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Abstract 

Retrotransposons (RTEs) have been postulated to reactivate with age and contribute to aging 

through activated innate immune response and inflammation. Here, we analyzed the 

relationship between RTE expression and aging using published transcriptomic and 

methylomic datasets of human blood. Despite no observed correlation between RTEs activity 

and chronological age, the expression of most RTE classes and families except short 

interspersed nuclear elements (SINEs) correlated with biological age-associated gene 

signature scores. Strikingly, we found that the expression of SINEs was linked to upregulated 

DNA repair pathways in multiple cohorts. We also observed DNA hypomethylation with aging 

and significant increase in RTE expression level in hypomethylated RTEs except for SINEs. 

Additionally, our single-cell transcriptomic analysis suggested a role for plasma cells in aging 

mediated by RTEs. Altogether, our multi-omics analysis of large human cohorts highlights the 

role of RTEs in biological aging and suggests possible mechanisms and cell populations for 

future investigations. 
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Introduction  

    Transposable elements (TEs) are genetic elements that can move within the genome and 

are categorized into DNA transposons and retrotransposons (RTEs), which depend on cDNA 

intermediates to function. RTEs include three classes: endogenous retrovirus long terminal 

repeats (LTRs), and long and short interspersed nuclear elements, known as LINEs and 

SINEs, respectively. LINEs and SINEs employ target-primed reverse transcription for genome 

integration, with SINEs depending on the proteins encoded by LINEs1. Although most of the 

RTE sequences are dormant in the host genome, they continue to play vital roles in human 

evolution and physiology2,3. 

RTEs are silenced through heterochromatinization and DNA methylation in the early 

developmental stages as part of the host defense mechanism3,4.  However, increased RTE 

activity that occurs with aging can lead to genome instability and activation of DNA damage 

pathways4-7. Additionally, accumulation of cytoplasmic RTE cDNAs detected in aging 

organisms and senescent cells can activate type I interferon (IFN-I) response and 

inflammation3,4,8-10, that contributes to inflammaging11. Furthermore, chromatin remodeling and 

cellular senescence also contribute partially to the RTE reactivation10. Cellular senescence is 

a non-proliferative state elicited by stress factors such as DNA damage and is closely 

intertwined with inflammation and aging12. Through the expression of senescence associated 

secretory phenotype (SASP), senescent cells promote inflammation and senescence in other 

cells, including immune cells, leading to a compromised immune system and a vicious cycle 

of inflammation13. Understanding the relationship between RTE expression and SASP, cellular 

senescence, and inflammaging could offer important insights into strategies against aging and 

age-related diseases (ARDs). 

    Recent studies have documented the relationship between RTE activation and biological 

age-related (BAR) events, but comprehensive and large-scale studies are lacking, mainly due 

to the paucity of RNA-seq data for large non-cancerous human cohorts. Most of the existing 

transcriptomics datasets are microarray-based, where the computational methods to analyze 

repetitive elements have not been sufficiently developed. Overlapping Illumina microarray 

expression and methylation probe locations to RTE locations in RepeatMasker14, we were 

able to identify enough probes to calculate the expression of RTE classes and families. 

Building on this methodology, we explored how RTE expression contributes to biological aging 

using publicly available transcriptomics microarray data derived from human blood samples. 

More specifically, we first investigated if RTE expression was correlated with chronological 

age, and then we analyzed the relationship between RTE and BAR events including cellular 

senescence, inflammation, and IFN-I response with published gene signatures. Using 

microarray methylomic data, we also investigated the DNA methylation level of RTEs in blood 
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samples of multiple non-cancerous human cohorts and examined the relation between DNA 

methylation and RTE expression and aging. Furthermore, with annotated single-cell 

transcriptomic data of the peripheral blood mononuclear cells (PBMCs) of 21 healthy human 

samples from a recent study of aging immunity15, we identified cells that could be implicated 

in the process of RTE reactivation and aging. Lastly, the single-cell transcriptomic data of 

supercentenarians16 was analyzed to examine the interplay between RTE expression and 

aging as a factor of aging and longevity (Fig. 1).  
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Results   

Analyzing DNA methylation and expression levels of RTEs using microarray data 

    We collected three published microarray datasets from large-scale human studies, 

including the peripheral monocyte samples from Multi-Ethnic Study of Atherosclerosis17 

(MESA, aged 44 to 83, n=1202), the whole blood (WB) samples from Grady Trauma 

Project18,19 (GTP, aged 15 to 77, n=359), and PBMC samples from Genetics, Osteoarthritis 

and Progression20 (GARP, aged 43 to 79, n=139), which are all non-cancerous human 

samples (Supplementary Table 1 and Supplementary Information). The studies were 

conducted using either Illumina HumanHT-12 V3 or Illumina HumanHT-12 V4 expression 

microarray kits. After comparing the probes of the two microarray versions, we adopted the 

more comprehensive probe list of V4, which contains the full intersection of the two lists. To 

quantify RTE expression, we mapped the microarray probe locations to RTE locations in 

RepeatMasker to extract the list of noncoding (intergenic or intronic) probes that cover the 

RTE regions. We included three main RTE classes: (1) the LINE class, which encompasses 

the L1 and L2 families; (2) the SINE class, with Alu and MIR as the two main families; and (3) 

the LTR class which comprises the ERV1, ERVL, ERVL-MaLR, and ERVK families. Most of 

the RTE-covering probes available on Illumina HumanHT-12 V4 are present in MESA and 

GARP, while fewer are available in GTP (Supplementary Fig. 1a, Supplementary Tables 2-
4).  

