

1 Heat Shock Proteins Function as Signaling Molecules to Mediate

2 Neuron-Glia Communication During Aging

3 Jieyu Wu¹, Olivia Jiaming Yang^{1,2}, Erik J. Soderblom³, Dong Yan^{1, 4 *}

4 1. Department of Molecular Genetics and Microbiology, Duke University Medical Center,
5 Durham, NC 27710, USA

6 2. East Chapel Hill High School, Chapel Hill, NC 27514, USA

7 3. Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham,
8 NC 27710, USA

9 4. Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke
10 Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA

11 *Corresponding author/Lead contact:

12 dong.yan@duke.edu, Tel: 919-684-1929, Fax: 919-684-6033

13

14 Key words:

15 neuron, glia, aging, heat shock proteins, UPR^{ER}, extracellular vesicles, chondroitin, C.

16 *elegans*

17

18

19

20

21

22

23

24

25

26 **Abstract**

27 The nervous system is primarily composed of neurons and glia, and the
28 communication between them plays profound roles in regulating the development and
29 function of the brain. Neuron-glia signal transduction is known to be mediated by secreted
30 or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we
31 report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit
32 proteins to glia through extracellular vesicles, activating glial signaling pathways. We find
33 that in the amphid sensory organ of *Caenorhabditis elegans*, different sensory neurons
34 exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between
35 neurons and glia. We demonstrate that early-aged neurons can transmit heat shock
36 proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-
37 XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop.
38 Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation
39 of chondroitin synthases to protect glia-embedded neurons from aging-associated functional
40 decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in
41 the nervous system and provide new insights into our understanding of brain aging.

42

43

44

45

46

47

48

49

50

51

52 Introduction

53 Aging causes a decline in brain function and is the most significant risk factor for
54 neurodegenerative diseases¹⁻³. Over the past few decades, extensive efforts have been
55 dedicated to studying the aging of neurons, leading to a significant understanding of
56 molecular mechanisms underlying neuronal aging⁴. However, it is worth noting that more
57 than half of the cells in the brain are glia⁵, and the function significance of glia and their
58 crosstalk with neurons during aging are not well understood.

59 With increasing evidences showing that glial cells are versatile regulators in various
60 aspects of brain function previously attributed solely to neurons, substantial knowledge of
61 neuron-glia interactions has been unveiled in the past three decades⁶. The crosstalk
62 between neurons and glia presents great complexity and heterogeneity throughout the
63 nervous system. Glial cells can sense different aspects of neuronal activity, such as
64 electrical signals, synaptic neurotransmitters, structural changes, and energy demands,
65 through a cassette of membrane receptors, channels, transporters, and pumps⁷⁻⁹. In turn,
66 glial cells can release different molecular signals, such as gliotransmitters (glutamate, ATP,
67 GABA and D-serine) and cytokine (TNF α , IL-10 and TGF β), to impact neuronal activity^{7,10,11}.
68 Thus, neuron and glia can sense each other to respond different stimulations through cell-
69 cell signal transduction, thereby regulating brain function. Besides functional regulation, the
70 interactions between neurons and glia also shape their development¹²⁻¹⁴. In all these
71 instances, the signal transductions between neurons and glia rely on ligand-receptor
72 interactions on the cell membrane. Yet, it remains to be explored whether neurons and glia
73 can communicate through other mechanisms in physiological and pathological conditions.

74 Extracellular vesicles (EVs) are membrane-surrounded structures released by nearly
75 all cells. EVs exhibit heterogeneity and contain various contents including proteins, lipids,
76 nucleic acids, metabolites, and even organelles^{15,16}. The contents of EVs are believed to be
77 selectively packaged rather than passively included, leading to the proposal that EVs play a
78 role in mediating cell-cell communications. Extensive research has elucidated the functions
79 of EVs in cell-cell communications, particularly in virus infections such as Epstein-Barr virus
80 (EBV) infections. Studies demonstrate that virus-infected cells can pack viral miRNA,
81 mRNA, and lncRNA into EVs, transmitting them into healthy cells and causing further

