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Abstract

A fundamental challenge in neuroscience is explaining how widespread brain regions flexibly
interact to support behaviors. We hypothesize that traveling waves of oscillations are a key
mechanism of neural coordination, such that they propagate across the cortex in distinctive
patterns that control how different regions interact. To test this hypothesis, we used direct brain
recordings from humans performing multiple memory experiments and an analytical framework
that flexibly measures the propagation patterns of traveling waves. We found that traveling
waves propagated along the cortex in not only plane waves, but also spirals, sources and sinks,
and more complex patterns. The propagation patterns of traveling waves correlated with novel
aspects of behavior, with specific wave shapes reflecting particular cognitive processes and even
individual remembered items. Our findings suggest that large-scale cortical patterns of traveling
waves reveal the spatial organization of cognitive processes in the brain and may be relevant for
neural decoding.


https://doi.org/10.1101/2024.01.26.577456
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577456; this version posted April 4, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Neurons in the human cortex have rich dendritic arbors that integrate diverse inputs and axons
that project outputs to multiple, distributed areas (Swanson, 2003). However, recent
developments in brain imaging have suggested a dynamic interplay of distributed brain regions
that underlie complex human behaviors (Sporns et al., 2004). How do individual neurons or
regions reorganize their activity so that they are selectively and dynamically linked to certain
other areas even as the structure of these neurons does not change on the timescale of behavior?
We hypothesize that propagating patterns of brain oscillations, or “traveling waves,” underlie
this selective reorganization. Traveling waves propagate across the cortex in specific directions
during behavior, so that certain spatial arrangements of neurons are active at similar times, thus
flexibly and efficiently communicating between the given brain regions that are relevant for a
task (Mohan et al., 2024). Traveling waves are present at various frequencies (Ermentrout &
Kleinfeld, 2001), including the theta/alpha range in humans (Zhang et al., 2018). Because
propagating oscillations correlate with underlying neuronal activity (Jacobs et al., 2007), the
spatiotemporal organization of traveling waves at each moment may indicate which brain areas
are active and how they correspond to particular computational processes and memory
representations in the cortex (Pinotsis et al., 2023; Pinotsis & Miller, 2023). The propagation of
traveling waves may therefore show how the brain’s spatial organization and connectivity
flexibly adapts to task demands and behaviors.

Traveling waves are known to play a critical role for behaviors such as visual processing and
spatial navigation in rodents and non-human primates (Agarwal et al., 2014; Davis et al., 2021;
Lubenov & Siapas, 2009; Muller et al., 2014; Zanos et al., 2015), and recently in human
cognition (Alamia & VanRullen, 2019; Kleen et al., 2021; Mahjoory et al., 2020; Stolk et al.,
2019; Zhang et al., 2018). Traveling waves also appear in spirals during sleep in humans (Muller
et al., 2016). However, our current understanding of traveling waves in cognition is largely
limited to planar waves, where a consistent direction of wave propagation is maintained across a
large region of cortex. It is possible that other types of traveling waves with more complex
spatial patterns are also relevant functionally (Bhattacharya, Brincat, et al., 2022; Denker et al.,
2018; Freeman, 2009; Muller et al., 2016), so this focus on plane waves in humans may have
limited our understanding of the role of traveling waves and oscillations in modulating cortical
representations to support behavior.

We recently found that the direction of traveling wave propagation during behavior correlated
with distinct memory processes (Mohan et al., 2024). Extending this idea, we tested here the
broader idea that the spatial patterning of wave propagation changed shape based on a person’s
current behavior. We designed a flexible analytical framework for measuring general patterns of
traveling wave propagation and applied this procedure to direct brain recordings from
neurosurgical patients performing multiple memory experiments. Our results showed an array of
complex traveling wave propagation patterns including spirals, concentric waves (sources and
sinks) (also known as target waves (Hagan, 1981; Xu et al., 2015; Zhang et al., 2003)), and
heterogeneous directional propagation patterns that extended beyond those seen previously in
humans.
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Our findings show that the human cortex exhibits complex spatial patterns during memory
processing that are visible through the propagation of oscillations. By demonstrating rotational,
concentric, and other traveling wave patterns that were specific to particular functional states,
our findings are consistent with predictions from computational models suggesting that traveling
waves would exhibit individualized patterns based on different cognitive and computational
processes, as well as variations in anatomical connectivity (Bhattacharya et al., 2021; Sato,
2022).

Results

Theta/alpha and beta frequency oscillations are widespread and organized as spatiotemporally
stable traveling waves

To probe the role of brain oscillations and traveling waves in organizing the spatial and temporal
structure of cortical activity during memory, we examined human electrocorticographic (ECoG)
recordings from surgical epilepsy patients as they performed spatial and verbal memory tasks
(Methods, Figure 1, Supplementary Figure 1). We sought to identify brain oscillations that
were spatially organized into traveling waves and test whether they reorganize into different
directional patterns to distinguish cognitive states. To examine this hypothesis, we developed a
flexible framework for measuring traveling waves in ECoG recordings, quantifying their
instantaneous spatial structure, and identifying spatial patterns that differentiate individual
cognitive states.

To flexibly detect spatial patterns of traveling waves in each subject, we first identified the
frequencies where groups of contiguous electrodes showed common oscillations (Methods,
Figures 1C-E). Identifying a single common frequency is crucial because, by definition, a
traveling wave involves an oscillation at a single frequency that progressively propagates across
a region of cortex, thus making it possible to detect the traveling wave when it passes by these
electrodes (Das et al., 2022). Overall, oscillations were most often present in the theta, alpha, and
beta frequency bands (Figure 1C, Supplementary Tables 1, 2), and ~86% of all electrodes
showed a narrowband oscillation in at least one of these bands. Interestingly, sometimes the
same ECoG grid showed multiple peaks in the power spectrum, i.e., they had peaks at both the
theta/alpha and beta frequency bands (Supplementary Tables 1, 2, also see Figure 8), which
suggests the presence of multiple overlapping oscillatory networks.

We next distinguished the patterns of oscillations that were traveling waves. Because a traveling
wave involves an oscillation at a single frequency that is present simultaneously on multiple
electrodes, we identified the contiguous clusters of electrodes with oscillations at the same
frequency. A traveling wave requires the presence of a systematic propagation of phase across a
cluster of electrodes. To test for this pattern, we filtered the signals of the electrodes in each
cluster at their peak frequencies and extracted the instantaneous phase at each electrode and
timepoint using the Hilbert transform (Figure 1F). Visual observation of the propagation of the
absolute phase (Hilbert-transformed phase) across time showed clear traveling waves, with phase
advancing in consistent spatial patterns across neighboring electrodes (see Figure 1H, for
example).
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Next, to probe this phenomenon systematically, we implemented a quantitative framework for
measuring the spatial pattern of each traveling wave. Here, for each electrode in a cluster, we
used a windowed circular—linear regression approach to identify the relative phases that exhibit a
linear relationship with electrode locations locally (Das et al., 2022) (Methods). This regression
also measured the properties of each wave’s propagation, including its phase velocity and
direction at each timepoint (Figure 1H, Methods).

Recent evidence has shown that oscillations and traveling waves in humans often appear in
transient bursts, but that they nonetheless are functionally relevant (Freeman & Rogers, 2002;
Muller et al., 2018; Roberts et al., 2019; Schmidt et al., 2023; van Ede et al., 2018; van Vugt et
al., 2007). We thus designed a single-trial method that identified stable periods of wave
propagation (Methods, Figure 1G) and used this procedure to identify individual epochs where
waves progressed across the cortex in a consistent spatial arrangement (Methods, Figures 1G,
H, Supplementary Videos 1-5). This procedure revealed that the stable periods of individual
traveling waves lasted ~80—180 msec on average (Figures 1G, H). These wave epochs were
statistically robust (all p’s <0.001, Methods, Figures 11, J, Supplementary Figure 2) ruling
out the possibility that these stable epochs could arise due to chance or noise, and their period of
stability was shorter for oscillations at high frequencies than low (median 107 versus 134 msec, p
= 0.002, Mann-Whitney U-test). Consistent with earlier work (Das et al., 2022; Halgren et al.,
2019; Stolk et al., 2019; Zhang et al., 2018), the phase velocities of these traveling waves was
~0.3-3.3 m/s, and faster for oscillations at higher temporal frequencies than low (median 1.1 m/s
for 12-26 Hz versus 0.5 m/s at 5-12 Hz, p < 0.001, Mann-Whitney U-test; (Zhang et al., 2018)).

Independent component analysis (ICA) reveals the most dominant traveling wave patterns

Using this approach, we observed a diverse range of robust traveling wave patterns across
subjects (Figures 2, 3). These patterns included plane waves as seen previously, but also spirals,
concentric waves, and spatially heterogeneous, complex waves (for examples, see
Supplementary Figures 7-16). We also saw that over time the traveling waves at individual
electrodes often shifted between different patterns. To quantitatively distinguish the full diversity
of spatial wave patterns over time, we used an algorithm based on independent component
analysis (ICA) (Fu et al., 2015; Li & Adali, 2010) to identify the range of spatial patterns of
traveling waves that appeared on each electrode cluster (see Methods). Using this algorithm, we
labeled each category of spatial wave pattern that appeared on each cluster, which we refer to as
a “mode” (Figure 2, Methods). We classified each mode according to its shape, including plane,
spiral, and concentric waves, as well as other waves with complex shapes (Figure 3). This
algorithm provided a series of weights that quantify the contribution of each mode to the epoch’s
current shape. We call these weights the epoch’s “activation function”, and they quantify the
instantaneous magnitude and direction of a mode for each epoch. Thus, by examining the modes
and activation functions, it shows quantitatively the types of traveling wave patterns that were
most strongly present at each moment in the recording, with the magnitude of the activation
function indicating how strongly each mode was represented.

This ICA algorithm effectively quantified the spatial wave patterns that appeared visually in the
recordings, as the dominant wave patterns that were evident from visual inspection generally
corresponded with the modes with the strongest weights from ICA. For example, Figure 2D
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shows three different wave patterns seen in the raw data, which match the corresponding
activation functions for the top 6 modes shown in Figure 2Ei, and the corresponding modes
shown in Figure 2Eii (also see Supplementary Figures 5, 6).

Using this ICA procedure to identify the modes that were present on each cluster throughout the
task, we identified a wide range of spatial traveling wave patterns across all clusters (Methods,
Figure 2, Supplementary Figures 7-16). Individual clusters showed a mean of 6 significant
modes, indicating that there were generally multiple spatial patterns of traveling waves within
individual clusters. On average the first three modes explained ~34%, ~19%, and ~10% variance
respectively, and the first six modes combined explained >80% variance (Figure 4E). In this
way, using ICA, we can identify the diverse traveling wave patterns that are present at each
oscillation cluster, and reveal how waves with different shapes vary throughout the task.

Diverse spatial patterns of traveling waves and their characteristics

To explain the diversity of the spatial wave patterns in the data, we classified each identified
mode based on their shape into one of the following categories: “planar”, “rotational”,
“concentric” (“expanding” or “contracting”), or “complex” (Methods, Figure 3) (Townsend et
al., 2015). Complex waves were those that showed a robust spatial propagation pattern (i.e., p’s
< 0.001) but did not meet the criteria for the other categories. Some complex waves showed a
combination of multiple patterns, such as separate subsets of electrodes showed planar, rotating,

or expanding/contracting waves (Figure 9, Supplementary Figures 7-16).