    Four methylation datasets were analysed, including MESA, Swedish Adoption/Twin Study 

of Aging21 (SATSA, aged 48 to 98, n=1072), Brisbane Systems Genetics Study22 (BSGS, aged 

10 to 75, n=862), and Genome-wide Methylation Profiles Reveal Quantitative Views of Human 

Aging Rates23 (GMPWAR, aged 19 to 101, n=656). SATSA, BSGS, and GMPWAR include 

genome-wide DNA methylation of WB samples produced by Illumina Infinium 450k array 

(Supplementary Table 1 and Supplementary Information). The DNA methylation probes 

from the Illumina Infinium 450k array kit were aligned to the locations in RepeatMasker to 

identify the probes overlapping the RTE regions (Supplementary Table 5). More than 90% of 

the RTE-covering probes are present in MESA and GMPWAR, while fewer, but more than half, 

are available in SATA and BSGS datasets (Supplementary Fig. 1b).   

The chronological age is not linked with RTE expression. 

Firstly, we examined the relationship between RTE expression and chronological age in the 

MESA, GARP, and GTP cohorts. The ages of the individuals enrolled in these studies range 

from 15 to 83 years, with the mean being 70.2 (MESA), 60.1 (GAPR), and 42.5 (GTP) 

(Supplementary Table 1). Strikingly, no significant relationship (P value < 0.05) is found 
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between chronological age and expressions of the three RTE classes across the datasets (Fig. 
2a). Similarly, apart from a weak correlation observed between a few RTE families and 

chronological age, we could not identify any strong relation between chronological age and 

expression of RTE families across the three cohorts (Supplementary Fig. 2a).   

    A similar correlation analysis was carried out in a scRNA-seq data of the PBMCs of 21 non-

obese healthy men annotated into 25 cell types by Mogilenko et al.15 (Supplementary Table 
6 and online methods). When comparing the RTE expression of the young (aged 25 to 29, 

n=11) group with the old (aged 62 to 70, n=10) group, we could not find any significant 

difference or trend in any cell types between the two groups (Supplementary Figs. 3-5). 

Overall, RTE expression did not correlate with chronological aging across our microarray and 

scRNA-seq datasets. 

RTE expression positively correlates with BAR gene signature scores except for SINEs. 

    In mammals, aging is characterized by an intricate network of inflammation, IFN-I signaling, 

and cellular senescence3. To measure the level of biological aging from the transcriptomic 

data, we focused on six gene sets retrieved from widely cited studies: IFN-I24, inflammatory 

cytokines25, inflammatory chemokines26, inflammaging27, SASP28, and cellular senescence29 

(Supplementary Table 7). The scores of these six age-associated gene sets were calculated 

for each individual in the MESA, GTP, and GARP cohorts by applying the singscore package 

in Bioconductor30 (online methods). Except for GTP, in which 12 genes were missing from 

the gene sets in total (Supplementary Table 8), MESA and GARP microarray datasets had 

the expression of all the genes in the gene sets. 

Then, we analyzed the relation between RTE expression and the six BAR gene signature 

scores. Positive correlations were observed between the expressions of LINEs and LTRs and 

BAR gene signature scores across three datasets, while inverse correlation was present 

between the expression of SINEs and these scores in the PBMC samples from the GARP 

cohort (Fig. 2a and b). The discrepant pattern of LTRs and LINEs versus SINEs in PBMC is 

more pronounced in the correlation analysis between the expression of RTE families and the 

BAR gene sets (Fig. 2c and d). Interestingly, the expressive patterns of RTE families are 

divided into two groups that also reflect their positive or inverse correlations with BAR 

signature scores in the GARP cohort. In the GARP cohort, the strongest positive correlation 

with BAR scores was observed in L1, ERVK, and ERVL. By contrast, the expressions of Alu 

and MIR of SINE, L2, and ERV1 were inversely correlated with BAR signature scores in the 

GARP cohort (Fig. 2c and d). This pattern was also observed in the MESA peripheral 

monocyte samples for L1, ERVL, and ERVK, but not other RTE families (Supplementary 
Fig.2a and c). The WB GTP cohort showed divergent result to the other two cohorts perhaps 
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because of the absence of certain genes in the six BAR gene sets or lower number of TE 

probes in GTP (Supplementary Fig. 1b, Fig.2a-b and Supplementary Table 8).  

    To study the association between RTE expression and BAR gene signatures, we also split 

the samples in each cohort based on quartiles of RTE expression into high, low, and medium 

(top 25%, bottom 25%, and middle 50%) groups and compared the BAR gene signature 

scores across these three groups. Across the datasets, there is an overall trend of increased 

scores of BAR gene signatures in high versus low LINE and LTR expression groups 

(Supplementary Fig. 6). In fact, amongst all gene sets, we found the most significant increase 

for SASP and senescence and to a lesser extent for inflammaging signatures. We observed 

higher SASP, inflammatory cytokine, senescence, and inflammaging in the peripheral  

monocytes (MESA) in high SINE- and Alu-expressing groups (Supplementary Fig. 7). 

However, in the PBMCs samples of the GARP cohorts, groups of high SINE and Alu 

expressions demonstrate lower expressions of SASP, inflammatory chemokine, senescence, 

and inflammaging, that reflects the inverse correlation we observed before (Fig. 2c). There 

are no specific trends for SINE expression in the WB samples from the GTP cohort 

(Supplementary Fig. 7).  Taken together, SINEs display different pattern than LINEs and 

LTRs in terms of the association between their expressions and BAR gene signatures. This 

prompted us to conduct a gene set variation analysis (GSVA)31 to identify the pathways that 

are regulated in the high versus low RTE expression groups in the three cohorts (online 
methods).  

Elevated SINE expression is linked with the upregulation of the DNA repair pathways, 
while elevated LINE and LTR expressions are associated with the inflammatory 
response. 

    We conducted GSVA for high versus low expression groups of RTE classes and families to 

identify the pathways that might be affected by RTE expression. We specifically focused on 

the pathways (gene sets) related to the inflammatory and DNA repair responses retrieved from 

the Molecular Signatures Database (MSigDB)32 with “inflammatory” and “dna_repair” as 

search keywords.  

