

# 1    The impact of cooking and burial on proteins: a 2    characterisation of experimental foodcrusts 3    and ceramics

4  
5    Miranda Evans<sup>1,2</sup>, Richard Hagan<sup>2</sup>, Oliver Boyd<sup>3</sup>, Manon Bondetti<sup>2</sup>, Oliver Craig<sup>2</sup>, Matthew  
6    Collins<sup>2,4</sup>, Jessica Hendy<sup>2</sup>

7    1: Department of Archaeology, University of Cambridge

8    2: BioArCh, Department of Archaeology, University of York

9    3: Independent

10    4: The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen

## 11    **Abstract**

12  
13    Foodcrusts have received relatively little attention in the burgeoning field of proteomic  
14    analysis of ancient cuisine. We remain ignorant of how cooking and burial impacts protein  
15    survival, and crucially, the extent to which the extractome reflects the composition of input  
16    ingredients. Therefore, through experimental analogues we explore the extent of protein  
17    survival in unburied and buried foodcrusts and ceramics using 'typical' Mesolithic ingredients  
18    (red deer, Atlantic salmon and sweet chestnut). We then explore a number of  
19    physiochemical properties theorised to aid protein preservation. The results reveal that  
20    proteins were much more likely to be detected in foodcrusts than ceramics using the  
21    methodology employed, input ingredient strongly influences protein preservation, and that  
22    degradation is not universal nor linear between proteins, indicating that multiple protein  
23    physiochemical properties are at play. While certain properties such as hydrophobicity  
24    apparently aid protein preservation, none single-handedly explain why particular  
25    proteins/peptides survive in buried foodcrusts: this complex interplay requires further  
26    investigation. The findings demonstrate that proteins indicative of the input ingredient can be  
27    identifiable in foodcrust, but that the full proteome is unlikely to preserve. While this shows  
28    promise for the survival of proteins in archaeological foodcrust, further research is needed to  
29    accurately interpret foodcrust extractomes.

30  
31    **Keywords:** Palaeoproteomics, foodcrust, ceramics, experimental archaeology

32  
33  
34

## 35 **Introduction**

36  
37 Proteomics has become a valuable tool for identifying food in archaeological samples  
38 particularly from exceptionally well-preserved remains from frozen [1,2], desiccated [3–5] or  
39 waterlogged contexts [6,7], as well as calcified residues such as limescale on ceramics [8,9]  
40 and dental calculus [10–13]. Due to the tissue and taxonomically specific sequence  
41 information proteins can hold, proteomics is particularly useful for the detection of  
42 ingredients and cuisine. However exceptionally well-preserved remains are rare, rendering  
43 studies with statistically significant sample sizes and regional comparisons difficult. While  
44 protein analysis of human dental calculus can be immensely valuable for understanding  
45 consumed diets, it does not necessarily give clear insights into food preparation or links with  
46 culinary material culture.

47  
48 Ceramics associated with food preparation and consumption would be an ideal target  
49 sample for proteomics as they are ubiquitous in many contexts. However the detection of  
50 proteins from ceramics themselves has proved challenging, either due to strong binding, or  
51 degradation during burial. Proteins have been found to bind strongly to the mineral matrix of  
52 ceramic vessels, which likely results in good protein preservation yet renders their extraction  
53 challenging [14] without the use of harsh solvents [15]. Conversely, Barker et al. [16]  
54 concluded that protein content decayed rapidly upon burial, although they did not measure  
55 the initial protein content prior to burying their samples, and thus the rapidity of protein loss  
56 may be difficult to estimate. Food proteins have been reported from archaeological ceramics  
57 [8,17–19] and modern replicas [20,21]. However there are potential factors aiding the  
58 detection of proteins in archaeological cases, such as the inclusion of remnant encrustations  
59 [17], or the sampling of ceramic from immediately beneath a limescale deposit [8], which  
60 may have provided protection from diagenesis. In the case of Solazzo et al. [18], the sherd  
61 was from relatively cold conditions in the Arctic coast of Alaska, and contained lipid-rich  
62 foods including whale and seal meat, both factors which may have improved protein  
63 preservation, although we note that food proteins were not detected in similar ceramics in a  
64 later study [22].

## 65 66 **Biomolecular analyses of foodcrusts**

67  
68 Given the challenges in extracting proteins from ceramics themselves, foodcrusts may offer  
69 a good alternative target sample for proteomic analysis. Foodcrust, sometimes referred to as  
70 “carbonised residue” and “char” is broadly defined as “amorphous charred or burnt deposits  
71 adhering to the surface of containers associated with heating organic matter” [23] The

72 prevalence of foodcrusts varies considerably, however they are particularly abundant in  
73 Mesolithic and Neolithic contexts in Northern Europe and Eurasia where they are sometimes  
74 found on the majority of ceramics within assemblages [24,25].

75

76 Lipid analysis of foodcrusts has considerably improved our understanding of ancient diet and  
77 particularly of marine resource utilisation. The method has been applied to detect food in  
78 assemblages across a vast geography spanning Europe and Northern Asia [24,26–32] East  
79 Asia [25,33–37] and the Americas [22,38], and to select samples that do not contain aquatic  
80 resources for use in carbon dating, which are thus unhindered by the reservoir effect [23].  
81 The formation of foodcrusts is a topic of ongoing research. They are often presumed to be  
82 formed by cooking food, although they can also result from the use of fuel for illumination  
83 [39] or the production of sealants, moisturisers, adhesives or glues [23,40,41]. A possible  
84 correlation exists between foodcrust formation and the processing of aquatic resources, or  
85 alternatively these particular lipids may preserve better in foodcrusts than ceramics [24].

86

87 Proteomic analysis has recently been applied to archaeological foodcrusts, demonstrating  
88 the viability of the technique [42,43], but also has generated questions around protein  
89 survival and biases [42,43]. Results so far appear congruent with the association between  
90 aquatic resource processing and foodcrusts. Shevchenko et al [43] performed proteomic  
91 analysis on four Mesolithic-Neolithic foodcrusts from the site of Friesack 4, Germany. Their  
92 results revealed the presence of deamidated fish vitellogenins and parvalbumins in one  
93 foodcrust and *Suidae* collagens detected in another. Lyu et al [42] analysed 21 foodcrusts  
94 from the site of Xiawan in South-East China for both lipids and proteins. Their results  
95 revealed the presence of potential dietary proteins in five samples, including myosin from  
96 large yellow croaker and mandarin fish, and collagen from Caprinae and potentially other  
97 mammals [42]. In both of these cases a low proportion of samples analysed produced  
98 dietary results, and the number of dietary proteins and peptides was also low. Despite this  
99 initial headway, many questions remain outstanding concerning the survival of proteins in  
100 ancient foodcrusts.

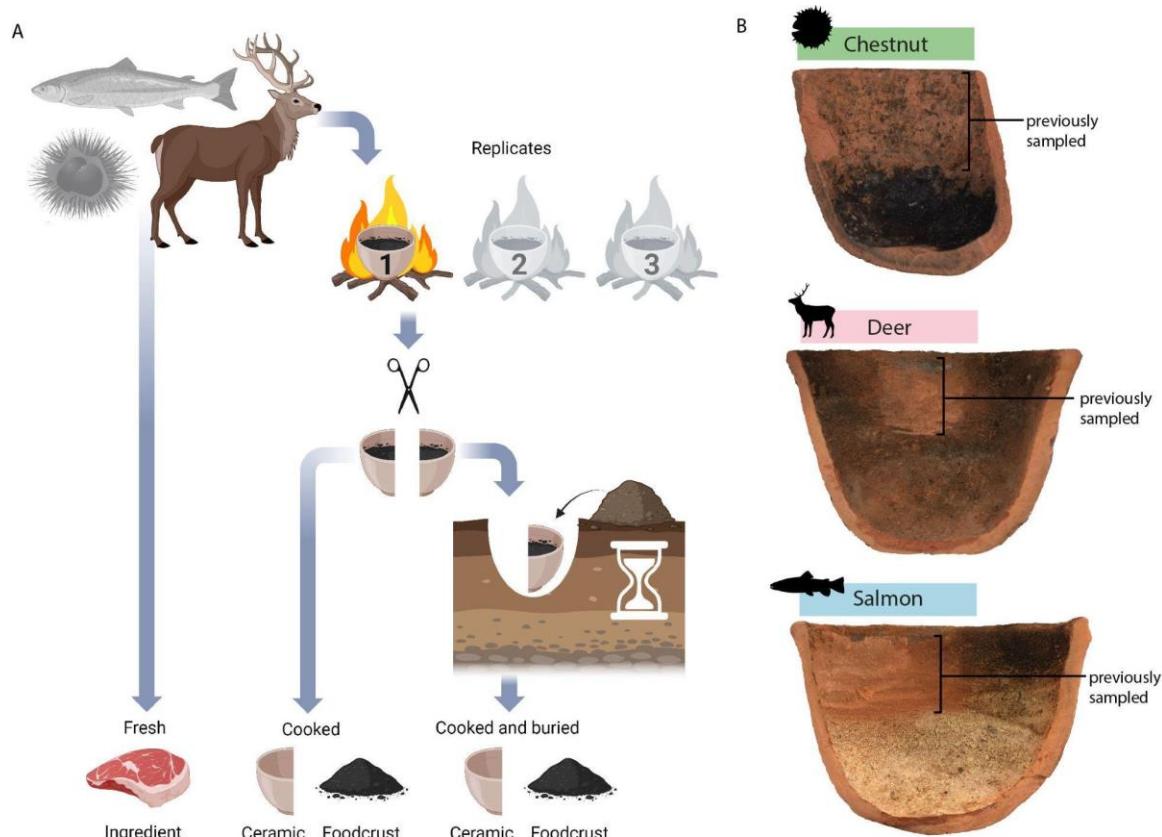
101

## 102 **Potential preservation biases**

103

104 The key question is simply the degree to which the proteins identified in ceramics and their  
105 residues reflect the original food processed in the vessel. Although proteins indeed become  
106 altered through different cooking processes, we remain ignorant of the degree to which those  
107 changes impact the detection of proteins in ceramics and foodcrust residues. Similarly, we are  
108 also unaware of the impact of burial on the survival of food proteins in these samples.

109  
110 Compared to proteomics, there is a diversity of published experiments exploring how lipids  
111 derived from different ingredients respond to a range of cooking and deposition practices [for  
112 example 44,45–50]. For instance, Miller et al. [44] demonstrate that absorbed lipids extracted  
113 from ceramics represent a long period of use, while surface deposits represent the most recent  
114 cooking events. However, as a much younger discipline, such studies are rarer in  
115 palaeoproteomics with most experimental studies focused on understanding if proteins survive  
116 at all in ceramics, or optimising extraction protocol [15,16,21,51,52] rather than the range of  
117 cooking and deposition variables which may impact them [although see 3,9].  
118  
119 In this study, we characterise the impact of cooking and entrapment in foodcrust and ceramic,  
120 followed by burial on the identification of proteins and peptides from three common Mesolithic  
121 foods: *Cervus elaphus* (red deer), *Salmo salar* (Atlantic salmon) and *Castanea sativa* (sweet  
122 chestnut), to anticipate results and consider expectations for archaeological interpretations of  
123 diet and food preparation practices derived from foodcrusts and ceramics. We aim to identify  
124 proteins that persist throughout the cooking process and become embedded in foodcrusts and  
125 ceramics, as well as those that persist through burial in soil for six months. Specifically, we  
126 examine metrics including peptide and protein count, concentration of different amino acids,  
127 peptide length, peptide hydropathicity, peptide isoelectric point, protein thermal stability,  
128 protein secondary structure, protein disorder, protein amyloid propensity and relative solvent  
129 accessibility of the detected peptides in order to identify characteristics of their survival, and  
130 we also compare protein with lipid content. Given that proteomics is capable of providing highly  
131 specific information concerning ancient ingredients and cuisine, understanding the impact of  
132 cooking and burial on the protein content of ceramics and foodcrusts is crucial to accurately  
133 interpreting proteomic results of ancient samples. These results provide a maximum baseline  
134 for protein recovery from ceramics and foodcrusts under similar conditions.