One previous study showed rotational and expanding traveling waves during human sleep
spindles, supporting the idea that these types of waves may support memory consolidation and
plasticity (Muller et al., 2016). Based on this, we hypothesized that rotational and expanding
(sources) traveling waves would be more prevalent in the spatial episodic memory task which
involves processing a broad range of inputs including spatial and non-spatial information.

The spatial organization of traveling waves varied across regions and temporal frequencies. For
clusters with oscillations at low temporal frequencies, plane waves were most dominant (median
wave strength 59% across tasks), and this pattern was present in both the spatial (*(3) = 165.0, p
<0.001, Figure 4A) and verbal (*(3) = 288.7, p <0.001, Figure 4C) memory tasks. At higher
frequencies, although plane waves were again most dominant overall (median wave strength
43% across tasks), there was an increased prevalence of rotational waves (median wave strength
37% across tasks), especially in the spatial memory task (3*(3) = 162.3, p < 0.001, Figure 4A).
When we compared the strength of these different traveling wave patterns as indexed by variance
explained (see Methods), we found that planar waves were strongest, followed by rotating and
expanding/contracting waves (Figures 4E, F). Complex waves, although highly statistically
significant and strongly relevant to behavior (see below), were less strong and explained less
variance in the raw data compared to the other wave types.

We also compared these effects between hemispheres, in light of work on lateralized oscillations
in hippocampus and neocortex (Das et al., 2022; Miller et al., 2018). Although plane waves were
dominant in both hemispheres, they were stronger on the right hemisphere (~64%) than the left
(~42%; y*test p <0.01, Figures 4 B, D). We next compared this lateralization between the two
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different memory tasks. In the left hemisphere, during the spatial memory task wave patterns
were preferentially rotational rather than concentric, (*(3) = 150.0, p < 0.001, Figure 4B).
Conversely, concentric wave patterns were more common in the verbal memory task (y*(3) =
288.1, p <0.001, Figure 4D). But, in the right hemisphere, we found statistically similar patterns
across both tasks. This suggests that the shape of traveling waves across the cortex during
behavior reveal specific task-related neural assemblies that are lateralized across the cortex.

Given that we saw both counter-clockwise and clockwise rotational wave patterns, we examined
whether the orientation of wave propagation was functionally relevant. One previous study
showed that during sleep, human cortical spindles are rotational traveling waves that propagated
in a temporal >parietal > frontal (TPF) direction (Muller et al., 2016). Therefore, we examined
whether rotating waves in our dataset had a directional preference by labeling each one’s
direction (TPF or TFP). If there were multiple rotational modes in a single oscillation cluster,
then we labelled each separately. We did not find a significant preference for a specific rotational
direction in either task. In the spatial memory task, there were 7 TPF waves versus 9 TFP waves
(p > 0.05, binomial test) and, similarly, in the verbal memory task (12 TPF versus 15 TFP, p >
0.05, binomial test; Supplementary Table 3).

We also compared the propagation of concentric traveling waves, comparing the prevalence of
inward (sink) versus outward (source) propagation. In the spatial task, there were more sources
compared to sinks, as 78% (7 of 9) concentric waves were sources. Inversely, in the verbal
memory task, there were more sinks than sources, as 68% (15 of 22) concentric waves were
sinks (Supplementary Table 3). Thus, the brain shows different types of concentric waves (y*
test, p < 0.02) between spatial and verbal memory.

Traveling waves can distinguish both broad and specific cognitive states of human memory
representations

Next, to identify the potential functional role of traveling waves, we examined how the
prevalence of traveling waves with different shapes shifted between stages of memory. First, we
examined encoding, retrieval, navigation, etc. in the spatial memory task. To assess statistical
significance, we used multivariate analysis of variance (MANOVA) (Methods) to test for
changes in activation functions between conditions.

Traveling waves showed different propagation patterns between stages of memory processing
(Figure 5, Supplementary Figures 7-16, Supplementary Videos 1-2). As an example, Figures
5A-C show a cluster of electrodes that showed three distinct modes of traveling waves that
changed their propagation direction between the stages of memory. In this cluster, the plane
wave pattern (mode 1) was nearly absent during navigation and distractor stages (as indicated by
its low magnitude) but was strongly present in other task phases. However, its direction of
propagation shifted between behaviors, with a different direction for retrieval compared to the
encoding, confidence, and feedback periods. Similarly, this cluster’s mode 2 also differed in
propagation direction between memory stages and had the highest wave strength during retrieval
and feedback. These state-specific traveling waves were prominent across our dataset, as all 13
oscillation clusters showed significant shifts in traveling wave direction or strength between
stages of the spatial memory task.
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We also examined whether the properties of traveling waves shifted to represent the specific item
that each subject was viewing, extending item-specific gamma oscillations seen previously
(Jacobs & Kahana, 2009). In the verbal memory task, we found that many clusters showed
traveling waves with different propagation directions and strengths for the encoding of individual
items. For example, Figures 6A-C show a cluster of electrodes with planar traveling waves (on
mode 1) that propagated consistently posteriorly when the subject viewed any letter except for
“G”. This same cluster also showed a direction-shifting traveling wave in mode 3 which
propagated in an antero-superior direction for letters “G” and “Q” and the opposite direction for
letters “D” and “J”. These item-specific wave shifts were common, as 13 of 26 clusters in this
task had traveling waves that shifted direction or strength for individual letters. Thus traveling
waves often distinguish both broad and specific cognitive states of human memory
representations (Supplementary Figures 7-16).

Waves that distinguish cognitive states are of diverse patterns and widespread across the
human brain

An important finding of our work is showing that rotational, concentric, and complex patterns of
waves also distinguish cognitive states, in addition to planar waves. Therefore, our next objective
was to quantify the behavioral relevance of these non-planar traveling waves.

Similar to plane waves, rotational waves were also stable at the individual epoch level,
distinguished both broad and specific cognitive states, and were widespread across the frontal,
temporal, and parietal lobes (Figures 7A-D, Supplementary Video 3, Supplementary Figures
7-16). These patterns were evident in both the spatial and verbal memory tasks (Figures 7E, G,
also see Supplementary Figures 7-16). For rotational waves, the wave strength was higher
during the distractor period compared to the other task periods, especially in the left hemisphere
(#(5)=67.0, p’s <0.001, Figure 7F).

Concentric and complex wave patterns also distinguished both broad and specific cognitive
states across brain regions and tasks (Figures 8, 9, Supplementary Videos 4, 5). Interestingly,
during the distractor phase of the task, the strength of complex waves was significantly higher
compared to other task periods across all frequencies and hemispheres (7*(5) =43.2, p’s < 0.001,
Figure 9F), however, this pattern was not seen for the concentric waves (7*(5) < 19.6, p’s >
0.01, Figure 8F).

Finally, we quantified the number of modes that were significant for each type of wave. The
percentage of modes that were significant in each category of wave did not differ from each
other, in any frequency or hemisphere (*(3) < 6.4, p’s > 0.05, Figures 10A-D). Moreover, the
percentage of significance in each mode did not differ from each other (y%(5) <4.2, p’s > 0.05,
Figures 10E, F).

Cognitive states of human memory representations can be decoded from traveling waves
Since the spatial patterns of traveling waves varied reliably with cognitive states, we

hypothesized that we would be able to use these signals to support prediction and brain-computer
interfacing. To decode each subject’s cognitive state from their spatial pattern of traveling
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waves, we trained multilayer neural networks, with cross-validation, for classifying pairwise
cognitive states. We performed this decoding separately for the spatial and verbal memory tasks
(Methods, Figures 11, 12). We used the extracted activation functions (weights) as inputs for
the neural network classifiers.

We found that cognitive states can be reliably decoded at the individual cluster level and also at
the group level (Figure 11C, p < 0.001, one-sided sign test), for the spatial memory task.
Interestingly, we found that some cognitive states can be more reliably decoded than others
(Figures 11C, F). For example, Figure 11C shows that for cluster 7, the spatial wave patterns
for the encoding and distractor periods were distinct from each other and hence were more easily
distinguishable compared to those from the confidence and feedback periods. Overall, the
navigation and distractor states were generally decodable from other states, but not from each
other, which indicates that these behaviors generally exhibit similar traveling wave patterns
(Figures 11F, G).

Similarly, we found that the identity of the specific memory item that a subject was viewing can
be reliably decoded from the shape of their traveling waves in the verbal memory task, and also
at the group level (Figure 12A, p <0.001, one-sided sign tests across clusters versus chance).
Overall, we often found that letter “H” was the most decodable, followed by the letters “J”” and
“Q”, compared to the other letters (Figures 12D, E). These results mean that letters “H”, “J”,
and “Q” often elicited distinctive patterns of traveling waves (Jacobs & Kahana, 2009). Visually,
cognitive states that showed lower decoding accuracy had more similar wave patterns compared
to the ones that had higher decoding accuracy (Figures 11C, 12A), thus the results of this
network decoding analysis were closely aligned with the results from the MANOV A analysis
(Figures 5, 6). This similarity between the results of these analyses was robust, as we found
mostly positive correlations between the neural network decoding accuracy and the dissimilarity
of traveling wave patterns (calculated as the mean Euclidean distance between the ICA weights
for the given pair of cognitive states) (Figures 11D, E, 12B, C).

Discussion

We used direct human brain recordings to investigate directional propagation of traveling waves
and probe their link to behavior. We found that diverse patterns of traveling waves including
rotational, concentric, and complex wave patterns changed their direction and/or strength to
distinguish various cognitive states. These results support the notion that the human brain
exhibits complex spatiotemporal patterns of traveling waves that reflect complex cognitive
processes including memory and specific brain states. Notably because task-related traveling
waves often show complex propagation patterns, it indicates that the brain exhibits new types of
functionally relevant spatial organizations, extending beyond currently known anatomical and
functional hierarchies (Buckner & Krienen, 2013; De Martino et al., 2018). Further, the diverse
propagation patterns of these cognition-related traveling waves is consistent with a rich set of
models suggesting a role for spatially organized neural assemblies and oscillations in the
computational processes underlying memory, cognition, and other behaviors (Freeman, 2003;
Pinotsis et al., 2023; Pinotsis & Miller, 2023; Rubino et al., 2006).
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Roles for rotational and concentric traveling waves for human memory processing

Traveling waves have previously been seen in rodents and non-human primates (Agarwal et al.,
2014; Aggarwal et al., 2022; Besserve et al., 2015; Bhattacharya, Donoghue, et al., 2022; Davis
et al., 2020; Gabriel & Eckhorn, 2003; Hamid et al., 2021; Lubenov & Siapas, 2009; Muller et
al., 2014; Nauhaus et al., 2009; Patel et al., 2012; Rubino et al., 2006; Rule et al., 2018; Stroh et
al., 2013; Vinck et al., 2010; Zanos et al., 2015), including complex patterns of traveling waves
(Liang et al., 2023; Liang et al., 2021; Townsend & Gong, 2018; Townsend et al., 2015;
Townsend et al., 2017). These complex wave patterns in animals are also functionally relevant.
Rotational waves play a critical role in the prefrontal cortex of non-human primates during
working memory tasks, demonstrating a dynamic modulation of wave orientation that aligns
with task intervals (Bhattacharya, Brincat, et al., 2022). Additionally, the systemic administration
of anesthetics reorganizes these wave patterns; for example, propofol induces more structured
low-frequency waves while disrupting the organization and directionality of higher frequency
waves, delineating a selective, frequency-specific alteration of cortical dynamics (Bhattacharya,
Donoghue, et al., 2022). In rodents, cortex-wide spiral waves not only exhibit mirrored patterns
between hemispheres but also between sensory and motor cortices, reflecting the structural and
functional symmetry of long-range axonal projections (Ye et al., 2023). We found that, in
addition to planar waves, the human cortex shows rotational and concentric wave patterns as
well as complex spatial patterns during memory processing. Crucially, these complex wave
patterns were widespread, appearing for both low and high frequency oscillations and across left
and right hemispheres in both tasks.