We found that a significant fraction of gene sets related to DNA repair were downregulated 

in the group of monocyte samples (MESA cohort) highly expressing LINE and LTR classes 

but upregulated in the monocyte and PBMC samples (MESA and GARP cohorts, respectively) 

highly expressing SINEs (Fig. 3a). At the family level, there is a unique increase in DNA repair 

activity in the monocytes of the cohort with high Alu expression. In the PBMC samples of the 

GARP dataset, DNA repair pathways are upregulated in groups highly expressing L2, ERV1, 

Alu, and MIR, while most of the other RTE classes demonstrate decreased DNA repair activity. 
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In contrast, the inflammatory response is upregulated in the monocyte and PBMC samples of 

groups expressing LINE and LTR classes and families at high levels, and such upregulation 

is less common in SINE (Fig. 3a). These observations provide insight into the perpetuating 

contrast between SINE versus LINE and LTR observed in our analysis, as SINE might 

contribute to aging via genome instability instead of inflammation that is associated with LINE 

and LTR activities. Overall, our observations are consistent across MESA and GARP cohorts 

but less so in the GTP cohort (Fig. 3b), which might be attributed to less RTE-covering probes 

and the missing genes from the BAR gene signatures. (Supplementary Fig. 1a, 
Supplementary Table 8).  

DNA methylation levels of RTEs inversely correlated with the chronological age and the 
RTE expression except for SINE expression. 

    The demethylation of RTEs is suggested to contribute to aging3,5,7. To examine the effect of 

RTE demethylation on chronological aging, we analyzed DNA methylation data from multiple 

cohorts including monocytes from the MESA cohort and the WB data from GMPWAR, BSGS, 

SATSA. Our analysis showed an inverse correlation between the methylation level of RTEs 

and chronological age across all RTE classes and families in the WB and monocytes (Fig. 4a-
b and Supplementary Fig. 8). This observed trend is in line with previous reports of 

demethylation of RTE with age in gene-poor regions5,21,23.    

       To elucidate the relationship between the expression and methylation level of RTEs, we 

divided the MESA samples, with matched RTE DNA methylation and expression, into three 

groups based on the level of expression of RTEs in different classes and families: low (1st 

quartile), medium (2nd and 3rd quartile), and high (4th quartile) expression groups of monocyte 

samples from the MESA cohort. The DNA methylation levels of LINEs and LTRs significantly 

decreased in groups of high LINE and LTR expressions, respectively, but SINEs and the 

satellite repeats (as negative control) did not display the same pattern (Fig. 4c). LINE families, 

MIR, and LTR families except ERVK displayed lower levels of methylation in higher expression 

groups, while such pattern was absent in Alu, CR1, and ERVl (Supplementary Fig. 9). 

Although the DNA methylation level of SINEs positively correlated with the methylation levels 

of LINEs and LTRs, the expression of SINEs was not significantly correlated with the 

expression levels of other RTE classes (Fig. 4d). Overall, we found a distinct pattern for SINEs 

versus LTRs and LINEs by exploring a relationship between DNA methylation and expression 

levels of RTEs in monocytes, consistent with our other findings showing different patterns for 

SINEs versus LTRs and LINEs in PBMCs (see above). This result also suggests a dispensable 

role of DNA methylation for SINE silencing in monocytes, which is in line with previous studies 
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showing SINEs are not derepressed by deletion of DNA methyltransferases or treatment with 

DNA demethylating agents and are primarily regulated by histone modifications33. 

Elevated level of RTEs in plasma cells of healthy PBMC samples is associated with the 
high SASP and inflammaging gene signature scores. 

    As described above, we did not identify any association between RTE expression and 

chronological aging for any human cohorts we analyzed. However, the positive correlation 

between LINE and LTR expressions with BAR gene signature scores in the PBMC samples 

of the GARP cohort prompted us to investigate PBMC samples in more detail using PBMC 

scRNAseq data of 21 samples annotated into 25 cell types by Mogilenko et al.15(online 
methods and Supplementary Table 6). The scRNA-seq samples were divided based on low 

and high BAR gene signature scores to compare against the expression of RTE classes for 

each cell type (online methods). Among the 25 annotated cell types, plasma cells consistently 

demonstrate significantly elevated RTE expression in cells of high SASP expression that is 

not observed in the other cell types (Fig. 5a and Supplementary Figs. 10-12). Increased 

LINE and SINE expressions were also observed in the plasma cells of the samples with high 

inflammatory chemokines and inflammaging gene signature scores (Fig. 5b and c). Although 

not statistically significant, elevated RTE expression was also seen in the groups with high 

inflammatory cytokines and senescence but not IFN-I scores (Fig. 5d-f). Overall, this finding 

indicates that plasma cells might play an important role in the process in which reactivation of 

RTEs regulates aging. 

Downregulation of RTE expression in supercentenarians versus normal aged cases 
despite high BAR signature scores in NK and T cells of supercentenarians  

    Supercentenarians who have reached 110 years of age are an excellent resource for 

investigating healthy aging. We hypothesized that supercentenarians should express RTEs 

less than normal-aged people because RTE expression, particularly LINE and LTR 

expressions, can activate the inflammatory pathways (Fig. 3), which would be generally 

harmful to healthy aging. To understand whether there is any RTE expression change in 

supercentenarians versus normal-aged people and identify the relationship to BAR gene 

signatures, we compared the scRNA-seq data of the PBMCs of seven supercentenarians 

(over 110 years) to five non-centenarian (50 to 80 years) controls16. We collected the 

annotated cells of these twelve cases as a Seurat object for which the cells were annotated 

into ten different cell types. Compared with the control group, the supercentenarians 

demonstrated decreased RTE expression in the natural killer (NK) cells, B-cells, T-cells, 

monocytes, and dendritic cells (Fig. 5g and Supplementary Figs. 13). Both T cell types 
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showed decreased LINE expression, while the noncytotoxic cluster, TC1, showed slightly 

decreased LTR expression, and the expanding cytotoxic T cells, TC2, showed decreased 

SINE expression. On the other hand, the cytotoxic T cells also demonstrated an increased 

level of inflammatory cytokines and inflammaging gene signature scores. In addition, the NK 

cells displayed higher senescence and SASP scores in the supercentenarians while 

demonstrating decreased LINE and SINE expressions (Fig. 5g and Supplementary Figs. 14-
15). Overall, this result reveals inflammatory activity in cytotoxic T cells and increased 

senescence in the NK cells that is not associated with the activation of RTEs in 

supercentenarians. By contrast, the expression of RTEs is significantly reduced in most of the 

immune cell types in supercentenarians. 
 