135  
136 **Materials and methods**

137  
138 **Sample creation**

139  
140 Experimental samples included deer meat, salmon meat and chestnut flour, each individually  
141 cooked in replica ceramic vessels to induce foodcrust formation, before being split and one  
142 half buried (Figure 1, see also supplementary text S2). These were originally created and  
143 described previously by Bondetti et al [47] to investigate the formation and diagnostic value  
144 of  $\omega$ -(o-alkylphenyl)alkanoic acids (APAA). After lipid extraction, samples were stored at  
145 4°C until protein analysis was performed in summer 2020. Full details of the methodology

146 used for sample creation, protein extraction, and machine analysis can be found in the  
147 electronic supplementary material S1.

148



149  
150

151 **Figure 1: A: Sample creation process (Image created with BioRender.com), B: Example of**  
152 **cooked foodcrust samples. Top: Chestnut, Middle: Deer, Bottom: Salmon.**

153

#### 154 **Protein extraction**

155

156 All samples and machine washes were analysed following an SP3 protein extraction protocol  
157 [53,54] adapted for ancient samples [55,56] which can be found on protocols.io  
158 [<https://doi.org/10.17504/protocols.io.bfgrijv6>] and is routinely applied to archaeological  
159 samples [56–58].

160

#### 161 **LC-MS/MS analysis**

162

163 The samples were analysed on an Orbitrap Fusion at the Centre for Excellence in Mass  
164 Spectrometry at the University of York. Blank machine washes were run between each  
165 sample injection in order to examine and reduce the degree of carry-over between samples.

166

167 **Data analysis**

168

169 Samples and machine washes were analysed using Maxquant (version 2.1.0.0). Peptides  
170 were searched allowing for tryptic cleavage, minimum length of seven amino acids, with both  
171 a protein and peptide target false discovery rate of 1%. Variable modifications included  
172 oxidation (M), acetylation (protein N-term), deamidation (NQ), glutamine to pyroglutamic  
173 acid, and the fixed modification of carbamidomethyl (C) was specified.

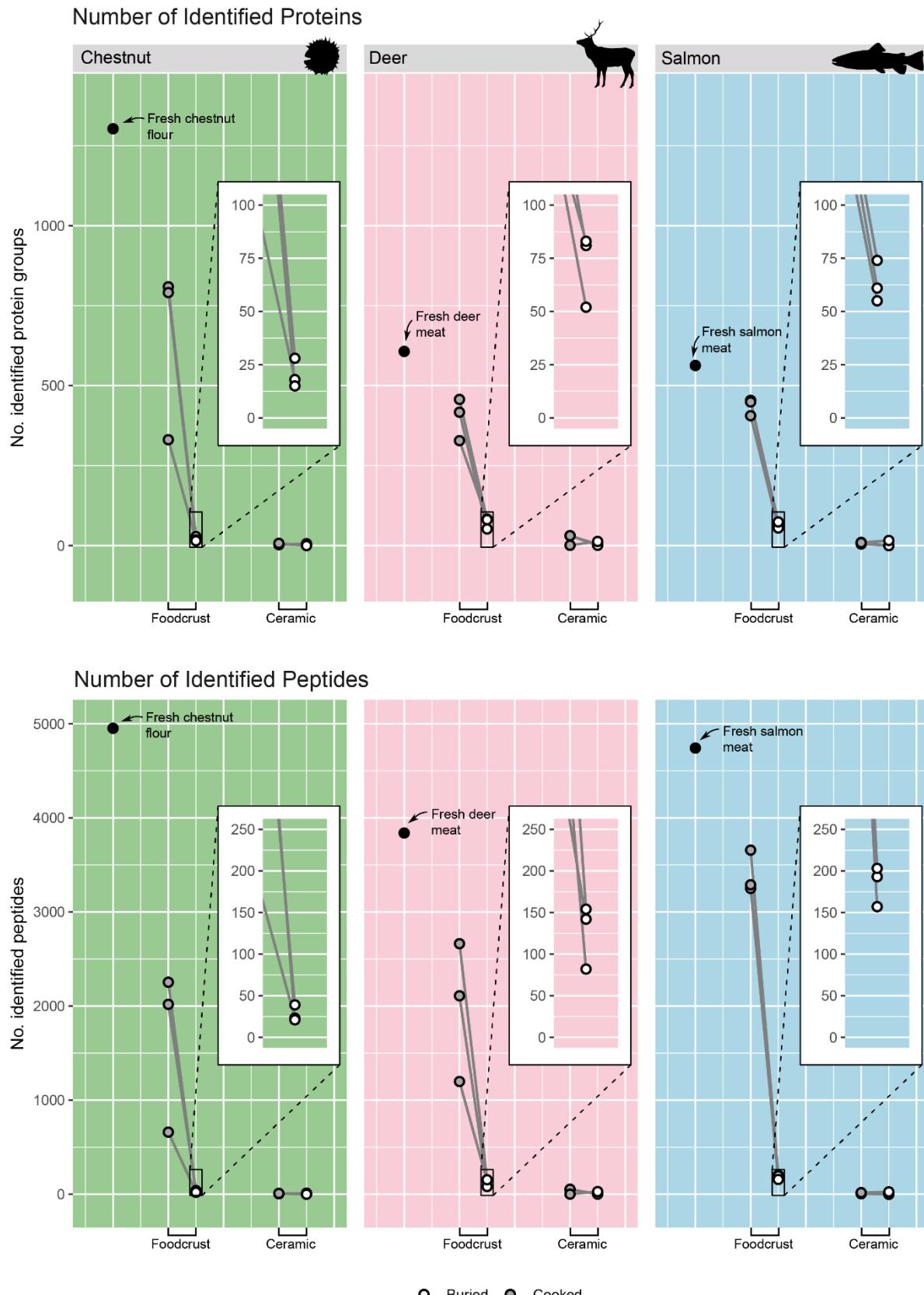
174

175 All samples were searched against a combined database which included an European Red  
176 Deer proteome (UP000242450), an Atlantic salmon proteome (UP000087266), a Chinese  
177 chestnut proteome (UP000737018) and “cRAP”, a database of common lab contaminants.  
178 *Castanea mollissima* (Chinese chestnut) was chosen as a reference database as there was  
179 no proteome for *Castanea sativa* (Sweet chestnut) at the time of analysis. To investigate any  
180 potential cross-contamination during the outdoor cooking experiment, in the lab and due to  
181 carry over in the LC-MS/MS, all samples were searched against all databases, to establish a  
182 baseline of cross-contamination. The ‘match between runs’ option was not allowed, given  
183 the varying proteomes present as match between runs has been found to falsely inflate  
184 peptide identifications [59]. Lowest common ancestor (LCA) was generated for peptides  
185 where possible using Unipept Desktop (version 2.0.0). The data was filtered to remove  
186 potential machine carry-over and laboratory contaminants. Full details of this process can be  
187 found in supplementary text S1. It became apparent that cross contamination occurred  
188 during field experiments, which is particularly evident in low protein samples such as ceramic  
189 extracts (supplementary text S7). To minimise the impact of cross contamination on protein  
190 characterisation, only samples with known cross-contaminant peptide concentration  $\leq 2\%$  of  
191 the total peptide count were included in the analysis of protein properties.

192

## 193 Results and discussion

194


### 195 Impact of cooking and burial on protein and peptide detection in ceramics and 196 foodcrust

197

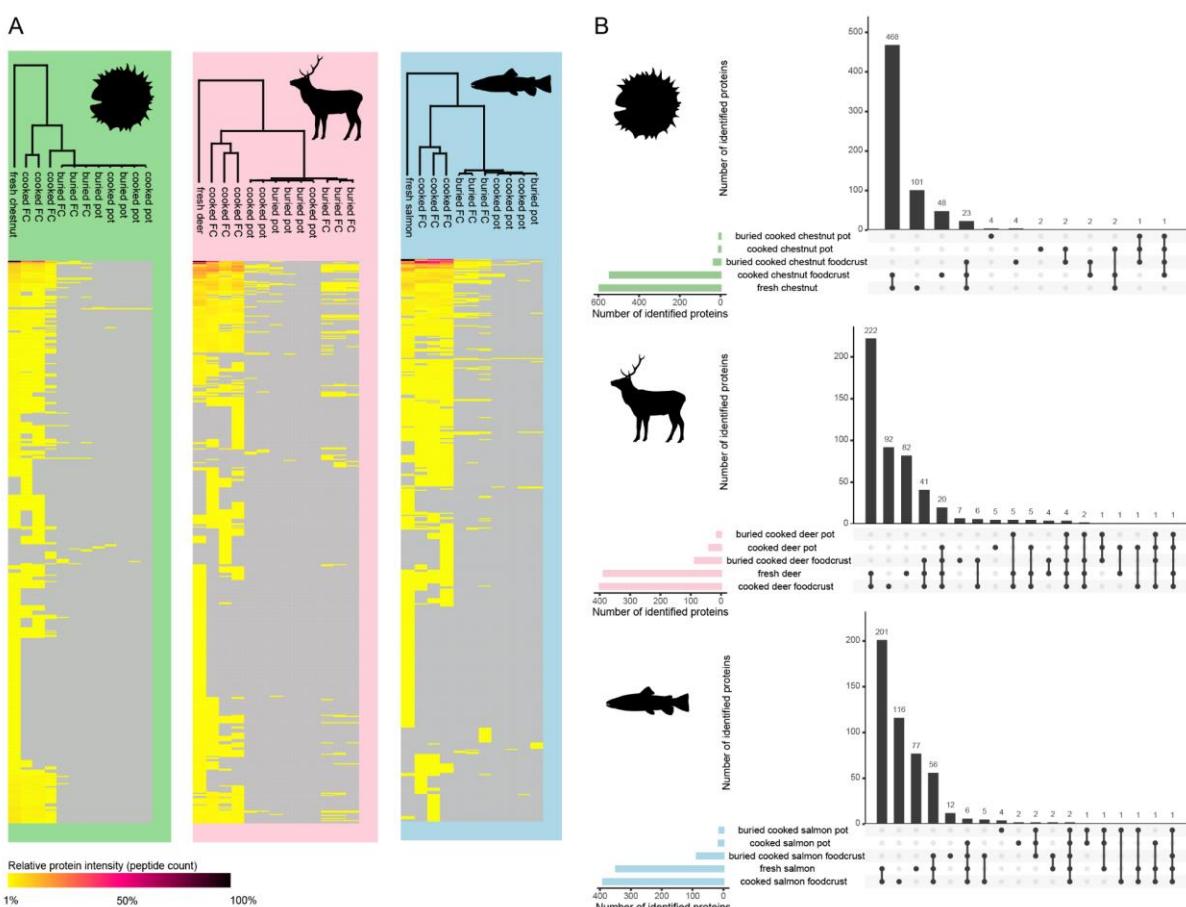
198 *Do proteins preferentially survive cooking and burial in ceramics or foodcrust?*

199

200 It is immediately apparent that foodcrusts are more likely to harbour preserved proteins than  
201 ceramics using the extraction methodology utilised here. Overall, the peptide and protein  
202 count for each food was high in the fresh ingredient, reduced in the cooked foodcrust, and  
203 further reduced (yet still appreciable) in the buried foodcrust samples, with some variation  
204 depending on ingredient (Figure 2, see also supplementary text S3) (i.e. <4-8 proteins in  
205 chestnut foodcrusts, <24-27 in salmon foodcrusts, <16-33 in deer foodcrusts, supported by  
206 >1 peptide spectral match). In contrast to the foodcrust, protein and peptide counts were  
207 much lower in the ceramic samples, even prior to burial, and remained extremely low after  
208 burial (Figure 2). This indicates that small but appreciable numbers of food proteins may be  
209 detectable in foodcrusts in archaeological samples of similar ingredients and conditions but  
210 in contrast, given that few positive protein identifications could be made from buried  
211 ceramics, ceramic samples should not be expected to result in positive protein results if a  
212 similar protocol is followed.



213  
214  
215  
216


Figure 2. The number of identified proteins (top) and peptides (bottom) in foodcrust and ceramic samples cooked with chestnut, deer and salmon. Counts include all peptides/proteins not excluded by filtering steps described above.

