S5).
519 Together, these findings suggest that 2xLPS produces the largest increase in inflammatory
520 signaling molecules and that these responses are blunted after 3xLPS and 4xLPS. These patterns
521 also parallel the peak in sickness behaviors and drop in body weight observed after 2xLPS that
522 resolve towards baseline levels by 4xLPS.

523

524 **Repeated LPS produces priming and tolerance of gene expression within brain regions
525 that is likely microglia-driven**

526 To examine changes in gene expression in response to repeated LPS stimulation, we
527 performed RNA-sequencing on brain tissue from the hippocampus, striatum and frontal cortex 3
528 hours after the last LPS or PBS injection ($n=4$ /treatment/region; Fig. 1A, Fig. S1). Differentially
529 expressed genes were identified across brain regions for differences in expression between the
530 PBS controls and each LPS condition (BH-adjusted $p<0.05$ and fold change $>+/-2$, Supp. Table
531 S3) and clustered according to their gene expression patterns across brain regions and
532 treatments, which were the greatest explanatory variables in the data as assessed by MDS
533 analysis (Fig. 3A, Fig. S1B). Similar to the impacts on brain cytokine protein levels, sickness
534 behaviors, and body weight changes, changes in gene expression were most striking following
535 2xLPS (Fig. S2A-C). Very few genes were decreased in response to LPS across all comparisons

536 and brain regions. Clusters that emerged from patterns of gene expression were characterized
537 as “2xLPS-sensitive”, “4xLPS-sensitive”, and “LPS-decreased”. Across brain regions, 2xLPS-
538 sensitive genes (n=226, 52% of DEGs) were uniquely increased in response to 2xLPS, 4xLPS-
539 sensitive genes (n=120, 28% of DEGs) were uniquely increased in response to 4xLPS, and LPS-
540 decreased genes (n=86, 20% of DEGs) were repressed from baseline levels across LPS
541 treatments. (Fig. 3A)

542 The different DEG clusters were enriched for shared and unique GO terms. (Fig. 3B; BH-
543 corrected p<0.05, Supp. Table S3). The majority of 2xLPS-sensitive genes were not engaged at
544 3xLPS and 4xLPS, suggesting the formation of tolerance for the majority of these genes. 2xLPS-
545 sensitive genes were enriched for biological processes related to immune regulation including
546 response to virus, response to interferon-beta, positive regulation of defense response, defense
547 response to virus, defense response to symbiont, positive regulation of tumor necrosis factor
548 production, acute inflammatory response, and myeloid leukocyte activation. These findings are
549 consistent with previous work examining LPS-activated gene expression in the brain and
550 periphery and indicate that alterations in immune cell signaling underlie the enhancement in gene
551 expression to 2xLPS and repression to 3xLPS and 4xLPS in the brain (20,45–47). The 4xLPS-
552 sensitive genes were enriched for many of the same processes, as well as glial cell development
553 and astrocyte development. LPS-decreased genes were enriched for processes related to
554 neuronal regulation including positive regulation of cell junction assembly, response to cocaine,
555 axon guidance, neuron projection guidance, and positive regulation of monoatomic ion transport.
556 Together, findings suggest that separate gene expression signatures are engaged in response to
557 repeated injections of LPS.

558 To identify whether the differential gene expression observed in our bulk RNAseq data
559 could be driven by microglia, we performed enrichment analysis of our DEGs against curated lists
560 in MGEnrichment, our recently developed database of published microglial gene lists (33). We
561 identified shared and unique enrichment between 2xLPS and 4xLPS-sensitive but not LPS-
562 decreased genes with published microglia-specific gene lists important for maintaining microglia
563 homeostasis, disease-associated microglia (DAM) phenotypes, immune primed microglia,
564 microglia development, and microglial changes in microbiome perturbations, among many others
565 (Fig. S3; BH-corrected p<0.01, Supp. Table S3). Furthermore, two LPS-sensitive genes from our
566 DEG list that are highly expressed in microglia (Fig. S4B, E), *Cxcl16* and *S100a9*, also displayed
567 the same training and tolerance gene expression patterns when assessed by RT-qPCR in repeat
568 experiments done in frontal cortex in both males and females, as well as in microglia isolated from
569 cortical regions in males. (Fig. S4C, F; BH-corrected p<0.05, Supp. Table S5) Together, findings

570 suggest microglia as a likely candidate cell type driving the differential expression observed in the
571 2xLPS-sensitive and 4xLPS-sensitive gene clusters.

572

573 **Repeated LPS regulates immune memory through engagement with IRF and NFkB family**
574 **transcription factors**

575 To examine which up-stream regulatory factors could be driving gene expression in
576 response to repeated LPS, we examined promoter regions of DEGs for enrichment of
577 transcription factor binding motifs (Fig. 4A,C). Promoters of 2xLPS-sensitive cluster DEGs were
578 significantly enriched for interferon regulatory factor (IRF), basic helix-loop-helix/bZIP
579 (bHLH/bZIP), Rel homology domain (RHD), C2H2 zinc finger (Zf), and signal transducer and
580 activator of transcription (Stat) transcription family factors across *de novo* and known Homer
581 motifs. (Supp. File S2) Different sets of genes within the 2xLPS-sensitive DEG cluster had
582 differences in the presence of binding motifs for transcription factors across the enriched
583 transcription factor families (Fig. 4D) in their promoters. Notably, 2xLPS-sensitive genes that
584 increased in response to 1xLPS and stayed increase after 2xLPS did not have binding sites for
585 bZIP family transcription factors, which were present throughout most of the other 2xLPS cluster
586 genes. Moreover, only subsets of 2xLPS-sensitive genes had binding sites for IRF family
587 transcription factors. Binding sites for RHD family transcription factor NFkB, another critical
588 regulator of immune genes, were found in most 2xLPS cluster DEG promoters. DEG promoters
589 were also significantly enriched for direct binding sites of RHD family (NFkB, p65) and IRF family
590 (IRF8) from publicly available ChIP-seq data (35–39), further supporting the roles of these
591 transcription factors as major regulators of LPS-induced gene expression differences in immune
592 training and tolerance. (Fig. 4B; BH-adjusted $p < 0.05$, Supp. Table S3) DEG promoters were also
593 enriched for H3K27ac ChIP-seq peaks that were lost or gained with conditional IRF8 knockouts
594 in microglia in adults (35), suggesting that IRF8 may be interacting with other transcriptional
595 machinery such as histone acetyltransferases and deacetylases to mediate microglial gene
596 expression at these sites.

597

598 **Microglia change their morphology across brain regions in the formation of immune**
599 **priming and tolerance**

600 Using MicrogliaMorphology and MicrogliaMorphologyR, as previously described (41), we
601 quantified shifts in morphological populations within the same brain regions assessed for RNA-
602 seq (frontal cortex, hippocampus, striatum) from male and female mice given 1-4xLPS. (Fig. 5A,
603 S5A-E) Using unbiased clustering, we identified four clusters of microglial morphologies: ramified,

604 rod-like, hypertrophic, and ameboid. While the percentage of ramified and rod-like microglia
605 mostly remained consistent within the different brain regions and sexes with LPS treatment, there
606 was an LPS-mediated shift between ameboid and hypertrophic states (Fig. 5A-B; BH-corrected
607 $p < 0.05$, Supp. Table S4). Within males, the hippocampus and striatum showed a significant shift
608 from ameboid to hypertrophic morphological states in the formation of immune priming (2xLPS)
609 and back with immune tolerance (4xLPS). In males the frontal cortex maintained the 2xLPS-
610 induced hypertrophic morphology with immune tolerance. Within females, the frontal cortex,
611 hippocampus, and striatum showed a morphological switch to a hypertrophic morphology which
612 was sustained with immune tolerance.

613 Furthermore, we also observed the formation of trains of rod-like microglia with increasing
614 exposures to LPS. Rod-like microglia have previously been observed to align end-to-end with one
615 another to form 'trains' of microglia adjacent to neuronal processes in diffuse traumatic brain injury
616 (TBI) in rats. (48–50) Within males, the occurrence of microglial rod-trains increased with 2xLPS,
617 began to resolve after 3xLPS, and re-emerged with 4xLPS across the frontal cortex,
618 hippocampus, and striatum. (Fig. 6A-B; BH-corrected $p < 0.05$, Supp. Table S4) Within females,
619 microglial-rod train occurrence significantly increased with 4xLPS in the frontal cortex and
620 hippocampus, but not in the striatum. There were no significant differences in microglial density
621 with repeated LPS across brain regions and in both sexes, indicating that the changes observed
622 in rod-train occurrence were not due to changes in cell numbers. (Fig. S5F; BH-corrected $p <$
623 0.05 , Supp. Table S4)

624

625 **Discussion**

626 Disruption of microglial activity in the brain has been well-documented in the pathology of
627 a wide range of brain disorders, but the molecular mechanisms underlying how innate immune
628 memory directly contributes to the onset and progression of brain disorders remains understudied.
629 In our study, we used a recently described mouse model of repeated LPS (20) to investigate the
630 immediate transcriptomic and microglia morphological changes that contribute to the formation of
631 immune memory in the frontal cortex, hippocampus, and striatum, as well as the long-term effects
632 of these changes on various behaviors relevant to brain disorders. Mice showed robust changes
633 in acute sickness behavior, body weight, and pro-inflammatory cytokine expression with LPS-
634 induced immune training, which resolved with the formation of immune tolerance. We found
635 transcriptomic changes in a subset of genes that showed a training response after 2xLPS and a
636 tolerized response at 3xLPS and 4xLPS. These "2xLPS-sensitive" genes were enriched for

637 biological processes related to immune regulation and were targeted by IRF and RHD family
638 transcription factors, two key families whose coordinated activity has previously been linked to
639 the formation of innate immune memories in microglia and other immune cells. (45,51–57)
640 Together with the characterized LPS-induced shifts in morphology, our work identifies several key
641 changes in microglial regulation that occur during the formation of innate immune memories that
642 inform previous findings on innate immune memory in disease contexts in the brain.

643 Microglia are the only tissue-resident macrophages in the brain parenchyma (58), self-
644 renew without contribution from the periphery (18), and exhibit different properties morphologically
645 and functionally when placed outside of the brain environment (59), suggesting that brain-intrinsic
646 signals that drive microglial identity make them distinct from macrophages in other tissues.
647 However, the majority of what is known about regulation of immune training and tolerance comes
648 from work in cultured peripheral macrophages. Work in *in vitro* macrophage culture models has
649 demonstrated a clear role for epigenetic regulation of gene expression programs mediating
650 training and tolerance (60,61). Recent work has demonstrated that training and tolerance occur
651 in microglia in response to repeated peripheral injections of LPS (20,62). Wendeln et al. (20)
652 demonstrated alterations in microglial gene expression and enhancer activity 6 months after LPS
653 injection in the Alzheimer's disease model, suggesting long-term reprogramming of microglial
654 function after repeated LPS. Zhang et al. (45) found that enrichment of permissive epigenetic
655 marks at accessible enhancer regions could explain training of microglia to LPS and that tolerized
656 responses were regulated by the loss of permissive epigenetic marks at these sites. In line with
657 both studies, our study identified LPS-sensitive DEGs that were enriched for Interferon (IRF)
658 family and NFkB transcription factor motifs in their promoters. IRFs are induced in response to
659 interferon (IFN), LPS, and other immune stimuli, and initiate gene expression by forming
660 regulatory complexes with IRF family members and other transcription factors, such as PU.1,
661 STAT1, and NF-kB, which further bind with the interferon-sensitive response elements (ISRE) to
662 regulate IFN and TLR signaling pathways. (54,63) IRF family transcription factors have been
663 shown to be required for *Il-1 β* expression in microglia after peripheral nerve injury (64) and
664 regulate disease-associated microglial gene expression of markers including *Apoe* and *Trem2*.
665 (65) IRF8 is particularly well-characterized in microglia, and has been shown to bind to and
666 regulate enhancer regions of microglia during postnatal development to contribute to the
667 establishment of microglial identity and function (35). IRF8-deficient microglia have documented
668 changes in morphology and function marked by reduced Iba-1 expression, less elaborated
669 processes, decreased phagocytic capacity, reduced expression of pro-inflammatory genes, and
670 less proliferative potential in mixed glial cultures. (56,66–68) Accumulation of p50/RelA subunits

671 of NFkB, in the nucleus has also been tied to increased transcription of pro-inflammatory
672 cytokines including iNOS, *Tnf α* , *Il1 β* , and *Il6* in the formation of pro-inflammatory phenotypes in
673 microglia. (55,56,69) We identified enrichment for direct binding sites of NfkB/p65 and IRF8 from
674 published microglia and bone marrow-derived macrophage studies (35,37,38) within our DEGs,
675 together pointing to the coordinated activity of these transcription factors as key regulators of
676 immune priming and tolerance in the brain.

677 Although LPS given peripherally reliably induces a neuroinflammatory response in the
678 brain, LPS has been shown to be largely unable to penetrate the blood brain barrier (BBB) in
679 healthy animals, unless at very high doses (70). Instead, impacts of peripherally administered
680 LPS are likely conveyed to the brain parenchyma by TLR4 receptors on meningeal and
681 endothelial cells, which then signal to other cell types in the brain including microglia. (14,71)
682 Microglia are likely cooperating with other cell types such as astrocytes to perpetuate the
683 expression of pro-inflammatory cytokines, as microglial depletion alone fails to alleviate LPS-
684 induced sickness behaviors. (14,72) Once immune signaling molecules reach the brain
685 parenchyma, they can bind to cytokine receptors expressed on both neurons and glial cells to
686 directly or indirectly modulate neuronal firing properties, which could ultimately shape circuit
687 function and downstream behavior. (14) A recent study using the same repeated low-dose LPS
688 model (73) defined a temporal sequence after 2xLPS by which changes in microglia morphology,
689 density, and expression of phagocytic markers precedes GABAergic synapse loss, followed by
690 memory impairment on the novel object recognition task. However, this study focused on short-
691 term changes within a range of 6 days post-2xLPS, and investigation into the prolonged effects
692 of repeated low-dose LPS on behaviors long after recovery had yet to be thoroughly examined.
693 We failed to identify long-term effects of repeated LPS on a battery of behaviors relevant to brain
694 disorders. Mice showed immediate sickness behaviors including lethargy, ptosis, and piloerection
695 3 hours after 2xLPS exposure, but they did not exhibit any long-term deficits in learning and
696 memory tasks or anxiety-like, depressive-like, and repetitive behaviors when assessed weeks
697 after LPS treatment. While our data suggest that our LPS model does not contribute to any
698 obvious observable long-term behavioral deficits in healthy mice, preconditioning with repeated
699 peripheral injections of low-dose LPS has been demonstrated to alleviate disease pathology that
700 develops months later in mouse models of Alzheimer's Disease and neuroinflammatory
701 responses in stroke and traumatic brain injury (21,57,74–76). This suggests that a secondary
702 disease pathology or injury is necessary to reveal the long-term reprogramming effects of LPS on
703 behavior.