Discussion   
 

    The role of RTEs in aging has been studied extensively but not in a systematic manner with 

large, non-cancerous human cohorts across RTE categories before this study. Current 

understanding of the relationship between RTEs and aging are largely conducted in vitro or in 

model organisms7,9,34 that might not apply to human due to intraspecies differences35. 

Moreover, the link of RTEs to aging in non-cancerous human cohorts has not been studied 

systematically in large cohorts.   

    We combined bulk and single-cell transcriptomic data to examine the relationship between 

RTE expression versus chronological and biological aging, demonstrating that chronological 

aging is not significantly linked with RTE reactivation. In this process, we discovered that LTR 

and LINE expressions are positively correlated with the BAR gene signature scores. However, 

in contrast, the SINE expression demonstrates an inverse correlation with BAR scores in the 

PBMC samples and no significant relationship in the WB. We suspect the absence of a positive 

correlation between BAR scores and SINE expression might be linked to the same 

discrepancy observed in the GSVA analysis, in which DNA repair pathways are upregulated 

in the groups of cases with high SINE and Alu expressions. This result suggests that 

reactivation of SINE, particularly Alu, might lead to DNA damage, a hallmark of aging. Although 

SINEs compose up to 13% of the human genome, and Alu elements make up the largest 

family of human mobile elements, Alu is not studied as extensively as L1 from the LINE class1. 

Therefore, this novel discovery requires further study to confirm the connection and elucidate 

the mechanism by which DNA repair might be linked to the derepression of SINE and Alu 

expressions. In contrast, the groups of cases with high LINE and LTR expressions have 

upregulation of the pathways related to the inflammatory response, which is in line with the 

previous findings from human and model organisms3,34.    
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    The mechanisms of aging and age-related diseases (ARDs) converge on inflammaging36. 

Previous studies have shown RTE’s pathogenetic role in ARDs including neurodegenerative 

diseases through elevation of DNA damage and genome instability37-39. SINE expression 

inversely correlated with the BAR signature scores in the PBMCs of osteoarthritis patients, 

while a positive correlation is observed in monocytes. Moreover, a discrepant upregulation of 

DNA repair pathways is seen in the osteoarthritis cohorts expressing higher level L2, ERV1, 

Alu, and MIR. With osteoarthritis being a typical ARD, our analysis provides insight into the 

relationship between aging and RTEs in an ARD state in comparison with that of non-ARD 

individuals.   

    The relationship between DNA methylation and expression of RTEs with age was also 

investigated in our study. The methylation levels of all three RTE classes decrease with 

chronological age in our analysis, and the RTE expression is in inverse correlation with the 

methylation level in LINE and LTR but not in SINE. RTE sequences are repressed via DNA 

methylation and heterochromatinization40. In the aging process, surveillance of transcriptional 

regulators such as SIRT6 wanes, leading to hypomethylation and heterochromatin reduction4. 

L1 has been identified to be repressed through DNA methylation41. However, SINE has been 

suggested to be predominantly regulated by histone modification, and loss of DNA methylation 

has little effect on the transcription of SINEs33, as reflected in our analysis.  

    Expression microarray has been successfully employed to study the expression of RTEs42-44. 

However, the probe design of microarrays does not accommodate specifically to the repeIIve 

and interspersed nature of RTEs45. To circumvent this issue, our analysis was conducted on 

the class and family levels but not subfamily levels of RTEs to retain enough probes 

(Supplementary Fig. 1) providing sufficient power for calculating the expression scores. We 

also supported our findings with scRNA-seq, particularly when investigating the association 

between RTE expression and chronological age, to circumvent the potential constraints posed 

by using microarray data. However, we are aware of the limitations imposed by using 

microarray in this study, particularly the low number of RTE probes in the expression 

microarray data. Our study can be enriched with the advent of large RNA-seq cohorts for aging 

studies in the future.  

Our exploration of multiple cell types based on a published PBMC scRNA-seq cohort 

unveiled plasma cell as the only cell type for which the expression of RTEs correlates with 

BAR signature scores. This matches a recent finding showing a late senescent-like phenotype 

marked by accumulation of TEs in plasma cells during pre-malignant stages46. Lastly, we 

explored a supercentenarian PBMC scRNA-seq cohort as a model for healthy aging and 

identified that RTE expression is generally decreased in supercentenarians. However, the 

BAR signature scores, particularly senescence and SASP scores, increased in the NK cells 
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of supercentenarians compared to the normal-aged group, suggesting that 

immunosenescence is an important factor in aging. 
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Methods 

Illumina HT12-v4 probes. The probe lists of Illumina Human HT-12 V3 (29431 probes) and 

V4 (33963) share 29311 probes in common, which is 99.6% of the list of V3. Therefore, we 

proceeded with HT-12 V4 probes throughout the analysis to cover all studies that used either 

V3 or V4. To identify the Illumina probes covering RTE regions, we first selected the Illumina 

Human HT-12 v4 probes covering intergenic or intronic regions, obtaining a list of 924 unique 

probes. We then overlapped these probe locations with RepeatMasker14 regions to acquire 

the probes covering RTE regions. In total, we could find 232 unique probes covering RTE 

regions.  
 

Generating gene signature scores using singscore. For each of the curated gene sets, 

instead of looking at individual gene expressions, we used singscore (version 1.20.0)30, a 

method that scores gene signatures in single samples using rank-based statistics on their 

gene expression profiles, to calculate the gene set enrichment scores. We first compiled the 

microarray expression matrix for average expression values from RPM values using limma47 

package in R, then we used the rankGenes function from the singscore package to rank each 

gene sample-wise. Eventually, the multiScore function was used to calculate signature scores 

for all six gene sets at once.  
 