82 damages^{17,18}. Additionally, EVs are implicated in cancer progression via transfer of EV-
83 associated miRNAs, which is sufficient to drive the transformation of non-tumorigenic cells
84 into a tumor¹⁹⁻²¹. In the nervous system, EVs are found to be released from all major cell
85 types, including neurons, astrocytes, microglia, and oligodendrocytes²²⁻²⁴. However, our
86 understanding of the function of EVs in the brain is still limited. Notably, one of the most
87 characterized neuronal regulations involving EVs comes from the study of a protein called
88 Arc. Arc can form virus-like capsids to pack its mRNA into EVs to mediate neuron-neuron
89 transmission, and the transmitted mRNA can influence the function of neurons²⁵. Other
90 studies indicate that neuronal and glial EVs can impact neuronal survival and synaptic
91 activity in vitro, though the mechanisms through which EVs mediate these processes
92 remain unclear²⁶⁻²⁸. To date, most studies of EVs in cell-cell signal transduction have
93 focused on RNA as signal components. However, beyond RNA, many proteins are
94 packaged into EVs, and the functions of these proteins in signal transduction, specifically in
95 the brain, remain to be studied.

96 In this study, we demonstrate that early aged neurons can transmit heat shock
97 proteins (HSP-4) into glia through EVs. These neuronal HSP-4 proteins activate the glial
98 IRE1-XBP1 pathway, further increasing HSP-4 expression in glia and forming a positive
99 feedback loop. Consequently, the activation of the IRE1-XBP1 pathway promotes the
100 transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from
101 aging-associated functional decline. Our results uncover a novel mechanism for neuron-glia
102 communication during aging, wherein neurons directly transmit proteins into glia to regulate
103 glial function, thereby protecting other neurons.

104

105 **Results**

106 **Varied aging rates among sensory neurons are intrinsically correlated**

107 To investigate neuron-glia interactions during aging, we used the *C. elegans* amphid
108 sensory organ as a model²⁹. The amphid sensory organ in *C. elegans* comprises 12
109 sensory neurons and 2 glial cells (socket glia and amphid sheath (AMsh) glia)³⁰. It exhibits
110 structure and morphology similar to sensory units in other species, such as mammalian

111 taste buds and olfactory bulbs³¹. These 12 neurons can be further classified into AMsh-
112 channel neurons and AMsh glia-embedded neurons, and their dendritic receptive endings
113 are wrapped in a channel formed by AMsh glia to be exposed to the external environment
114 and are entirely embedded within AMsh glia in a hand-in-glove configuration, respectively³⁰
115 (Figure 1A). AMsh glia are essential for the function of the sensory organ and share
116 developmental and functional similarities with mammalian glia^{29,32}. To study how aging
117 affects the function of the amphid sensory organ, we began by testing the function of two
118 AMsh-channel neurons, ASH and ADL neurons, and two AMsh glia-embedded neurons,
119 AWA and AWC neurons, during aging (Figure 1A). ASH/ADL neurons mediate repulsion
120 behaviors in response to octanol, while AWA and AWC neurons sense 2-methylpyrazine and
121 benzaldehyde, respectively, to initiate attraction behaviors^{32,33} (Figure S1A and S1B).

122 The average lifespan of *C. elegans* is approximately 2 weeks, and most animals
123 exhibit noticeable neuronal aging phenotypes within the first 9 days³⁴⁻³⁷. Therefore, we used
124 the adult stage day 1 (D1), day 6 (D6), and day 9 (D9) animals to assess the function of
125 amphid sensory neurons during aging. Utilizing classic chemotaxis assays^{32,38}, we observed
126 age-dependent functional decline in ASH/ADL, AWA, and AWC neurons (Figures 1B, S1A,
127 and S1B). While from a population perspective these neurons appeared to age collectively
128 at a similar rate, this data did not address the relationship among the aging of these sensory
129 neurons in individual animals. To address this question, following the initial chemotaxis
130 testing, we first divided day 6 animals into two groups, with and without responses, and then
131 compared the function of other sensory neurons between these two groups (Figures S1A
132 and S1B). We found that the function of AWA and AWC neurons were tightly correlated with
133 each other, that animals with functional AWA/AWC neurons were more likely to have normal
134 AWC/AWA functions when compared with those without AWA/AWC functions (Figures 1C
135 and 1D). In contrast, the function of ASH/ADL neurons were negatively correlated with
136 AWA/AWC functions, that animals without ASH/ADL functions tended to have functional
137 AWA/AWC neurons when compared to those with ASH/ADL functions (Figures 1E and 1F).
138 However, the functionality of ASH/ADL neurons could not be predicted by AWA or AWC
139 functions, as animals with or without AWA/AWC functions performed similarly when tested
140 for ASH/ADL functions (Figures S1C and S1D). This unilateral negative correlation between