704 Changes in pro-inflammatory gene expression with immune priming and tolerance in the

705 brain have been well-documented to be accompanied by changes in microglial morphology.
706 (20,77,78) 2xLPS-sensitive and 4xLPS-sensitive DEGs identified in our study were enriched for
707 DEGs previously identified as dynamically expressed in the transition from embryonic to postnatal
708 mouse microglia development in both sexes (Fig. S3; BH-corrected $p<0.01$, Supp. Table S3). (79)
709 During embryonic development, immature microglia display an ameboid morphology which aids
710 in phagocytosis of apoptotic debris, synaptic pruning of developing circuits, and increased motility
711 as microglia migrate along developing white matter tracts to populate gray matter. As
712 development progresses postnatally, microglia morphology transforms into a fully ramified,
713 mature form that is maintained throughout life. (80–82) Enrichment of our LPS innate immune
714 memory genes for genes with differential expression between the ameboid and mature ramified
715 development states, indicates that the morphological adaptations in the adult brain to repeated
716 LPS exposure involve shared developmental genes and pathways.

717 While the proportions of ramified and rod-like microglial forms remained mostly consistent
718 across LPS treatments, we observed a switch between ameboid and hypertrophic morphology
719 states in the formation of immune memory that was observed in most brain regions within both
720 sexes. Hypertrophic morphology is described by enlarged cell soma with shorter, thicker, hyper-
721 ramified processes (22,83), which give microglia a “bushy” appearance. This morphological form
722 is commonly observed in regions of brain pathology in human cases of Alzheimer’s Disease and
723 Huntington’s Disease, as well as in mouse models of Alzheimer’s Disease, stroke, accelerated
724 aging, chronic stress, depression, and traumatic brain injury. (22) Hypertrophic microglia have
725 been described in close vicinity to beta-amyloid plaques in Alzheimer’s Disease in both human
726 tissue and mouse models. Hypertrophic microglia also exhibit increased surface markers for the
727 disease-associated microglia (DAM) phenotype including CD-33 and triggering receptor
728 expressed on myeloid cells 2 (TREM2), a key switch in the change to the DAM phenotype.
729 (22,81,84,85) TREM2 has recently been described in the context of the same repeated LPS
730 model used in our study to mediate decreases in microglial phagocytosis of synapses and
731 morphology changes with the formation of immune tolerance in the hippocampus. (78) TREM2
732 knockout prevented acute increases in both microglial soma size and changes in process length
733 and arborization that aligned with a hypertrophic morphology. (78) While we did not identify *Trem2*
734 as a significant DEG in our bulk tissue analysis, we did observe enrichment of 2xLPS-sensitive
735 DEGs with published microglia-specific gene lists for the DAM phenotype (Fig. S3; BH-corrected
736 $p<0.01$, Supp. Table S3), pointing to the significance of the hypertrophic microglia morphology in
737 regulating immune memory states in the brain.

738 We also observed the formation of rod-like train events with increasing exposures to LPS.

739 Rod-like microglia have previously been observed to align end-to-end with one another to form
740 'trains' of microglia adjacent to neuronal processes in diffuse traumatic brain injury (TBI) in rats.
741 (48–50) Rod-trains have been shown to emerge and resolve dynamically with the damage and
742 repair cascades that evolve over the first week post-TBI, where rod trains accumulate at 2 and 6
743 hours post-injury, with a decrease in percentage microglia population at 1 and 2 days post-injury,
744 followed by a subsequent re-accumulation at 7 days post-injury. (48) Similar to these documented
745 patterns, the occurrence of microglial rod-trains in our study increased with 2xLPS, began to
746 resolve after 3xLPS, and re-emerged with 4xLPS (Fig. 5A), suggesting that rod-like microglia may
747 be engaged in separate, delayed waves of repair after inflammation in the brain in the switch from
748 an immune trained to tolerized state after the resolution of cytokine responses and obvious
749 sickness behaviors. This could explain the short-term learning and memory impairments
750 described by Jung et al., 2023 (73), which were observed at 6 days after LPS, and why we failed
751 to observe them in our study in which behavioral testing was performed weeks after LPS.

752 Together, findings from our study offer new insight into microglial changes in the formation
753 of immune memory. Given that microglia are long-lived cells (4-20 years in humans) (86) that self-
754 renew without contribution from the periphery (87,88) and epigenetically tune their function to the
755 local brain environment through differential enhancer activity (89,90), the acute changes induced
756 during the formation of innate immune memories could have long lasting impacts on the brain's
757 response to disease and injury. Future work can link our identified acute changes to the long-
758 lasting impacts identified in other model systems to identify how innate immune memories are
759 maintained in microglia and impact disease risk. Understanding these underlying mechanisms
760 will allow for future development of therapies to either enhance or blunt inappropriate microglial
761 activity in the context of brain diseases.

762

763 **Legends**

764 **Figure 1: Repeated LPS produces robust training and tolerance in the mouse brain.** (A)
765 Outline of repeated LPS injection paradigm and experiments. (B) Sickness behaviors measured
766 3 hours after final injections for all experimental cohorts in this paper. (*p<0.05, BH-corrected) (C)
767 Luminex protein quantification for in serum and four brain regions at 3hrs post-final injection.
768 Log10 Fold Change between LPS treatments and PBS controls (pg/ml) are shown for each
769 cytokine and chemokine on the Luminex mouse protein array. Columns are grouped by tissue
770 sample and LPS treatment condition. (*p<0.05, BH-corrected). Genes without readings above
771 background are shown as grey. (D) RT-qPCR fold change comparisons for pro-inflammatory

772 cytokines IL1b and TNFa (*p<0.05, BH-corrected)

773

774 **Figure 2: There are no long-term changes in behavior weeks after repeated LPS.** (A)

775 Percentage body weight changes for each treatment group, 24 hours after each experiment day

776 1-8, prior to beginning behavioral battery on day 9. Mean +/- SEM shown in line graphs. (*p<0.05,

777 BH-corrected) (B) Timeline of behavioral assessment for anxiety-like behaviors, repetitive

778 behaviors, learning and memory tasks, and depressive-like behaviors after 1-4xLPS paradigm.

779 Group differences for each of the behavior tasks in behavioral battery are plotted. Mean +/- SEM

780 shown in bar graphs. No significant differences. (*p<0.05, BH-corrected)

781

782 **Figure 3: Repeated LPS induces shared gene expression signatures across brain regions.**

783 (A) Heatmap of scaled gene expression for each sample (columns) is shown for each differentially

784 expressed gene (DEG) (rows). Only significant DEGs are shown (*p<0.05, BH-corrected). Genes

785 are hierarchically clustered by patterns of expression: 2xLPS-sensitive cluster (226 total genes),

786 4xLPS-sensitive cluster (120 total genes), LPS-decreased-1 and -2 cluster (86 total genes). CPM

787 values for each gene were first scaled within each brain region and then scaled across brain

788 regions for plotting. Breaks between each color of the heatmap scale were adjusted to fit the

789 distribution of the scaled gene expression values such that 10% of the data was contained within

790 each color break of the quantile scale (Fig. S1A). (B) GO term enrichment dotplot for each cluster

791 identified in (A). LPS-decreased-1 and LPS-decreased-2 genes were combined into one

792 representative LPS-decreased cluster. Only significant GO terms shown (*p<0.05, BH-corrected).

793 (C) GO terms in (B) represented as cnet plot showing specific genes from DEG clusters that were

794 present in GO term gene lists.

795

796 **Figure 4: IRF and NFkB transcription factor motifs are enriched in 2xLPS-sensitive DEGs.**

797 (A) Homer *de novo* transcription factor motif enrichments within promoters (+1000, -200 to

798 Transcription Start Site) of 2xLPS-sensitive DEGs. Top ranked *de novo* motifs are shown (p<1e-

799 10). (B) Enrichment of 2xLPS-sensitive DEGs within ChIP-seq promoter peaks from publicly

800 available microglial and bone marrow derived macrophage (BMDM) studies. Red circles denote

801 a significant enrichment in the percent of DEGs containing a ChIP-seq peak compared to the

802 background of all genes detected in the RNA-Seq experiment containing a ChIP-seq peak from

803 a given study (grey circles). *p<0.05, BH-corrected (C) Homer known transcription factor motif

804 enrichments within promoters of 2xLPS-sensitive DEGs. Blue circles denote a significant

805 enrichment in the percent of DEGs containing that promoter motif compared to the background

806 of all genes detected in the RNA-Seq experiment with that motif (grey circles). Top ranked known
807 motifs are shown ($p < 0.05$, BH-corrected) (D) Heatmap of scaled gene expression of 2xLPS-
808 sensitive DEGs and depiction of whether a binding site for each known promoter motif from (C)
809 is present in promoters of 2xLPS-sensitive DEGs (black=yes, white=no).

810

811 **Figure 5: Microglia morphology shifts mainly between ameboid and hypertrophic states in**
812 **immune memory.** (A) LPS-induced shifts in morphological populations between ameboid and
813 hypertrophic states within brain regions and sexes. (* $p < 0.05$, BH-corrected) (B) Example
814 immunofluorescent images of hippocampal microglial cells stained with P2ry12 (yellow) in PBS,
815 2xLPS, and 4xLPS conditions. Nuclei are stained with DAPI (blue). Scale bars are 200um and
816 30um.

817

818 **Figure 6: Trains of rod-like microglia dynamically emerge and resolve with repeated LPS.**
819 (A) Quantification of increasing microglial rod-train events that occurred with repeated LPS across
820 brain regions within sexes. (* $p < 0.05$, BH-corrected) (B) Example immunofluorescent images of
821 microglial rod trains in hippocampus, stained with P2ry12 (yellow), in 2xLPS, and 4xLPS
822 conditions. Nuclei are stained with DAPI (blue). Scale bars are 300um and 50um. Arrows point to
823 examples of rod-train events in the images.

824

825 **Supplementary Figure S1: Differential gene expression analysis using lima-voom.** (A)
826 Reference for color scale for scaled gene expression in DEG heatmap in Figure 3. Counts per
827 million (CPM) for each DEG was scaled within each brain region first, then scaled within genes
828 across brain regions (rows) in the final heatmap (Fig. 3A). Breaks between each color of the
829 heatmap scale were adjusted to fit the distribution of the scaled gene expression values such that
830 10% of the data was contained within each color break. (B) MDS plots colored by brain region
831 and hemisphere along dimensions 1 and 2 and colored by treatment along dimensions 3, 4, and
832 5. (C) Distribution of log CPM for each sample before and after filtering. (D) Mean-variance trend
833 of counts and final statistical model after limma-voom normalization. (E) Boxplots of Log2CPM
834 values for each sample after TMM and limma-voom normalization.

835

836 **Supplementary Figure S2: DEGs within each brain region for each LPS versus PBS**
837 **comparison.** Volcano plots for Log Fold Change versus -log(corrected pvalue) for PBS versus
838 each LPS treatment condition for (A) Frontal Cortex, (B) Hippocampus, and (C) Striatum. Genes
839 with BH-corrected p-value < 0.05 and fold change $> +/- 2$ for each comparison are colored red

840 (increased) or blue (decreased) and labeled with the gene name.

841

842 **Supplementary Figure S3: 2xLPS-sensitive and 4xLPS-sensitive cluster DEGs are enriched**
843 **for microglia-relevant genes.** (A) Significant enrichments against mouse microglial gene lists in
844 MGEnrichment (33). Green circles denote a significant enrichment in the percent of DEGs for a
845 given gene list compared to that of the background of all genes detected in the RNA-Seq
846 experiment (grey circles). Only significant enrichments are shown (*p<0.01, BH-corrected).

847

848 **Supplementary Figure S4: Cxcl16 and S100a9 expression in microglia is dynamic in**
849 **response to repeated LPS.** (A) Log2 fold change relative to PBS controls for each LPS treatment
850 condition for *Cxcl16* in RNAseq (top row) compared to RT-qPCR expression (bottom row) from
851 the same mice. Patterns of expression were conserved across the two techniques for each brain
852 region (Frontal Cortex, FC; Hippocampus, HC; and Striatum, STR). For RNAseq *p<0.05, BH-
853 corrected for multiple comparison across all genes in the RNAseq. For RT-qPCR *p<0.05,
854 corrected for multiple comparisons within the gene of interest. (B) Expression of *Cxcl16* within
855 different isolated brain cell types from Zhang et al., 2014
856 (https://web.stanford.edu/group/barres_lab/brain_maseq.html). (C) Expression of *Cxcl16* by RT-
857 qPCR in isolated cortical microglia and frontal cortex tissue following LPS treatments. *p<0.05,
858 BH-corrected for multiple comparisons for 1-4xLPS treatment versus PBS. (D) Log2 fold change
859 relative to PBS controls for each LPS treatment condition for *S100a9* in RNAseq (top row)
860 compared to RT-qPCR expression (bottom row) from the same mice. Patterns of expression were
861 conserved across the two techniques for each brain region (Frontal Cortex, FC; Hippocampus,
862 HC; and Striatum, STR). For RNAseq *p<0.05, BH-corrected for multiple comparison across all
863 genes in the RNAseq. For RT-qPCR *p<0.05, corrected for multiple comparisons within the gene
864 of interest. (E) Expression of *S100a9* in isolated brain cell types from Zhang et al., 2014. (F)
865 Expression of *S100a9* by RT-qPCR in isolated cortical microglia and frontal cortex tissue following
866 LPS treatments. *p<0.05, BH-corrected for multiple comparisons for 1-4xLPS treatment versus
867 PBS.