Statistical analyses. All statistical analyses were performed in R (version 4.3.0). Pearson 

correlation test was used to determine the r and P values in correlation analyses. For 

differential expression analysis, the Wilcoxon test is used to determine the significance. The 

threshold to determine significance is set at P value < 0.05.  

 
Gene Set Variation Analysis (GSVA). GSVA was performed using the GSVA package 

(version 1.48.3)31 in R to compare the groups of low and high RTE expression groups. The 

gene lists were retrieved from the Molecular Signatures Database (MSigDB)32 by searching 

for “inflammatory” and “dna_repair” as keywords. We further removed pathways that ended 

with “_DN” (as for downregulated) or “_UP” (as for upregulated) to reduce repeat and 

confusion. Three repetitive gene sets were removed from our analysis 

(GOBP_POSITIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE, 

GOBP_POSITIVE_REGULATION_OF_CYTOKINE_PRODUCTION_INVOLVED_IN_INFLA

MMATORY_RESPONSE, 

GOBP_POSITIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE_TO_ANTIG

ENIC_STIMULUS). The filtering process generated 50 gene sets for inflammatory response 

and 21 gene sets for DNA repair. To detect any alterations in gene expression, the log fold 
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change threshold was kept low at |logFC| > 0.1, and a significance threshold of P < 0.05 was 

set. 
 

ScRNA-seq analysis workflow for RTEs. Two single-cell transcriptomic datasets of healthy 

human cohorts were adopted in this study (Supplementary Table 6). To obtain the RTE 

expression in single-cell sequencing (scRNA-seq) data, the scRNA-seq bam files were 

processed through scTE48 pipeline. More specifically, for each cell in each sample, the read 

counts for different classes and families of RTEs were generated using the scTE method. 

Subsequently, in each sample, we calculated the cumulative read counts for each RTE class 

per annotated cell type by adding the number of reads belonging to all the cells of each cell 

type. This resulted in pseudo-bulk read counts of RTE classes for different cell types in each 

sample.  
    In parallel, we also calculated the pseudo-bulk read counts for all genes per cell type in 

each sample using the genic read counts embedded in Seurat49 objects collected for the two 

scRNA-seq datasets that we employed in our study (Supplementary Table 6). Concatenating 

pseudo-bulk RTE and gene read counts, we performed Reads Per Million (RPM) normalization 

per cell type per sample. For each cell type, the denominator for RPM normalization was the 

cumulative counts of genes and RTE classes for that cell type.  

    To calculate the age-associated gene signature scores, we converted the scRNA-seq read 

counts to bulk RNA-seq read counts by summing up the number of reads of all cells of the 

same type for each gene. This resulted in a bulk RNA-seq gene count matrix from which we 

calculated each sample's RPM values per gene. Next, the RPM matrix was provided 

to singscore to calculate gene signature scores. Lastly, we divided the samples into high vs 

low gene signature scores by using the median as the cut-off.    
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Figure 1. Conceptual framework and the study design. We collected published datasets 
of human blood samples for gene expression, DNA methylation, and single-cell transcriptomic 
data. The analysis aimed to study the relation between the expression and DNA methylation 
of RTEs versus chronological and biological aging in large human cohorts. The single-cell 
transcriptomic datasets were employed for cell type-specific analysis of RTEs in PBMC to 
identify the relation between RTE expression and aging events for annotated cell types within 
old versus young PBMC samples. 
  
  

Sample type PBMC Whole blood Monocyte

Assay type Expression 
microarray

Methylation
microarray

ScRNA-seq

n age

GARP 139 43-79

GTP 359 15-78

MESA 1202 44-83

BSGS 614 10-75

GMPWAR 656 19-101

SATSA 1072 48-99

Healthy
Adults 10+11 62-70/ 

25-29

Centenarians 7+5 110s/ 
50-80

Differential expression

RTE expression

Gene signatures

DNA methylation of RTE

Relation study

Aims AnalysisData 

RTE expression vs aging

• To investigate the relation of RTE expression 
with chronological age and inflammaging

• To explore the relation of DNA methylation level 
of RTEs with chronological age 

• To study the relation between DNA methylation 
level and expression of RTEs

RTE methylation vs aging

Cell type specific analysis

• To identify cell types that demonstrate a linkage 
between RTE expression and age-related gene 
signatures