Notably we found that rotational wave patterns were especially pronounced during the spatial
episodic memory task and in the beta frequency band. Rotational traveling waves have been
previously detected during sleep spindles in the human brain, indicating that this type of waves
putatively supports complex cognitive processes such as memory consolidation and synaptic
plasticity (Muller et al., 2016). Consistent with our hypothesis, we found a greater prevalence of
rotational traveling waves during the more cognitively demanding spatial episodic memory task,
which involves richer types of information processing compared to the verbal memory task. This
putatively suggests a general role of rotational wave patterns for linking widespread brain
regions to support complex cognition.

A notable finding in our work was that in addition to the low frequency theta/alpha traveling
waves, there were traveling waves in the beta frequency band during memory processing. In our
previous work, using information theoretic analysis, we had found greater bottom-up information
flow from the hippocampus to the prefrontal cortex in low frequency delta—theta band and higher
top-down information flow from the prefrontal cortex to the hippocampus in the beta band
during spatial and verbal memory tasks (Das & Menon, 2021, 2022). The high frequency
traveling waves that we found may putatively contribute to top-down information flow for
transition and maintenance of latent neuronal ensembles into active representations in the
hippocampus as has been hypothesized before (Engel & Fries, 2010; Spitzer & Haegens, 2017)
whereas, the low frequency waves may putatively be related to hippocampal signaling of pattern
completion associated with memory processing that is conveyed to multiple prefrontal and
parietal regions (Eichenbaum, 2017). Traveling waves also exist in the hippocampus during
memory processing (Zhang & Jacobs, 2015), thus future studies may wish to identify links

10
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between subcortical waves with the cortical waves that we focus on here. An additional future
area of work may be to compare the relation between memory-related traveling waves with
similar signals at even slower frequencies, as recent fMRI studies have detected waves of
hemodynamic activities at slower frequencies during naturalistic language tasks and resting state
(Bolt et al., 2022; Raut et al., 2021).

An interesting aspect of our results concerns concentric source and sink waves. Higher
prevalence of source waves has been previously detected during sleep spindles in the human
brain, indicating that sources may putatively support complex cognitive processes such as
memory consolidation and synaptic plasticity compared to sinks (Muller et al., 2016). Because
they involve waves propagating outward from a single location, source waves would putatively
indicate that a small local group of neuronal assemblies dominate information flow by routing
their information outward in a direction where they flow towards widespread brain areas.
Consistent with our hypothesis, we found that, whereas in the more complex spatial memory task
there are more sources compared to sinks (7 sources versus 2 sinks), in the simpler verbal
memory task there are more sinks compared to sources (7 sources versus 15 sinks). Inversely,
because the propagating waves converge on a single location, the cortex at the center of sink
waves globally integrates information from distributed cortical networks to a specific set of
neuronal ensembles for integration and potential memory binding. Going forward, it may be
useful to compare the relative prevalence of source versus sink waves in various tasks to reveal
variations in the extent of cortical integration (sinks) versus propagation (sources).

Possible mechanisms for complex patterns of traveling waves

Our findings converge well with theoretical predictions from biologically plausible neural
models based on weakly coupled oscillators (Bhattacharya et al., 2021; Sato, 2022). These
models hypothesize that complex patterns of waves can be generated locally based on the initial
spatial activation of neurons, where each neuron is connected to a few of its neighbors, with
distance dependent axonal delays in the order of conduction along unmyelinated horizontal fibers
(Davis et al., 2021; Destexhe, 1994; Ermentrout & Kleinfeld, 2001). These locally generated
waves can propagate across widespread regions between locally connected neurons and interact
with other locally generated waves, to generate complex patterns of propagating oscillations
(Bao & Wu, 2003; Huang et al., 2010; Jeong et al., 2002; Schiff et al., 2007). In addition to the
coupling functions, a key determinant of the shape of these wave patterns is the presence of local
shifts in the amplitude and frequency of local oscillations. In locally coupled oscillator networks,
waves tend to propagate away from the cortical locations with the fastest intrinsic oscillation
frequencies, following a gradient to the locations with the slowest oscillations (Kopell &
Ermentrout, 1990). Thus, local activations of strong or fast oscillations can have a strong
influence on the global topography of these traveling waves (Bhattacharya et al., 2021; Huang et
al., 2010; Sato, 2022). Using this model, based on the spatial location of the locally generated
wave sources and their relative frequencies, a wide range of complex wave patterns such as
spirals and spatially heterogeneous wave patterns can be generated (Kopell & Ermentrout, 1990).

A surprising aspect of our findings is the large degree of heterogeneity we found in the directions

and strengths of the task-related traveling waves, across oscillation clusters, brain regions, and
subjects. This degree of variability is in line with recent advances in structural MRI studies,
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which have shown that inter-individual variability can have a major impact on human behavior
(Genon et al., 2022; Kanai & Rees, 2011). This type of variability has also been shown in
functional MRI studies, which found that inter-individual variability in the functional
connectivity of task-related activations correlates with the underlying inter-individual variability
in anatomical connectivity (Mueller et al., 2013). In the same way that individual differences in
structural patterns drive large-scale differences in fMRI signals, an interesting area of future
work will be to assess the degree to which broad inter-subject differences in traveling waves may
be driven by small anatomical differences across individuals.

It is notable that the traveling waves that we detected often traveled through the sulci and gyri,
and even across the Sylvian fissure, across distributed brain areas. For example, for mode 3 in
Figure 6A, the traveling wave propagated through the Sylvian fissure. Recent work on
computational modeling of neural field theory of brain waves (Anastassiou et al., 2011; Davis et
al., 2021; Pinotsis & Miller, 2022, 2023) has shown that stable electric fields are capable of
carrying information through sulci and gyri, thus providing a mechanism for ephaptic coupling
of multiple, distributed brain areas. Moreover, one previous fMRI study on traveling waves has
found long-range ephaptic coupling through the sulci of widespread brain areas (Xu et al., 2023).
The traveling waves that we observed in our tasks could putatively be a manifestation of these
stable electric fields and their interactions with the sulci and gyri, which allows for ephaptic
coupling between distributed brain areas (Ermentrout & Kleinfeld, 2001). The focus of the
current work was on the analysis of cortical traveling waves, however, recent computational
modeling work (Bhattacharya et al., 2021) and experimental data in rodents (Ye et al., 2023)
have suggested that traveling waves can exist in the subcortical brain areas such as the thalamus,
and can have a major impact on the cortical propagating waves. This also hints at the possibility
of three-dimensional traveling waves coordinating neural activity between the cortical and
subcortical brain areas, rather than waves propagating only along the cortical surface. Denser
sampling of depth electrodes in three-dimension may help to better understand the role of
complex patterns of traveling waves in human behavior.

Behavioral relevance of diverse patterns of traveling waves

Lesion (Bohbot et al., 1998; Maguire et al., 1996; Parto Dezfouli et al., 2021; Spiers et al., 2001)
and electrophysiology (Boran et al., 2019; Jacobs et al., 2013; Johnson et al., 2018; Johnson et
al., 2017; Miller et al., 2018; Stangl et al., 2021; Stevenson et al., 2018) studies in humans have
shown prominent involvement of widespread bihemispheric brain areas spanning the frontal,
temporal, and parietal cortices in spatial and verbal memory processing. Consistent with this, our
findings indicate that complex spatial patterns of traveling waves are present in both hemispheres
at roughly similar levels. Even more intriguingly, we found a critical role for the complex
patterns of traveling waves during the distractor period of the spatial memory task. Our results
showed that the wave strength of the complex wave is the highest during the distractor period
compared to other task periods such as encoding, navigation, retrieval, etc. This suggests more
localized information processing during the distractor period compared to other task periods.
Future studies with varying load during the distractor period are necessary to probe the role of
these complex traveling waves in the human brain.
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In many ways, during behavior, cortical information flow follows a hierarchy in which neural
activity associated with sensory processes flows “forward” towards other cortical areas, while
that related to higher order cognitive processes such as memory retrieval feeds “backward” from
frontal cortical areas to coordinate and reinstate neural activity in other brain regions (Friston,
2008; Rabinovich et al., 2012; Vezoli et al., 2021). Our earlier study (Mohan et al., 2024) and
others (Alamia & VanRullen, 2019) showed a role for these forward and backward patterns in
traveling waves. However, going further, our present results show an additional new hierarchy of
traveling waves, by showing more complex spatial patterns which appear to complement this
feedforward-feedback cortical hierarchy. Our current work converges on a large body of recent
work on traveling waves which has found that complex patterns of waves in rodents and non-
human primates (Bhattacharya, Brincat, et al., 2022; Bhattacharya, Donoghue, et al., 2022; Liang
et al., 2023; Liang et al., 2021; Townsend et al., 2015) as well as in humans (Muller et al., 2016),
play a critical role in cognition. Since traveling waves are known to be closely associated with
spiking activity of neurons (Davis et al., 2020), their propagation putatively reflects packets of
neuronal activity sequentially scanning distributed brain areas to transiently reorganize
functional connectivity between them, to represent complex behaviors in human memory
processing (Eichenbaum, 2000; Mesulam, 1990). This would indicate that, whereas the planar
waves that we detected in our tasks globally route neural information by directionally
propagating to different cortical areas in a feedforward-feedback manner, the rotational waves
revisit the same brain areas in multiple cycles, therefore putatively dynamically strengthening
functional connectivity between large-scale neuronal assemblies for efficient memory
processing, similar to the rotational waves observed during sleep spindles (Muller et al., 2016).

The more complex, heterogenous patterns of waves that we observed putatively route
information in more flexible ways by propagating in several directions to rapidly reorganize
functional connectivity between neuronal assemblies, to distinguish both broad and specific
cognitive states. Recent imaging studies in rodents (Benisty et al., 2024) as well as humans
(Demertzi et al., 2019) support this hypothesis by showing that dynamic and complex patterns of
functional connectivity can support distinct behaviors independent of the anatomical
connectivity. Recent theoretical and computational models have shown that traveling waves play
a critical computational role in the visual system by enabling continuous predictions of visual
scenes many frames in the future from dynamic and naturalistic visual inputs (Benigno et al.,
2023) and may serve general computational roles in complex cognition beyond just visual
processing (Pinotsis et al., 2023). Our findings of traveling waves that differentiated cognitive
states are thus consistent with this proposal that the complex spatial patterns of waves across the
cortex play a role in supporting different computational processes during cognition.