868

869 **Supplementary Figure S5: Analysis of morphology measures and clusters using**
870 **MicrogliaMorphology and MicrogliaMorphologyR.** (A) Spearman's correlation matrix of 27
871 features measured by MicrogliaMorphology. (*abs(R)≥0.8, p<0.05) (B) Variance in dataset
872 described by first 10 principal components. (C) Optimal k-means clustering parameters
873 determined using within sum of squares and gap statistic techniques. (D) Spearman's correlation

874 of morphology measures to first 3 PCs after dimensionality reduction. (*abs(R) \geq 0.75, p<0.05) (E)
875 Average values for all 27 morphology features, centered and scaled across clusters. (F)
876 Quantification of microglia density with repeated LPS across brain regions within sexes. No
877 significant differences between groups. (*p<0.05, BH-corrected)

878 **Supplementary Table S1:** Kruskal-Wallis rank sum test results, Dunn-corrected posthocs, and
879 input data for Luminex heatmap Figure 1C.

880

881 **Supplementary Table S2:** ANOVA results and BH-corrected posthocs from sickness behavior
882 and weight change analysis, and 1-way ANOVA results for each behavioral task in behavioral
883 battery. Related to Figures 1B and 2.

884

885 **Supplementary Table S3:** RNAseq data (Figure 3): Sample information, differential expression
886 analysis, genes in DEG clusters, and gene ontology terms for genes in DEG clusters; TF motif
887 analysis data (Figure 4D): locations of Homer known motifs in promoters of 2xLPS-sensitive
888 cluster DEGs and (Figure 4B): LOLA ChIPseq peak enrichment results; MGErichment data
889 (Figure S3): Enrichments against microglial gene lists results.

890

891 **Supplementary Table S4:** ANOVA results and BH-corrected posthocs from MicrogliaMorphology
892 cluster analysis, rod train event occurrence analysis, and microglial density analysis related to
893 Figures 5, 6, and S5F.

894

895 **Supplementary Table S5:** ANOVA results and BH-corrected posthocs from RT-qPCR data
896 analysis, related to Figures 1D, S4C, and S4F.

897

898 **Supplementary File S1:** Homer software output for transcription factor motif analysis of 2xLPS-
899 sensitive cluster gene promoters. Related to Figures 4A and 4C.

900

901 **Supplementary File S2:** Homer software output for transcription factor motif analysis of 4xLPS-
902 sensitive cluster gene promoters.

903

904 **Supplementary File S3:** Homer software output for transcription factor motif analysis of LPS-
905 decreased cluster gene promoters.

906

907 **List of Abbreviations**

908 **LPS:** lipopolysaccharide
909 **PBS:** phosphate buffered saline
910 **TLR4:** toll-like receptor 4
911 **MDS:** multi-dimensional scaling
912 **CPM:** counts per million
913 **DEG:** differentially expressed gene
914 **TMM:** trimmed mean of m-values
915 **GO:** gene ontology
916 **BMDM:** bone marrow-derived macrophage
917 **P2ry12:**
918 **ROI:** region of interest
919 **DAM:** disease associated microglia
920 **IRF:** interferon regulatory factor
921 **bHLH/bZIP:** basic helix-loop-helix/bZip
922 **RHD:** rel homology domain
923 **Zf:** C2H2 zinc finger
924 **Stat:** signal transducer and activator of transcription
925 **BBB:** blood brain barrier
926 **TREM2:** triggering receptor expressed on myeloid cells 2
927 **TBI:** traumatic brain injury
928

929 **Declarations**

930 ***Ethics approval and consent to participate***

931 Not applicable

932

933 ***Consent for publication***

934 Not applicable

935

936 ***Availability of data and materials***

937 The datasets generated and/or analyzed during the current study are freely available to
938 download and all relevant materials including input images, data, and supporting code used in

939 this study are available on the Open Science Framework (OSF) website at [link will be available
940 with final publication]. The ImageJ and R code underlying the analysis demonstrated in this
941 paper are all available through the Ciernia Lab Github at
942 https://github.com/ciernialab/Kim2024_1-4xLPS. The RNA sequencing data generated in this
943 study will be made available through the NCBI GEO database with the final publication.

944

945 ***Competing interests***

946 The authors declare that they have no competing interests.

947

948 ***Funding***

949 This work was supported by the Canadian Open Neuroscience Platform Student Scholar Award
950 (10901 to JK); University of British Columbia Four Year Doctoral Fellowship (6569 to JK);
951 Canadian Institutes of Health Research CGS-M to OS; Canadian Institutes of Health Research
952 (CRC-RS 950-232402, AWD-025853, AWD-025854 to AC); Natural Sciences and Engineering
953 Research Council of Canada (RGPIN-2019-04450, DGECR-2019-00069 to AC); Scottish Rite
954 Charitable Foundation (21103 to AC); Brain Canada Foundation (AWD-023132 to AC); Michael
955 Smith Health Research Foundation (AWD-005509 to AC); National Institute of Environmental
956 Health Sciences (R21ES035492, R21ES035969 to PA); National Institutes of Child Health
957 (R01HD090214 to PA); National Institute of Mental Health (R21MH116383, R01MH118209 to
958 PA), and the Brain Foundation to PA. The funders had no role in study design, data collection
959 and analysis, decision to publish, or preparation of the manuscript.

960

961 ***Authors' contributions***

962 P.A. and A.V.C. designed the initial experiments and A.V.C. and J.K. conceptualized the project.
963 J.K. performed the majority of the experiments, analysis, and manuscript writing. A.V.C., J.K., and
964 J.J. performed bioinformatic analysis. J.T. and A.M.M. assisted with injections and tissue
965 collection for the RNAseq experiment and performed the Luminex assay. O.S. and K.L. performed
966 the behavioral battery and analysis of the behavioral battery. B.W. assisted with RT-qPCR
967 experiments. All authors read and edited the manuscript.

968

969 ***Acknowledgements***

970 We thank the Ciernia Lab, Ashwood Lab, and Pavlidis Lab members for their thoughtful feedback

971 and suggestions during lab meetings throughout the progression of this project. We are grateful
972 for the resources provided by the Neuroimaging & Neurocomputation Centre and the Dynamic
973 Brain Circuits in Health & Disease Research Cluster at the University of British Columbia, as well
974 as the University of California, Davis DNA Technologies & Expression Analysis Core.

975

976 **References**

- 977 1. Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological
978 Disease: Beyond the Neuron. *Frontiers in Cellular Neuroscience*. 2018 Mar 21;12:72.
- 979 2. Jyonouchi H. Innate Immunity and Neuroinflammation in Neuropsychiatric Conditions
980 Including Autism Spectrum Disorders: Role of Innate Immune Memory. In: *Cytokines*
981 [Working Title]. IntechOpen; 2019.
- 982 3. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient
983 neuron-microglia signaling results in impaired functional brain connectivity and social
984 behavior. *Nature Neuroscience*. 2014 Mar 2;17(3):400–6.
- 985 4. Neher JJ, Cunningham C. Priming Microglia for Innate Immune Memory in the Brain. *Trends*
986 in *Immunology*. 2019;40(4):358–74.
- 987 5. Hammond TR, Robinton D, Stevens B. Microglia and the Brain: Complementary Partners in
988 Development and Disease. *Annual review of cell and developmental biology*. 2018 Oct
989 6;34(1):523–44.
- 990 6. Bialas AR, Stevens B. TGF- β signaling regulates neuronal C1q expression and
991 developmental synaptic refinement. *Nature neuroscience*. 2013 Dec;16(12):1773–82.
- 992 7. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the
993 developing rat brain. *Journal of neurochemistry*. 2012 Mar;120(6):948–63.
- 994 8. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al.
995 Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.
996 *Neuron*. 2012 May 24;74(4):691–705.
- 997 9. Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via
998 complement-dependent synaptic elimination. *Science*. 2020;367(6478):688–94.
- 999 10. Petrasch-Parwez E, Schöbel A, Benali A, Moinfar Z, Förster E, Brüne M, et al. Lateralization
1000 of increased density of Iba1-immunopositive microglial cells in the anterior midcingulate
1001 cortex of schizophrenia and bipolar disorder. *Eur Arch Psychiatry Clin Neurosci*. 2020 Oct
1002 1;270(7):819–28.
- 1003 11. Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP. Markers of microglia
1004 in post-mortem brain samples from patients with Alzheimer's disease: a systematic review.
1005 *Mol Psychiatry*. 2018 Feb;23(2):177–98.
- 1006 12. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al.

1007 Microglial activation in young adults with autism spectrum disorder. *JAMA Psychiatry*. 2013
1008 Jan;70(1):49–58.

1009 13. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation
1010 and neuroinflammation in the brain of patients with autism. *Ann Neurol*. 2005 Jan;57(1):67–
1011 81.

1012 14. Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on
1013 cytokines. *Nat Rev Immunol*. 2021 Aug;21(8):526–41.

1014 15. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al.
1015 Defining trained immunity and its role in health and disease. *Nat Rev Immunol*. 2020
1016 Jun;20(6):375–88.

1017 16. Sherwood ER, Burelbach KR, McBride MA, Stothers CL, Owen AM, Hernandez A, et al.
1018 Innate Immune Memory and the Host Response to Infection. *The Journal of Immunology*.
1019 2022 Feb 15;208(4):785–92.

1020 17. Graham DB, Xavier RJ. Conditioning of the immune system by the microbiome. *Trends in
1021 Immunology*. 2023 Jul 1;44(7):499–511.

1022 18. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM V. Local self-renewal can sustain CNS
1023 microglia maintenance and function throughout adult life. *Nature Neuroscience*. 2007 Dec
1024 18;10(12):1538–43.

1025 19. Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic Cell
1026 Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central
1027 Nervous System. *Immunity*. 2015 Jul 21;43(1):92–106.

1028 20. Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune
1029 memory in the brain shapes neurological disease hallmarks. *Nature*. 2018 Apr
1030 11;556(7701):332–8.

1031 21. Turner RC, Naser ZJ, Lucke-Wold BP, Logsdon AF, Vangilder RL, Matsumoto RR, et al.
1032 Single low-dose lipopolysaccharide preconditioning: neuroprotective against axonal injury
1033 and modulates glial cells. *Neuroimmunol Neuroinflamm*. 2017 Jan;4:6–15.

1034 22. Savage JC, Carrier M, Tremblay MÈ. Morphology of Microglia Across Contexts of Health
1035 and Disease. *Methods Mol Biol*. 2019;2034:13–26.

1036 23. Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. *Mol
1037 Psychiatry*. 2020 Feb;25(2):351–67.

1038 24. Kay, M., Elkin, L. A., Higgins, J. J., and Wobbrock, J. O. (2021). ARTTool: Aligned Rank
1039 Transform for Nonparametric Factorial ANOVAs. R package version 0.11.1,
1040 <https://github.com/mjskay/ARTTool>. DOI: 10.5281/zenodo.594511.

1041 25. Vogel-Ciernia A, Wood MA. Examining object location and object recognition memory in
1042 mice. *Curr Protoc Neurosci*. 2014 Oct 8;69:8.31.1-17.

1043 26. Tamayo JM, Rose D, Church JS, Schwartzer JJ, Ashwood P. Maternal Allergic Asthma

1044 Induces Prenatal Neuroinflammation. *Brain Sci.* 2022 Aug 5;12(8):1041.

1045 27. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for
1046 multiple tools and samples in a single report. *Bioinformatics*. 2016 Oct 1;32(19):3047–8.

1047 28. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast
1048 universal RNA-seq aligner. *Bioinformatics*. 2013 Jan 1;29(1):15–21.

1049 29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1050 Alignment/Map format and SAMtools. *Bioinformatics*. 2009 Aug;25(16):2078–9.

1051 30. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
1052 assigning sequence reads to genomic features. *Bioinformatics*. 2014 Apr 1;30(7):923–30.

1053 31. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
1054 expression analysis of digital gene expression data. *Bioinformatics*. 2010 Jan 1;26(1):139–
1055 40.

1056 32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential
1057 expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.*
1058 2015;43(7):e47.

1059 33. Jao J, Ciernia AV. MGEnrichment: a web application for microglia gene list enrichment
1060 analysis 2 3. *PLoS computational biology*. 2021;17(11):e1009160.

1061 34. Duttke SH, Chang MW, Heinz S, Benner C. Identification and dynamic quantification of
1062 regulatory elements using total RNA. *Genome Res* [Internet]. 2019 Oct 24 [cited 2024 Mar
1063 12]; Available from: <https://genome.cshlp.org/content/early/2019/10/24/gr.253492.119>

1064 35. Saeki K, Pan R, Lee E, Kurotaki D, Ozato K. IRF8 configures enhancer landscape in
1065 postnatal microglia and directs microglia specific transcriptional programs [Internet]. *bioRxiv*;
1066 2023 [cited 2024 Mar 12]. p. 2023.06.25.546453. Available from:
1067 <https://www.biorxiv.org/content/10.1101/2023.06.25.546453v2>

1068 36. Langlais D, Barreiro LB, Gros P. The macrophage IRF8/IRF1 regulome is required for
1069 protection against infections and is associated with chronic inflammation. *J Exp Med.* 2016
1070 Apr 4;213(4):585–603.

1071 37. Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, et al. Bcl-6 and NF-
1072 kappaB cistromes mediate opposing regulation of the innate immune response. *Genes Dev.*
1073 2010 Dec 15;24(24):2760–5.

1074 38. Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, et al. Analysis of
1075 Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that
1076 Control Transcription Factor Binding and Function. *Cell.* 2018 Jun 14;173(7):1796–
1077 1809.e17.

1078 39. Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, et al. An
1079 environment-dependent transcriptional network specifies human microglia identity. *Science.*
1080 2017 Jun 23;356(6344):eaal3222.

1081 40. Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, et al. BEDOPS:
1082 high-performance genomic feature operations. *Bioinformatics*. 2012 Jul 15;28(14):1919–20.

1083 41. Kim J, Pavlidis P, Ciernia AV. Development of a high-throughput pipeline to characterize
1084 microglia morphological states at a single-cell resolution [Internet]. bioRxiv; 2023 [cited 2024
1085 Mar 11]. p. 2023.11.03.565581. Available from:
1086 <https://www.biorxiv.org/content/10.1101/2023.11.03.565581v1>

1087 42. Pinskiy V, Jones J, Tolpygo AS, Franciotti N, Weber K, Mitra PP. High-Throughput Method
1088 of Whole-Brain Sectioning, Using the Tape-Transfer Technique. *PLOS ONE*. 2015 Jul
1089 16;10(7):e0102363.

1090 43. Terstege DJ, Oboh DO, Epp JR. FASTMAP: Open-Source Flexible Atlas Segmentation Tool
1091 for Multi-Area Processing of Biological Images. *eNeuro*. 2022 Mar 16;9(2):ENEURO.0325-
1092 21.2022.