217 Why are so few proteins detected in ceramics?

218

219 Euclidean clustering revealed that the cooked ceramic samples clustered together with the  
220 buried cooked ceramic samples for all food types (Figure 3A), indicating a strong correlation  
221 between the cooked ceramic sample and the buried cooked ceramic sample. This likely  
222 demonstrates that the proteins were too strongly bound to the ceramic matrix to be extracted  
223 using the protocol here employed, or alternatively, that even prior to burial, protein  
224 identification was already very low in ceramic samples, for instance if protein content had not  
225 yet impregnated the ceramic walls or if cooking had rapidly degraded any protein content  
226 present in the ceramic. This sharp reduction of both protein and peptide count in the ceramic  
227 samples compared to the fresh ingredients, is unsurprising in light of existing published  
228 research indicating similar findings [14], and that positive results from ceramics lacking  
229 encrustations and under normal preservation conditions have rarely been reported [although  
230 see 18,19,20]. Further work is necessary to devise optimal extraction methods for ceramic-  
231 bound protein.

232



233

234

235 **Figure 3: A: Hierarchical cluster analysis of proteins identified in all chestnut (left),**  
236 **deer (middle) and salmon (right) foodcrust and ceramic samples (Euclidean**  
**correlation), created in Perseus version 1.6.14. B: Upset plot displaying intersection**

237 **of proteins observed in ceramic, foodcrust and fresh sample categories for chestnut**  
238 **(top), deer (middle) and salmon (bottom) samples. Created using UpsetR [60]**

239

240 *Which proteins survive cooking and burial?*

241

242 A key aim of this study was to identify the proteins that persist throughout the cooking  
243 process and become embedded in foodcrusts and ceramics, as well as those that persist  
244 after burial for 6 months. The most abundant proteins detected in foodcrust and ceramics (by  
245 peptide count) can be seen in Table 1. The most abundant proteins detected in foodcrusts  
246 surviving cooking and burial for 6 months can be seen in Table 2. We note that the most  
247 abundant proteins detected in ceramic samples include several probable contaminants such  
248 as keratins, while the most abundant foodcrust proteins tend to contain more genuine  
249 ingredient matches. We also note that despite filtering described above, some cross  
250 contamination is observable especially in chestnut samples, likely derived from the field  
251 experiments.

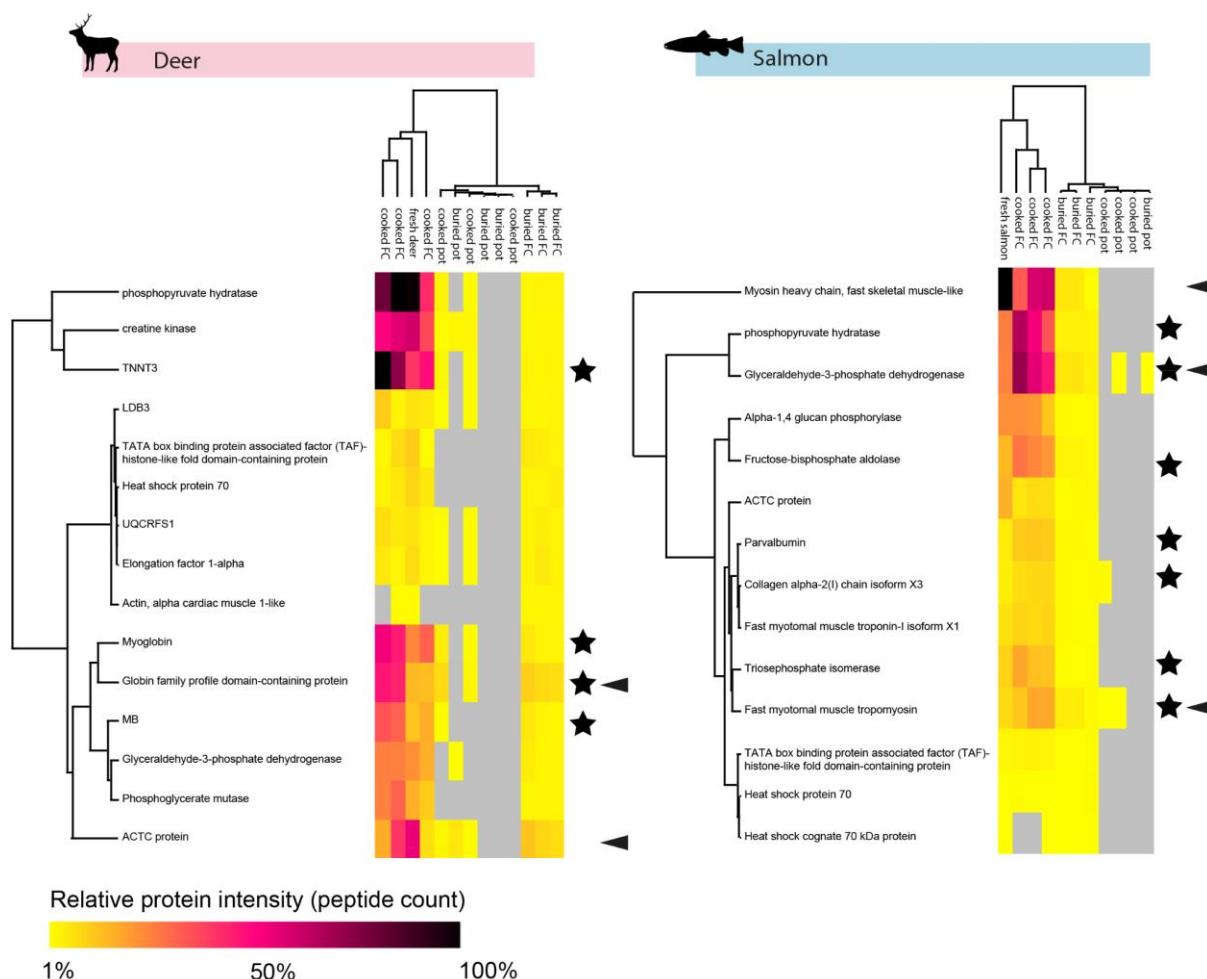
252

253 **Table 1. The top 5 most abundant proteins (by peptide count) preserved in foodcrust**  
254 **and ceramic samples after cooking. Data from replicates has been merged. Grey**  
255 **indicates likely contaminant or cross-contamination**

| Rank (by peptide count) | Chestnut                                                             |                                          | Deer                           |                                                 | Salmon                                        |                                      |
|-------------------------|----------------------------------------------------------------------|------------------------------------------|--------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------------|
|                         | Foodcrust                                                            | Ceramic                                  | Foodcrust                      | Ceramic                                         | Foodcrust                                     | Ceramic                              |
| 1                       | Cupin type-1 domain-containing protein                               | IF rod domain-containing protein         | Phosphopyruvate hydratase      | Globin family profile domain-containing protein | Glyceraldehyde-3-phosphate dehydrogenase      | Keratin, type II cytoskeletal 5      |
| 2                       | Starch synthase, chloroplastic/amyloplastic                          | Keratin, type II cytoskeletal 5          | Troponin T3                    | IF rod domain-containing protein                | Phosphopyruvate hydratase                     | IF rod domain-containing protein     |
| 3                       | Chitin-binding type-1 domain-containing protein                      | Keratin, type II cytoskeletal 75         | Myosin-1                       | Myoglobin                                       | Myosin heavy chain, fast skeletal muscle-like | Collagen alpha-2(I) chain isoform X3 |
| 4                       | Heat shock protein 70                                                | Glyceraldehyde-3-phosphate dehydrogenase | Fructose-bisphosphate aldolase | Phosphopyruvate hydratase                       | creatine kinase                               | Collagen alpha-1(I) chain            |
| 5                       | 5-methyltetrahydropteroylglutamate--homocysteine S-methyltransferase | Glycogenin-1                             | Alpha-1,4 glucan phosphorylase | Troponin T, fast skeletal muscle                | Fructose-bisphosphate aldolase                | Keratin, type II cytoskeletal 75     |

256

257


258 **Table 2. The top 5 most abundant proteins (by peptide count) preserved in foodcrust**  
259 **and ceramic samples after cooking and burial for 6 months. Data from replicates has**  
260 **been merged. Grey indicates likely contaminant or cross-contamination**

| Rank (by peptide count) | Chestnut                                                                                     |                                  | Deer                                                                                         |                                 | Salmon                                                       |                                          |
|-------------------------|----------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|------------------------------------------|
|                         | Foodcrust                                                                                    | Ceramic                          | Foodcrust                                                                                    | Ceramic                         | Foodcrust                                                    | Ceramic                                  |
| 1                       | TATA box binding protein associated factor (TAF) histone-like fold domain-containing protein | IF rod domain-containing protein | ACTC protein                                                                                 | L-lactate dehydrogenase         | Glyceraldehyde-3-phosphate dehydrogenase                     | IF rod domain-containing protein         |
| 2                       | IF rod domain-containing protein                                                             | Keratin, type II cytoskeletal 5  | Globin family profile domain-containing protein                                              | Collagen alpha-2(I) chain       | Myosin heavy chain, fast skeletal muscle-like                | Keratin, type II cytoskeletal 5          |
| 3                       | ACTC protein                                                                                 |                                  | TATA box binding protein associated factor (TAF) histone-like fold domain-containing protein | Keratin, type II cytoskeletal 5 | Phosphopyruvate hydratase                                    | Collagen alpha-2(I) chain                |
| 4                       | Heat shock protein 70                                                                        |                                  | Elongation factor 1-alpha                                                                    | 40S ribosomal protein S26       | Fast myotomal muscle tropomyosin (Tropomyosin alpha-1 chain) | Keratin, type II cytoskeletal 6A         |
| 5                       | Elongation factor 1-alpha                                                                    |                                  | Myoglobin                                                                                    | Filamin-C                       | Fructose-bisphosphate aldolase                               | Glyceraldehyde-3-phosphate dehydrogenase |

261  
262 *Do all proteins have an equal chance of survival?*  
263  
264 A central aim of this study was to investigate whether there is a bias towards or against the  
265 detection of certain food proteins. We sought to investigate if all proteins followed the same  
266 decay trend, ie. highly abundant in the fresh food, then reducing in abundance when cooked  
267 (and entrapped in foodcrust) and then further reducing in abundance when buried. To  
268 explore this, hierarchical cluster plots based on peptide abundance grouped by leading razor  
269 protein were created (Figure 4). For this, only proteins present in all three buried foodcrust  
270 replicates with >2 peptide matches were explored, as they were considered to consistently  
271 preserve at a quantity appreciable in general palaeoproteomic analysis. The cluster plots  
272 revealed that preservation varies by specific protein, and that not all proteins follow the same  
273 trend. One notable observation is an increased number of peptide matches to particular  
274 proteins in cooked samples when compared to the fresh ingredient, for example: Troponin  
275 T3, Fast Skeletal Type (TNNT3), myoglobin (MB) and globulin-family profile domain-  
276 containing protein (haemoglobin) in deer, and phosphopyruvate hydratase (enolase) and  
277 glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and Fructose-bisphosphate aldolase

278 in salmon (Figure 4). One explanation for this phenomenon could be the role played by heat  
279 in denaturing proteins, partly degrading them and opening them up so that enzymatic  
280 cleavage is more efficient. In the buried foodcrusts, while the overall number of proteins is  
281 lower than unburied samples, some proteins retained relatively high peptide abundance. In  
282 the deer samples these included globulin-family profile domain-containing protein  
283 (haemoglobin) and ACTC protein (actin) which were relatively abundant in all three buried  
284 foodcrust replicates, and in the salmon samples the comparatively abundant proteins  
285 included myosin heavy chain fast skeletal muscle-like, glyceraldehyde-3-phosphate  
286 dehydrogenase (GAPDH) and fast myotomal muscle tropomyosin. In contrast, while  
287 phosphopyruvate hydratase (enolase) is the most abundant protein in fresh and cooked deer  
288 replicates, it was found in relatively low abundance in buried foodcrust samples. This reveals  
289 that protein preservation is variable: certain proteins persist particularly well in buried  
290 foodcrust while others do not.

291



292  
293 **Figure 4: Heat map and dendrogram of proteins present in all buried deer (left) and**  
294 **salmon (right) foodcrust and ceramic replicates with peptide count >2. Euclidean**  
295 **clustering. Stars indicate proteins which are more abundant in cooked foodcrust**  
296 **samples than in the corresponding fresh ingredient sample. Arrows indicate proteins**

297 **that are relatively abundant in buried foodcrusts compared to other proteins. Created**  
298 **in Perseus version 1.6.14.**

299

300 *Do buried foodcrust results reflect initial ingredient input?*

301

302 The buried foodcrust samples were intended as analogues of archaeological foodcrusts, and  
303 thus to provide a baseline for the extractome that might be expected from archaeological  
304 foodcrusts. We investigated the extent to which buried cooked foodcrusts resemble the input  
305 protein composition. "Upset diagrams", an alternative to Venn diagrams [61], which were  
306 used to investigate the proteins shared by each sample type (Figure 3B). They revealed that  
307 for all ingredients, the fresh and cooked foodcrust samples contained the most common  
308 shared proteins of any set of samples, indicating that they are compositionally most similar.  
309 The largest overlapping group following this was fresh ingredients, cooked food crust and  
310 buried foodcrust in all cases, indicating that despite the reduction of proteins in buried  
311 samples, they still somewhat reflect the initial input composition.