Conclusions

We used human electrocorticographic recordings and multiple memory tasks to investigate the
large-scale electrophysiological basis of distinct cognitive representations subserving human
memory processing. We showed that lower frequency theta/alpha and higher frequency beta
oscillations are widespread in the neocortex. Using a localized circular—linear regression
approach and then independent component analysis, we found that in addition to planar waves,
rotational, concentric, and complex patterns of traveling waves are widespread in the human
brain. These diverse patterns of traveling waves were able to distinguish both broad and specific
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cognitive states underlying human memory, and crucially, we were able to robustly decode the
cognitive states at the individual subject level by using the features of the propagating traveling
waves using machine learning approaches, a significant advance over prior work involving
traveling waves. Our methods presented here provide a general approach to the analysis of
traveling waves and their association with human behavior and are applicable to other data
modalities such as scalp EEG, magnetoencephalographic, optical, as well as fMRI recordings.
Fundamentally, these findings are important because they suggest that parallel distributed
processing, paced through rhythmic propagating waves with different shapes that flexibly vary
according to the current behavior, underlies human memory representations and allows the brain
to flexibly adapt to different task demands subserving complex human behaviors and we quote
(Mesulam, 1990).
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Materials and Methods

Human subjects

We examined direct brain recordings from 24 patients with pharmaco-resistant epilepsy who
underwent surgery for removal of their seizure onset zones. Patients who performed the Treasure
Hunt (TH) spatial episodic memory task (N=9, 4 females, minimum age = 20, maximum age =
57, mean age = 36.6, see below for details) were part of a larger data collection initiative known
as the University of Pennsylvania Restoring Active Memory (UPENN-RAM) project. The direct
recordings of these patients can be downloaded from a data sharing archive hosted by the
UPENN-RAM consortium (URL: http://memory.psych.upenn.edu/RAM), shared by Kahana and
colleagues (Jacobs et al., 2016). Prior to data collection, research protocols and ethical guidelines
were approved by the Institutional Review Board at the participating hospitals and informed
consent was obtained from the participants and guardians (Jacobs et al., 2016). Recordings from
the patients who performed the Sternberg (ST) verbal working memory task (N=15, 7 females,
minimum age = 20, maximum age = 58, mean age = 35.9, see below for details), were collected
at four hospitals (Thomas Jefferson University Hospital, Philadelphia; University of
Pennsylvania Hospital Philadelphia; Children’s Hospital of Philadelphia, and University Hospital
Freiburg). The direct recordings of these patients can be downloaded from
https://memory.psych.upenn.edu/Data, shared by Kahana and colleagues (Jacobs & Kahana,
2009). Similar to the Treasure Hunt spatial episodic memory task, all patients who performed the
Sternberg verbal working memory task consented to having their brain recordings used for
research purposes and the research was approved by relevant Institutional Review Boards.

Electrophysiological recordings and preprocessing

Patients were implanted with different configuration of electrodes based on their clinical needs,
which included both electrocorticographic (ECoG) surface grid and strips as well as depth
electrodes. In this work, we only examined the ECoG grid electrodes on the cortical surface.
ECoG recordings were obtained using subdural grids (contacts placed 10 mm apart) using
recording systems at each clinical site. Recording systems included DeltaMed XITek (Natus),
Grass Telefactor, and Nihon-Kohden EEG systems.

Anatomical localization of electrode placement was accomplished by co-registering the
postoperative computed CTs with the postoperative MRIs using FSL (FMRIB (Functional MRI
of the Brain) Software Library), BET (Brain Extraction Tool), and FLIRT (FMRIB Linear Image
Registration Tool) software packages. Preoperative MRIs were used when postoperative MRIs
were not available. From these images, we identified the location of each recording contact on
the CT images and computed the electrode location in standardized Talairach coordinates.

Original sampling rates of ECoG signals in the TH task were 500 Hz, 1000 Hz, and 1600 Hz.
ECoG signals in the TH task were downsampled to 500 Hz, if the original sampling rate was
higher, for all subsequent analysis. Original sampling rates of ECoG signals in the ST task were
400 Hz, 512 Hz, and 1000 Hz. Therefore, ECoG signals in the ST task were downsampled to 400
Hz, if the original sampling rate was higher, for all subsequent analysis. We used common
average referencing (ECoG electrodes re-referenced to the average signal of all electrodes in the
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grid), similar to our previous studies on traveling waves (Das et al., 2022; Zhang et al., 2018).
Line noise (60 Hz) and its harmonics were removed from the ECoG signals. For filtering, we
used a fourth order two-way zero phase lag Butterworth filter throughout the analysis.

Cognitive tasks
(a) Treasure Hunt spatial episodic memory task

The patients performed multiple trials of a spatial memory task in a virtual reality environment
developed in Unity3D (Miller et al., 2018; Tsitsiklis et al., 2020), where they played a Treasure
Hunt task on a laptop computer at the bedside and controlled their translational and rotational
movements through the virtual environment with a handheld joystick. In each task trial, subjects
explored a rectangular arena on a virtual 3D beach to reach treasure chests that revealed hidden
objects, with the goal of encoding the location of each item encountered (Figure 1A). The virtual
beach (100 x 70 virtual units, 1.42: 1 aspect ratio) was bounded by a wooden fence on each side.
The locations of the objects changed over the trials, but the shape, size and appearance of the
environment remained constant throughout the sessions. The task environment was constructed
so that the subject would perceive one virtual unit as corresponding to approximately 1 foot in
the real world. Subjects viewed the environment from the perspective of cycling through the
environment and the elevation of their perspective was 5.6 virtual units. Each end of the
environment had unique visual cues to help the subjects navigate.

Each trial of the task begins with the subject being placed on the ground at a randomly selected
end of the environment. The subject initiates the trial with a button press, then navigates to a
chest using a joystick. Upon arrival at the chest, the chest opens and either reveals an object,
which the subject should try to remember, or is empty. The subject remains facing the open chest
for 1.5 sec (encoding period) and then the object and chest disappear, which indicates that the
subject should navigate (navigation period) to the next chest that has now appeared in the arena.
Each trial consists of four chests; two or three (randomly selected, so that subjects could not
predict whether the current target chest contained an object, which served to remove effects of
expectation and to encourage subjects to always attend to their current location as they
approached a chest) of the chests contain an object, and the others are empty. Each session
consists of 40 trials, and in each session, subjects visit a total of 100 full chests and 60 empty
chests. The chests are located pseudorandomly throughout the interior of the environment,
subject to the restrictions that no chest can be placed within 11 virtual units of another and that
all chests must be at least 13 virtual units from the arena boundary. This 11 virtual unit
restriction ensures that chest locations are varied in a trial. There are no constraints based on
previous trials, and all object identities are trial-unique and never repeated within a session. After
reaching all four chests of a trial, subjects are transported automatically so that they have an
elevated 3/4 overhead perspective view of the environment at a randomly selected end of the
environment. The reason for this perspective shift was to speed up the recall period, preserving
patient testing time to provide a relatively larger number of memory encoding events. They then
perform a distractor task (distractor period), a computerized version of the “shell game”, before
entering the retrieval period. During recall, subjects are cued with each of the objects from the
trial in a random sequence and asked to recall the location of the object. In each recall period,
they first indicate their confidence (confidence period) to remember the location of the object
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(“high”, “medium”, or “low”). Next, they indicate the precise location of the object by placing a
cross-hair at the location in the environment that corresponds to the location of the cued item.
After the location of each object of the trial is indicated, the feedback stage (feedback period) of
each trial begins. Here, subjects are shown their response for each cued object in the trial, via a
green circle if the location was correct and a red circle if it was incorrect. Subjects receive
feedback on their performance, following a point system where they receive greater rewards for
accurate responses. A response is considered correct if it is within 13 virtual units of the true
object location. Mean accuracy across subjects was ~41%.

We analyzed the 1.5 sec long trials from the encoding periods of the TH task. For the navigation
periods, we analyzed 1.5 sec long time segments approximately corresponding to the middle of
the navigation trial. Similarly, for the distractor periods, we analyzed 1.5 sec long time segments
approximately corresponding to the middle of the distractor trial. For the confidence periods, we
analyzed 1.5 sec recording immediately following the presentation of the visual cues. For the
retrieval periods, we analyzed 1.5 sec recording immediately prior to the retrieval of the objects.
For the feedback periods, we analyzed 1.5 sec time segments immediately following the
feedback.

(b) Sternberg verbal working memory task

Patients performed multiple trials of a Sternberg verbal working memory task (Jacobs & Kahana,
2009; Sternberg, 1966). In each trial of the task, patients were presented with a list of one to
three English letters on the screen of a bedside laptop computer (Figure 1B). During this
presentation portion of the trial, first a fixation cross appeared, and then the letters were
displayed sequentially on the computer screen. Each letter appeared on screen for 1 sec. Patients
were instructed to closely attend to each stimulus presentation and to silently hold the identity of
each item in memory. The letter lists included only consonants (i.e., no vowels) to prevent
patients from using mnemonic strategies (e.g., remembering the entire list as an easily
pronounceable word-like sound). After the presentation of each list, the response period began
when a probe item was displayed. Then patients responded by pressing a key to indicate whether
the probe was present in the just-presented list or whether it was absent. After the key press, the
computer indicated whether the response was correct, and then a new list was presented. Across
all letter presentations, patients viewed an 8 or 16 letter subset. Mean accuracy across subjects
was ~92%. We analyzed the 1 sec long trials from the encoding period of each letter.

Identification of oscillations

To characterize propagating traveling waves in an ECoG grid, we first identified narrowband
oscillations at theta/alpha and beta bands. We adopted methods similar to our previous approach
(Das et al., 2022). An advantage of this algorithm is that it accounts for several complexities of
human brain oscillations measured with ECoG signals, including differences in electrode
positions across subjects and variations in oscillation frequencies across individuals. Identifying
oscillation frequency is crucial since, by definition, a traveling wave involves a single frequency
and whose phase progressively propagates through the ECoG electrodes, thus making it possible
to detect the traveling wave when it passes by these electrodes.
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We first used Morlet wavelets to compute the power of the neural oscillations at 200 frequencies
logarithmically spaced from 3 to 40 Hz. To identify narrowband oscillations at each electrode,
we fit a line to each patient’s mean power spectrum (mean across trials) in log—log coordinates
using robust linear regression (Das et al., 2022) (Figure 1D). We then subtracted the actual
power spectrum from the regression line. This normalized power spectrum removes the 1/f
background signal and emphasizes narrowband oscillations as positive deflections (Figure 1E).
We identified narrowband peaks in the normalized power spectrum as any local maximum
greater than one standard deviation above the mean (Figure 1E). We repeated this procedure for
each of encoding, confidence, navigation, retrieval, distractor, and feedback periods in the TH
task and also for the English letters in the ST task. The mean of the peak frequencies of the
electrodes of a ECoG grid was defined as the cluster frequency (CF). Since by definition, a
traveling wave involves an oscillation frequency, we only included oscillation clusters for which
at least 2/3™ of the electrodes in the ECoG grid had a narrowband peak in the power spectrum,
for further analyses, to ensure that the traveling waves are mostly driven by oscillatory activity.
We excluded 5 patients in the TH task and 2 patients in the ST task from further analyses since
these patients did not meet this criterion. This resulted in 9 patients in the TH task and 15
patients in the ST task to be included in all subsequent analyses below. Overall, ~87% of ECoG
electrodes in the TH task and ~86% of ECoG electrodes in the ST task had a narrowband
oscillation in one of the theta/alpha or beta frequency bands, indicating that an overwhelming
number of ECoG electrodes show oscillatory activity. Note that in many cases, electrodes in the
same ECoG grid showed multiple peaks in the power spectrum, i.e, they had peaks at both the
theta/alpha and beta frequency bands. We estimated traveling waves for each of these
narrowband frequencies separately.