1093 44. Brooks ME, Kristensen K, Bentham KJ van, Magnusson A, Berg CW, Nielsen A, et al.
1094 glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized
1095 Linear Mixed Modeling. *The R Journal*. 2017;9(2):378–400.

1096 45. Zhang X, Kracht L, Lerario AM, Dubbelaar ML, Brouwer N, Wesseling EM, et al. Epigenetic
1097 regulation of innate immune memory in microglia. *Journal of Neuroinflammation*. 2022 May
1098 14;19(1):111.

1099 46. Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses
1100 reveal differences between low-grade inflammation and severe exhaustion in LPS-
1101 challenged murine monocytes. *Commun Biol*. 2022 Jan 28;5(1):1–17.

1102 47. Neher JJ, Cunningham C. Priming Microglia for Innate Immune Memory in the Brain. *Trends*
1103 in Immunology. 2019 Apr 1;40(4):358–74.

1104 48. Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J. Rod microglia: elongation, alignment,
1105 and coupling to form trains across the somatosensory cortex after experimental diffuse brain
1106 injury. *Journal of Neuroinflammation*. 2012 Oct 30;9(1):247.

1107 49. Taylor SE, Morganti-Kossmann C, Lifshitz J, Ziebell JM. Rod Microglia: A Morphological
1108 Definition. *PLoS One*. 2014 May 15;9(5):e97096.

1109 50. Giordano KR, Denman CR, Dubisch PS, Akhter M, Lifshitz J. An update on the rod microglia
1110 variant in experimental and clinical brain injury and disease. *Brain Communications*. 2021
1111 Jan 16;3(1):fcaa227.

1112 51. Kusiak A, Brady G. Bifurcation of signalling in human innate immune pathways to NF- κ B
1113 and IRF family activation. *Biochemical Pharmacology*. 2022 Nov 1;205:115246.

1114 52. Wang AG, Son M, Kenna E, Thom N, Tay S. NF- κ B memory coordinates transcriptional
1115 responses to dynamic inflammatory stimuli. *Cell Rep*. 2022 Aug 16;40(7):111159.

1116 53. Iwanaszko M, Kimmel M. NF- κ B and IRF pathways: cross-regulation on target genes
1117 promoter level. *BMC Genomics*. 2015 Apr 17;16(1):307.

1118 54. Platanitis E, Decker T. Regulatory Networks Involving STATs, IRFs, and NF κ B in
1119 Inflammation. *Front Immunol.* 2018 Nov 13;9:2542.

1120 55. Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control
1121 of microglia activation during neuroinflammation. *Biochimica et Biophysica Acta (BBA) -*
1122 *Molecular Basis of Disease.* 2016 Mar 1;1862(3):339–51.

1123 56. Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in
1124 maintenance of brain homeostasis and neurodegeneration. *Frontiers in Molecular*
1125 *Neuroscience [Internet].* 2023 [cited 2024 Feb 4];15. Available from:
1126 <https://www.frontiersin.org/articles/10.3389/fnmol.2022.1072046>

1127 57. Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune
1128 memory in the brain shapes neurological disease hallmarks. *Nature.* 2018
1129 Apr;556(7701):332–8.

1130 58. Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they
1131 develop and choreograph tissue biology. *Nat Rev Immunol.* 2023 Sep;23(9):563–79.

1132 59. Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Gephart MH, et al. A
1133 combination of ontogeny and CNS environment establishes microglial identity. *Neuron.*
1134 2018 Jun 27;98(6):1170-1183.e8.

1135 60. Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R, Megchelenbrink W, et al. β -Glucan
1136 Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. *Cell.* 2016 Nov
1137 17;167(5):1354-1368.e14.

1138 61. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-
1139 induced chromatin modifications. *Nature.* 2007;447(7147):972–8.

1140 62. Chen Z, Jalabi W, Shpargel KB, Farabaugh KT, Dutta R, Yin X, et al. Lipopolysaccharide-
1141 induced microglial activation and neuroprotection against experimental brain injury is
1142 independent of hematogenous TLR4. *Journal of Neuroscience.* 2012 Aug 22;32(34):11706–
1143 15.

1144 63. Balandran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for
1145 therapeutic benefit in rheumatoid arthritis. *Front Immunol.* 2023 Jun 29;14:1196931.

1146 64. Masuda T, Tsuda M, Inoue K. Transcriptional regulation in microglia and neuropathic pain.
1147 *Pain Management.* 2016 Apr;6(2):91–4.

1148 65. Gao T, Jernigan J, Raza SA, Dammer EB, Xiao H, Seyfried NT, et al. Transcriptional
1149 regulation of homeostatic and disease-associated-microglial genes by IRF1, LXR β , and
1150 CEBP α . *Glia.* 2019 Oct;67(10):1958–75.

1151 66. Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, et al. IRF8 is a
1152 critical transcription factor for transforming microglia into a reactive phenotype. *Cell Rep.*
1153 2012 Apr 19;1(4):334–40.

1154 67. Masuda T, Nishimoto N, Tomiyama D, Matsuda T, Tozaki-Saitoh H, Tamura T, et al. IRF8 is
1155 a transcriptional determinant for microglial motility. *Purinergic Signalling.* 2014 Sep

1156 1;10(3):515–21.

1157 68. Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, et al. Interferon regulatory
1158 factor 8/interferon consensus sequence binding protein is a critical transcription factor for
1159 the physiological phenotype of microglia. *J Neuroinflammation*. 2012 Sep 28;9:227.

1160 69. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states.
1161 *Br J Pharmacol*. 2016 Feb;173(4):649–65.

1162 70. Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, et al.
1163 Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase,
1164 oxidative stress, neuroinflammation, and elements of the neurovascular unit. *J
1165 Neuroinflammation*. 2015 Nov 25;12(1):223.

1166 71. Vargas-Caraveo A, Sayd A, Maus SR, Caso JR, Madrigal JLM, García-Bueno B, et al.
1167 Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in
1168 physiological conditions. *Sci Rep*. 2017 Oct 13;7(1):13113.

1169 72. Vichaya EG, Malik S, Sominsky L, Ford BG, Spencer SJ, Dantzer R. Microglia depletion
1170 fails to abrogate inflammation-induced sickness in mice and rats. *J Neuroinflammation*.
1171 2020 May 31;17:172.

1172 73. Jung H, Lee D, You H, Lee M, Kim H, Cheong E, et al. LPS induces microglial activation
1173 and GABAergic synaptic deficits in the hippocampus accompanied by prolonged cognitive
1174 impairment. *Sci Rep*. 2023 Apr 21;13(1):6547.

1175 74. Marsh B, Stevens SL, Packard AEB, Gopalan B, Hunter B, Leung PY, et al. Systemic
1176 Lipopolysaccharide Protects the Brain from Ischemic Injury by Reprogramming the
1177 Response of the Brain to Stroke: A Critical Role for IRF3. *J Neurosci*. 2009 Aug
1178 5;29(31):9839–49.

1179 75. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP.
1180 Endotoxin preconditioning prevents cellular inflammatory response during ischemic
1181 neuroprotection in mice. *Stroke*. 2004 Nov;35(11):2576–81.

1182 76. Hickey EJ, You X, Kaimaktchiev V, Stenzel-Poore M, Ungerleider RM. Lipopolysaccharide
1183 preconditioning induces robust protection against brain injury resulting from deep
1184 hypothermic circulatory arrest. *J Thorac Cardiovasc Surg*. 2007 Jun;133(6):1588–96.

1185 77. Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. Microglia states
1186 and nomenclature: A field at its crossroads. *Neuron*. 2022 Nov 2;110(21):3458–83.

1187 78. Meng J, Han L, Xu H, Zhang L, Liu Z, Zhou Y, et al. TREM2 regulates microglial
1188 phagocytosis of synapses in innate immune tolerance. *International Immunopharmacology*.
1189 2024 Jan 25;127:111445.

1190 79. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD. Generation of a
1191 microglial developmental index in mice and in humans reveals a sex difference in
1192 maturation and immune reactivity. *Glia*. 2017 Sep;65(9):1504–20.

1193 80. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic

1194 pruning by microglia is necessary for normal brain development. *Science*. 2011 Sep
1195 9;333(6048):1456–8.

1196 81. Cengiz P, Zafer D, Chandrashekhar JH, Chanana V, Bogost J, Waldman A, et al.
1197 Developmental differences in microglia morphology and gene expression during normal
1198 brain development and in response to hypoxia-ischemia. *Neurochem Int*. 2019 Jul;127:137–
1199 47.

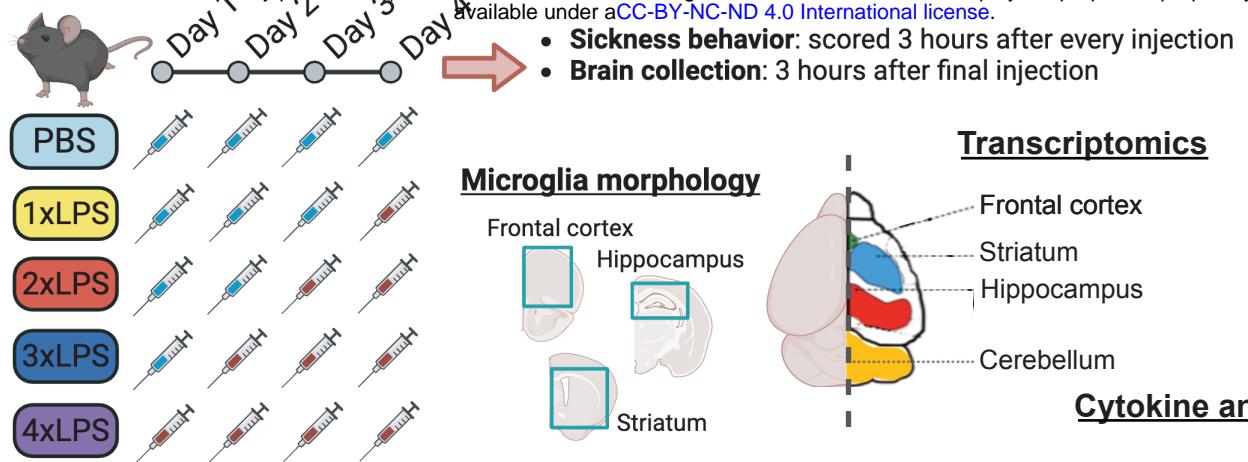
1200 82. Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, et al. Transcriptome analysis of
1201 amoeboid and ramified microglia isolated from the corpus callosum of rat brain. *BMC*
1202 *Neuroscience*. 2012 Jun 14;13(1):64.

1203 83. Ayoub AE, Salm AK. Increased Morphological Diversity of Microglia in the Activated
1204 Hypothalamic Supraoptic Nucleus. *J Neurosci*. 2003 Aug 27;23(21):7759–66.

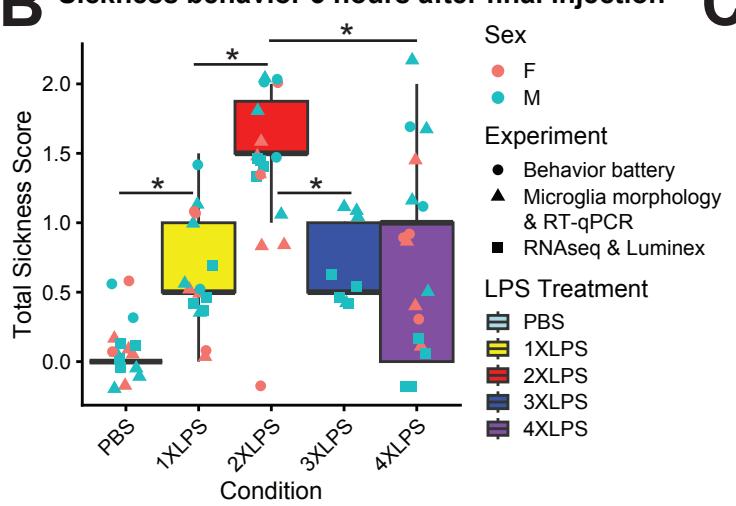
1205 84. Bouvier DS, Jones EV, Quesseveur G, Davoli MA, A Ferreira T, Quirion R, et al. High
1206 Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. *Sci Rep*. 2016 Apr
1207 19;6:24544.

1208 85. Bachstetter AD, Van Eldik LJ, Schmitt FA, Neltner JH, Ighodaro ET, Webster SJ, et al.
1209 Disease-related microglia heterogeneity in the hippocampus of Alzheimer's disease,
1210 dementia with Lewy bodies, and hippocampal sclerosis of aging. *Acta Neuropathol*
1211 *Commun*. 2015 May 23;3:32.

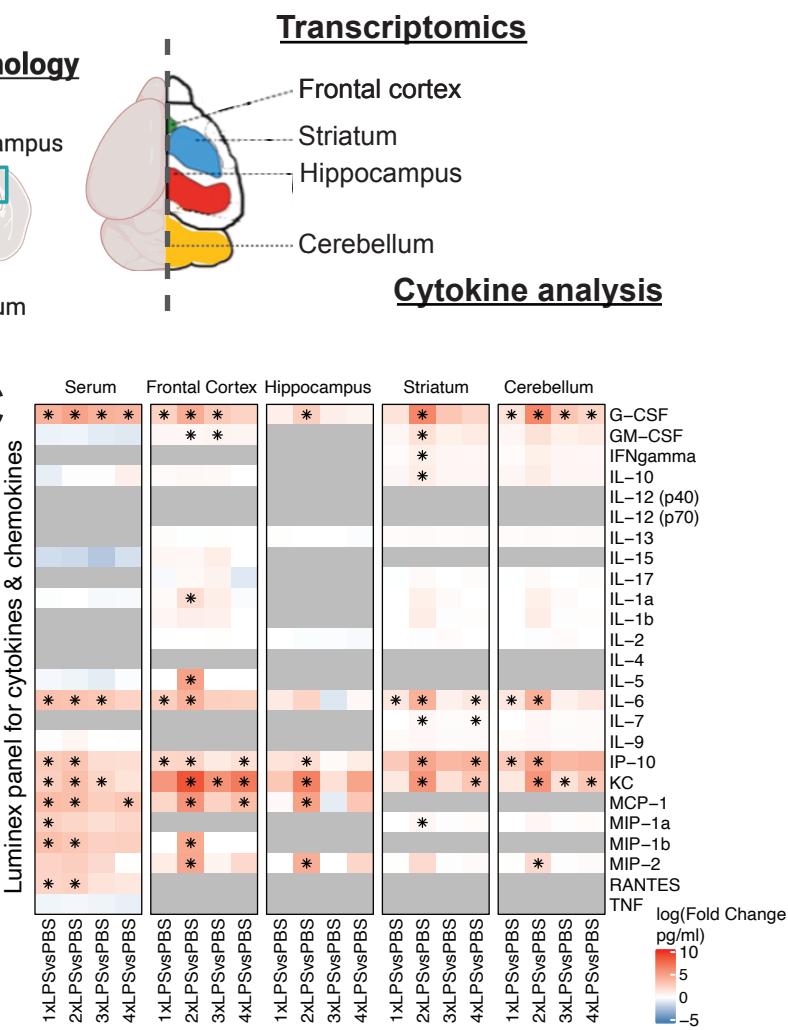
1212 86. Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The Lifespan and
1213 Turnover of Microglia in the Human Brain. *Cell reports*. 2017 Jul 25;20(4):779–84.