141 ASH/ADL and AWA/AWC functions during aging suggests that the underlying signals may
142 be initiated by ASH/ADL neurons to affect AWA/AWC neurons.

143 To uncover the mechanisms behind the negative correlation between ASH/ADL and
144 AWA/AWC functions in day 6 animals, we examined whether the aging of ASH/ADL neurons
145 could protect AWA/AWC neurons. In *C. elegans*, one of the major aging signals is the
146 insulin-like growth factor signaling pathway, and its downstream transcription factor *daf-16*
147 can regulate neuronal aging cell autonomously^{39,40}. Using a well-established *daf-16* knockin
148 translational reporter⁴¹, we observed the expression of *daf-16* in ASH/ADL neurons, while it
149 was absent in the nearby AMsh glia (Figures S1E and S1F). To induce ASH/ADL neuronal
150 aging, we employed auxin-inducible degradation system (AID) to deplete DAF-16 proteins
151 exclusively in ASH/ADL neurons^{42,43} (Figure 1G). We found that selectively depletion of
152 DAF-16 in ASH/ADL neurons accelerated their aging and caused further decline in
153 ASH/ADL functions when compared to the same age control animals (Figure 1H), and these
154 modulations largely prevented the functional decline of AWA/AWC neurons caused by aging
155 (Figures 1I and 1J). Taken together, we believe that the aging of ASH/ADL neurons can
156 prevent aging-associated functional decline of AWA/AWC neurons.

157 **Neuronal aging activates the UPR^{ER} pathway in AMsh glia**

158 Although ASH/ADL and AWA/AWC neurons do not directly communicate with each
159 other, they both make contact with the same glial cell, namely AMsh glia (Figure 1A). Since
160 bidirectional regulations between neurons and glia have been well-documented in many
161 organisms^{8,10}, we investigated whether AMsh glia are involved in the regulation between
162 ASH/ADL and AWA/AWC neurons. First, we examined how aging affected AMsh glia and
163 found that AMsh glia in aged animals displayed aging-associated features, such as
164 accumulations of large vacuole structures (Figures S2A and S2B). Further examinations of
165 these vacuole structures showed that they were co-localized with the late-endosome marker
166 RAB-7 and the lysosome marker LMP-1^{44,45} (Figure S2C), similar to what has been
167 observed in aged neurons⁴⁶⁻⁴⁸. Using these abnormal vacuole structures as a marker, we
168 evaluated the relationship between AMsh glial aging and the function of sensory neurons.
169 We observed a positive correlation between the aging of AMsh glia and the aging-
170 associated functional decline of AWA/AWC neurons, while a negative correlation was noted

171 with ASH/ADL functional decline (Figures S2D-S2F). These findings suggest that the aging
172 of ASH/ADL may impact AWA/AWC neurons through the intermediary of AMsh glia. We
173 validated this hypothesis by inducing ASH/ADL aging through DAF-16 depletion and found
174 that triggering ASH/ADL aging indeed delayed AMsh glial aging (Figure S2G). These results
175 support the conclusion that the aging of ASH/ADL neurons could suppress AMsh glial aging,
176 thereby protecting AWA/AWC neurons from aging-associated functional decline.