Supercentenarian analysis

• To examine the relation between RTE 
expressions and age-related events in 
supercentenarians
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Figure 2. Correlation analysis between RTE expression, chronological age, and age-
associated gene signature scores. a, No correlation between RTE expression and 
chronological age versus positive correlations between BAR gene signature scores 
and LINE and LTR expressions. Pair-wise correlation coefficients were calculated between 
the expression of different RTE classes (LTR, LINE & SINE) and chronological age and six 
BAR gene signature scores in monocytes (MESA), PBMCs (GARP), and the WB (GTP). b, 
Scatter plots displaying a positive correlation between LINE and LTR expressions and 
inflammaging, SASP, and senescence gene signature scores in PBMCs. c, Different families 
of RTEs were divided into two major groups based on their correlation and inverse correlation 
with BAR gene signature scores in PBMC samples. d, Correlation matrix depicting all pair-
wise combinations to identify the correlation between chronological age, RTE family 
expressions, and six age-associated signature scores in PBMCs. ** P ≤ 0.01, *** P ≤ 0.001, 
Pearson’s correlation. MESA, n=1202; GARP, n=139; GTP, n=359.  
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Figure 3. Upregulation of DNA repair vs inflammatory responses for samples with high 
expression of SINE vs LTR and LINE in the MESA and GARP cohorts. a, GSVA 
demonstrates increased activity of DNA repair pathways in the group of samples with high vs 
low SINE expression in the MESA and GARP cohorts. In contrast, the inflammatory response 
is upregulated in the sample groups highly expressing LINE and LTR classes and families in 
the MESA and GARP cohorts. The samples in each cohort were divided into low (1st quartile), 
medium (2nd and 3rd quartile), and high (4th quartile) expression groups based on the 
expression of RTE classes or families. GSVA was applied on high vs low groups for each class 
and family of RTEs. The threshold for differential expression is set at |logFC| > 0.1 and P < 
0.05 (online methods).  b, The Radar plot shows the difference between the number of 
upregulated versus downregulated gene sets related to DNA repair and inflammatory 
response in each cohort. While high expression of SINE and Alu is significantly associated 
with high number of up-regulated DNA-repair gene sets, LINE and L1 expressions are highly 
related to high number of activated gene sets related to inflammatory response in the MESA 
and GARP cohorts. This result is not highly supported by the GTP cohort, more likely due to 
the low number of probes in this cohort.    
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Figure 4. Inverse correlation of DNA methylation levels of RTEs with the chronological 
age and the RTE expression except for SINE expression. a, b, Methylation levels of RTE 
classes inversely correlated with chronological age in monocyte (MESA) and WB (BSGS, 
SATSA, and GMPWAR) samples. Satellite DNA was included as a control group. c, 
Methylation levels versus low (1st quartile), medium (2nd and 3rd quartile), and high (4th quartile) 
expressions of RTE classes in monocytes (MESA). Wilcoxon test; ns: not significant. d, 
Correlation matrix for RTE expressions and methylation levels, and chronological age. * P ≤ 
0.05, **** P ≤ 0.0001, Pearson’s correlation. MESA, n=1202; BSGS, n=614; GMPWAR, n=656; 
SATSA, n=1072.  
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Figure 5. Cell type-specific analysis of RTE expression vs BAR gene signature scores 
in two PBMC scRNA-seq cohorts. a-f, Unique increased expression of RTEs in the Plasma 
B cells of the samples with high BAR gene signature scores indicates the potential role of 
plasma B cells in aging. Wilcoxon test. n = 21. g, Decreased expressions of RTE classes and 
increased BAR gene signature scores in multiple annotated cell types obtained from the 
PBMCs of supercentenarians compared to ordinary elderlies as control. Supercentenarians, 
n=7; control, n=5, age 50 to 80. Wilcoxon test was applied to identify the significant changes. 
NK, Natural killer cell; BC, B-cell; TC1, T-cell 1; TC2, T-cell 2; M14, CD14+ monocyte; M16, 
CD16+ monocyte; EC, Erythrocytes; MKI, MKI67+ proliferating cell; DC, Dendritic cell; MGK, 
Megakaryocyte.   
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Supplementary Figure 1. Number of RTE-covering probes. a, The number of microarray 
probes covering RTE regions in MESA, GTP, and GARP compared to the total number of RTE 
probes available in Illumina HumanHT-12 V4. b, The number of microarray probes covering 
RTE regions in MESA, GMPWAR, SATSA, BSGS compared to the total number of RTE probes 
available in Illumina Infinium 450k array. 
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heaSupplementary Figure 2. Correlation analysis between BAR gene signatures and 
RTE family expressions in human cohorts. a, Weak correlation between a few RTE families 
and chronological age and strong positive correlation between L1, ERVL, ERVK, and MaLR 
with BAR signature scores in PBMC samples (GARP cohort). b, c, Correlation matrix depicting 
all pair-wise combinations to identify the correlation between chronological age, RTE family 
expressions, and six age-associated gene expressions in monocytes (MESA) and the WB 
(GTP). * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001, Pearson’s correlation. 
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Supplementary Figure 3. Comparing SINE expression in 25 cell types obtained from 
young versus old PBMC human samples. No significant difference was observed in any 
cell type. The young group comprises healthy male donors aged 25 to 29, n=11; the old groups 
are healthy male donors aged 62 to 70, n=10; Wilcoxon test; ns: insignificant.  
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Supplementary Figure 4. Comparing LINE expression in 25 cell types obtained from 
young versus old PBMC human samples. No significant difference was observed in any 
cell type. The young group comprises healthy male donors aged 25 to 29, n=11; the old groups 
are healthy male donors aged 62 to 70, n=10—Wilcoxon test; ns: insignificant. 
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Supplementary Figure 5. Comparing LTR expressions in 25 cell types obtained from 
young versus old PBMC human samples. No significant difference was observed in any 
cell type. The young group comprises healthy male donors aged 25 to 29, n=11; the old groups 
are healthy male donors aged 62 to 70, n=10—Wilcoxon test; ns: insignificant. 
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Supplementary Figure 6. Increasing trend of BAR gene signature scores in high vs 
low LTR and LINE expression groups in the three human cohorts. a,b The samples in 
each cohort were divided into (low (1st quartile), medium (2nd and 3rd quartile), and high (4th 
quartile) LTR and LINE expression groups, respectively. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 
0.001, **** P ≤ 0.0001, Wilcoxon test.  
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Supplementary Figure 7. Different patterns of BAR signature scores in MESA vs 
GARP vs GTP for high vs low SINE and Alu expression groups in the three human 
cohorts. a, b, The samples in each cohort were divided into low (1st quartile), medium (2nd 
and 3rd quartile), and high (4th quartile) SINE and Alu expression groups, respectively. * P ≤ 
0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001, Wilcoxon test. 
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Supplementary Figure 8. Correlation of methylation levels of RTE families with 
chronological age in monocyte (MESA) and WB (BSGS, SATSA, and GMPWAR) 
samples. a, b, Methylation levels of LTR and LINE/SINE families negatively correlate with 
chronological age in monocytes (MESA) and the WB (BSGS, SATSA, and GMPWAR). *** P 
≤ 0.001, Wilcoxon test. 
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Supplementary Figure 9. Methylation levels versus low (1st quartile), medium (2nd and 
3rd quartile), and high (4th quartile) expressions of RTE families in monocytes. While 
LINE families, MIR, and LTR families except ERVK show lower levels of methylation in higher 
expression groups, this pattern is not seen in Alu, CR1, and ERVl. * P ≤ 0.05, ** P ≤ 0.01, *** 
P ≤ 0.001, **** P ≤ 0.0001, ns: not significant, Wilcoxon test.  
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Supplementary Figure 10. Cell type-specific SINE expression versus low and high 
SASP score groups among 25 cell types in PBMC. Plasma B cells demonstrate significantly 
elevated SINE expression in samples with high SASP scores. * P ≤ 0.05, ns: not significant, 
Pearson’s correlation.    
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Supplementary Figure 11. Cell type-specific LINE expression versus low and high SASP 
score groups among 25 cell types in PBMC. Plasma B cells demonstrate significantly 
elevated LINE expression in samples with high SASP scores. * P ≤ 0.05, ns: not significant, 
Pearson’s correlation.  
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Supplementary Figure 12. Cell type-specific LTR expression versus low and high SASP 
score groups among 25 cell types in PBMC. Plasma B cells demonstrate significantly 
elevated LTR expression in samples with high SASP scores. * P ≤ 0.05, ns: not significant, 
Pearson’s correlation.  
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Supplementary Figure 13. Comparison of cell type-specific RTE expression in 
supercentenarians versus normal aged cases. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P 
≤ 0.0001, ns: not significant, Wilcoxon test.  
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Supplementary Figure 14. Comparison of cell type-specific Senescence, inflammaging, 
and SASP gene signature scores in supercentenarians versus normal aged cases. * P 
≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001, ns: not significant, Wilcoxon test.  
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Supplementary Fig. 15. Comparison of cell type-specific Inflammatory cytokines, 
Inflammatory chemokines, and IFN-I gene signature scores in supercentenarians 
versus normal aged cases. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001, ns: not 
significant, Wilcoxon test.  
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Supplementary Notes 