1214 87. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM V. Local self-renewal can sustain CNS
1215 microglia maintenance and function throughout adult life. *Nature Neuroscience*. 2007 Dec
1216 18;10(12):1538–43.

1217 88. Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic Cell
1218 Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central
1219 Nervous System. *Immunity*. 2015 Jul 21;43(1):92–106.


1220 89. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-
1221 resident macrophage enhancer landscapes are shaped by the local microenvironment. *Cell*.
1222 2014/12/07 ed. 2014;159(6):1312–26.

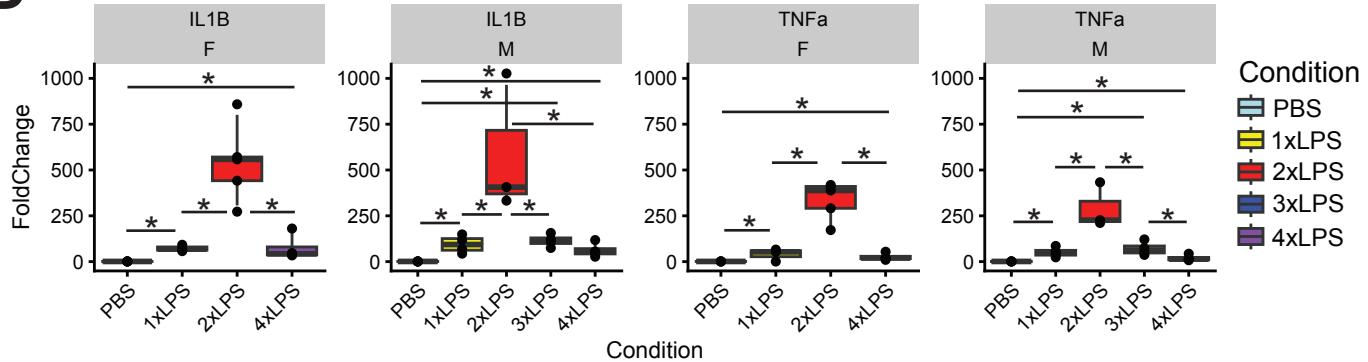
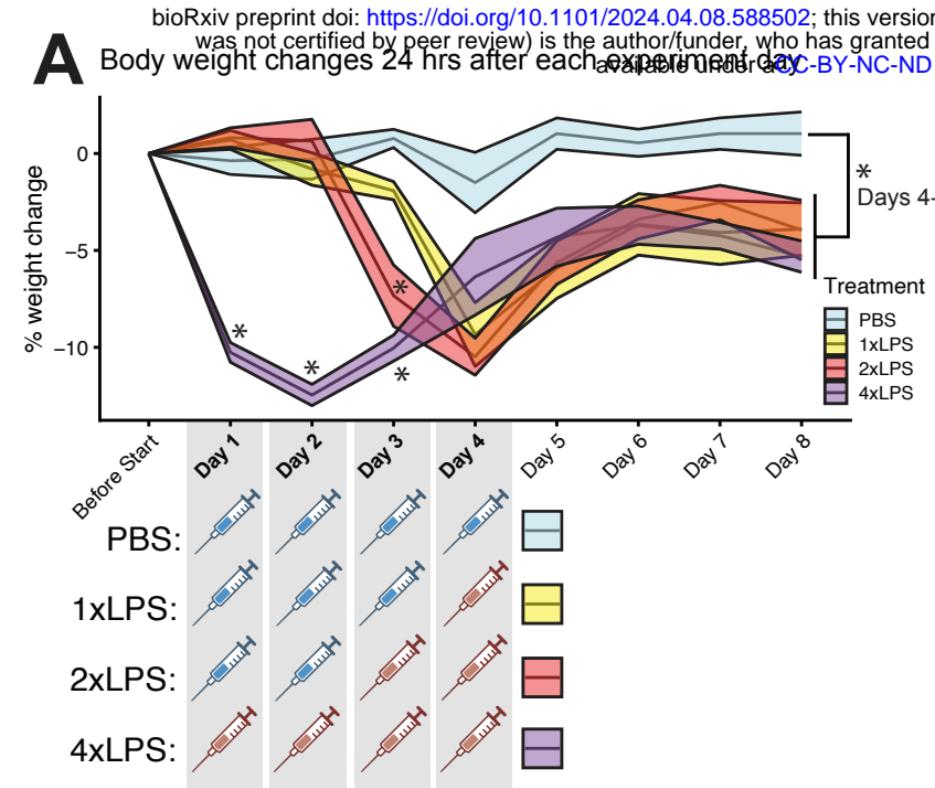
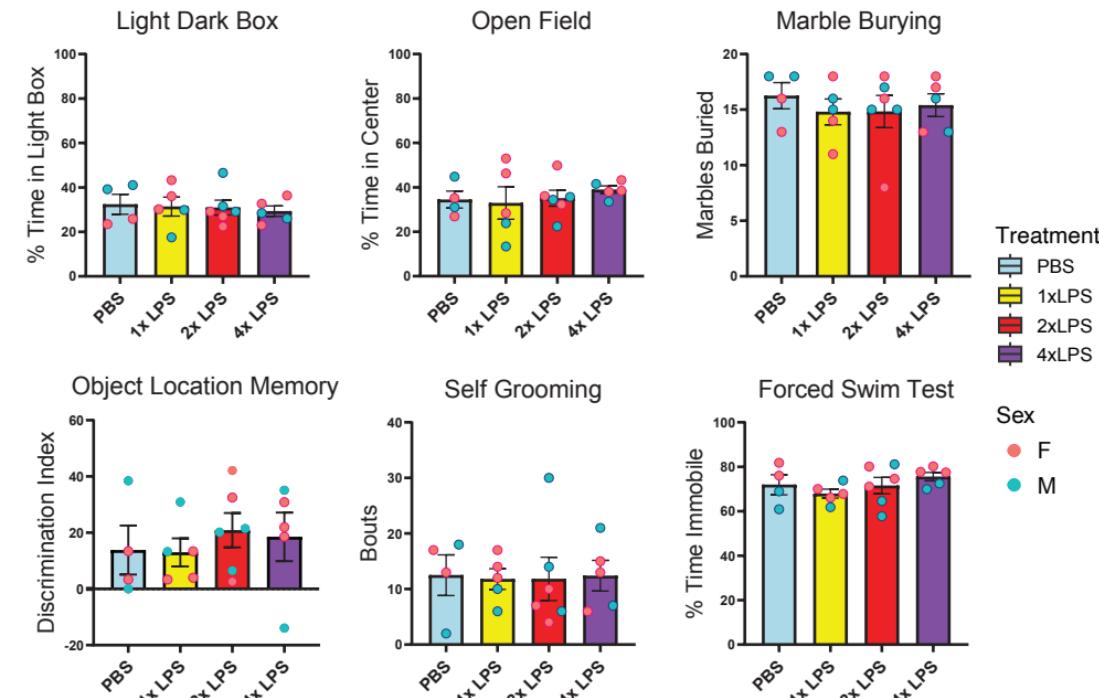
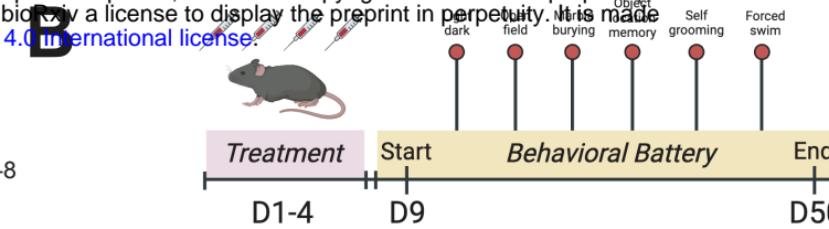
1223 90. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al.
1224 Environment drives selection and function of enhancers controlling tissue-specific
1225 macrophage identities. *Cell*. 2014/12/07 ed. 2014;159(6):1327–40.

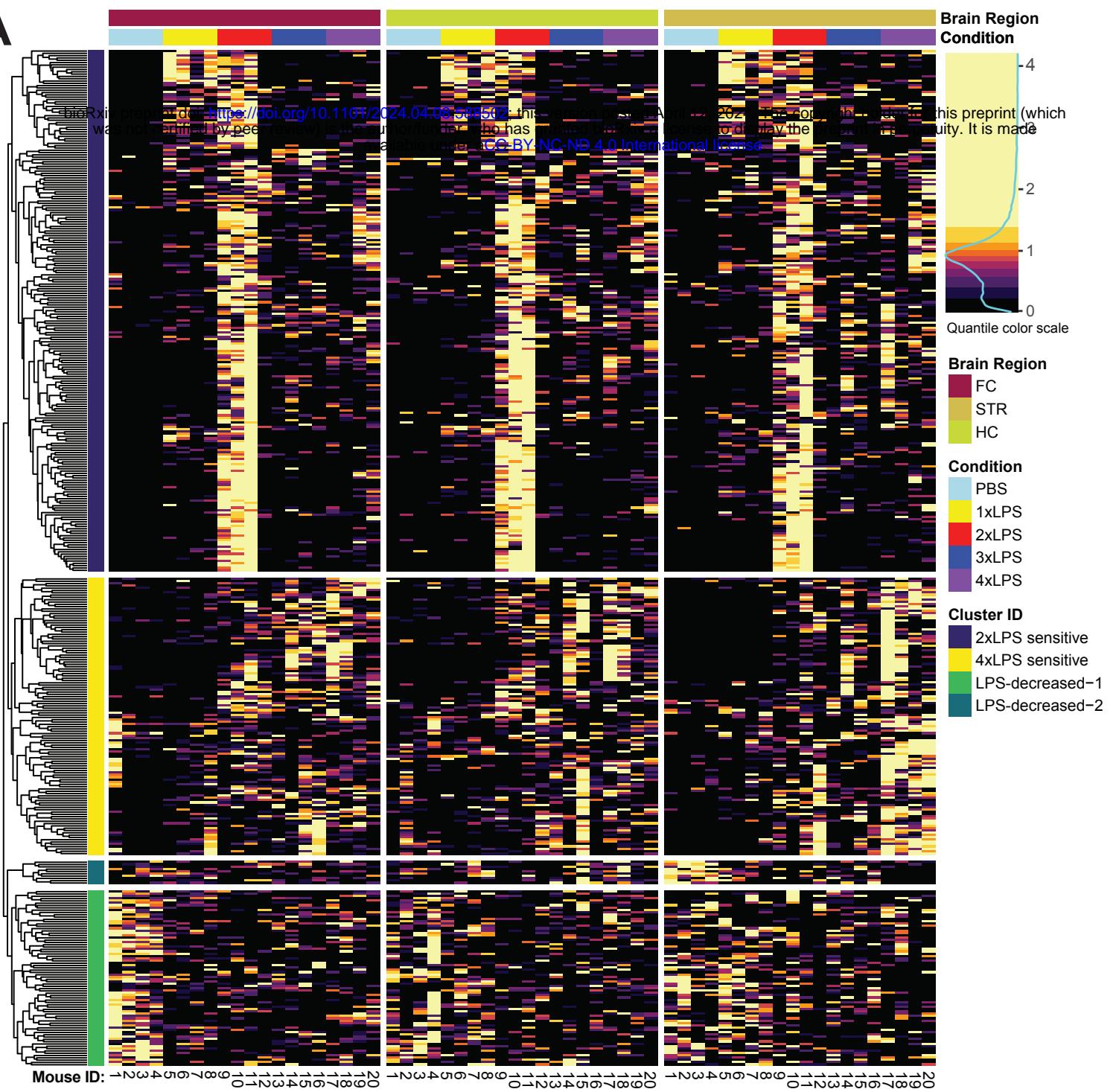
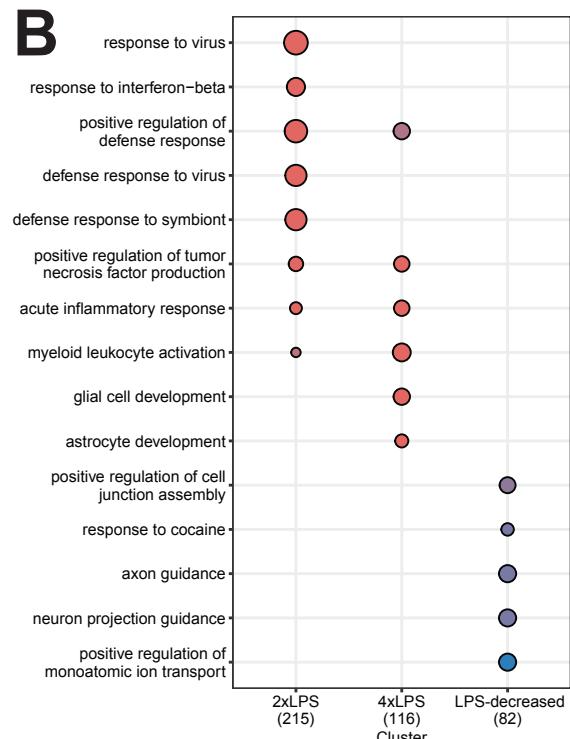
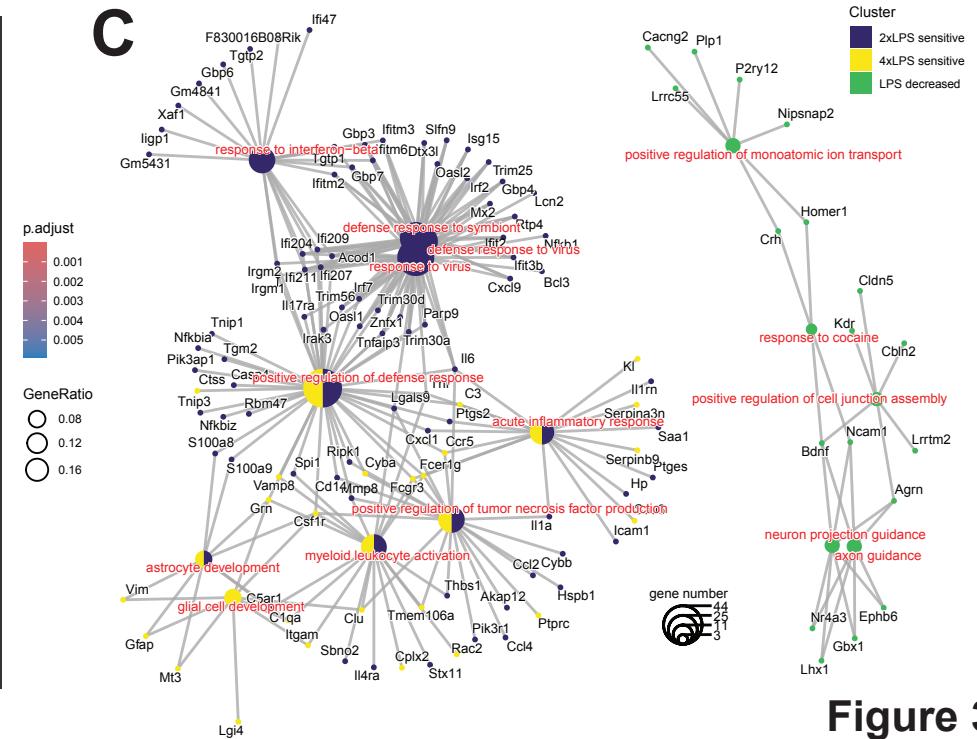