177 Next, we further investigated how ASH/ADL neuronal aging affected AMsh glia by
178 comparing AMsh glial protein profiles between control and ASH/ADL-aged animals.
179 Adapting a strategy similar to that employed in neurons³⁶, we selectively expressed free
180 Turboid in AMsh glia and temporally labeled proteins with biotin only in AMsh glia of adult
181 day 6 animals (Figure 2A). After enrichment by streptavidin-coated beads, the samples were
182 subjected to HPLC-MS/MS quantitative proteomic analyses (Figures 2A, 2B, S3A, and
183 S3B). In both control and experimental groups, we were able to quantitatively characterize
184 approximately 1500 proteins (Table S3), of which 111 were downregulated, and 77 were
185 upregulated in ASH/ADL-aged animals when compared with the same age control animals
186 (Figure 2C). Gene ontology analyses show that the upregulated proteins were
187 predominantly enriched in the endoplasmic reticulum unfolded protein responses (UPR^{ER}),
188 specifically the IRE1-XBP1 pathway, suggesting that the aging of ASH/ADL may activate the
189 UPR^{ER} pathways in AMsh glia (Figures 2C and 2D).

190 As one of the major signals mediating the UPR^{ER}, the IRE1-XBP1 pathway can
191 regulate the expression of a subset of UPR^{ER} target genes related to protein folding, protein
192 translocation, ER-associated protein degradation, and lipid homeostasis⁴⁹⁻⁵¹. The key event
193 for the activation of the IRE1-XBP1 pathway is the expression of a spliced version of
194 Xbp1(Xbp1s) through the excision of a non-canonical intron from the unspliced
195 Xbp1(Xbp1u) mRNA by the endonuclease IRE1⁵². The spliced XBP1s functions as a
196 transcription factor to regulate the expression of target genes⁵². To examine the potential
197 role of ASH/ADL aging in activating the IRE1-XBP1 pathway in AMsh glia, we expressed the
198 XBP-1 activation reporter in AMsh glia using the similar strategy as previously reported⁵³. In
199 this reporter, GFP was fused at the C-terminus in frame with the spliced *xbp-1s* when the
200 non-canonical 23bp intron is removed by IRE-1(Figure 2E). Utilizing this reporter, we can

201 assess the activation of the IRE1-XBP1 pathway by measuring the GFP intensity. Our
202 results showed that the activation of IRE1-XBP1 pathway in AMsh glia was upregulated
203 during aging, and inducing aging in ASH/ADL neurons further enhanced this activation
204 (Figures 2F and 2G). Moreover, we found that expression of the constitutively activated
205 XBP-1s in AMsh glia prevented the functional decline of AWA/AWC neurons during aging
206 (Figures 2H and 2I). Furthermore, AMsh glia-specific knockdown of *xbp-1* or *ire-1*, two key
207 molecules in the IRE1-XBP1 pathway, suppressed the protective effects of ASH/ADL aging
208 on AWA/AWC neurons (Figures 2J and 2K). These results demonstrate that ASH/ADL aging
209 prevents the aging-associated functional decline of AWA/AWC neurons through the
210 activation of the IRE1-XBP1 pathway in AMsh glia.

211 **Neuronal HSP-4 activates the glial IRE1-XBP1 pathway**

212 Heat shock proteins (HSPs) are well-known components of the UPR^{ER} pathways,
213 and different HSPs have distinct functions, either as downstream factors or upstream
214 regulators of the IRE1-XBP1 pathway^{52,54,55}. In the AMsh glial proteome profiling study, we
215 identified two HSPs, HSP-3 and HSP-4, whose expressions in AMsh glia were upregulated
216 by ASH/ADL aging (Figure 2C). To further explore their roles during aging, we first used a
217 *hsp-4* knockin strain, *utx39* [*hsp-4::mNG::3xFlag*], as a reporter to validate our proteomic
218 results and confirmed that the aging of ASH/ADL neurons increased HSP-4 expression in
219 AMsh glia (Figures 3A and 3B). Next, we examined the functional significance of HSP-4
220 during aging by overexpressing HSP-4 in AMsh glia. In this experiment, we generated
221 transgenes that overexpressed HSP-4 in ASH/ADL neurons as a control. Presumably, HSP-
222 4 would function in AMsh glia but not in ASH/ADL neurons to regulate AWA/AWC functions.
223 Surprisingly, our results showed that the expression of HSP-4 in both AMsh glia and
224 ASH/ADL neurons prevented the aging-associated functional decline of AWA/AWC neurons
225 in a similar fashion as that in *xbp-1s* transgenes (Figures 3C and 3D). To confirm our
226 observations from these gain-of-function studies, we conducted loss-of-function studies by
227 knocking down *hsp-4* in AMsh glia or ASH/ADL neurons. Our results showed that
228 knockdown of *hsp-4* in either AMsh glia or ASH/ADL neurons suppressed the AWA/AWC
229 protections mediated by ASH/ADL-aging (Figures 3E and 3F). Furthermore, knockdown of
230 *hsp-4* simultaneously in both AMsh glia and ASH/ADL neurons did not further enhance their