Identification of traveling waves

We next estimated traveling waves corresponding to each of the oscillation clusters identified
above. A traveling wave can be described as an oscillation that moves progressively across a
region of cortex. Quantitatively, a traveling phase wave can be defined as a set of simultaneously
recorded neuronal oscillations at very similar frequencies whose instantaneous phases vary
systematically with the locations of the recording electrodes. We used a localized circular-linear
regression approach, assuming that the relative phases of the oscillation clusters exhibit a linear
relationship with electrode locations locally (Das et al., 2022). This locally circular-linear fitting
of phase-location can detect complex patterns (Ermentrout & Kleinfeld, 2001; Muller et al.,
2016) of traveling waves in an oscillation cluster in addition to planar traveling waves.

To identify traveling waves from the phases of each oscillation cluster, we first measured the
instantaneous phases of the signals from each electrode of a given cluster by applying a 4" order
Butterworth filter at the cluster’s oscillation frequency (bandwidth [f, x.85, f,/.85] where f; is
the peak frequency). We used Hilbert transform on each electrode’s filtered signal to extract the
instantaneous phase.

We used circular statistics to identify traveling waves for each oscillation cluster at each time
point (Fisher, 1993). We first projected the 3-D Talairach coordinates for each cluster into the
best-fitting 2-D plane using principal component analysis (PCA). We projected the electrode

coordinates into a 2-D space to simplify visualizing and interpreting the data. For each spatial
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phase distribution, we then used two-dimensional (2-D) localized circular—linear regression to
assess whether the observed phase pattern varied linearly with the electrodes’ coordinates in 2-D.
In this regression, for each electrode in a given oscillation cluster, we first identified the
neighboring electrodes that were located within 25 mm distance of the given electrode,
constituting a sub-cluster of the given cluster. Let x; and y; represent the 2-D coordinates and 6
the instantaneous phase of the ith electrode in a sub-cluster.

We used a 2-D circular-linear model
6 = (axi + by +9) mod 360°,

where 6 is the predicted phase, a and b are the phase slopes corresponding to the rate of phase
change (or spatial frequencies) in each dimension, and 4 is the phase offset. We converted this
model to polar coordinates to simplify fitting. We define o = atan2(b, a) which denotes the angle

of wave propagation and € = Vv a* +b* which denotes the spatial frequency. Circular—linear
models do not have an analytical solution and must be fitted iteratively (Fisher, 1993). We fitted
aand ¢ to the distribution of oscillation phases at each time point by conducting a grid search
over g <[0°.360°] and € € [0, 18] Note that € = 18 corresponds to the spatial Nyquist
frequency of 18°/mm corresponding to the spacing between neighboring electrodes of 10 mm.

In order to keep the computational complexity tractable, we used a multi-resolution grid search
approach. We first carried out a grid search in increments of 5° and 1%mm for o and &,
respectively. The model parameters (a= ¢cos(a) and b= {sin(a)) for each time point are fitted to
most closely match the phase observed at each electrode in the sub-cluster. After having
relatively coarse estimates of « and &, we then carried out another grid search in increments of
0.05° and 0.05%mm around a + 2.5%and + 0.5%mm neighborhood of the coarse estimates of o

and £, respectively, to have refined estimates of o and & . We computed the goodness of fit as

the mean vector length » of the residuals between the predicted (5,-) and actual (6;) phases

(Fisher, 1993),
1 AT 1 AT
r= ||~ 0, —6; “Nsin| 6. -0: || ,
FJL;COS(, [ Sl

where n is the number of electrodes in the sub-cluster. The selected values of a and & are chosen

to maximize r. This procedure is repeated for each sub-cluster of a given oscillation cluster. To
measure the statistical reliability of each fitted traveling wave, we examined the phase variance

that was explained by the best fitting model. To do this, we computed the circular correlation p,,.

between the predicted (gi) and actual (6;) phases at each electrode:
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where bar denotes averaging across electrodes. We refer to Pic as the wave strength (Das et al.,

2022) as it quantifies the strength of the traveling wave (note that Pz has been referred to as the
phase gradient directionality (PGD) in some prior studies (Muller et al., 2016; Rubino et al.,
2006; Zhang et al., 2018)). Other features of traveling waves such as the wavelength (2n/spatial
frequency) and the speed (wavelength X frequency) can be readily derived from the parameters
of the above 2-D model. Note that traveling waves in some prior studies were detected and
analyzed by calculating the spatial gradient of the phases of the recordings from ECoG
electrodes (Halgren et al., 2019; Muller et al., 2016), however, phase gradients can only be
calculated in two directions (forward and backward), so only a subset of neighboring electrodes
of a given electrode are included in these analyses of spatial gradient. Since our approach
directly includes all possible neighboring electrodes (termed as a sub-cluster in our analysis) in
the circular-linear regression model, it results in a more efficient estimate of the traveling waves
parameters.

We note that since a few of the ECoG electrodes did not have a narrowband oscillation, we
estimated the traveling waves for those electrodes by an extrapolation procedure where, for the
given electrode, we substituted the mean of the traveling waves of all electrodes within a 25 mm
radius of the electrode under consideration. This extrapolation step was necessary for
classification of each oscillation cluster as one of the wave categories using curl and divergence
analysis (rotational or expanding/contracting or complex, see section below on Identification of
rotational and concentric traveling waves). This is reasonable since as mentioned above, an
overwhelming number of ECoG electrodes showed oscillatory activity (~87% of ECoG
electrodes in the TH task and ~86% of ECoG electrodes in the ST task had a narrowband
oscillation in one of the theta/alpha or beta frequency bands). Nevertheless, we reran our ICA
analysis (see section below on Identification of modes using complex independent component
analysis (CICA)) and statistical significance using MANOVA (see section below on Statistical
analysis) without the extrapolation step, and found that the same modes and clusters were still
statistically significant in both the TH and ST tasks, indicating that the extrapolation step has
very minimal effect on the results reported here.

Identification of stable epochs

Since a traveling wave is composed of phase patterns that vary relatively smoothly across space
and time, we sought to characterize the spatiotemporal stability of the traveling waves that we
detected in our localized circular-linear regression approach above. We defined stability as the
negative of the mean (across all electrodes in an ECoG grid) of the absolute values of the
difference between the direction and strength of traveling waves observed at consecutive time-
points, defined as
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where, Pi denotes the strength of the traveling wave for the ith electrode, @i denotes the
direction of the traveling wave for the ith electrode, n denotes the number of electrodes in an
ECoG grid, s denotes stability, ¢ denotes time, and J denotes square root of minus one. We
repeated this procedure for each pair of consecutive time-points and for each trial of the
encoding, retrieval, navigation, etc. periods in the TH task and each trial of the English letters in
the ST task. Stability for each trial was z-scored. We identified stable epochs as those for which
all stability values were above a predefined threshold. We chose this threshold to be the mean
(which is zero since the stability values are z-scored) of the stability values for a given trial. We
ran our stability analysis across all trials and detected stable epochs corresponding to each of the
encoding, retrieval, navigation, etc. periods in the TH task and each of the English letters in the
ST task (Figures 1F, G).

Previous research in rabbit field potential recordings (Freeman & Rogers, 2002; Freeman &
Schneider, 1982) have found that theta frequency traveling waves last ~80-100 msec in duration.
Moreover, large-scale, whole-brain computational modeling in humans using neural field theory
have shown that spatiotemporally stable traveling waves last ~50-60 msec in duration (Roberts et
al., 2019). Therefore, we rejected all the stable epochs which were less than 25 time-points long,
from further analysis; these short-length stable epochs are putatively related to noise rather than
cognition (Roberts et al., 2019). This corresponded to 50 msec in the TH task (fs = 500 Hz) and
62.5 msec in the ST task (fs = 400 Hz).

We also calculated the histograms of the occurrence (estimated by aggregating all time-points at
which these stable epochs appeared) of these stable epochs, however, we did not find any strong
temporal modulation of these stable epochs during the task periods (Supplementary Figure 3).

Identification of modes using complex independent component analysis (CICA)

Since the direction and strength of the traveling wave remains almost the same at each time-point
of a stable epoch identified above, we averaged the direction and strength of the traveling waves
across all time points for each electrode and each stable epoch. In this way, we find one wave
pattern associated with each stable epoch. We concatenated the wave patterns (i.e., direction and
strength) for all stable epochs across encoding, retrieval, navigation, etc. periods into a single
matrix and then passed this matrix as input to the complex version of the independent component
analysis (CICA) (Fu et al., 2015; Li & Adali, 2010). The complex version of the ICA was
necessary, as compared to the real version of the ICA, to incorporate the 2-D directions of the

traveling waves, weighted by the strength ( 2 €0S (a) and psin (@) ), defined for each electrode in
the ECoG grid. We then extracted the independent activation functions (or, weights) (each
activation function corresponds to one of the stable epochs) and the corresponding modes (“raw
modes” in Figure 2) as the output from the ICA (Fu et al., 2015; Li & Adali, 2010).
Multiplication of each of these modes with the mean of the weights across all stable epochs
corresponding to that specific mode results in a unique wave pattern (“mean modes” in Figure 2)
associated with that mode. At the individual epoch level, a higher ICA weight for that epoch
corresponding to a specific mode indicates higher representation of that wave pattern in that
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specific epoch and a lower ICA weight for an epoch corresponding to a specific mode indicates
lower representation of that wave pattern in that specific epoch (Figure 2). Moreover, the higher
the variance explained by a given mode, the higher will be its representation across the trials
(also known as a scree plot, see Figure 4E). In this way, we can extract the ICA weights for each
of the encoding, retrieval, navigation, etc. periods in the TH task and each of the English letters
in the ST task and directly compare them using statistical significance (for example, encoding vs.
retrieval, letter “B” vs. letter “G”, etc.); see Statistical analysis section for details.

Identification of planar traveling waves

After extracting the mean modes from the CICA procedure above, we next sought to classify
each of the mean modes as one of “planar”, “rotational”, “concentric” (“expanding” or
“contracting”), or “complex” categories (Figure 3, Supplementary Figures 7-16) (Townsend et
al., 2015), to identify global patterns of traveling waves. For detecting planar traveling waves,
we calculated the mean wave direction (weighted by the strength of the wave) of all electrodes in
an oscillation cluster and compared it with a predefined threshold. For planar wave detection,
this threshold was chosen to be 0.6. This threshold was first manually optimized by hit-and-trial
method for the TH task (we estimated this threshold to be 0.6) and hence was independent of the
ST task. The same threshold was then used for the ST task to detect planar traveling waves. This
procedure ensured a relatively unbiased selection of the threshold. Visually, this procedure of
threshold selection yielded reasonably good results (Figure 3) and small changes in this
threshold did not substantially change the results reported here.

Identification of rotational and concentric traveling waves

In addition to detecting planar traveling waves, we also detected rotational and concentric
traveling waves in the mean modes using the curl and divergence metrics respectively (Muller et
al., 2016). Curl can detect rotational patterns (for example, clockwise or counter-clockwise
rotation) in wave dynamics and divergence can detect expanding/contracting patterns (for
example, source or sink) in wave dynamics (Muller et al., 2016). We first calculated the curl and
divergence metrics for each electrode and then calculated the mean curl and divergence across all
electrodes in an oscillation cluster. If the mean curl or divergence metrics cross some predefined
threshold, then we declare those wave patterns to be rotational or concentric, respectively. This
threshold was chosen to be 0.75 for rotational wave detection and 0.4 for concentric wave
detection. Similar to the threshold selection for the detection of planar waves, threshold selection
for the rotational and concentric waves was first manually optimized by hit-and-trial method for
the TH task (we estimated this threshold to be 0.75 for rotational waves and 0.4 for concentric
waves, respectively) and hence was independent of the ST task. The same threshold was then
used for the ST task to detect rotational and concentric traveling waves. This procedure again
ensured a relatively unbiased selection of the threshold. Visually, this procedure of threshold
selection yielded reasonably good results for the rotational and concentric waves as well (Figure
3) and small changes in this threshold did not substantially change the results reported here.