A

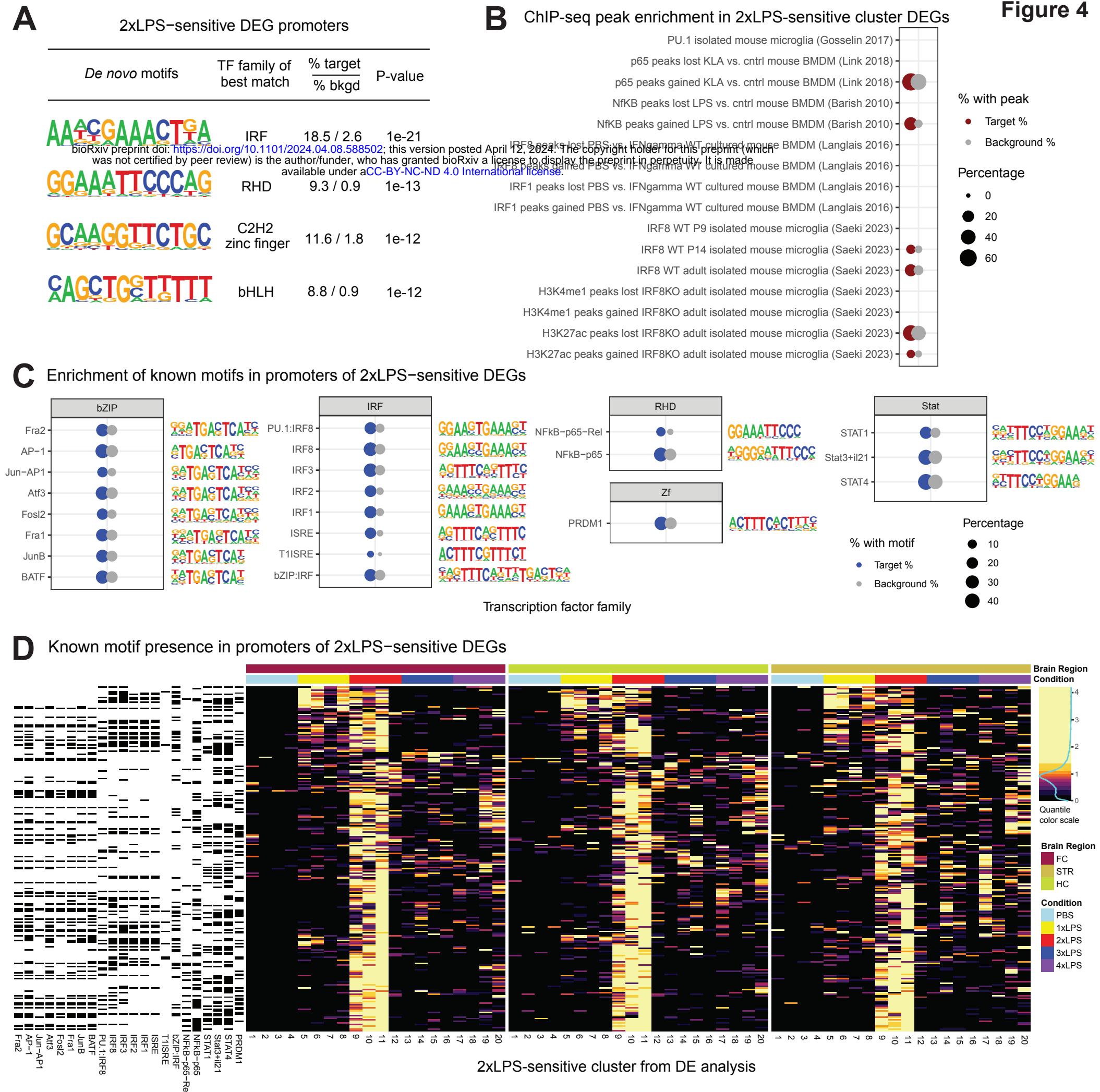
B Sickness behavior 3 hours after final injection