312

313 To understand whether buried samples revealed the input ingredient taxonomy, UniPept  
314 Desktop was used to assign LCA for each peptide. Data were filtered following commonly  
315 used proteomic standards (greater than two PSMs to support a protein). In contrast to the  
316 buried ceramic samples which no harboured species-specific protein results, all buried deer  
317 and salmon foodcrust replicates produced sufficient proteomic evidence to identify the  
318 specific input ingredient to a species level in at least one replicate (supplementary text S3),  
319 while two of the chestnut replicates provided tissue specific evidence with some level of  
320 taxonomic specificity (*Fagaceae* or *Quercus lobata*). Previously, a correlation between the  
321 presence of fish products and foodcrusts has been noted [24]. We also note that fish (and  
322 deer) proteins are more likely to be preserved in foodcrusts, but the presence of plants in  
323 foodcrust appears underrepresented in protein data. We particularly note that field cross-  
324 contamination from salmon and deer was more abundant in buried chestnut foodcrusts than  
325 were the input chestnut proteins (Table 2). Therefore proteomics may not be an appropriate  
326 single-method through which to address questions of plant processing in antiquity, at least  
327 by the methods adopted here. It is apparent that plants generate foodcrusts, but their  
328 molecular detection within foodcrusts remains challenging.

329

330 These results show that the input ingredient strongly influences the frequency of protein and  
331 peptide identifications in foodcrusts and ceramics. Chestnut proteins and peptides were  
332 identified less frequently than salmon or deer in buried foodcrusts, despite having higher  
333 protein and peptide abundance in fresh samples, and higher or similar protein and content to

334 deer in cooked foodcrust (Figure 2). This leads us to believe that the comparably low  
335 preservation of chestnut in buried samples genuinely reflects their preservation potential  
336 relative to the other ingredients rather than other potential explanations such as chestnuts'  
337 lower protein content or the fact that it underwent fewer cooking repeats, indicating an  
338 important bias in proteomic analysis of foodcrust residues. While in theory proteomics is  
339 capable of detecting proteins from any species represented in reference databases, in  
340 practice it appears that certain ingredients are more likely to be preserved or detected than  
341 others. Similarly, this has been observed in the analysis of ancient dental calculus, where a  
342 bias towards the detection of milk proteins over other dietary derived proteins has been  
343 reported [12]. This has obvious implications on the interpretation of archaeological results,  
344 for example, rendering plants less visible compared to other ingredients.

345

346 Furthermore, in this study, the lack of annotated proteins from some plant species has  
347 become starkly apparent. We note that a large number of the peptides identified in the  
348 chestnut samples matched to uncharacterised proteins, rendering their analysis difficult.  
349 Moreover, the absence of a *Castanea sativa* proteome in Uniprot at the time of analysis  
350 necessitated the use of *Castanea mollissima* in this investigation - which may impact  
351 identifications. This concurs with Hendy et al.'s previous comment on the dependence of  
352 shotgun proteomics on available databases, and its impact on plant identification [8]. Plants  
353 which have much larger proteomes are often absent, particularly for species that are not of  
354 current commercial relevance, such as heirloom cultivars. Database absence likely  
355 contributes to the lower detection rate of plants in archaeological samples or their detection  
356 at higher taxonomic specificity.

357

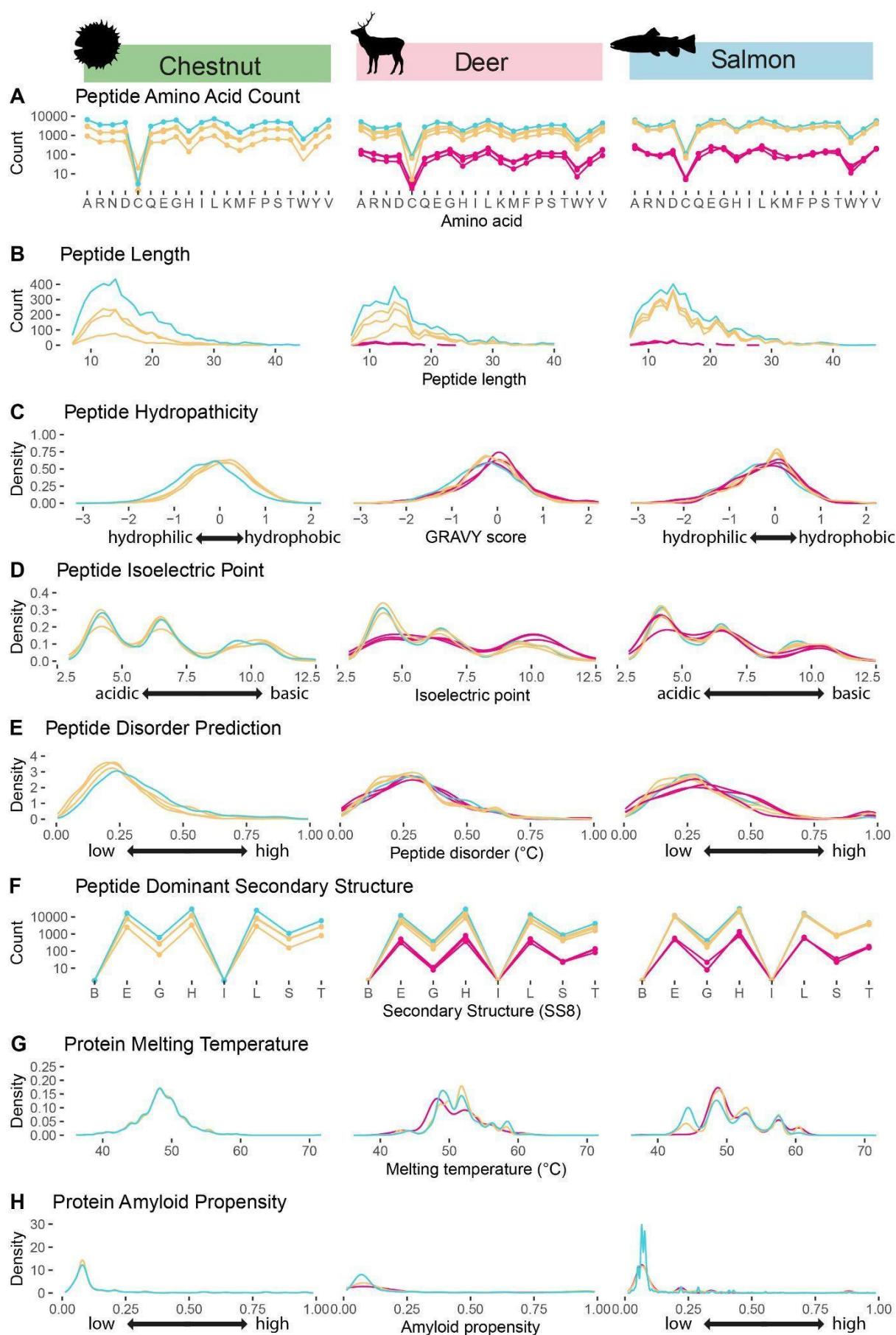
### 358 **Exploration of characteristics enabling protein survival in buried foodcrust samples**

359

360 *Why do particular proteins survive cooking and burial?*

361

362 Having identified which proteins persist after cooking, foodcrust formation and burial, as well  
363 as the overall trend in the number of proteins preserved, we now explore whether these  
364 proteins harbour particular characteristics which may facilitate their survival. In this study it is  
365 apparent that degradation is not universal nor linear between different proteins [in contrast to  
366 16]. As discussed above, certain proteins persist particularly well in buried samples while  
367 others do not (Figure 4), leading us to hypothesise that individual protein properties aid in  
368 their preservation. Previously, particular characteristics have been hypothesised to impact  
369 protein preservation in or on pottery and other mineral surfaces [14–16,52,62–64]. We


370 wished to explore if there were particular characteristics on either a peptide or protein level  
371 that may be impacting the potential preservation of proteins in buried foodcrust samples.

372  
373 A range of peptide and protein characteristics were investigated. These included  
374 concentration of different amino acids, peptide length, peptide hydropathicity, peptide  
375 isoelectric point, the sample's lipid content, protein melting temperature, disorder prediction,  
376 amyloid propensity, protein secondary structure and relative solvent accessibility at a given  
377 peptide (Figure 5). The characteristics of bulk amino acid concentration, peptide length,  
378 peptide hydropathicity, and bulk deamidation were calculated manually, while various tools  
379 were used to calculate the other characteristics. These included: Protein thermal stability:  
380 DeepSTABp [65], Amyloid propensity: AMYPred-FRL[66], Disorder prediction: IUPred [67],  
381 Isoelectric point: IPC [68], and protein secondary structure and relative solvent accessibility:  
382 "Predict\_Property", a standalone, offline version of RaptorX web server  
383 [69,70]([https://github.com/realbigws/Predict\\_Property](https://github.com/realbigws/Predict_Property)). A script was written to extract the  
384 secondary structure, RSA, and disorder prediction for each peptide in the dataset  
385 ([https://github.com/miranda-e/peptide\\_property\\_analyser](https://github.com/miranda-e/peptide_property_analyser)). All characteristic results were  
386 then compiled and displayed using an R script (Figure 5). The full details of data analysis are  
387 present in supplementary text S4. While we initially aimed to explore the relationship  
388 between protein tertiary structure and preservation this proved challenging due to the paucity  
389 of tools for this analysis, and the poorly annotated or modelled nature of many target  
390 proteins. As an alternate way of investigating structural characteristics, we include  
391 secondary structure, disorder prediction and amyloid prediction. The characteristics of  
392 protein function and cell location were initially investigated through Gene Ontology terms,  
393 however these explorations were limited by relatively low levels of annotation in the target  
394 species' databases (supplementary text S6) so this approach was not pursued. Factors  
395 other than cooking and burial such as the extraction protocol and data analysis parameters  
396 will have also impacted the composition of the extractome, however, all samples have  
397 experienced the same extraction and search protocol. Buried chestnut foodcrust data was  
398 removed from analysis due to very low peptide counts, and high levels of field cross-  
399 contamination, rendering any interpretation with statistical weight challenging.

400  
401 *Proteins that survive in cooked and buried foodcrust do not have particular amino acid  
402 compositions or secondary structures*

403  
404 Previously, the impact of reactive amino acid content has been noted as a factor influencing  
405 protein survival [16], as has the impact of higher order structure and the location of a peptide  
406 within the structure, which may protect or expose particular peptides [16,63]. Amino acid

407 sequence also has been reported as a driving factor in protein abundance by determining  
408 conformational stability and reducing synthesis cost [71]. Bulk amino acid count (Figure 5a)  
409 and peptide secondary structure (Figure 5f) demonstrated no global change between their  
410 fresh, cooked and buried state for any ingredient, indicating that they likely did not play a  
411 substantial global role in peptide preservation. Secondary structure is innately linked to a  
412 protein's function and stability, with certain structures being more stable. Secondary  
413 structure was collected using the following categories: G: 310 helix, H: alpha-helix, I: pi-  
414 helix, E: beta-strand, B:beta-bridge, T: beta-turn, S: high curvature loop, and L for irregular  
415 (Figure 5f). Secondary structures have been reported to be distributed across all proteins in  
416 the following ratio; alpha-helix, beta-strand, irregular, beta-turn, high curvature loop, 310  
417 helix, beta-bridge, pi-helix = 34:21:20:11:9:4:1:0 [72]. Similar ratios inline with the  
418 background distribution were observed in all samples, with only minor variation between  
419 input ingredients - meaning that secondary structure does not seem to be a factor in  
420 determining which peptides we detect in the extractome. Moreover, as secondary structure  
421 and bulk amino acid distribution were no different in cooked or buried samples for any  
422 ingredient, it appears that these characteristics do not impact protein preservation.