Waves that could not be classified as one of the planar, rotational, or concentric, were designated

as complex waves. Even though there was no global pattern associated with these complex
traveling waves, many of these complex waves showed interesting local patterns, where a subset
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of electrodes in an ECoG grid showed planar, rotational, or concentric waves (Figure 9,
Supplementary Figures 7-16).

Decoding analysis

Our final goal was to test whether we could robustly decode the broad and specific cognitive
states from the diverse traveling wave patterns in our datasets. Decoding the different cognitive
states in our datasets is an example of a multiclass classification problem. We converted this
problem into a series of binary classification tasks, as these can be solved straightforwardly with
various multivariate algorithms. We trained multilayer neural networks (Bernardi et al., 2020),
with cross-validation, for classifying pairwise cognitive states (for example, encoding versus
retrieval, letter “D” versus letter “J”, etc.), separately for the spatial and verbal memory tasks.
We used a PyTorch-based four-layer neural network for this binary classification problem
(Paszke et al., 2019). We used the extracted weights from the ICA procedure as features for
training our neural network classifiers. We observed that increasing the number of modes for
training increased the network test decoding accuracy (Figure 11B). Therefore, we included all
the modes for classifying the cognitive states and trained a neural network classifier for each
oscillation cluster separately.

The multilayer network architecture comprised an input layer, two hidden layers (32 and 16
neurons respectively), and an output layer with a sigmoid activation function, similar to the
neural network architectures previously used for classifying cognitive states (Bernardi et al.,
2020). ReLU activation functions were applied to the hidden layers to introduce nonlinearity and
improve generalization (Dahl et al., 2013). The network architectures were kept the same across
the spatial and verbal memory datasets, and individual models were trained for each oscillation
cluster separately to optimize neural network hyperparameters. To further enhance
generalization, dropout regularization was implemented after each hidden layer (Srivastava et al.,
2014). For model optimization, we used Binary Cross Entropy as the loss function, ideal for
binary classification tasks (Ruby & Yendapalli, 2020), and the Adam optimizer from PyTorch
during training (Paszke et al., 2019).

To ensure robust optimization and generalization, we employed cross-validation procedures for
iterative training over multiple epochs. For each pair of cognitive state, we first rebalanced the
data such that we have an equal number of epochs per cognitive state (van Gerven et al., 2013).
We used a five-fold cross-validation technique in which the network model was fitted on 80% of
the data and then its performance was tested on the remaining 20%. We used a subsampling
procedure where each epoch was randomly assigned to a particular fold, subject to the constraint
that all cognitive states are evenly represented (van Gerven et al., 2013), and then averaged the
network decoding accuracies across folds.

Statistical analysis

We directly compared the weights estimated from the CICA procedure above between encoding,
retrieval, navigation, etc. periods in the TH task and between the English letters in the ST task,
for each mode. Since the weights are complex, we used multivariate analysis of variance
(MANOVA) to statistically distinguish weights corresponding to different cognitive states using
the following model: Real + Imag ~ States, where Real and Imag are the real and imaginary
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parts of the weights respectively and States are encoding, retrieval, navigation, etc. in the TH
task or letters “B”, “G”, etc. in the ST task. We used this model for each mode and applied FDR-
corrections for multiple comparisons (p < 0.05) across all modes for each oscillation cluster. A
statistical significance would indicate that traveling waves shift their direction and/or strength to
form distinct directional patterns which can distinguish different behavioral states such as
encoding, retrieval, navigation, etc. or letters such as “B”, “G”, etc. We designated an oscillation
cluster to be significant if at least one of the modes from the ICA for that cluster showed
statistical significance in MANOVA.

We conducted surrogate analysis to test the significance of the estimated stable epochs (see
Identification of stable epochs section above) and whether the observed stable epochs are
beyond chance levels. We shuffled the trial labels (encoding, retrieval, etc. in the TH task and
“B”, “G”, etc. in the ST task) and electrodes, so that the spatial topography for the corresponding
cognitive state is destroyed, and then ran the stable epoch analysis using identical methodology
as above. In this way, we built a surrogate distribution by aggregating all time-points
corresponding to these shuffled stable epochs against which we then compared the aggregated
time-points from the empirical stable epochs (p < 0.05).

For assessing statistical significance for the group level results related to fraction of wave
strength and fraction of significance (Figures 4, 7-10), we used chi-squared tests with FDR-
corrections for multiple comparisons (p < 0.05) across frequencies (theta/alpha and beta) and
hemispheres (left and right).

To estimate the number of significant modes in the CICA output for each cluster, we compared
the variance explained for each mode with the theoretical variance threshold 100/n, where 7 is
the number of electrodes in an ECoG grid. This theoretical variance corresponds to the variance
of each mode if the total variance (100%) is equally distributed among all modes. Because of the
spatial structure of traveling waves, some modes will explain more variance compared to the
other modes in the empirical data (Figure 4E). We additionally shuffled the electrodes in each
cluster and recalculated the variance distribution across modes and confirmed that the shuffled
variance for all modes converged to the theoretical variance threshold of 100/x.

Finally, to access group level statistical significance for the decoding accuracy results, we used
one-sided sign tests versus chance (p < 0.05).
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Figure captions

Figure 1: Task structure and identification of stable periods of traveling waves. (A) Spatial
episodic memory task. Patients #1-9 (Supplementary Figure 1) performed multiple trials of a
Treasure Hunt spatial memory task where they navigated to treasure chests located in a virtual
environment containing various objects and after a short delay, were asked to retrieve the spatial
location of the objects (Methods). (B) Sternberg verbal working memory task. Patients #10-
24 (Supplementary Figure 1) performed multiple trials of a Sternberg verbal working memory
task where they were presented with a list of English letters to silently hold the identity of each
item in memory and during the response period, indicated whether the probe was present in the
just-presented list (Methods). (C-E) Identification of narrowband oscillation frequency. The
first step in detecting traveling waves is to identify the narrowband oscillation frequencies of
electrodes. Shown in C are narrowband oscillation frequencies of each electrode in the ECoG
grid of patient #21. We used Morlet wavelets to compute the power of the neural oscillations at
200 frequencies logarithmically spaced from 3 to 40 Hz (blue line in D). To identify narrowband
oscillations at each electrode, we fit a line to each patient’s mean power spectrum in log—log
coordinates using robust linear regression (Das et al., 2022) (black line in D). We then subtracted
the actual power spectrum from the regression line. This normalized power spectrum (red line in
E) removes the 1/f background signal and emphasizes narrowband oscillations as positive
deflections (E). We identified narrowband peaks in the normalized power spectrum as any local
maximum greater than one standard deviation above the mean (dotted black line in E). (F)
Filtered signals. We filtered the signals of the electrodes in each cluster at their peak
frequencies. Shown here are the filtered signals from an example trial of electrodes 1-64 in the
ECoG grid shown in C. (G, H) Traveling waves and identification of stable epochs. Visual
observation of the propagation of the absolute phase (Hilbert-transformed phase) across time
showed the presence of traveling waves, here H shows a sink traveling wave corresponding to
the electrode grid in C (arrows denote the direction of the wave, lengths of the arrows denote
wave strength, and colors denote the cosine of the phase). We used a localized circular-linear
regression approach to estimate traveling waves in each patient individually (Das et al., 2022)
(Methods). We then identified stable periods of wave propagation (Methods). Shown in G are
the stability values for an example trial from patient #21. Black line in G denotes the stability
threshold. In the example trial shown here, there were two stable epochs. Dotted vertical green
lines correspond to time-points for which example traveling waves are shown in H. The traveling
waves operated in the stable regime for a few tens of milliseconds, then they entered into the
unstable regime where the stable wave pattern broke down and a new wave pattern emerged, and
then finally moving onto a new stable regime (Compare traveling waves in H corresponding to
the dotted green lines within a stable epoch versus waves in H corresponding to dotted green
lines in the unstable epoch or another stable epoch). (I) We additionally used shuffling
procedures as control which suggested that the observed stable epochs are not due to
chance (Methods). (J) Distribution of the length of the stable epochs across trials for
patient #21.

Figure 2: Independent component analysis (ICA) of traveling waves. (A) Wave patterns
across stable epochs are concatenated and passed as input to ICA (Methods). Shown are
example stable epochs from patient #5 (~6.1 Hz traveling wave). (B) Raw modes. We extracted
the independent activation functions (or, weights) and the corresponding modes (“raw
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modes”) as the output from the ICA (Methods). Variance explained by each mode is shown in
brackets. Activation functions are complex and shown in color with colorbar. (C) Mean modes.
Multiplication of each of the raw mode with the mean of the weights across all stable
epochs corresponding to that specific mode results in a unique wave pattern (“mean
modes”) associated with that mode. (D-E) ICA modes are present at the individual epoch
level. Each individual epoch can be represented as the sum of the products of activation
functions and modes. At the individual epoch level, a higher ICA weight for that epoch
corresponding to a specific mode indicates higher representation of that wave pattern in that
specific epoch and a lower ICA weight for an epoch corresponding to a specific mode indicates
lower representation of that wave pattern in that specific epoch (E). Shown are three example
epochs (D), with the corresponding activation functions for the top 6 modes (Ei), and the
corresponding modes (Eii). Note that in Eii, the modes are weighted by the corresponding
activation functions, with arrows denoting the wave strength.

Figure 3: Classification of traveling waves. (A) Simulated examples (idealized traveling
waves) of planar, rotational (clockwise/counter-clockwise), and concentric (source/sink)
waves, in the divergence-curl plane. (B) Experimental data (empirical traveling waves)
shown as data points (blue dots), along with the associated wave patterns, in the
divergence-curl plane. After extracting the mean modes from the ICA, we next classified each

of the mean modes as one of “planar”, “rotational”, “concentric” (“expanding” or “contracting’),
or “complex” categories (Methods).

Figure 4: Population-level characteristics of different wave patterns. (A) Wave strength for
each category of wave (P: Planar, R: Rotational, E: Expanding/Contracting, C: Complex)
for low (left panel) and high (right panel) frequency in the spatial memory task. Error bars
denote standard error of the proportion across modes. (B) Wave strength for each category of
wave for left (left panel) and right (right panel) hemisphere in the spatial memory task. (C)
Wave strength for each category of wave for low (left panel) and high (right panel)
frequency in the verbal memory task. (D) Wave strength for each category of wave for left
(left panel) and right (right panel) hemisphere in the verbal memory task. (E) Variance
explained for each mode across all clusters and tasks. Error bars denote standard error of the
proportion across clusters. (F) Percentage of each wave type in each mode. *** p < 0.001
(FDR-corrected).