C

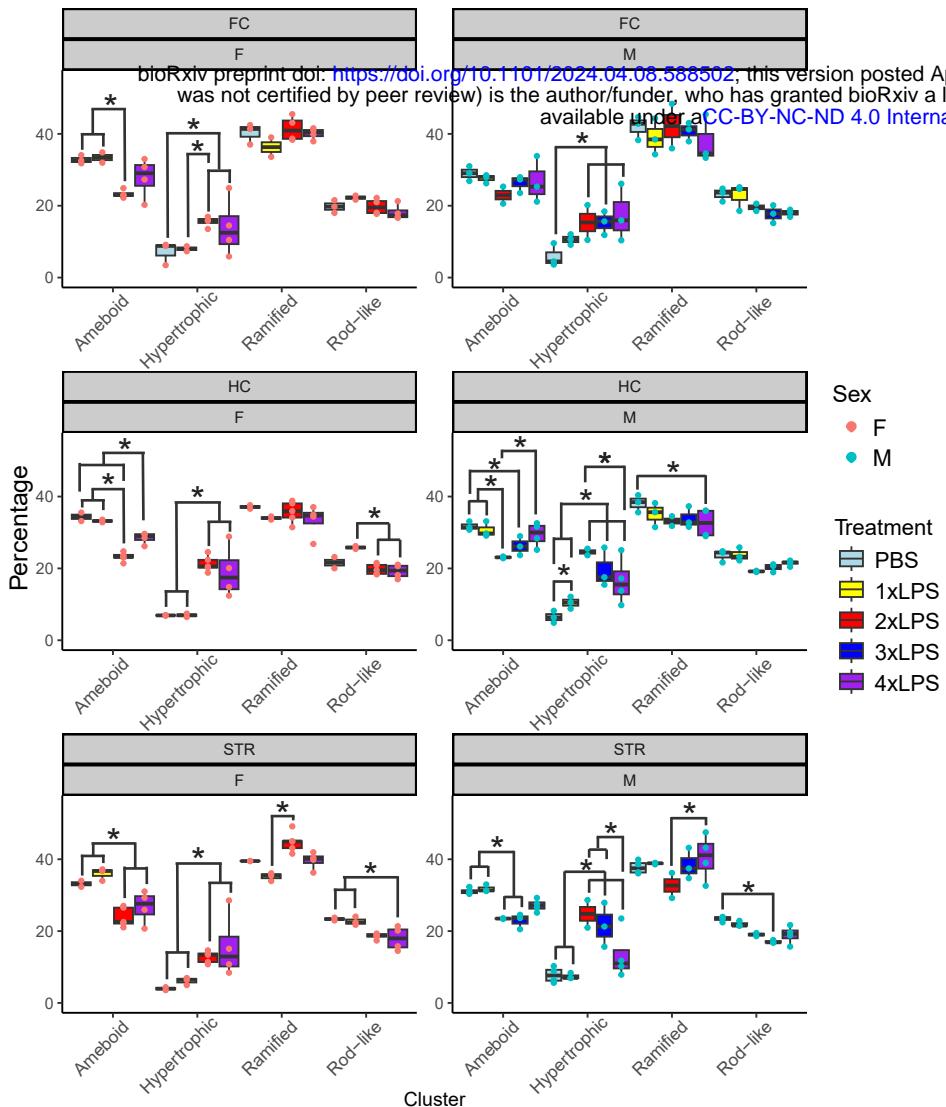
D RT-qPCR of pro-inflammatory cytokines




Figure 2


A

B



A**B****C****Figure 3**

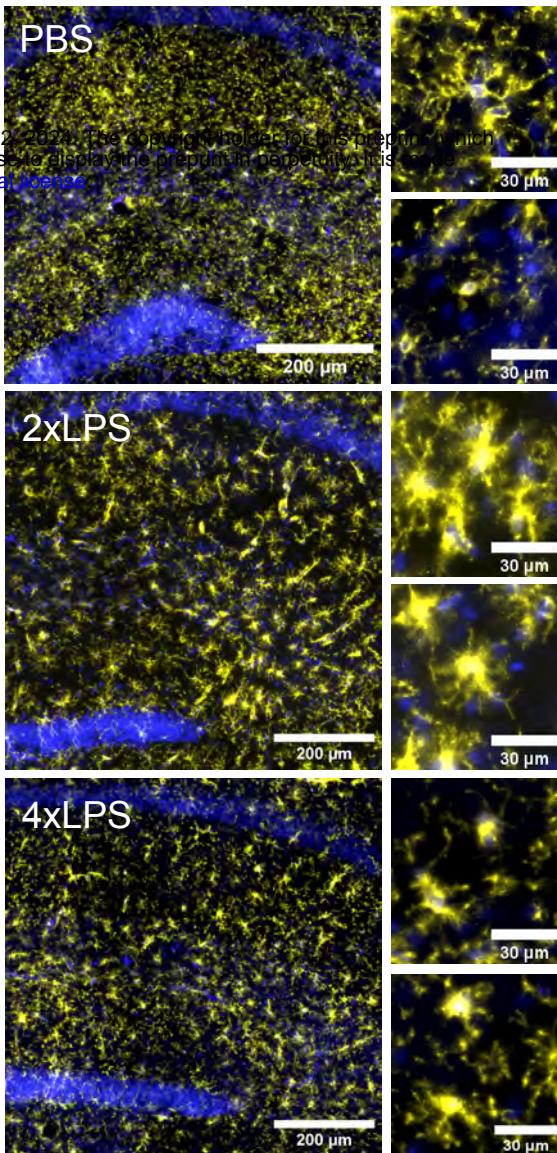
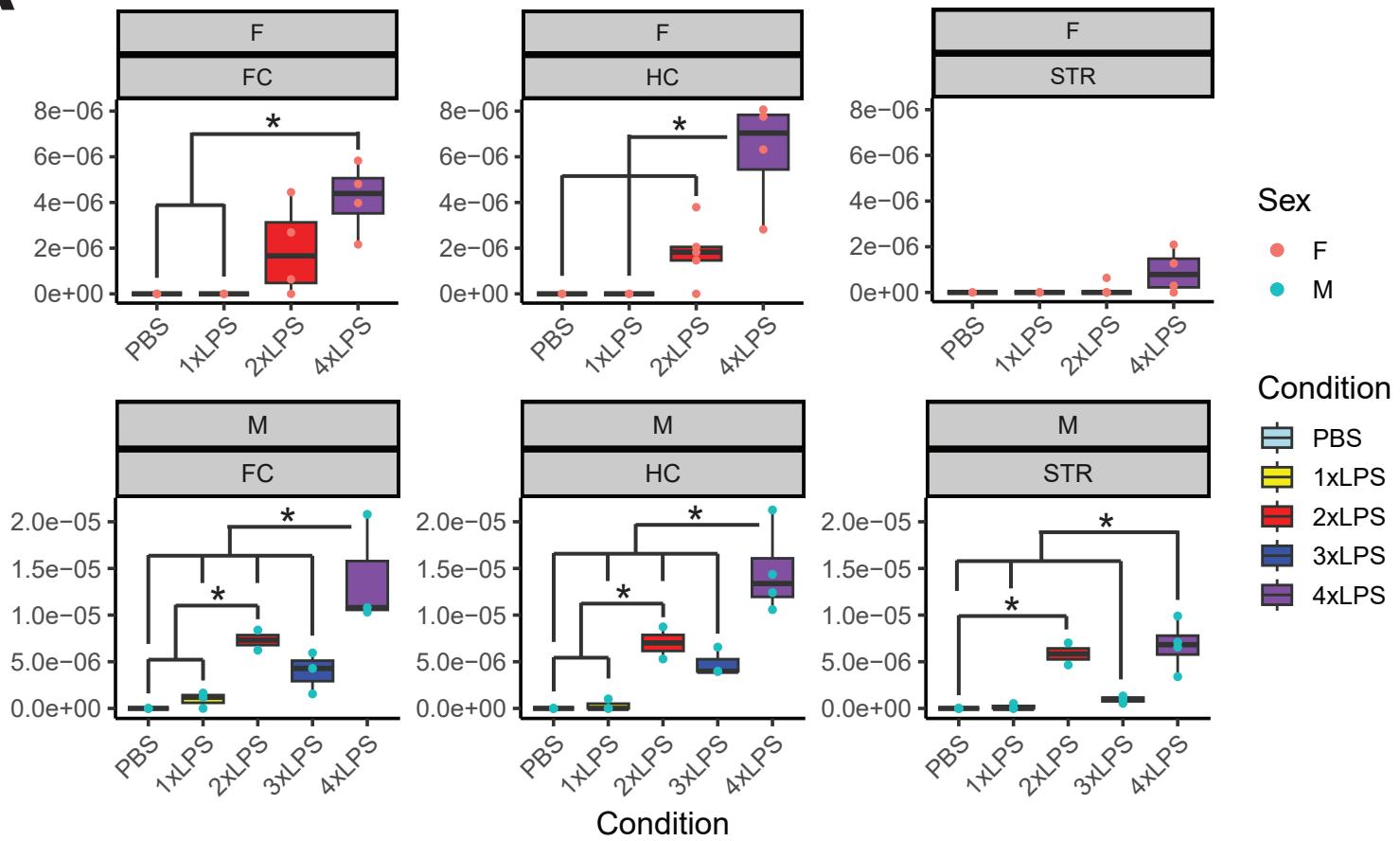
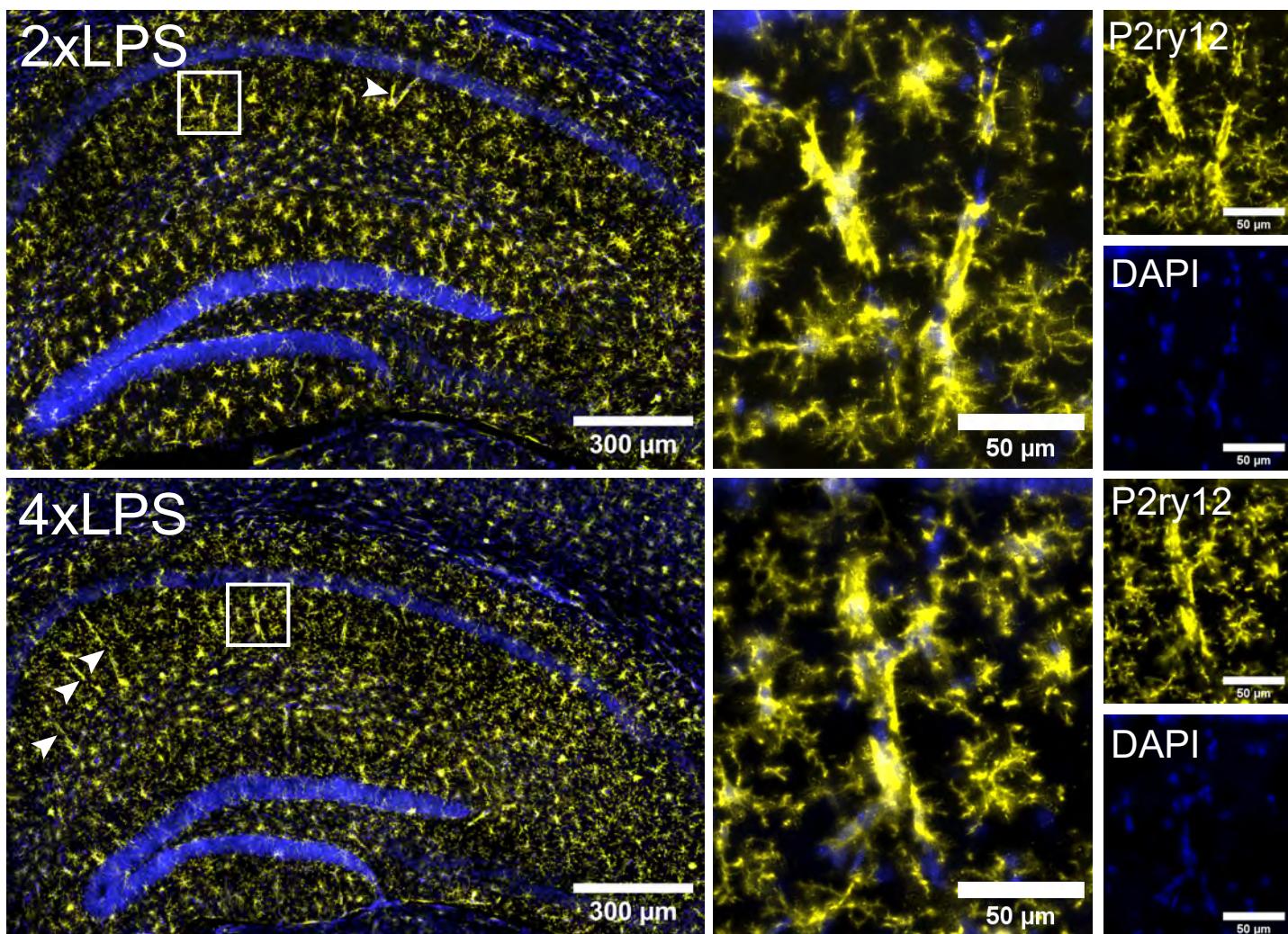
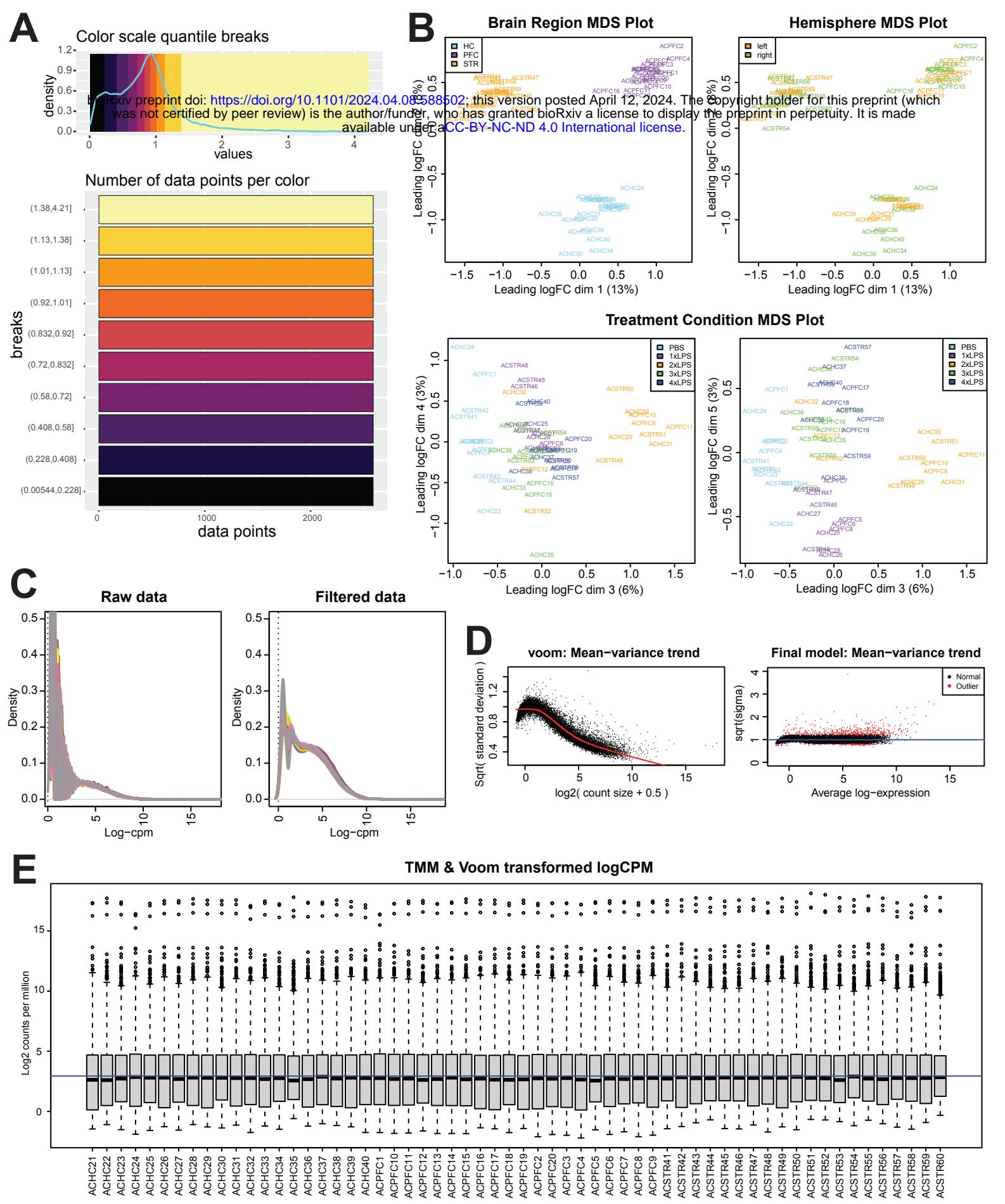

Figure 4

Figure 5

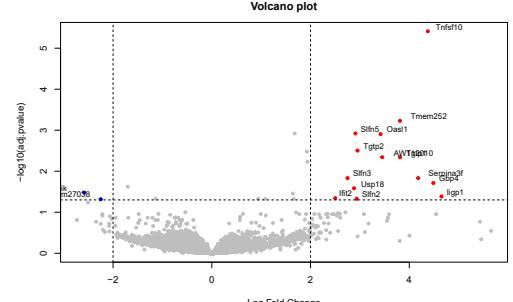
A Morphology K-means cluster analysis


PBS


A


Rod train events

Density (# of events/ μm^2)


B

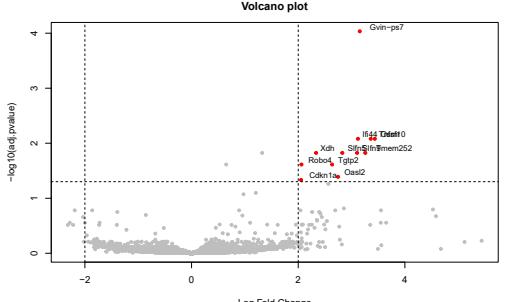
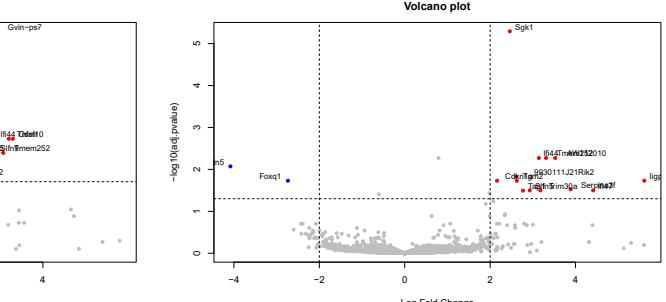
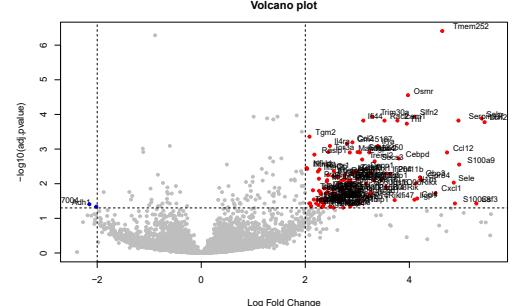
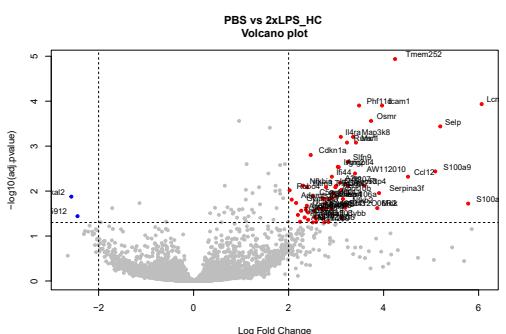
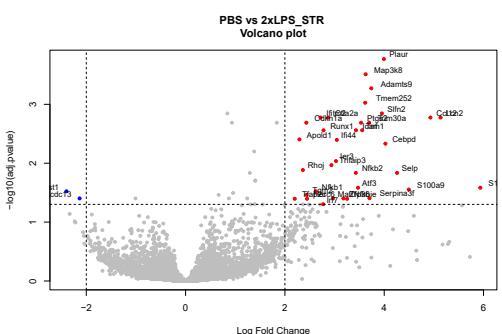


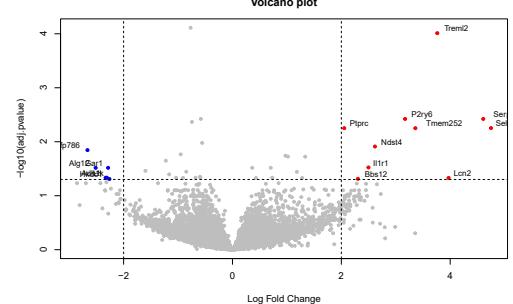
Figure S1

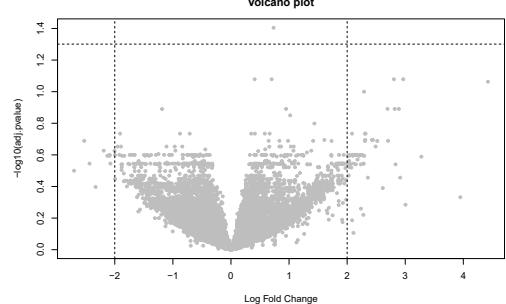

A Frontal Cortex DEGs

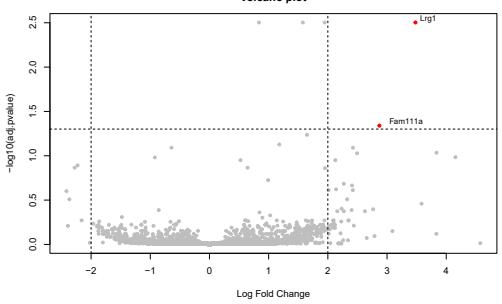

2024.04.08.588502; this version posted by author/funder, who has granted EGAP a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

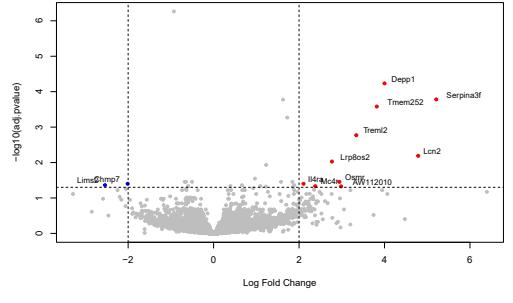

April 12, 2024. The copyright holder
by a license to display the preprint in per-
international license. Stratum