231 suppression on ASH/ADL-aging mediated AWA/AWC protections (Figures 3E and 3F),
232 suggesting that ASH/ADL neuronal and AMsh glial HSP-4 function through the same
233 mechanism. To investigate how neuronal HSP-4 function in this process, we generated
234 HSP-4::mCherry reporters that labels HSP-4 only in ASH/ADL neurons or in all AMsh-
235 channel neurons. Unexpectedly, besides neuronal expression, we also observed HSP-
236 4::mCherry within AMsh glia in both reporters (Figures 3G and S4A). As a control we
237 expressed free mCherry in all AMsh-channel neurons and didn't detect any mCherry signal
238 in AMsh glia (Figures 3G and S4A). These results suggest that neuronal HSP-4 is
239 transferred from ASH/ADL neurons to AMsh glia.

240 As the activation of the IRE1-XBP1 pathway in AMsh glia is regulated by ASH/ADL
241 neuronal aging, we questioned whether ASH/ADL neuronal HSP-4 could be the signal to
242 trigger this activation. To test this, we examined the effects of expressing *hsp-4* in ASH/ADL
243 neurons on the activation of the IRE1-XBP1 pathway in AMsh glia. We observed a
244 significant activation of *xbp-1s* reporter in AMsh glia in aged animals when *hsp-4* was
245 overexpressed in ASH/ADL neurons (Figures 3H and 3J). These results suggested that
246 either HSP-4 itself or some unknown neuronal factors associated with HSP-4 can activate
247 the IRE1-XBP1 pathway in AMsh glia. To distinguish between these possibilities, we tested
248 whether the direct expression of *hsp-4* in AMsh glia could activate the IRE1-XBP1 pathway
249 and found that expressing *hsp-4* in AMsh glia caused the activation of the *xbp-1s* reporter in
250 a similar fashion as that in neuronal transgenes (Figures 3H and 3J). To test whether the
251 role of HSP-4 is unique in neuron-glia communication, we examined the function of HSP-3,
252 another heat shock protein identified in our proteomic studies, in this process. We found that
253 although HSP-3 can be transmitted from AMsh-channel neurons to AMsh glia in a manner
254 similar to HSP-4, overexpression of *hsp-3* in ASH/ADL or AMsh glia didn't affect the
255 activation of *xbp-1s* reporter in AMsh glia and couldn't protect AWA/AWC neurons from the
256 aging-associated functional decline (Figures S4B-S4F). These results support the
257 conclusion that the transmission of HSP-4 from ASH/ADL neurons to AMsh glia can activate
258 the IRE1-XBP1 pathway in AMsh glia.

259 As a homolog of mammalian Hsp70, HSP-4 has been shown to be one of the
260 downstream targets of XBP-1 in unfolded protein responses^{52,56}. We tested whether the

261 activation of *xbp-1* could also induce *hsp-4* expression in AMsh glia and found that
262 expression of the constitutively activated XBP-1s increased HSP-4 expression in AMsh glia
263 (Figures S4G and S4H). With these findings showing that HSP-4 acts both upstream and
264 downstream of XBP-1, we believe that the neuronal HSP-4 serves as the initial signal to
265 trigger the activation of the IRE1-XBP1 pathway in AMsh glia, and the activation of XBP-1s
266 induced the expression of glial HSP-4, further enhancing the activation of the IRE1-XBP1
267 pathway. This positive feedback loop is achieved by an increase in glial HSP-4 due to
268 neuronal HSP-4. To test whether this is the case, using the HSP-4 knockin reporter, we
269 examined the expression of HSP-4 in AMsh glia when HSP-4 was knocked down in
270 ASH/ADL neurons. Consistent with our model, the knockdown of HSP-4 in ASH/ADL
271 neurons suppressed the increase in HSP-4 levels in AMsh glia caused by ASH/ADL
272 neuronal aging (Figures 3A and 3B). The essential role of neuronal HSP-4 in this neuron-
273 glia interaction was further confirmed by the behavior analyses and *xbp-1s* reporter; the
274 knockdown of *hsp-4* in ASH/ADL neurons attenuated the protection of AWA/AWC neurons
275 and the activation of *xbp-1s* reporter caused by ASH/ADL neuronal aging (Figures 3E, 3F,
276 3I, and 3J). Collectively, our data show that the transmission of HSP-4 from aged ASH/ADL
277 neurons to AMsh glia can activate the glial IRE1-XBP1 pathway.