Figure 5: Traveling waves can distinguish broad cognitive states in human memory
processing. (A) Top 3 mean modes of patient #3 (~17 Hz traveling wave) visualized on a
brain surface plot. Variance explained by each mode is indicated in brackets. (B)
Distinguishing cognitive states in this patient in the spatial memory experiment, shown are
the activation functions in the complex plane for the three modes in A. The shift in direction
and/or strength of the traveling waves between different behaviors can be visualized in terms of
the activation functions where, a change in the direction of the waves corresponds to a change in
the angle of the activation functions (for example, compare confidence vs. distractor for mode 2
in B and C), a change in the strength of the waves corresponds to a change in the
magnitude/length of the activation functions (for example, compare confidence vs. navigation for
mode 1 in B and C), a change in both the direction and strength of the waves corresponds to a
change in both the angle and length of the activation functions (for example, compare navigation
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vs. retrieval for mode 3 in B and C). For each ellipse (task period), the major axis (horizontal
axis) denotes the standard-error-of-the-mean (SEM) for the real-part and the minor axis (vertical
axis) denotes the SEM for the imaginary part, of the activation functions. E: Encoding, C:
Confidence, N: Navigation, R: Retrieval, D: Distractor, F: Feedback. (C) Mean modes for each
cognitive state for the three modes in (A) in this patient. Traveling waves changed either their
direction (for example, confidence vs. distractor in mode 2), strength (for example, confidence
vs. navigation in mode 1), or both (for example, navigation vs. retrieval in mode 3), to
distinguish broad cognitive states in the spatial memory task. *** p <0.001, ** p <0.01 (FDR-
corrected).

Figure 6: Traveling waves can distinguish specific cognitive states in human memory
processing. (A) Top 3 mean modes of patient #23 (~7 Hz traveling wave) visualized on a
brain surface plot. Variance explained by each mode is indicated in brackets. (B)
Distinguishing specific cognitive states in this patient, shown are the activation functions in
the complex plane for the three modes in A. Similar to the spatial memory task, the shift in
direction and/or strength of the traveling waves for the English letters can also be visualized in
terms of the activation functions in the complex plane. (C) Mean modes for each letter for the
three modes in A in this patient. Similar to the spatial memory task, traveling waves changed
either their direction (for example, “J” vs. “R” in mode 3, also see B), strength (for example, “D”
vs. “G” in mode 1, also see B), or both (for example, “G” vs. “H” in mode 3, also see B), to
distinguish specific cognitive states in the verbal memory task. ** p < 0.01, * p <0.05 (FDR-
corrected).

Figure 7: Rotational traveling waves can distinguish cognitive states in human memory
processing. (A) Simulated example of a rotational traveling wave (counter-clockwise spiral-
out) in the divergence-curl plane. (B) Left panel: Traveling waves (mean mode) visualized
on a brain surface plot for patient #2, mode #1 (~20.6 Hz traveling wave). Right panel:
Normalized z-scored power from an example electrode. (C) Rotational traveling waves are
stable at the individual epoch level. Shown is the propagation of the traveling wave across time
for an example stable epoch for this patient, with arrows denoting the traveling waves and colors
denoting the cosine of the phases. (D) Rotational traveling waves can distinguish cognitive
states in the spatial memory task. First panel: Traveling waves visualized on a brain surface
plot for patient #5, mode #3 (~6.1 Hz traveling wave). Panels 2-7: Mean traveling waves for
different task periods. ** p < 0.01 (FDR-corrected). (E) Examples of rotational traveling
waves in the spatial memory task, visualized on a brain surface plot, demonstrating that
rotational waves are widespread across multiple brain areas. Panel 1: Traveling waves for
patient #6, mode #2, cluster frequency (CF) ~ 8.0 Hz. Panel 2: Traveling waves for patient #6,
mode #2, CF ~ 17.7 Hz. Panel 3: Traveling waves for patient #8, mode #2, CF ~ 19.9 Hz. Panel
4: Traveling waves for patient #1, mode #2, CF ~ 20.1 Hz. Panel 5: Traveling waves for patient
#3, mode #2, CF ~ 6.0 Hz. (F) Wave strength (%) for each task period for rotational wave
category in the spatial memory task, shown separately for low and high frequencies and
left and right hemispheres. E: Encoding, C: Confidence, N: Navigation, R: Retrieval, D:
Distractor, F: Feedback. *** p < (0.001 (FDR-corrected). (G) Examples of rotational traveling
waves in the verbal memory task, visualized on a brain surface plot, demonstrating that
rotational waves are widespread across multiple brain areas in the verbal memory task as
well. Panel 1: Traveling waves for patient #21, mode #2, CF ~ 12.4 Hz. Panel 2: Traveling
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waves for patient #24, mode #3, CF ~ 22.7 Hz. Panel 3: Traveling waves for patient #22, mode
#4, CF ~ 11.5 Hz. Panel 4: Traveling waves for patient #10, grid #1, mode #2, CF ~ 17.5 Hz.
Panel 5: Traveling waves for patient #16, mode #3, CF ~ 9.2 Hz.

Figure 8: Concentric traveling waves can distinguish cognitive states in human memory
processing. (A) Simulated example of a sink in the divergence-curl plane. (B) Left panel:
Traveling waves (mean mode) visualized on a brain surface plot for patient #1, mode #2
(~5.6 Hz traveling wave). Right panel: Normalized z-scored power from an example
electrode (note the presence of two peaks, one at lower frequency and another at higher
frequency). (C) Concentric traveling waves are stable at the individual epoch level. Shown
is the propagation of the traveling wave across time for an example stable epoch for this patient.
(D) Concentric traveling waves can distinguish cognitive states in the spatial memory task.
Panels 1-6: Mean traveling waves for different task periods for this patient. *** p <0.001 (FDR-
corrected). (E) Examples of concentric traveling waves in the spatial memory task,
visualized on a brain surface plot, demonstrating that expanding/contracting waves are
widespread across multiple brain areas. Panel 1: Traveling waves for patient #4, mode #5, CF
~22.5 Hz. Panel 2: Traveling waves for patient #5, mode #2, CF ~ 6.1 Hz. Panel 3: Traveling
waves for patient #9, mode #2, CF ~ 9.7 Hz. Panel 4: Traveling waves for patient #9, mode #4,
CF ~ 9.7 Hz. (F) Wave strength (%) for each task period for concentric wave category in
the spatial memory task. E: Encoding, C: Confidence, N: Navigation, R: Retrieval, D:
Distractor, F: Feedback. ** p < 0.01, N.S. Not significant (FDR-corrected). (G) Examples of
concentric traveling waves in the verbal memory task, visualized on a brain surface plot,
demonstrating that expanding/contracting waves are widespread across multiple brain
areas in the verbal memory task as well. Panel 1: Traveling waves for patient #11, mode #2,
CF ~ 19.8 Hz. Panel 2: Traveling waves for patient #19, mode #3, CF ~ 6.5 Hz. Panel 3:
Traveling waves for patient #21, mode #3, CF ~ 25.4 Hz. Panel 4: Traveling waves for patient
#16, mode #3, CF ~ 20.0 Hz.

Figure 9: Complex patterns of traveling waves can distinguish cognitive states in human
memory processing. (A) Simulated example of a complex traveling wave in the divergence-
curl plane. (B) Left panel: Traveling waves (mean mode) visualized on a brain surface plot
for patient #2, mode #3 (~20.6 Hz traveling wave). Right panel: Normalized z-scored power
from an example electrode. (C) Complex traveling waves are stable at the individual epoch
level. Shown is the propagation of the traveling wave across time for an example stable epoch
for this patient. (D) Complex traveling waves can distinguish cognitive states in the spatial
memory task. Panels 1-6: Mean traveling waves for different task periods for this patient. ** p <
0.01 (FDR-corrected). (E) Examples of complex traveling waves in the spatial memory task,
visualized on a brain surface plot, demonstrating that complex waves are widespread
across multiple brain areas. Panel 1: Traveling waves for patient #6, mode #4, CF ~ 17.7 Hz.
Panel 2: Traveling waves for patient #6, mode #3, CF ~ 8.0 Hz. Panel 3: Traveling waves for
patient #8, mode #3, CF ~ 19.9 Hz. Panel 4: Traveling waves for patient #9, mode #3, CF ~ 9.7
Hz. Panel 5: Traveling waves for patient #3, mode #3, CF ~ 17.2 Hz. (F) Wave strength (%)
for each task period for complex wave category in the spatial memory task. E: Encoding, C:
Confidence, N: Navigation, R: Retrieval, D: Distractor, F: Feedback. *** p <0.001 (FDR-
corrected). (G) Examples of complex traveling waves in the verbal memory task, visualized
on a brain surface plot, demonstrating that complex waves are widespread across multiple

28


https://doi.org/10.1101/2024.01.26.577456
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577456; this version posted April 4, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

brain areas in the verbal memory task as well. Panel 1: Traveling waves for patient #21, mode
#3, CF ~ 12.4 Hz. Panel 2: Traveling waves for patient #11, mode #3, CF ~ 19.8 Hz. Panel 3:
Traveling waves for patient #20, mode #4, CF ~ 5.7 Hz. Panel 4: Traveling waves for patient
#24, mode #2, CF ~ 22.7 Hz. Panel 5: Traveling waves for patient #19, mode #5, CF ~ 6.5 Hz.

Figure 10: Population-level behavioral results. (A) Percentage of significant modes for each
category of wave (P: Planar, R: Rotational, E: Expanding/Contracting, C: Complex) for
low (left panel) and high (right panel) frequency in the spatial memory task. Error bars
denote standard error of the proportion across modes. N.S. Not significant. (B) Percentage of
significant modes for each category of wave for left (left panel) and right (right panel)
hemisphere in the spatial memory task. (C) Percentage of significant modes for each
category of wave for low (left panel) and high (right panel) frequency in the verbal memory
task. (D) Percentage of significant modes for each category of wave for left (left panel) and
right (right panel) hemisphere in the verbal memory task. (E) Percentage of significance
for each mode in the spatial memory task. (F) Percentage of significance for each mode in
the verbal memory task.

Figure 11: Decoding broad cognitive states of human memory representations from
traveling waves. (A) Neural network architecture. We used a multilayer neural network with
an input layer, two hidden layers (32 and 16 neurons respectively), and an output layer for
decoding pairwise cognitive states (for example, encoding versus retrieval, letter “B” versus
letter “D”, etc.) (see Methods for details). We used the extracted weights from the ICA
procedure as features for training our neural network classifiers. (B) Neural network loss (left
panel) and test accuracy (right panel) versus number of modes. Increasing the number of
modes reduced the network training loss and increased test decoding accuracy. (C) Network
decoding accuracy for each oscillation cluster in the spatial memory task. Each point in the
plot corresponds to a pair of broad cognitive states (for example, encoding versus retrieval).
Error bars show SEM decoding accuracies across all pairs. Dotted red line denotes chance level
(50%). Inset shows that pairs of cognitive states which had higher decoding accuracy had wave
patterns that were visually more distinct from each other. Example waves belong to patient #5,
mode #2, CF ~ 6.1 Hz. (D, E) Network decoding accuracy versus dissimilarity of traveling
wave patterns, in the spatial memory task. Decoding accuracy was positively correlated (all ps
< 0.001) with the dissimilarity of traveling wave (TW) patterns, demonstrating that the decoding
results are consistent with the results obtained from the MANOVA analysis. One line was fit for
each oscillation cluster and the inset shows the histogram of Pearson correlation values across
clusters. E shows fitted line for an example oscillation cluster, with each point in the plot
denoting a pair of broad cognitive states (for example, encoding versus retrieval). (F) Mean
decoding accuracy across all oscillation clusters for each pair of cognitive states, in the
spatial memory task. (G) Dendrogram of F, demonstrating that the navigation and
distractor states were the most decodable from the other states, but relatively less
decodable from each other.