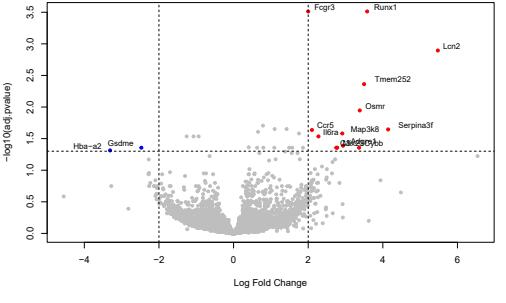

PBS vs 2xLPS_FC

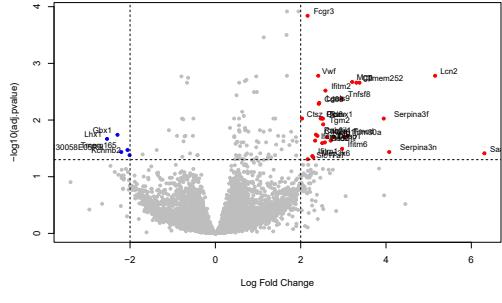

PBS vs 2xLPS_HC


PBS vs 2xLPS_STR

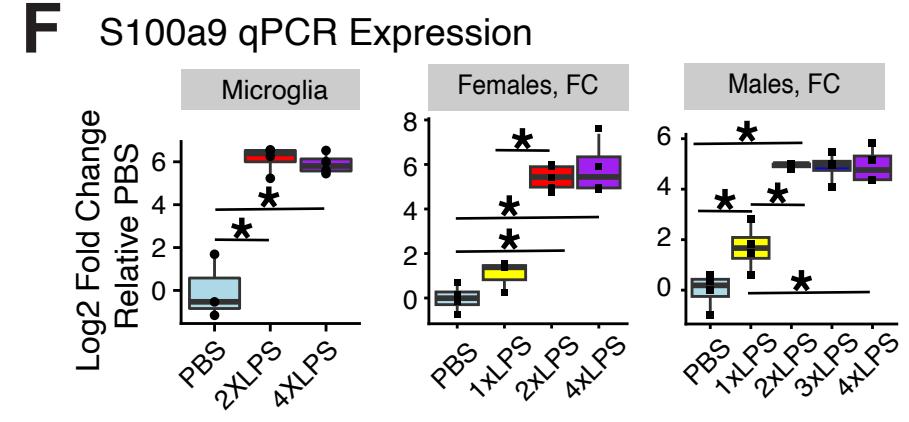
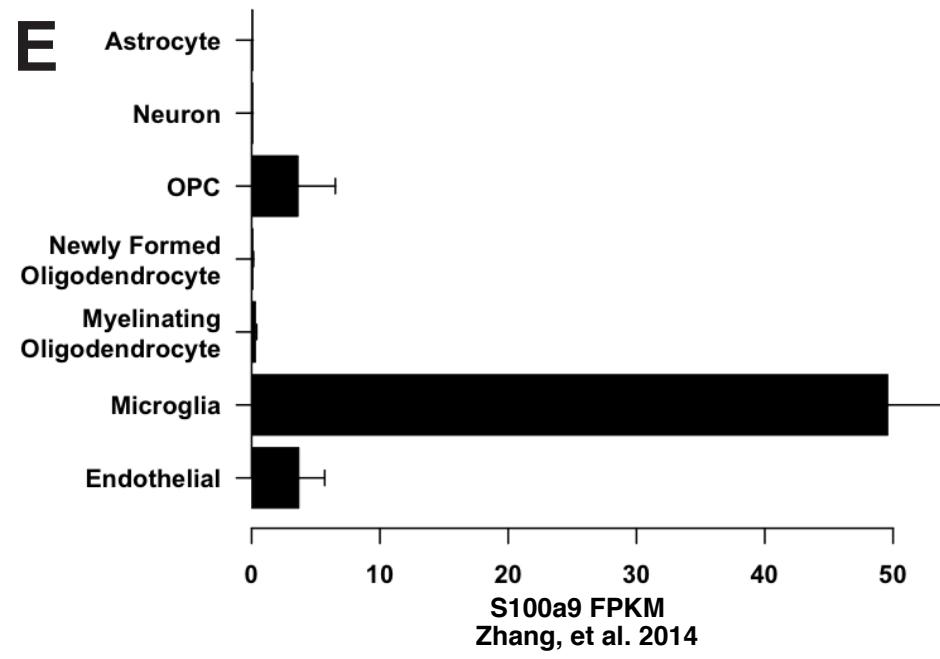
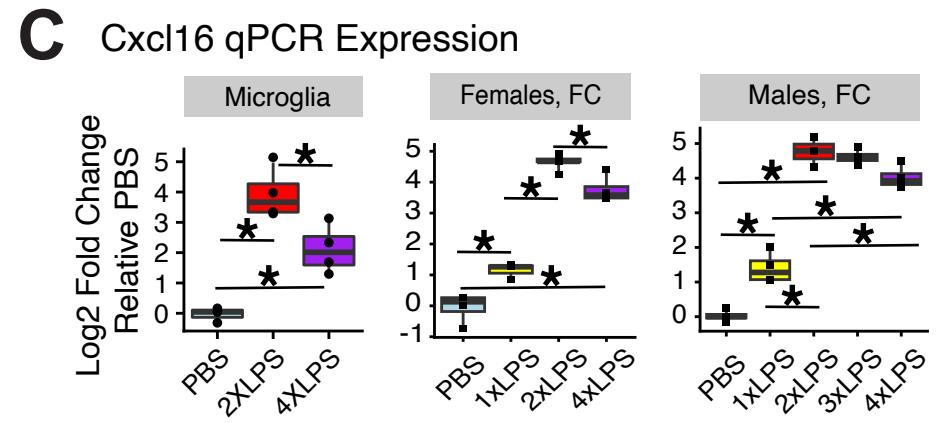
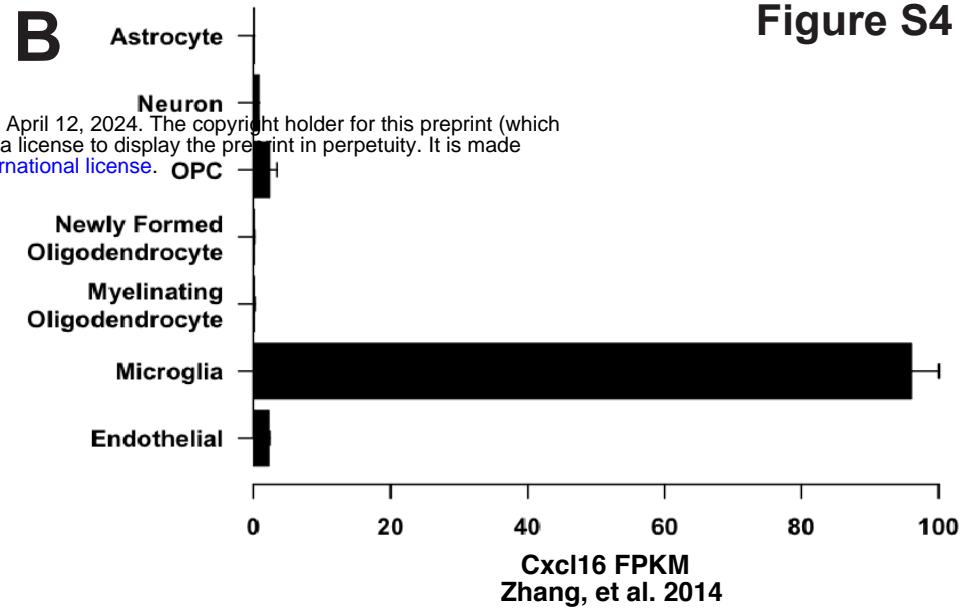
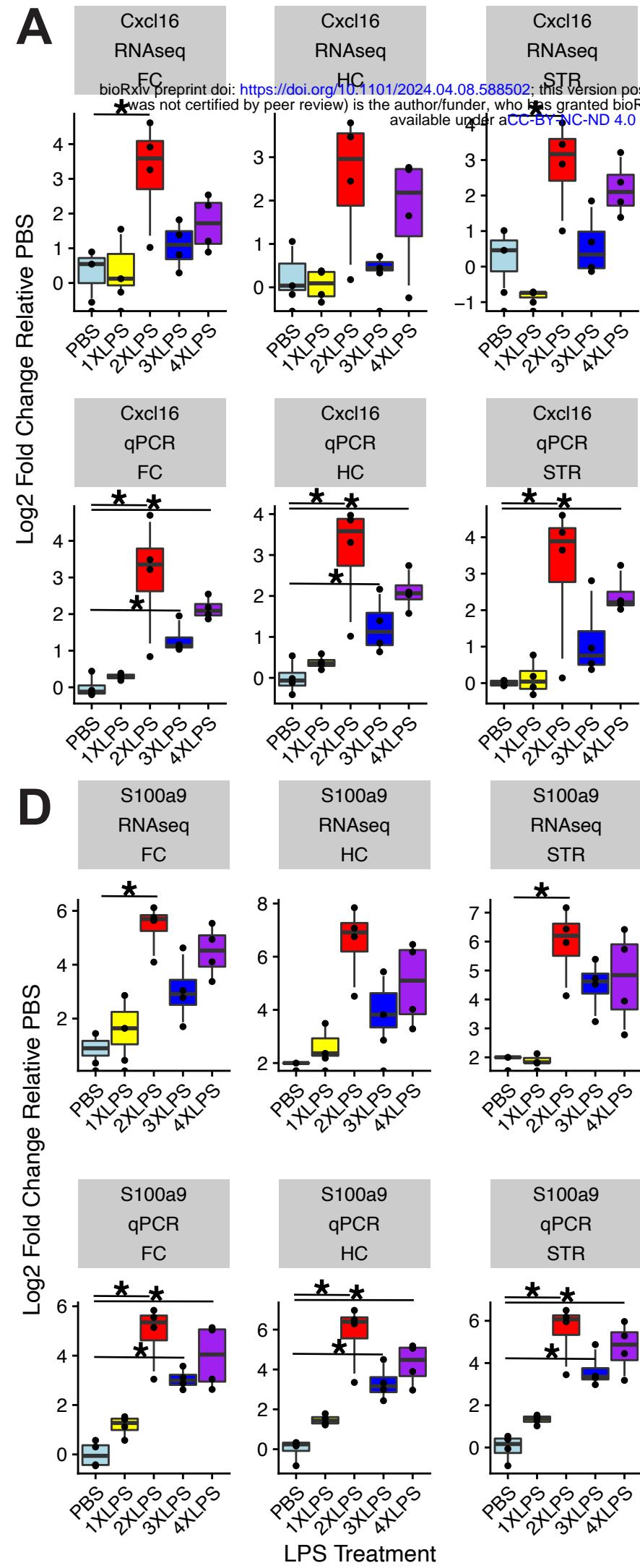

PBS vs 3xLPS_FC


PBS vs 3xLPS_HC

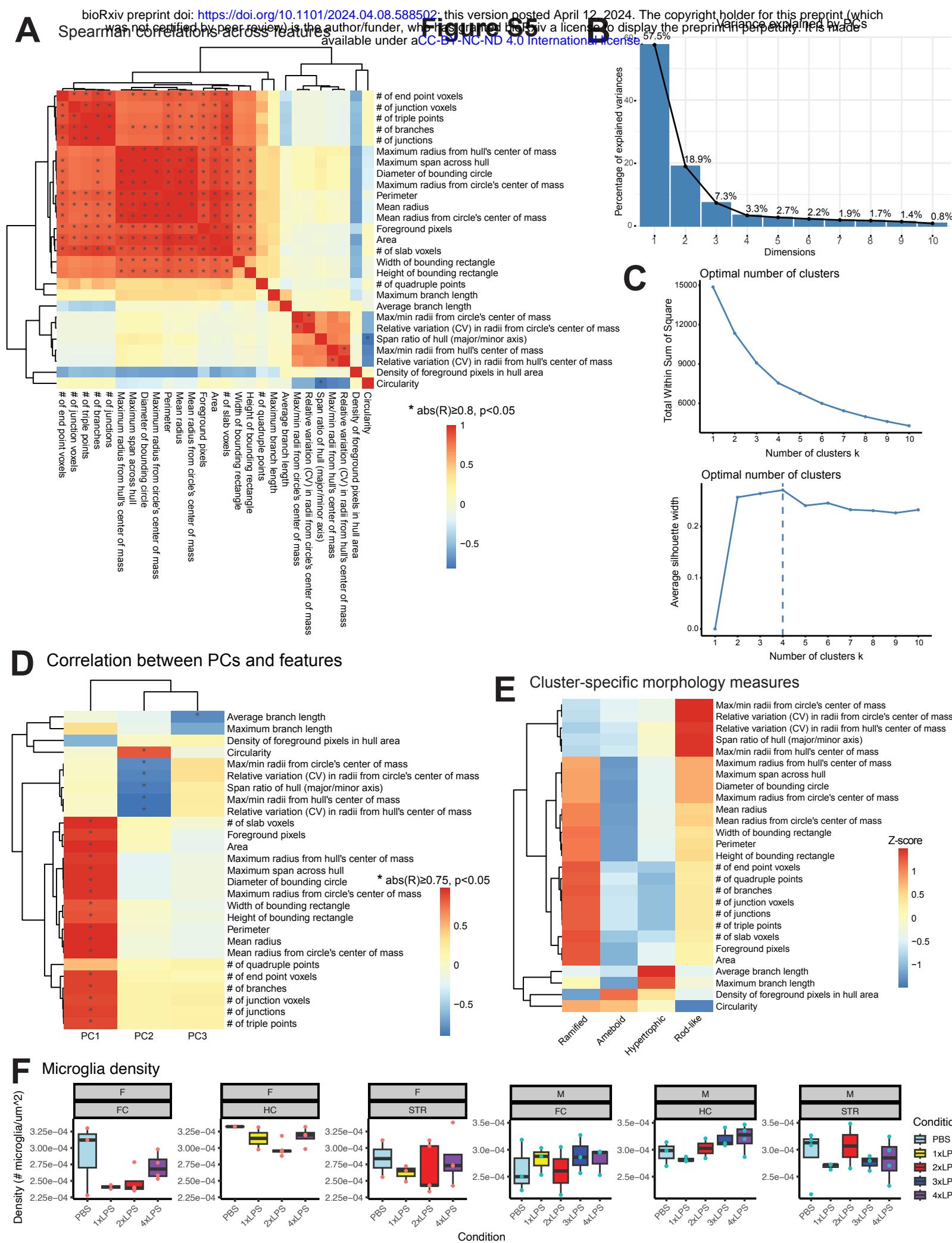

PBS vs 3xLPS_STR Volcano plot


PBS vs 4xLPS_FC Volcano plot

PBS vs 4xLPS_HC Volcano plot

PBS vs 4xLPS_STR Volcano plot



A

Figure S4

Figure S5