Descriptions of the study populations included in the analysis 

Grady Trauma Project (GTP). The research concentrated on African American individuals 

of low socioeconomic backgrounds who had undergone trauma, primarily recruited from 

Atlanta's Grady Memorial Hospital between 2005 and 2007 (Charles F. Gillespie et al., 2009). 

Exclusion criteria comprised mental retardation, active psychosis, or inability to provide 

informed consent. With over 7,000 participants, mostly urban African Americans with low 

socioeconomic status, the GTP specifically targeted a demographic with a history of significant 

trauma. The study involved WB collection between 8 to 9 a.m. following overnight fasting. 

Whole genome expression profiles were generated for 398 subjects at the Max-Planck 

Institute using Illumina HT-12 v3.0 or v4.0 arrays, focusing on 359 subjects of self-reported 

African American ancestry aged between 16-78 years. The expression data is available under 

GSE58137 at the GEO public repository. The Institutional Review Boards of Emory University 

School of Medicine and Grady Memorial Hospital granted approval for all procedures in this 

study. Funding primarily came from the National Institutes of Mental Health (MH071537). 

    Genetics, Arthrosis and Progression study (GARP). The GARP study focused on Dutch 

Caucasian siblings diagnosed with symptomatic osteoarthritis across multiple joint sites. It 

comprised 191 sibling pairs (n=382 individuals) of white Dutch ancestry, aged between 40 and 

70, diagnosed with primary symptomatic osteoarthritis in multiple joints including hand, spine, 

knee, or hip (N Riyazi et al., 2005). Whole genome expression profiles were analyzed from 

108 participants (68 unrelated families) of the GARP study and 26 age-matched healthy 

controls. The blood of participants was collected, and mononuclear blood cells were separated 

prior to RNA isolation. Sample libraries were hybridized onto the microarrays (Illumina Human 

HT-12_v3_BeadChip’s; Illumina). For the methylation analysis, genomic DNA was extracted, 

and the DNA methylation was assayed at over 450,000 sites on the Illumina Infinium 

HumanMethylation 450K BeadChips. The data is available at GEO public repository under the 

accession GSE48556. 

Multi-Ethnic Study of Atherosclerosis (MESA). MESA is a study of subclinical 

cardiovascular disease and the factors that forecast its progression to clinically evident forms 

initiated in 2000. This comprehensive investigation involves 6,814 asymptomatic individuals 

aged 45-84, presenting a diverse demographic: 38% Caucasian, 28% African American, 22 

percent Hispanic, and 12 percent Asian (primarily of Chinese descent). Enrolling 6,500 

individuals evenly distributed across genders, the study targets those without clinical 

cardiovascular disease at the outset, representing four racial/ethnic groups from six US 

communities (Forsyth County, North Carolina; St. Paul, Minnesota; Chicago, Illinois; New York, 

New York; Baltimore, Maryland; Los Angeles County, California). The study protocol has been 
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approved by the institutional review boards of the six field centers: Wake Forest University, 

Columbia University, Johns Hopkins University, University of Minnesota, Northwestern 

University, and University of California - Los Angeles. Detailed information about the design 

of MESA can be found at https://internal.mesa-nhlbi.org, and the data is accessible under 

GSE56045 at GEO. 

Blood samples were gathered to isolate peripheral blood mononuclear cells, from which 

monocytes were separated using anti-CD14 monoclonal antibody-coated magnetic beads. 

Flow cytometry analysis consistently demonstrated monocyte samples of over 90% purity 

across 18 specimens. The DNA and RNA were extracted simultaneously. RNA with integrity 

scores above 9.0 was chosen for global expression microarrays. Genome-wide expression 

analysis employed the Illumina HumanHT-12 v4 Expression BeadChip and Illumina Bead 

Array Reader, following the Illumina expression protocol. Additionally, the Illumina 

HumanMethylation450 BeadChip and HiScan reader were utilized for epigenome-wide 

methylation analysis, assigning individual samples to the BeadChips and chip positions using 

the same sampling scheme as for the expression BeadChips. Details for sample preparation, 

data processing and quality control were processed as demonstrated in the design paper 

(Diane Bild et al., 2002). The expression and methylation data are available at GEO public 

repository under the accession GSE56045 and GSE56046, respectively. 