Figure 12: Decoding specific cognitive states of human memory representations from
traveling waves. (A) Network decoding accuracy for each oscillation cluster in the verbal
memory task. Each point in the plot corresponds to a pair of specific cognitive states (for
example, letter “B” versus letter “D”). Error bars show SEM decoding accuracies across all
pairs. Dotted red line denotes chance level (50%). Inset shows that pairs of letters which had
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higher decoding accuracy had wave patterns that were visually more distinct from each other.
Example waves belong to patient #16, mode #3, CF ~ 20.0 Hz. Note that clusters 13-26 showed
higher decoding accuracies compared to clusters 1-12 because of higher number of electrodes
(and hence higher number of modes) in their grids (median number of electrodes = 42 in clusters
13-26 compared to median number of electrodes = 24 in clusters 1-12). (B, C) Network
decoding accuracy versus dissimilarity of traveling wave patterns, in the verbal memory
task. Decoding accuracy was mostly positively correlated with the separability of letters,
demonstrating that the decoding results are consistent with the results obtained from the
MANOVA analysis. One line was fit for each oscillation cluster and the inset shows the
histogram of Pearson correlation values across clusters. Pearson correlation values which were
statistically significant (ps < 0.05) are denoted in green for both the fitted line and the inset plot.
C shows fitted line for an example oscillation cluster, with each point in the plot denoting a pair
of letters. (D) Mean decoding accuracy across all oscillation clusters for each pair of letters.
(E) Dendrogram of D, demonstrating that letter “H” was the most decodable, followed by
the letters “J” and “Q”, compared to the other letters.
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Cluster # Patient # Cluster frequency (Hz)
1 Patient #1 20.1
2 Patient #1 5.6
3 Patient #2 20.6
4 Patient #3 17.2
5 Patient #3 6.0
6 Patient #4 22.5
7 Patient #5 6.1
8 Patient #6 17.7
9 Patient #6 8.0
10 Patient #7 19.3
11 Patient #7 9.1
12 Patient #8 19.9
13 Patient #9 9.7

Supplementary Table 1: Oscillation clusters in the spatial episodic memory task.

Cluster # Patient # Cluster frequency (Hz)
1 Patient #10, grid #1 17.5
2 Patient #10, grid #2 18.0
3 Patient #10, grid #1 6.7
4 Patient #10, grid #2 8.6
5 Patient #11 19.8
6 Patient #12 19.9
7 Patient #12 10.6
8 Patient #13 6.3
9 Patient #14, grid #1 25.8
10 Patient #14, grid #1 8.8
11 Patient #14, grid #2 9.0
12 Patient #15 9.1
13 Patient #16 20.0
14 Patient #16 9.2
15 Patient #17 16.0
16 Patient #18, grid #1 17.3
17 Patient #18, grid #2 18.1
18 Patient #18, grid #1 8.7
19 Patient #18, grid #2 8.3
20 Patient #19 6.5
21 Patient #20 5.7
22 Patient #21 25.4
23 Patient #21 12.4
24 Patient #22 11.5
25 Patient #23 7.0
26 Patient #24 22.7

Supplementary Table 2: Oscillation clusters in the verbal working memory task.
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Spatial memory

(A) Rotating wave
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(B) Concentric wave

Wave | Low High Left Right Wave | Low High Left Right
type | frequency | frequency | hemisphere | hemisphere type frequency | frequency | hemisphere | hemisphere
TPF |3 4 4 3 Source | 4 3 4 3
TFP |3 6 6 3 Sink 1 1 2 0
Yerbal memory
(C) Rotating wave (D) Concentric wave
Wave | Low High Left Right Wave | Low High Left Right
type | frequency | frequency | hemisphere | hemisphere type frequency | frequency | hemisphere | hemisphere
TPF |6 6 3 9 Source | 5 2 5 2
TFP |8 7 3 12 Sink 8 7 9 6

Supplementary Table 3: Distribution of each type of rotational (TPF/TFP) and concentric (source/sink) waves for
spatial and verbal memory tasks across modes, shown for each frequency and hemisphere. TPF: Temporal-parietal-
frontal, TFP: Temporal-frontal-parietal.
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Supplementary Video 1: Propagation of traveling waves for two example epochs, one for the Encoding period, and

another for the Navigation period, from patient #1, CF ~ 5.6 Hz. Times denoted refer to the time elapsed since the start
of the stable epoch. Note the change in direction of the traveling wave on the lower half of the grid for the encoding versus

the navigation period. Shown above are snapshots of the videos. Video link:
https://github.com/anupdas777/complex_traveling waves/blob/main/R1076D_Encoding.mp4
https://github.com/anupdas777/complex_traveling waves/blob/main/R1076D_Navigation.mp4

Letter "G”" Letter "H"

B uP021_G.mpa
U.U ~

Supplementary Video 2: Propagation of traveling waves for two example epochs, one for the Letter “G”, and
another for the Letter “H”, from patient #21, CF ~ 12.4 Hz. Note that for the letter “G”, we observe a rotational wave,
whereas for the letter “H”, we observe a sink. Shown above are snapshots of the videos. Video link:
https://github.com/anupdas777/complex_traveling waves/blob/main/UP021_G.mp4
https://github.com/anupdas777/complex_traveling waves/blob/main/UP021 H.mp4
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Supplementary Video 3: Propagation of traveling waves for an example epoch from patient #2, CF ~ 20.6 Hz,
demonstrating that rotational waves were stable at the individual epoch level (related to Figures 7A-C). Shown above
is a snapshot of the video. Video link: https://github.com/anupdas777/complex_traveling_waves/blob/main/R1147P_R.mp4

° @ R1076D.mpa ~

= U msec

(SuIs0d) aseyd

Supplementary Video 4: Propagation of traveling waves for an example epoch from patient #1, CF ~ 5.6 Hz,
demonstrating that concentric (expanding/contracting) waves were stable at the individual epoch level (related to
Figures 8A-C). Shown above is a snapshot of the video. Video link:

https://github.com/anupdas777/complex_traveling waves/blob/main/R1076D_E.mp4

[} B rR1147P_C.mpa

= U msecC

Supplementary Video 5: Propagation of traveling waves for an example epoch from patient #2, CF ~ 20.6 Hz,
demonstrating that complex waves were stable at the individual epoch level (related to Figures 9A-C). Shown above
is a snapshot of the video. Video link: https://github.com/anupdas777/complex_traveling_waves/blob/main/R1147P_C.mp4
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Supplementary Figure 1: Electrode locations in the spatial (patients #1-9) and verbal (patients #10-24) memory
tasks.
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Supplementary Figure 2: Stable epochs in the empirical data lasted significantly longer than the shuffled data, in the
spatial memory task (Methods). Each panel corresponds to one cluster, with cluster frequency (CF) noted in the title of
each panel, where data for the shuffled distribution is plotted in green and empirical data is plotted in red. We obtained very
similar results for the verbal memory task (data not shown).
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Supplementary Figure 3: Histogram of occurrence of stable epochs across all (A) low frequency (< 12 Hz), (B) high
frequency (> 12 Hz), (C) left hemisphere, and (D) right hemisphere oscillation clusters in different task periods in the

spatial memory task.
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Supplementary Figure 4: Wave strength (%) for each task period for the planar wave category in the spatial
memory task, shown separately for low and high frequencies and left and right hemispheres. E: Encoding, C:
Confidence, N: Navigation, R: Retrieval, D: Distractor, F: Feedback. *** p <0.001 (FDR-corrected).
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Supplementary Figure 5: Individual epoch-level examples of rotational traveling waves for mode 2 in patient #21

CF ~ 12.4 Hz, demonstrating that the ICA modes are present at the single-trial level
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Supplementary Figure 6: Individual epoch-level examples of expanding traveling waves for mode 2 in patient #11,
CF ~19.8 Hz, demonstrating that the ICA modes are present at the single-trial level.
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Supplementary Figure 7: Columns 1-6: Comparing traveling waves for patient #1, CF ~ 5.6 Hz, for the task periods
encoding, confidence, navigation, retrieval, distractor, and feedback, for each mode. For each mode, shown above is
the raw mode multiplied by the mean of the activation functions (or, weights) for each task period (Methods). Statistical
significance was assessed using MANOVA (Methods). Significant modes are plotted in blue and non-significant modes are
plotted in black. Column 7: Visualization of traveling waves for each mean mode on a brain surface plot. Column 8:
Visualizing the activation functions in the complex-plane for the task periods for each mode. For each ellipse (task
period), the major axis (horizontal axis) denotes the standard-error-of-the-mean (SEM) for the real-part and the minor axis
(vertical axis) denotes the SEM for the imaginary part, of the activation functions. E: Encoding, C: Confidence, N:
Navigation, R: Retrieval, D: Distractor, F: Feedback. *** p <0.001, ** p <0.01, * p <0.05 (FDR-corrected).
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Supplementary Figure 8: Caption similar to Supplementary Figure 7, for patient #2, CF ~20.6 Hz.
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Supplementary Figure 9: Caption similar to Supplementary Figure 7, for patient #5, CF ~ 6.1 Hz.
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Supplementary Figure 10: Caption similar to Supplementary Figure 7, for patient #6, CF ~17.7 Hz.
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Supplementary Figure 11: Caption similar to Supplementary Figure 7, for patient #9, CF ~ 9.7 Hz.

00000

-02 -0.1

67


https://doi.org/10.1101/2024.01.26.577456
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bioinv preprintlﬂoi: https://doi.(&g/lo.1101/202141.01.26.577456; this version po&ed April 4, 2024. The copyrighjholder for this preprint (which
WA + +1 d-bh A\ Zww-ie-th h Jid A d hinR IH | T2y

was-ot-certified-by-peerreview)is-the-author/funder whoe-has granted-bioRXiv-a- license-to-display-the preprint-inp rpetui tsipade
% v v available under aCC-B¥Y-NC-ND 4.0 Ingernational license. v
v v v v v 7 ¥ ¥
Vj: = WW N V\v b ) - *‘y N v Wv Y Wv \V NV ¥ = VV | v i V' v S
= ¢wwv WW Vv v ww A WV v ¢V VV v Y ¢¢ v NV ooy Voo -005
VoY »l«‘ll Y Vv ORI vaw vy Yoty vy WY,V V" Yoty v’ vor 't v¥
vy AN VY A A Wy v 472 Ve

Mode 1

Mode 2
N.S.
W
A
Y,
N

-0025 0000 0025

QUQEIQ

Mode 4
N.S
'. M‘
\
w
w
Va
Vi
A

ok - ek

Moie 3
A3
:
N ' »
R A
*
9 L3
3 A
<
o
Ry A
Y A
=
S »r
N LS
rS
<
> <€
> <
>
1\
A
-
v A
¥ p
v
LN
A
gy
' A
y A
o |
A
V.' £ A
v A

Supplementary Figure 12: Columns 1-8: Comparing traveling waves for patient #14, grid #1, CF ~ 25.8 Hz, for the
English letters, for each mode. For each mode, shown above is the raw mode multiplied by the mean of the activation
functions (or, weights) for each letter (Methods). Significant modes are plotted in blue and non-significant modes are
plotted in black. Column 9: Visualization of traveling waves for each mean mode on a brain surface plot. Column 10:
Visualizing the activation functions in the complex-plane for the letters for each mode. *** p <0.001, ** p <0.01, * p
< 0.05 (FDR-corrected).
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Supplementary Figure 13: Caption similar to Supplementary Figure 12, for patient #16, CF ~ 9.2 Hz.
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Supplementary Figure 14: Caption similar to Supplementary Figure 12, for patient #19, CF ~ 6.5 Hz.
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Supplementary Figure 16: Caption similar to Supplementary Figure 12, for patient #24, CF ~ 22.7 Hz.

71


https://doi.org/10.1101/2024.01.26.577456
http://creativecommons.org/licenses/by-nc-nd/4.0/