424 **Figure 5: Protein and peptide characteristics for fresh, cooked foodcrust and buried**  
425 **foodcrust extractomes of chestnut, deer, and salmon, including: A: peptide amino**  
426 **acid count (points connected for visibility), B: Peptide Length, C: Peptide**  
427 **Hydropathicity, D: Peptide Isoelectric Point, E: Peptide Disorder Prediction, F: Peptide**  
428 **Dominant Secondary Structure (points connected for visibility), G: Protein Melting**  
429 **Temperature and H: Protein Amyloid Propensity. Buried chestnut replicates removed**  
430 **due to insufficient sample size and field contamination.**

431  
432 *More hydrophobic peptides are slightly more likely to survive cooking and burial*

433  
434 Previously, the potential role of protein hydropathicity in protein preservation has been  
435 hypothesised, whereby hydrophilic proteins leach from ceramics during washing and/or  
436 burial [15,16,52]. In this study we investigated whether peptide hydropathicity (solubility)  
437 correlated with peptide abundance in fresh, cooked or buried samples, with the hypothesis  
438 that less water soluble (hydrophobic) peptides might preferentially survive in buried samples.  
439 Grand Average of Hydropathy (GRAVY) score, a standard measure of protein polarity, was  
440 calculated on a peptide level for fresh, cooked food crust and buried foodcrust samples  
441 (Figure 5c). For both salmon and deer, GRAVY score increased slightly in cooked and  
442 buried foodcrusts compared to fresh samples, indicating that peptides were generally slightly  
443 more hydrophobic in cooked and buried samples than in fresh samples. This result supports  
444 previous hypotheses that water leaching over time may reduce soluble protein content in  
445 pottery [16,52], leaving slightly more hydrophobic proteins to be detected in higher  
446 abundance in buried samples, although we note that a slight increase in hydrophobic  
447 peptides was also observed after cooking, indicating that hydrophilic peptides may also be  
448 less likely to be entrapped in foodcrust.

449  
450 *Cooking may liberate peptides located deep within the protein's 3D structure*

451  
452 The potential role of higher order structure and the location of a peptide within the structure,  
453 which may protect or expose particular peptides has been noted [17,72]. Relative solvent  
454 accessibility (RSA) is a measure of the exposure of an amino acid within its tertiary structure,  
455 and therefore how accessible that residue is to solvents (ie. amino acids located deeper  
456 within the 3D structure are less accessible to solvents). The results revealed that cooked  
457 foodcrusts had a higher proportion of peptides with deep RSA (ie. peptides with amino acids  
458 located deep within the tertiary protein structure), than did fresh ingredients, which is most  
459 marked in chestnut. One explanation for this is that as tertiary protein structures unfold  
460 during denaturation during cooking, peptides which are located deep within the protein  
461 structure become more accessible to extraction than they are in uncooked ingredients. This

462 means that in uncooked archaeological samples we are probably less likely to see deep  
463 peptides than in their cooked counterparts. In buried foodcrust samples the proportion of  
464 “deep” RSA peptides continued to decrease in deer samples but increased in salmon  
465 samples, providing inconsistent results.

466

467 *Protein thermal stability may impact peptide survival*

468

469 Thermal stability is the ability of proteins to resist changes in structure caused by heating.  
470 We investigated this characteristic with the hypothesis that thermostable peptides would  
471 persist through the cooking, entrapment, and burial process. Melting temperature (Tm) is  
472 often used as a measure of protein thermal stability. Proteins surviving in buried salmon  
473 foodcrust are slightly more thermostable than the fresh ingredient and unburied foodcrust,  
474 with fewer peptides from proteins of low thermal stability ( $T_m < 45^\circ\text{C}$ ) surviving in buried  
475 foodcrust replicates (Figure 5g). This demonstrates that thermally stable peptides were more  
476 likely to survive in buried salmon than proteins with lower thermal stability. Conversely in  
477 buried deer foodcrust, peptides from less thermally stable proteins survived better than  
478 peptides with higher thermal stability, further demonstrating the varied behaviour of different  
479 ingredients.

480

481 *Certain properties may aid in the preservation of particular ingredients or proteins*

482

483 Some characteristics demonstrated changes after cooking and burial only for particular  
484 ingredients. Amyloid propensity and disorder prediction showed changes primarily for  
485 salmon, but not in deer samples. Previously Collins et al. [64] speculated that entropic  
486 effects would promote survival of flexible molecules that could adapt and bind to the mineral  
487 surface. Demarchi et al. provided evidence that mineral binding of a small flexible acid rich  
488 region was responsible for the persistence of a peptide form of a c-type lectin of African  
489 ostrich eggshell into deep time [73]. Most recently, Scott [74] proposed that the robust nature  
490 of amyloid fibrils and other factors contributing to protein aggregation may explain the  
491 presence of particular proteins and peptides in the archaeological record, noting that dietary  
492 proteins persisting in ancient dental calculus are often amyloidogenic. The analysis of  
493 intrinsically disordered proteins revealed that in the case of salmon, the proportion of  
494 peptides with high disorder prediction slightly increased following cooking and remained high  
495 during burial meaning that more flexible peptides become relatively more representative than  
496 inflexible ones (Figure 5e). Deer samples did not display this trend. Similarly, the analysis of  
497 amyloid propensity revealed that peptides which could readily stack were more likely to be

498 detected in buried salmon samples than fresh or cooked (Figure 5h), potentially indicating  
499 that this characteristic plays a role in the preservation of some salmon proteins. This trend  
500 was also not observed in deer samples. In the case of deer, the density of peptides with low  
501 isoelectric points (i.e. acidic, water soluble peptides) decreased in the buried samples  
502 compared to the fresh ingredient and unburied foodcrust, while the density of peptides with  
503 high pls (basic peptides) increased (Figure 5d), demonstrating that acidic peptides survived  
504 poorly in buried deer foodcrust, a change not observed in salmon or chestnut. This indicates  
505 that certain characteristics may aid in the preservation of particular ingredients or proteins.

506

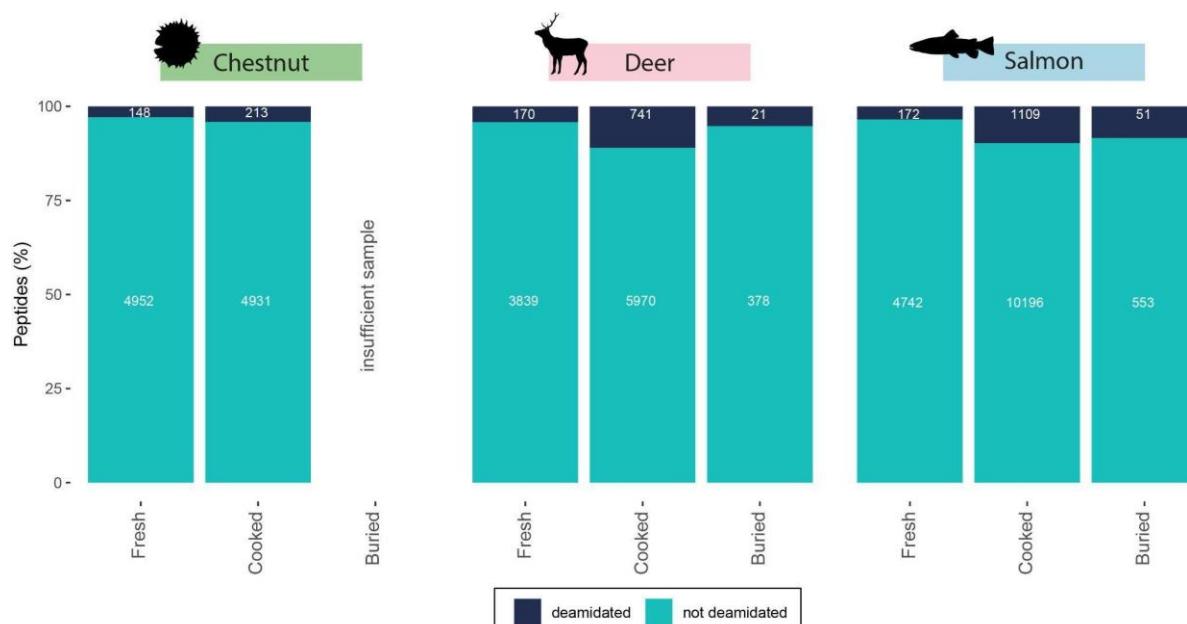
507 While the buried chestnut samples were not included in the broader characterisation  
508 analysis due to small sample size, we note that the only two chestnut-specific proteins to  
509 survive in buried foodcrust samples (Cupin type-1 domain-containing protein and Chitin-  
510 binding type-1 domain-containing protein) are both allergenic. Allergenic proteins are often  
511 characterised by their stability, either in terms of their tertiary structure (such as the beta-  
512 barrel observed in Cupin-type proteins), or resistance to heat or digestive degradation [75],  
513 and have previously been observed to preferentially preserve in ancient dental calculus [76].

514

515 The potential role of lipids in creating water-impermeable barriers which may shelter proteins  
516 in pottery from forces of degradation has previously been noted [17], although lipids may  
517 complicate protein extraction [15]. A vast body of work has explored the impact of organic  
518 content on protein and nitrogen preservation in sediments [77–82]. Previously, some of the  
519 buried foodcrust replicates were analysed by flame ionisation detector [47], facilitating an  
520 opportunity to examine any correlations between protein and lipid content in the same  
521 vessel. The total peptide and protein count was compared to these lipid quantities generated  
522 by Bondetti et al. [47] for each sample. We note that there was a surprising level of variation  
523 in lipid concentration between replicates of identical input ingredients and weight. This  
524 revealed that in addition to the impact of cooking practice and frequency of use [50], even  
525 identically processed foodcrusts are not homogenous. However due to the small sample size  
526 it was not possible to reveal the impact of lipid content on protein detection (supplementary  
527 text S5). Future controlled dosing studies would further address the impact of lipid content  
528 on protein preservations in ceramics and their residues.

529

530 *Markers of diagenesis*


531

532 Peptide length was investigated as a potential indicator of diagenesis from the cooking and  
533 entrapment process and/or from burial. Differences in peptide length were observed  
534 between fresh ingredients, cooked foodcrust and buried foodcrust. For all ingredients, the

535 distribution indicated that shorter peptides were more likely to be detected in all samples  
536 (Figure 5b). Peptide length decreased upon cooking, with chestnut providing the most  
537 marked reduction, and salmon the least. It is notable that long peptides (above ~ 20 amino  
538 acids) were very rarely detected in buried samples of any ingredient. This may demonstrate  
539 that long peptides are rarely preserved in buried samples, or alternatively, as long peptides  
540 are always less abundant, that the smaller sample size of buried peptides reduces the  
541 probability of their detection. As peptide length decreases, it seems likely that the probability  
542 of identifying a tissue and taxonomically-specific sequence would also decrease. This  
543 analysis further revealed differences in the behaviour of the different ingredients.

544

545 Deamidation of asparagine and glutamine was explored as a marker of preservational  
546 quality [83]. In certain proteins deamidation has been reported to change protein tertiary  
547 structure [84]. In the case of deer and salmon, the highest proportion of peptides bearing  
548 deamidation were the unburied foodcrust samples, demonstrating that heating plays a role in  
549 deamidation. In the case of salmon and deer, the proportion of deamidated peptides fell after  
550 burial (Figure 6). Notably, the proportion of deamidated peptides does not continue to  
551 increase in the buried state considering that deamidation has been used as an indicator of  
552 protein preservation quality, perhaps because the majority of possible deamidations have  
553 already occurred during heating, and timescales of chemically mediated deamidation are  
554 slow at burial temperatures [85]. This demonstrates that deamidation may not be a good  
555 indicator of peptide authenticity where modern contaminants may have undergone heating.  
556 Unfortunately, due to the necessary peptide filtration steps discussed below, it was not  
557 possible to apply deamiDATE here to assess site-specific deamidation. Further investigation  
558 of site-specific PTMs may reveal evidence for aspects of food preparation and taphonomy.