Swedish Adoption/Twin Study of Aging (SATSA). SATSA is a comprehensive exploration 

of aging variations using twins raised in different environments influenced by genetic and 

environmental factors. The study draws its data from the Swedish Twin Registry, a population-

based national register encompassing twins born from 1886 to 2000. Additionally, the 

comprehensive assessment across biological, psychological, and social domains allows for 

the examination of patterns, predicting the onset of age-related health issues. Started in 1984, 

the study employed rigorous questionnaires every three years until 2010, engaging over 2,000 

twins. In parallel, a subset of 861 individuals participated in eight in-person testing (IPT) 

sessions, encompassing health, cognition, and memory assessments. Notably, IPT9 and 

IPT10 introduced daily tracking of memory, emotions, and social interactions, providing 

valuable insights into short-term fluctuations and early indicators of declining health. 

A total of 1,122 blood samples were collected at five time points spanning from 1992 to 2012. 

Across these five longitudinal waves, participant counts with 1 to 5 measurements were 99, 

86, 90, 80, and 30, respectively. Phenotype data, encompassing chronological age, sex, and 

zygosity, were gathered through comprehensive questionnaires and physical testing at each 

sampling wave. Following the manufacturer's protocol optimized for Illumina's Infinium 450K 

assay, 200 ng of DNA was prepared for each sample. The bisulfite-converted DNA samples 

were then hybridized to the Infinium HumanMethylation450 BeadChips using Illumina's 

Infinium HD protocol. This process allowed the measurement of DNA methylation levels for 
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485,512 CpGs in each sample. Following the quality control procedures described by Peters 

et al., 1,011 samples from 385 twins were retained after processing and quality control on the 

methylation data (Marjolein Peters et al., 2015). The data is available at ArrayExpress public 

repository under the accession E-MTAB-7309. 

Brisbane Systems Genetics Study (BSGS). Participants BSGS were enrolled in the 

Brisbane Twin Nevus (BTN) and MAPS (Nevus and cognition studies) projects. The study was 

approved by the Queensland Institute for Medical Research-Human Research Ethics 

Committee. Over the span of 16 years, adolescent MZ and DZ twins, alongside their siblings 

and parents, were recruited for an ongoing investigation into genetic and environmental 

influences on pigmented nevi and the associated risk of skin cancer and cognition. The study 

comprises individuals of mainly Anglo-Celtic descent with northern European origins (Joseph 

Powell et al., 2012). 

DNA methylation analysis was conducted on 614 individuals from 117 European descent 

families recruited through BSGS5. Bisulfite converted DNA samples were hybridized to 12-

sample Illumina HumanMethylation450 BeadChips using the Infinium HD Methylation protocol 

and Tecan robotics, assessing methylation status across 485,577 CpG sites, covering 99% of 

RefSeq genes. Post-methylation probe filtration by Powell et al. resulted in 417,069 probes. 

The methylation data are accessible in the GEO public repository under the accessions 

GSE56105. 

Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates 
(GMPWAR). This study aims to construct an aging model that gauges one's methylome age 

acceleration. Approved by the University of California, San Diego, the University of Southern 

California, and West China Hospital, the research involved 426 Caucasian and 230 Hispanic 

individuals, spanning ages 19 to 101, providing extensive methylome-wide profiles. Whole 

blood samples were collected, and genomic DNA underwent analysis using the Illumina 

Infinium HumanMethylation450 BeadChip assay, assessing methylation states across 

485,577 CpG markers. Stringent quality controls by Hannum et al. ensured the exclusion of 

unreliable markers and samples (Gregory Hannum et al., 2013). Access to the complete 

methylation profiles is available at the GEO repository (GSE40279). 

ScRNA-seq of PMBCs of healthy aging populations. Approval for all human studies was 

granted by the Washington University in St. Louis School of Medicine Institutional Review 

Board (IRB- 201804084). The study enrolled healthy Caucasian individuals, both males and 

females, who were non-obese with a BMI below 30, between 2018 and 2019. The research 

involved specific age and BMI criteria: young males aged 25-29 years (BMI 21.2-28.9 kg/m2, 

n = 14), and older non-frail males aged 62-70 years (BMI 17.8-29.8 kg/m2, n = 14). Exclusion 

criteria comprised individuals with a history of cancer, inflammatory conditions, bloodborne 

diseases, smokers, or recent illness (Denis Mogilenko et al., 2021).  
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Blood samples (~100 ml) were obtained via venous puncture in the morning (7–10 a.m.) 

after an overnight fast. Single-cell suspensions were isolated and underwent droplet-based 

massively parallel single-cell RNA sequencing using the Chromium Single Cell 5 Reagent Kit 

according to the manufacturer’s instructions (10x Genomics). Processing involved sample 

demultiplexing, barcode handling, and cell counting using the Cell Ranger Single-Cell 

Software Suite (10x Genomics). Subsequent analysis utilized the Seurat R package (Butler et 

al., 2018), which identified 25 clusters representing primary immune cell populations. Notably, 

one sample (D18) was excluded from analysis due to its outlier status, identified by distinct 

clustering in the single-cell RNA sequencing analysis. Raw and processed scATAC-seq data 

are available at https://www.synapse.org repository (syn22255433) 

ScRNA-seq of PBMCs of supercentenarians. All experiments using human samples in 

this study were approved by the Keio University School of Medicine Ethics Committee 

(approval no. 20021020) and the ethical review committee of RIKEN (approval no. H28-6). 

PBMCs derived from 7 supercentenarians (SC1–SC7) and 5 controls (CT1–CT5, aged in their 

50s to 80s) were profiled using droplet-based single-cell RNA sequencing technology (10× 

Genomics). Fresh WB from supercentenarians, their offspring residing with them, and 

unrelated donors was collected, and PBMCs were isolated from WB. Single-cell libraries were 

prepared from freshly isolated PBMCs by using Chromium Single Cell 3ʹ v2 Reagent Kits. The 

analysis pipelines in Cell Ranger version 2.1.0 and Cell Ranger R Kit (version 2.0.0) were 

used for sequencing data processing (Kosuke Hashimoto et al., 2019). Raw UMI counts and 

normalized expression values for scRNA-Seq are publicly available at 

http://gerg.gsc.riken.jp/SC2018/.  
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