278 **Neuronal HSP-4 is transmitted to AMsh glia through extracellular vesicles**

279 With the findings of the function of neuronal HSP-4 in activating the glial IRE1-XBP1
280 pathway, we further asked what could mediate the transmission of HSP-4 from neurons to
281 glia. Neuronal HSP-4::mCherry displayed both puncta and diffused distributions in AMsh
282 glia, and these two different patterns may represent two stages of neuronal HSP-4 in AMsh
283 glia: the early stage when it is still packaged in vesicles from neurons, and the late stage
284 when it is incorporated into AMsh glia (Figure 4A). To understand the machinery that
285 mediates the transmission of HSP-4 from neurons to glia, we focused our analyses on the
286 HSP-4::mCherry puncta in AMsh glia. After examining markers for different neuronal
287 vesicles, we found that the TSP-6::GFP-labeled neuronal extracellular vesicles (EV) were
288 uptake by AMsh glia^{57,58}, and the HSP-4::mCherry puncta within AMsh glia are highly co-
289 localized with these neuronal EVs (Figures 4A, S5A, and S5B). Consistent with our findings,
290 HSP-4 and its homologs were found to be packaged in EVs released from neurons in C.

291 *elegans* and mammals^{58,59}.

292 Next, we examined the effects of ASH/ADL neuronal aging on EVs and observed
293 more neuronal EVs in AMsh glia in ASH/ADL-aged animals when compared with the same
294 age control animals, supporting that neuronal aging can lead to more EVs being transmitted
295 from neurons to glia (Figures 4B and 4C). To further elucidate the role of neuronal EVs in
296 regulating AMsh glia, we genetically manipulated EV release and uptake and examined the
297 consequences of these modulations. In *C. elegans*, *tat-5*, a phospholipid flippase, inhibits
298 the budding of EVs from the plasma membrane^{60,61}, and *dyn-1*, a homolog of mammalian
299 dynamin 2, is required for EVs uptake in glial cells^{57,62,63} (Figure 4D). We first confirmed the
300 function of *tat-5* and *dyn-1* in our system, that knockdown of *tat-5* in AMsh-channel neurons
301 increased EV release, whereas expression of a dominant-negative DYN-1(G40E and
302 K46A)^{57,63} in AMsh glia suppressed EV uptake (Figures 4E and 4F). We then examined the
303 effects of increasing neuronal EV release on the activation of the IRE1-XBP1 pathway in
304 AMsh glia and on the protection of AWA/AWC function by AMsh glia. We found that
305 increasing EV release from ASH/ADL neurons by cell specific knockdown of *tat-5*
306 upregulated the extent of IRE1-XBP1 activation and prevent the aging-associated
307 AWA/AWC functional decline (Figures 4G, 4H, 4M, and 4O). More importantly, the function
308 of EVs depended on neuronal HSP-4, as the knockdown of *hsp-4* in ASH/ADL neurons
309 abrogated the effects of increasing EV release (Figures 4G, 4H, 4M, and 4O). Furthermore,
310 we found that the suppression of EV uptake through overexpressing the dominant-negative
311 DYN-1 in AMsh glia attenuated the upregulation of HSP-4 proteins and the activation of the
312 IRE1-XBP1 pathway in AMsh glia in ASH/ADL-aged animals (Figures 4K, 4L, 4N, and 4O).
313 Moreover, suppressing AMsh glial EV uptakes largely eliminated the protections of
314 AWA/AWC functions by ASH/ADL neuronal aging (Figures 4I and 4J). Together, our results
315 support the conclusion that ASH/ADL neuronal HSP-4 is transmitted to AMsh glia through
316 EVs, and this transmission activates the glial IRE1-XBP1 pathway to protect AWA/AWC
317 neurons from functional decline during aging.