559

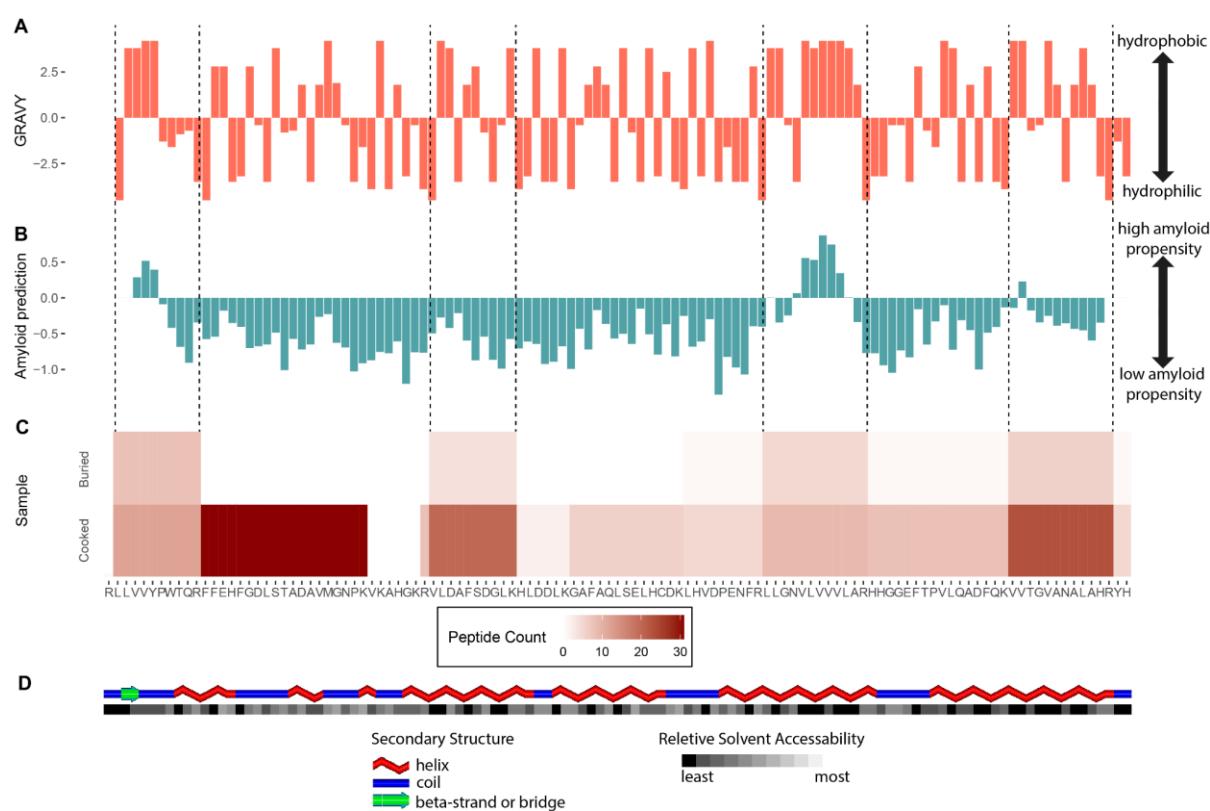
560

561 **Figure 6: Proportion of deamidated peptides. Note: cooked and buried foodcrust**  
562 **replicates =3, Fresh ingredient replicates =1.**

563

564 *Case study: haemoglobin*

565


566 While no single physiochemical characteristic investigated appears to explain why some  
567 proteins survive better than others in buried foodcrusts, it is apparent that these properties  
568 may play a role for individual ingredients and proteins. One protein that preserves relatively  
569 well in the foodcrust samples is globin-domain containing protein (haemoglobin), so we  
570 investigated this protein in greater detail as a case study to understand, on an individual  
571 protein level, if particular characteristics may be aiding in its survival. These are likely too  
572 complex and varied to be detected broadly, across the whole sample set.

573

574 GRAVY score, amyloid propensity, secondary structure and RSA were overlaid on top of a  
575 peptide abundance heatmap (Figure 7), illustrating that in the case of the globin family  
576 protein, the peptides which preserve most commonly in the buried sample are located on the  
577 most hydrophobic parts of the protein, and often in regions with high amyloid propensity  
578 (Figure 7). This demonstrates in the case of globin that hydrophobic (insoluble) peptides  
579 appear to be more likely to persist in our buried samples than hydrophilic peptides. However  
580 this means that a complex array of mechanisms, interactions and protein compositions must  
581 be impacting the survival of proteins and peptides in buried foodcrusts.

582

583



584

585

586 **Figure 7: Globin characteristic: hydropathicity (A), amyloid prediction (B) with**  
587 **heatmaps of peptide counts for each region (C) of buried (top) and cooked (bottom)**  
588 **foodcrust deer samples, (D) secondary structure of sequence: blue= coil, red= helix**  
589 **and relative solvent accessibility (RSA) Black= completely buried, White=fully exposed**  
590 **(created in POLYVIEW-2D [86]).**

591

592 *No property single-handedly explains why particular proteins survive cooking and burial*

593

594 In this study, many protein characteristics were investigated to understand potential  
595 explanations for why certain proteins were detected in buried foodcrusts. We observe that  
596 the input ingredient was the most influential factor in protein survival, and individual proteins  
597 follow different preservation trends. For example, in the foodcrust created by cooking deer  
598 meat, basic peptides seem to preferentially survive the cooking and burial environment. But  
599 this trend was not observed for proteins detected from salmon foodcrust. Similarly, proteins  
600 with higher thermal stability, disorder prediction, and amyloid propensity were preferentially  
601 preserved in buried salmon foodcrusts, yet not in deer. Some trends that were observed  
602 across all food types including that slightly hydrophobic peptides are more likely to preserve  
603 after cooking and burial, that the recovery of longer peptides tended to decrease after  
604 cooking and burial, and that deamidation increased following cooking, but not necessarily  
605 burial. However no trend could single handedly explain why particular peptides and proteins

606 survive cooking and burial. While few trends in protein characteristic were observed across  
607 all ingredients, when viewed on an individual protein level, haemoglobin peptides that were  
608 slightly hydrophobic and had high amyloid propensity were more likely to preserve in buried  
609 foodcrust samples, even though they were not particularly abundant in the unburied sample.  
610 This indicates that particular protein or peptide characteristics are indeed involved in  
611 determining which proteins/peptides survive in buried samples, but that these complex  
612 interactions are likely to vary based on a myriad of factors, and may be obscured when the  
613 data is viewed more broadly.

614

## 615 **Future directions**

616

617 A key goal of this study is to consider expectations for the survival of proteins in foodcrusts  
618 and ceramics in archaeological contexts. While the buried foodcrusts in this investigation  
619 revealed a number of protein identifications with an informative level of protein and taxon-  
620 specificity, it is important to note that the samples were buried for only 6 months and in a  
621 temperate climate, and therefore may not be comparable to samples of much older temporal  
622 and thermal age. While Barker et al. [16] reported that protein content dropped rapidly upon  
623 burial and at a slower rate thereafter, the exact rate of dietary protein decay over longer  
624 periods of time and in other climatic conditions is poorly understood. The results of this study  
625 should therefore be seen as an upper limit to protein preservation, as it may well be that  
626 samples of considerable age or from hot climates may not yield confidently preserved  
627 proteins, necessitating a cautious approach to the destruction of valuable samples.

628

629 In this experiment the input ingredient itself appeared to play a strong role in the difference in  
630 protein preservation/detection between samples. This has implications on ingredient visibility  
631 in archaeological interpretations on foodcrust results, particularly for plants. Future  
632 investigation of the impact of ingredient mixing on protein preservation will be necessary to  
633 understand the full implications of this. Furthermore, further investigation into the impact of  
634 protein interactions with other macronutrients such as lipids and carbohydrates on protein  
635 preservation is required to fully understand this issue.

636

637 We are aware that extraction and LC-MS/MS protocols will have impacted the peptides  
638 which are detected. As a result, we are viewing the detected proteins and peptides through a  
639 lens of the analytical processes they have been through. Some of these may be taphonomic  
640 or cultural such as cooking and burial, but others are inflicted by post depositional  
641 processes, storage, handling and extraction. Untangling the role of each will be imperative in  
642 understanding the impact of any one variable. The extraction of proteins from ceramics

643 continues to be a challenge, with ongoing optimisation [14–16,21,51,63,87,88], which will  
644 undoubtedly impact protein extraction.

645

## 646 Conclusion

647

648 In this investigation we sought to explore the utility of proteomic analysis of foodcrusts and  
649 ceramics in understanding ancient food preparation, by examining the extent to which the  
650 buried foodcrust extractome reflects input ingredients. The results revealed that foodcrusts  
651 harboured more preserved proteins than ceramics, and we note, in line with previous  
652 studies, that proteins are not easily extracted from ceramic matrices [14,15]. Sufficient  
653 taxonomic and tissue-specific identifications were made to detect the relevant ingredient in  
654 buried foodcrust created by cooking deer and salmon meat, and sometimes chestnut flour,  
655 demonstrating that ancient foodcrusts may be a viable matrix from which to extract dietary  
656 proteins, but that not all ingredients were equal in protein retrieval revealing that input  
657 ingredient biases protein recovery. Preservation was not universal between proteins and  
658 peptides; those which were most abundant in the fresh meat and flour were not necessarily  
659 the most frequently identified in buried samples. These biases have implications on  
660 archaeological interpretations of ancient foodcrusts and ceramics, namely that certain  
661 ingredients and proteins will be unlikely to be detected in ancient samples. It is clear further  
662 work is necessary to understand the biases of input ingredients, particularly when they are  
663 mixed, and over longer periods of vessel use and burial. Secondly we attempted to  
664 characterise the proteins and peptides retrieved from buried foodcrust samples, to  
665 understand physicochemical factors influencing their preservation. While we observed that  
666 more hydrophobic peptides were slightly more likely to survive cooking and burial, no  
667 property was seen to single-handedly explain why particular proteins/peptides survive in  
668 buried foodcrusts, with results indicating that certain properties act on protein preservation in  
669 complex ways requiring further investigation, or that characteristics not investigated here  
670 may play a role. This study demonstrates the value of experimental analyses to anticipate a  
671 maximum baseline of protein results from archaeological samples.

672

## 673 Data Availability

674

675 The mass spectrometry proteomics data have been deposited to the ProteomeXchange  
676 Consortium via the PRIDE [89] partner repository with the dataset identifier PXD050001 and  
677 10.6019/PXD050001.

678

679 **Funding**

680

681 This project has received funding from the European Union's EU Framework Programme for  
682 Research and Innovation Horizon 2020 under Grant Agreement No. 722606: TEMPERA.

683 This work was supported by the Cambridge Trust and Newnham College through an  
684 international studentship awarded to M.E. and a Philip Leverhulme Prize awarded to J.H..

685

686 **Acknowledgements**

687

688 We gratefully acknowledge the use of the Thermo Scientific Orbitrap Fusion™ Tribrid™ in  
689 the York Centre of Excellence in Mass Spectrometry. The centre was created thanks to a  
690 major capital investment through Science City York, supported by Yorkshire Forward with  
691 funds from the Northern Way Initiative, and subsequent support from EPSRC  
692 (EP/K039660/1; EP/M028127/1). We thank Niklas Hausmann for assistance with R,  
693 and Alexandre Lucquin for assistance locating lipid data files.

694

695 **AI-assisted technology declaration**

696

697 AI-assisted technology was used to support code writing and debugging of the  
698 "peptide\_property\_analyser.py" python script created for this manuscript. The script was  
699 then checked by a software developer and tested extensively with test datasets of known  
700 output to validate it. AI-assisted technologies were not used in any other capacity in this  
701 manuscript.