318 **AMsh glial chondroitin protects neurons from aging**

319 With all these findings, we sought to investigate how the activation of the IRE1-XBP1
320 pathway in AMsh glia protected AWA/AWC neurons from aging-associate functional decline.

321 To address this question, we focused on proteins that are upregulated by ASH/ADL aging
322 and tested the effects of overexpressing them in AMsh glia on AWA/AWC functions (Figure
323 5A). We found that overexpression of *mig-22*, a chondroitin polymerizing factor and a
324 homolog of mammalian *ChSy2*^{64,65}, suppressed the functional decline of AWA/AWC neurons
325 during aging (Figures 5B and 5C). This data suggests that the increase in chondroitin
326 synthesis could be the downstream signal triggered by the activation of the IRE1-XBP1
327 pathway, mediating the protection of AWA/AWC neurons against aging. Since the
328 expression of the only chondroitin synthase in *C. elegans*^{66,67}, *sqv-5*, is also highly
329 upregulated in AMsh glia by ASH/ADL aging (Figure 2C; Table S3), we tested the function of
330 *sqv-5* in AWA/AWC protections and found that overexpression of *sqv-5* in AMsh glia
331 suppressed the aging-associated AWA/AWC functional decline in a similar manner as that in
332 *mig-22* transgenes (Figures 5B and 5C). Using MIG-22::GFP and SQV-5::GFP translational
333 reporters driven by their own promoters, we confirmed that their expressions in AMsh glia
334 were upregulated by ASH/ADL aging, and these increases depended on the activation of
335 the IRE1-XBP1 pathway in AMsh glia (Figures 5D-5G). In addition, we found that the
336 expression of the constitutively activated XBP-1s in AMsh glia is sufficient to drive MIG-
337 22::GFP and SQV-5::GFP expression in AMsh glia (Figures 5H-5J). Furthermore, AMsh
338 glia-specific knockdown of *mig-22* or *sqv-5* suppressed the protections of AWA/AWC
339 function by ASH/ADL neuronal aging (Figures 5K and 5L). Collectively, these results
340 highlighted the important roles of glia-produced chondroitin in the protection of AWA/AWC
341 neurons during aging.

342 Discussion

343 In conclusion, we have characterized a distinctive mechanism of neuron-glia
344 communication during aging, wherein glia sense and respond to early-aged neurons
345 through released neuronal extracellular vesicles (EVs). The neuronal HSP-4 packaged in
346 EVs serves as a signal transmitted into glia, activating the glial UPR^{ER} pathway in response
347 to neuronal aging. Furthermore, the activated UPR^{ER} pathway in glia transcriptionally
348 regulates chondroitin synthases, thereby providing protection against neuronal aging
349 (Figure S6). Given the ubiquity of HSPs, UPR^{ER} and EVs across species, the mechanism

350 we have elucidated may represent a potentially conserved process within the nervous
351 system during aging.

352 In the brain, different neurons respond to stimulations differently in physiological and
353 pathological conditions, with some neurons being more sensitive than others. In this study,
354 we demonstrate that early-aged neurons can induce cellular responses in glia through EV-
355 mediated signal transductions, thereby protecting other neurons from aging-associated
356 functional decline. This mechanism may represent a more general process underlying
357 neuronal protection beyond aging: when stress or damage occurs, a subset of neurons can
358 respond to the stimulations to activate surrounding glia through EVs, and the activation of
359 glial can, in turn, protects other neurons and prevents cascade damage to the brain.
360 Consistent with this idea, under stress or after damage, many cells, including neurons, can
361 release EVs, and those EVs contain a wide array of constituents, such as proteins, DNA,
362 RNA, lipids and metabolites¹⁵. Although this study primarily focuses on the role of EV-
363 packaged HSPs in neuronal protection, we believe that many components of EVs could play
364 important roles in signal transduction within the nervous system. Since EVs can mediate
365 both short- and long-distance intercellular communication¹⁵, the mechanism presented in
366 this study may also provide insights in many biological processes that are initiated by
367 neurons. For instance, in *C. elegans*, activation of stress responses in neurons and glia can
368 affect lifespan through intestinal cells, and the mechanisms mediating this cell-
369 nonautonomous signal transduction from the brain to peripheral tissues remain unclear^{52,68-}
370 ⁷⁰. It is possible that neurons and glia transmit signaling molecules to intestinal cells through
371 EVs to affect the overall health of animals.