702

703

704 **Works Cited**

- 705 1. Runge AKW *et al.* 2021 Palaeoproteomic analyses of dog palaeofaeces  
706 reveal a preserved dietary and host digestive proteome. *Proc. Biol. Sci.* **288**,  
707 20210020. (doi:10.1098/rspb.2021.0020)
- 708 2. Colonese AC *et al.* 2017 New criteria for the molecular identification of cereal  
709 grains associated with archaeological artefacts. *Sci. Rep.* **7**, 6633.  
710 (doi:10.1038/s41598-017-06390-x)
- 711 3. Yang Y, Shevchenko A, Knaust A, Abuduresule I, Li W, Hu X, Wang C,  
712 Shevchenko A. 2014 Proteomics evidence for kefir dairy in Early Bronze Age China.  
713 *J. Archaeol. Sci.* **45**, 178–186. (doi:10.1016/j.jas.2014.02.005)
- 714 4. Hong C, Jiang H, Lü E, Wu Y, Guo L, Xie Y, Wang C, Yang Y. 2012  
715 Identification of milk component in ancient food residue by proteomics. *PLoS One* **7**,  
716 e37053. (doi:10.1371/journal.pone.0037053)

718 5. Xie M, Shevchenko A, Wang B, Shevchenko A, Wang C, Yang Y. 2016  
719 Identification of a dairy product in the grass woven basket from Gumugou Cemetery  
720 (3800 BP, northwestern China). *Quat. Int.* **426**, 158–165.  
721 (doi:10.1016/j.quaint.2016.04.015)

722 6. Buckley M, Melton ND, Montgomery J. 2013 Proteomics analysis of ancient  
723 food vessel stitching reveals >4000-year-old milk protein. *Rapid Commun. Mass  
724 Spectrom.* **27**, 531–538. (doi:10.1002/rcm.6481)

725 7. Cappellini E *et al.* 2010 A multidisciplinary study of archaeological grape  
726 seeds. *Naturwissenschaften* **97**, 205–217. (doi:10.1007/s00114-009-0629-3)

727 8. Hendy J *et al.* 2018 Ancient proteins from ceramic vessels at Çatalhöyük  
728 West reveal the hidden cuisine of early farmers. *Nat. Commun.* **9**, 1–10.  
729 (doi:10.1038/s41467-018-06335-6)

730 9. Evans M *et al.* 2023 Detection of dairy products from multiple taxa in Late  
731 Neolithic pottery from Poland: an integrated biomolecular approach. *Royal Society  
732 Open Science* **10**, 230124. (doi:10.1098/rsos.230124)

733 10. Jeong C *et al.* 2018 Bronze Age population dynamics and the rise of dairy  
734 pastoralism on the eastern Eurasian steppe. *Proceedings of the National Academy of  
735 Sciences* **115**, E11248–E11255. (doi:10.1073/pnas.1813608115)

736 11. Wilkin S *et al.* 2021 Dairying enabled Early Bronze Age Yamnaya steppe  
737 expansions. *Nature* **598**, 629–633. (doi:10.1038/s41586-021-03798-4)

738 12. Hendy J *et al.* 2018 Proteomic evidence of dietary sources in ancient dental  
739 calculus. *Proc. Biol. Sci.* **285**, 20180977. (doi:10.1098/rspb.2018.0977)

740 13. Geber J, Tromp M, Scott A, Bouwman A, Nanni P, Grossmann J, Hendy J,  
741 Warinner C. 2019 Relief food subsistence revealed by microparticle and proteomic  
742 analyses of dental calculus from victims of the Great Irish Famine. *Proc. Natl. Acad.  
743 Sci. U. S. A.* **116**, 19380–19385. (doi:10.1073/pnas.1908839116)

744 14. Craig OE, Collins MJ. 2002 The Removal of Protein from Mineral Surfaces:  
745 Implications for Residue Analysis of Archaeological Materials. *J. Archaeol. Sci.* **29**,  
746 1077–1082. (doi:10.1006/jasc.2001.0757)

747 15. Craig OE, Collins MJ. 2000 An improved method for the immunological  
748 detection of mineral bound protein using hydrofluoric acid and direct capture. *J.  
749 Immunol. Methods* **236**, 89–97. (doi:10.1016/s0022-1759(99)00242-2)

750 16. Barker A, Dombrosky J, Venables B, Wolverton S. 2018 Taphonomy and  
751 negative results: An integrated approach to ceramic-bound protein residue analysis.  
752 *J. Archaeol. Sci.* **94**, 32–43. (doi:10.1016/j.jas.2018.03.004)

753 17. Tanasi D, Cucina A, Cunsolo V, Saletti R, Di Francesco A, Greco E, Foti S.  
754 2021 Paleoproteomic profiling of organic residues on prehistoric pottery from Malta.  
755 *Amino Acids* **53**, 295–312. (doi:10.1007/s00726-021-02946-4)

756 18. Solazzo C, Fitzhugh WW, Rolando C, Tokarski C. 2008 Identification of  
757 Protein Remains in Archaeological Potsherds by Proteomics. *Anal. Chem.* **80**, 4590–  
758 4597. (doi:10.1021/ac800515v)

759 19. Chowdhury MP, Campbell S, Buckley M. 2021 Proteomic analysis of  
760 archaeological ceramics from Tell Khaiber, southern Iraq. *J. Archaeol. Sci.* **132**,  
761 105414. (doi:10.1016/j.jas.2021.105414)

762 20. Dallongeville S, Garnier N, Casasola DB, Bonifay M, Rolando C, Tokarski C.  
763 2011 Dealing with the identification of protein species in ancient amphorae. *Anal.*  
764 *Bioanal. Chem.* **399**, 3053–3063. (doi:10.1007/s00216-010-4218-2)

765 21. Pal Chowdhury M, Makarewicz C, Piezonka H, Buckley M. 2022 Novel Deep  
766 Eutectic Solvent-Based Protein Extraction Method for Pottery Residues and  
767 Archeological Implications. *J. Proteome Res.* **21**, 2619–2634.  
768 (doi:10.1021/acs.jproteome.2c00340)

769 22. Admiraal M *et al.* 2023 The role of salmon fishing in the adoption of pottery  
770 technology in subarctic Alaska. *J. Archaeol. Sci.* **157**, 105824.  
771 (doi:10.1016/j.jas.2023.105824)

772 23. Heron C, Craig OE. 2015 Aquatic Resources in Foodcrusts: Identification and  
773 Implication. *Radiocarbon* **57**, 707–719. (doi:10.2458/azu\_rc.57.18454)

774 24. Courel B *et al.* 2021 The use of early pottery by hunter-gatherers of the  
775 Eastern European forest-steppe. *Quat. Sci. Rev.* **269**, 107143.  
776 (doi:10.1016/j.quascirev.2021.107143)

777 25. Lucquin A *et al.* 2016 Ancient lipids document continuity in the use of early  
778 hunter-gatherer pottery through 9,000 years of Japanese prehistory. *Proceedings of  
779 the National Academy of Sciences* **113**, 3991–3996. (doi:10.1073/pnas.1522908113)

780 26. Craig OE. 2004 Organic analysis of «food crusts» from sites in the Schelde  
781 valley, Belgium: a preliminary evaluation. *Notae Praehistoricae* **24**, 209–217.

782 27. Heron C, Craig OE, Luquin A, Steele VJ, Thompson A, Piličiauskas G. 2015  
783 Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic,  
784 3300–2400 cal BC. *J. Archaeol. Sci.* **63**, 33–43. (doi:10.1016/j.jas.2015.08.002)

785 28. Gunnarssone A, Oras E, Talbot HM, Ilves K, Legzdiņa D. 2020 Cooking for  
786 the living and the dead: Lipid analyses of rauši settlement and cemetery pottery from  
787 the 11th–13th century. *Estonian J. Archaeol.* **24**, 45–69. (doi:10.3176/arch.2020.1.02)

788 29. Bondetti M *et al.* 2021 Neolithic farmers or Neolithic foragers? Organic  
789 residue analysis of early pottery from Rakushechny Yar on the Lower Don (Russia).  
790 *Archaeol. Anthropol. Sci.* **13**, 141. (doi:10.1007/s12520-021-01412-2)

791 30. Gibbs K *et al.* 2017 Exploring the emergence of an ‘Aquatic’ Neolithic in the  
792 Russian Far East: organic residue analysis of early hunter-gatherer pottery from  
793 Sakhalin Island. *Antiquity* **91**, 1484–1500. (doi:10.15184/aqy.2017.183)

794 31. Bondetti M, Scott S, Lucquin A, Meadows J, Lozovskaya O, Dolbunova E,  
795 Jordan P, Craig OE. 2020 Fruits, fish and the introduction of pottery in the Eastern  
796 European plain: Lipid residue analysis of ceramic vessels from Zamostje 2. *Quat. Int.*  
797 **541**, 104–114. (doi:10.1016/j.quaint.2019.05.008)

798 32. Lucquin A *et al.* 2023 The impact of farming on prehistoric culinary practices  
799 throughout Northern Europe. *Proc. Natl. Acad. Sci. U. S. A.* **120**, e2310138120.  
800 (doi:10.1073/pnas.2310138120)

801 33. Taché K, Jaffe Y, Craig OE, Lucquin A, Zhou J, Wang H, Jiang S, Standall E,  
802 Flad RK. 2021 What do 'barbarians' eat? Integrating ceramic use-wear and residue  
803 analysis in the study of food and society at the margins of Bronze Age China. *PLoS*  
804 **One** **16**, e0250819. (doi:10.1371/journal.pone.0250819)

805 34. Shoda S, Lucquin A, Sou CI, Nishida Y, Sun G, Kitano H, Son J-H, Nakamura  
806 S, Craig OE. 2018 Molecular and isotopic evidence for the processing of starchy  
807 plants in Early Neolithic pottery from China. *Sci. Rep.* **8**, 17044. (doi:10.1038/s41598-  
808 018-35227-4)

809 35. Yoneda M, Kisida K, Gakuhari T, Omori T, Abe Y. 2019 Interpretation of bulk  
810 nitrogen and carbon isotopes in archaeological foodcrusts on potsherds. *Rapid*  
811 *Commun. Mass Spectrom.* **33**, 1097–1106. (doi:10.1002/rcm.8446)

812 36. Craig OE *et al.* 2013 Earliest evidence for the use of pottery. *Nature* **496**,  
813 351–354. (doi:10.1038/nature12109)

814 37. Shoda S, Lucquin A, Ahn J-H, Hwang C-J, Craig OE. 2017 Pottery use by  
815 early Holocene hunter-gatherers of the Korean peninsula closely linked with the  
816 exploitation of marine resources. *Quat. Sci. Rev.* **170**, 164–173.  
817 (doi:10.1016/j.quascirev.2017.06.032)

818 38. Admiraal M *et al.* 2023 Chemical analysis of pottery reveals the transition  
819 from a maritime to a plant-based economy in pre-colonial coastal Brazil. *Sci. Rep.* **13**,  
820 16771. (doi:10.1038/s41598-023-42662-5)

821 39. Robson HK *et al.* 2022 Light Production by Ceramic Using Hunter-Gatherer-  
822 Fishers of the Circum-Baltic. *Proceedings of the Prehistoric Society* **88**, 25–52.  
823 (doi:10.1017/ppr.2022.12)

824 40. Oras E, Lucquin A, Löugas L, Törv M, Kriiska A, Craig OE. 2017 The  
825 adoption of pottery by north-east European hunter-gatherers: Evidence from lipid  
826 residue analysis. *J. Archaeol. Sci.* **78**, 112–119. (doi:10.1016/j.jas.2016.11.010)

827 41. Regert M, Vacher S, Moulherat C, Decavallas O. 2003 Adhesive production  
828 and pottery function during the iron age at the site of grand aunay (sarthe, France).  
829 *Archaeometry* **45**, 101–120. (doi:10.1111/1475-4754.00098)

830 42. Lyu N, Yan L, Wang T, Lin L, Rao H, Yang Y. 2024 Characterization of  
831 Pottery Foodcrusts Through Lipid and Proteomic Analyses: A Case Study from the  
832 Xiawan Site in Yixing City, East China. *J. Archaeol. Sci.*, **161**, 105902.  
833 (doi:10.1016/j.jas.2023.105902)

834 43. Shevchenko A, Schuhmann A, Thomas H, Wetzel G. 2018 Fine  
835 Endmesolithic fish caviar meal discovered by proteomics in foodcrusts from  
836 archaeological site Friesack 4 (Brandenburg, Germany). *PLoS One* **13**, e0206483.  
837 (doi:10.1371/journal.pone.0206483)

838 44. Miller MJ *et al.* 2020 Interpreting ancient food practices: stable isotope and  
839 molecular analyses of visible and absorbed residues from a year-long cooking  
840 experiment. *Sci. Rep.* **10**, 1–16. (doi:10.1038/s41598-020-70109-8)

841 45. Evershed RP, Copley MS, Dickson L, Hansel FA. 2008 Experimental  
842 evidence for the processing of marine animal products and other commodities  
843 containing polyunsaturated fatty acids in pottery vessels. *Archaeometry* **50**, 101–113.  
844 (doi:10.1111/j.1475-4754.2007.00368.x)

845 46. Charters S, Evershed RP, Quye A, Blinkhorn PW, Reeves V. 1997 Simulation  
846 Experiments for Determining the Use of Ancient Pottery Vessels: the Behaviour of  
847 Epicuticular Leaf Wax During Boiling of a Leafy Vegetable. *J. Archaeol. Sci.* **24**, 1–7.  
848 (doi:10.1006/jasc.1995.0091)

849 47. Bondetti M, Scott E, Courel B, Lucquin A, Shoda S, Lundy J, Labra-Odde C,  
850 Drieu L, Craig OE. 2021 Investigating the formation and diagnostic value of  $\omega$  -(o -  
851 alkylphenyl)alkanoic acids in ancient pottery. *Archaeometry* **63**, 594–608.  
852 (doi:10.1111/arcm.12631)

853 48. Liu X, Ren M, Fu Y, Hu Y, Wang S, Yang Y. 2023 New insights into the use of  
854 Neolithic pottery in Guangxi of South China: organic residue analysis of experimental  
855 and archaeological pottery. *Heritage Science* **11**, 1–15. (doi:10.1186/s40494-023-  
856 01045-9)

857 49. Hammann S, Cramp LJE. 2018 Towards the detection of dietary cereal  
858 processing through absorbed lipid biomarkers in archaeological pottery. *J. Archaeol.*  
859 *Sci.* **93**, 74–81. (doi:10.1016/j.jas.2018.02.017)

860 50. Drieu L, Regert M, Mazuy A, Vieugué J, Bocoum H, Mayor A. 2022  
861 Relationships between lipid profiles and use of ethnographic pottery: An exploratory  
862 study. *J. Archaeol. Method Theory* **29**, 1294–1322. (doi:10.1007/s10816-021-09547-  
863 1)

864 51. Barker A, Venables B, Stevens SM, Seeley KW, Wang P, Wolverton S. 2012  
865 An Optimized Approach for Protein Residue Extraction and Identification from  
866 Ceramics After Cooking. *Journal of Archaeological Method and Theory* **19**, 407–439.

867 52. Evershed RP, Tuross N. 1996 Proteinaceous Material from Potsherds and  
868 Associated Soils. *J. Archaeol. Sci.* **23**, 429–436. (doi:10.1006/jasc.1996.0038)

869 53. Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J.  
870 2014 Ultrasensitive proteome analysis using paramagnetic bead technology. *Mol.*  
871 *Syst. Biol.* **10**, 757. (doi:10.15252/msb.20145625)

872 54. Hughes CS, Mogridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J.  
873 2018 Single-pot, solid-phase-enhanced sample preparation for proteomics  
874 experiments. *Nat. Protoc.* **14**, 68–85. (doi:10.1038/s41596-018-0082-x)

875 55. Cleland TP. 2018 Human Bone Paleoproteomics Utilizing the Single-Pot,  
876 Solid-Phase-Enhanced Sample Preparation Method to Maximize Detected Proteins  
877 and Reduce Humics. *J. Proteome Res.* **17**, 3976–3983.  
878 (doi:10.1021/acs.jproteome.8b00637)

879 56. Bleasdale M *et al.* 2021 Ancient proteins provide evidence of dairy  
880 consumption in eastern Africa. *Nat. Commun.* **12**, 1–11. (doi:10.1038/s41467-020-  
881 20682-3)

882 57. Ventresca Miller AR *et al.* 2022 The spread of herds and horses into the Altai:  
883 How livestock and dairying drove social complexity in Mongolia. *PLoS One* **17**,  
884 e0265775. (doi:10.1371/journal.pone.0265775)

885 58. Sakalauskaitė J, Marin F, Pergolizzi B, Demarchi B. 2020 Shell  
886 palaeoproteomics: First application of peptide mass fingerprinting for the rapid  
887 identification of mollusc shells in archaeology. *J. Proteomics* **227**, 103920.  
888 (doi:10.1016/j.jprot.2020.103920)

889 59. Lim MY, Paulo JA, Gygi SP. 2019 Evaluating False Transfer Rates from the  
890 Match-between-Runs Algorithm with a Two-Proteome Model. *J. Proteome Res.* **18**,  
891 4020–4026. (doi:10.1021/acs.jproteome.9b00492)

892 60. Conway JR, Lex A, Gehlenborg N. 2017 UpSetR: an R package for the  
893 visualization of intersecting sets and their properties. *Bioinformatics* **33**, 2938–2940.  
894 (doi:10.1093/bioinformatics/btx364)

895 61. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014 UpSet:  
896 Visualization of Intersecting Sets. *IEEE Trans. Vis. Comput. Graph.* **20**, 1983–1992.  
897 (doi:10.1109/TVCG.2014.2346248)

898 62. Sharpe JR, Sammons RL, Marquis PM. 1997 Effect of pH on protein  
899 adsorption to hydroxyapatite and tricalcium phosphate ceramics. *Biomaterials* **18**,  
900 471–476. (doi:10.1016/S0142-9612(96)00157-3)

901 63. Stevens SM Jr, Wolverton S, Venables B, Barker A, Seeley KW, Adhikari P.  
902 2010 Evaluation of microwave-assisted enzymatic digestion and tandem mass  
903 spectrometry for the identification of protein residues from an inorganic solid matrix:  
904 implications in archaeological research. *Anal. Bioanal. Chem.* **396**, 1491–1499.  
905 (doi:10.1007/s00216-009-3341-4)

906 64. Collins MJ, Bishop AN, Farrimond P. 1995 Sorption by mineral surfaces:  
907 Rebirth of the classical condensation pathway for kerogen formation? *Geochim.  
908 Cosmochim. Acta* **59**, 2387–2391. (doi:10.1016/0016-7037(95)00114-F)

909 65. Jung F, Frey K, Zimmer D, Mühlhaus T. 2023 DeepSTABp: A Deep Learning  
910 Approach for the Prediction of Thermal Protein Stability. *Int. J. Mol. Sci.* **24**.  
911 (doi:10.3390/ijms24087444)

912 66. Charoenkwan P, Ahmed S, Nantasenamat C, Quinn JMW, Moni MA, Lio' P,  
913 Shoombuatong W. 2022 AMYPred-FRL is a novel approach for accurate prediction  
914 of amyloid proteins by using feature representation learning. *Sci. Rep.* **12**, 1–14.  
915 (doi:10.1038/s41598-022-11897-z)

916 67. Erdős G, Dosztányi Z. 2020 Analyzing Protein Disorder with IUPred2A. *Curr.  
917 Protoc. Bioinformatics* **70**, e99. (doi:10.1002/cbpi.99)

918 68. Kozlowski LP. 2016 IPC - Isoelectric Point Calculator. *Biol. Direct* **11**, 55.  
919 (doi:10.1186/s13062-016-0159-9)

920 69. Wang S, Li W, Liu S, Xu J. 2016 RaptorX-Property: a web server for protein  
921 structure property prediction. *Nucleic Acids Res.* **44**, W430–W435.  
922 (doi:10.1093/nar/gkw306)

923 70. Wang S, Peng J, Ma J, Xu J. 2016 Protein Secondary Structure Prediction  
924 Using Deep Convolutional Neural Fields. *Sci. Rep.* **6**, 1–11. (doi:10.1038/srep18962)

925 71. Buric F, Viknander S, Fu X, Lemke O, Zrimec J, Szyrwił L, Mueleder M,  
926 Ralser M, Zelezniak A. 2023 The amino acid sequence determines protein  
927 abundance through its conformational stability and reduced synthesis cost. *bioRxiv.*  
928 [preprint], 2023.10.02.560091. (doi:10.1101/2023.10.02.560091)

929 72. Pollastri G, Przybylski D, Rost B, Baldi P. 2002 Improving the prediction of  
930 protein secondary structure in three and eight classes using recurrent neural  
931 networks and profiles. *Proteins* **47**, 228–235. (doi:10.1002/prot.10082)

932 73. Demarchi B *et al.* 2016 Protein sequences bound to mineral surfaces persist  
933 into deep time. *eLife* **5**, e17092. (doi:10.7554/eLife.17092)

934 74. Scott A. 2022 Investigation of ancient proteins in archaeological material.  
935 PhD, Friedrich Schiller University Jena.

936 75. Zhang Y, Che H, Li C, Jin T. 2023 Food Allergens of Plant Origin. *Foods* **12**,  
937 2232. (doi:10.3390/foods12112232)

938 76. Scott A *et al.* 2021 Exotic foods reveal contact between South Asia and the  
939 Near East during the second millennium BCE. *Proc. Natl. Acad. Sci. U. S. A.* **118**,  
940 e2014956117. (doi:10.1073/pnas.2014956117)

941 77. Hilscher A, Heister K, Siewert C, Knicker H. 2009 Mineralisation and  
942 structural changes during the initial phase of microbial degradation of pyrogenic plant  
943 residues in soil. *Org. Geochem.* **40**, 332–342.  
944 (doi:10.1016/j.orggeochem.2008.12.004)

945 78. Knicker H, Río JC del, Hatcher PG, Minard RD. 2001 Identification of protein  
946 remnants in insoluble geopolymers using TMAH thermochemolysis/GC–MS. *Org.*  
947 *Geochem.* **32**, 397–409. (doi:10.1016/S0146-6380(00)00186-8)

948 79. Knicker H. 2004 Stabilization of N-compounds in soil and organic-matter-rich  
949 sediments—what is the difference? *Mar. Chem.* **92**, 167–195.  
950 (doi:10.1016/j.marchem.2004.06.025)

951 80. Knicker H, Hatcher PG. 1997 Survival of Protein in an Organic-Rich  
952 Sediment: Possible Protection by Encapsulation in Organic Matter.  
953 *Naturwissenschaften* **84**, 231–234. (doi:10.1007/s001140050384)

954 81. Panettieri M, Knicker H, Murillo JM, Madejón E, Hatcher PG. 2014 Soil  
955 organic matter degradation in an agricultural chronosequence under different tillage  
956 regimes evaluated by organic matter pools, enzymatic activities and CPMAS <sup>13</sup>C  
957 NMR. *Soil Biol. Biochem.* **78**, 170–181. (doi:10.1016/j.soilbio.2014.07.021)

958 82. del Río JC, Olivella MA, Knicker H, de las Heras FXC. 2004 Preservation of  
959 peptide moieties in three Spanish sulfur-rich Tertiary kerogens. *Org. Geochem.* **35**,  
960 993–999. (doi:10.1016/j.orggeochem.2004.06.002)

961 83. Ramsøe A, van Heekeren V, Ponce P, Fischer R, Barnes I, Speller C, Collins  
962 MJ. 2020 DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity  
963 of members of ancient proteomes. *J. Archaeol. Sci.* **115**, 105080.  
964 (doi:10.1016/j.jas.2020.105080)

965 84. Tanriver G, Monard G, Catak S. 2022 Impact of Deamidation on the Structure  
966 and Function of Antiapoptotic Bcl-xL. *J. Chem. Inf. Model.* **62**, 102–115.  
967 (doi:10.1021/acs.jcim.1c00808)

968 85. Griffin RC, Penkman KEH, Moody H, Collins MJ. 2010 The impact of random  
969 natural variability on aspartic acid racemization ratios in enamel from different types  
970 of human teeth. *Forensic Sci. Int.* **200**, 148–152. (doi:10.1016/j.forsciint.2010.04.005)

971 86. Cao B, Porollo A, Adamczak R, Jarrell M, Meller J. 2005 Enhanced  
972 recognition of protein transmembrane domains with prediction-based structural  
973 profiles. *Bioinformatics* **22**, 303–309. (doi:10.1093/bioinformatics/bti784)

974 87. Barnard H *et al.* 2007 Mixed results of seven methods for organic residue  
975 analysis applied to one vessel with the residue of a known foodstuff. *J. Archaeol. Sci.*  
976 **34**, 28–37. (doi:10.1016/j.jas.2006.03.010)

977 88. Heaton K, Solazzo C, Collins MJ, Thomas-Oates J, Bergström ET. 2009  
978 Towards the application of desorption electrospray ionisation mass spectrometry  
979 (DESI-MS) to the analysis of ancient proteins from artefacts. *J. Archaeol. Sci.* **36**,  
980 2145–2154. (doi:10.1016/j.jas.2009.05.016)

981 89. Perez-Riverol Y *et al.* 2022 The PRIDE database resources in 2022: a hub for  
982 mass spectrometry-based proteomics evidences. *Nucleic Acids Res.* **50**, D543–  
983 D552. (doi:10.1093/nar/gkab1038)