372 Many physiological and pathological factors, including aging, can lead to ER stress⁷¹⁻⁷⁴.
373 To maintain intracellular homeostasis, cells have evolved an adaptive mechanism, unfolded
374 protein response of the ER (UPR^{ER}), to mitigate the ER stress⁵¹. The activation of UPR^{ER} can be
375 regulated by cell-autonomous and cell-nonautonomous mechanisms^{52,70}. In this study, we
376 investigate the cell-nonautonomous regulation of UPR^{ER} between neuron and glia, and we show
377 that the activation of glial UPR^{ER} can be initiated by signals from neurons, highlighting the
378 significant role of neurons in regulating glial homeostasis during aging. As one of the major
379 UPR^{ER} signals, the IRE1-XBP1 pathway controls the expression of many target genes, including

380 Hsp70, and Hsp70 can suppress the IRE1-XBP-1 activation in cultured cells^{71,77,78}. We found
381 that *C. elegans* HSP-4, a homolog of mammalian Hsp70, can be transmitted from neurons to
382 glia during aging, and neuronal HSP-4 triggers the activation of the glial IRE1-XBP1 pathway
383 during aging. The differences of mammalian Hsp70 and *C. elegans* HSP-4 in the activation of
384 the IRE1-XBP1 pathway are likely caused by aging, as we found that expression of HSP-4 in
385 young adults suppressed the activation of the IRE1-XBP1 pathway in a similar fashion as that in
386 cultured cells (Figures 3H and 3J). Therefore, we believe that the function of HSP-4 in UPR^{ER}
387 activation in our study is attributed to aging-associated changes.

388 Chondroitin, a type of glycosaminoglycan (GAG), is a linear polysaccharide
389 composed of repeating disaccharide units. Typically, one or more chondroitin chains are
390 covalently bound to core proteins through a common tetra-saccharide linkage region,
391 forming proteoglycans that are secreted into the extracellular matrix⁷⁹. The properties of
392 chondroitin enable it to interact with water, ions, specific chemicals or proteins, maintaining
393 the specific structure of lumens or channels, generating osmotic pressure on its
394 surroundings, and facilitating local signaling within the microenvironment. Thus, chondroitin
395 proteoglycans, as the extracellular matrix component, are involved in intercellular signaling
396 and structure scaffold for the extracellular space, which is required for cytokinesis,
397 embryogenesis, epithelial morphogenesis and cell division⁶⁵⁻⁶⁷. Here, we found that the
398 activation of the glial UPR^{ER} pathway can increase the expression of chondroitin synthases,
399 *sqv-5/ChSy1* and *mig-22/ChSy2*, to suppress neuronal aging, supporting the critical roles of
400 glial chondroitin in neuronal protection. As the sensory cilia of glia-embedded neurons in *C.*
401 *elegans* are fully wrapped by glia, it is plausible that the chondroitin proteoglycans secreted
402 from glia can provide support for the functional structure of cilia and maintain the
403 microenvironment homeostasis for sensory neurons during aging.

404

405

406

407

408

409 **Acknowledgements**

410 We thank all Yan lab members for comments on the manuscript and double-blind
411 experiments. We are grateful to Dr. John E. Cronan for providing the biotin auxotrophic *E.*
412 *coli* strain (MG1655). Randy Cockerell, Alp Altinbasak and Amber White prepared most of
413 the reagents used in this study. Greg Waitt and Tricia Ho contributed to sample preparation
414 and data acquisition within the Duke Proteomics and Metabolomics Core Facility. Some
415 strains were provided by the CGC, which is funded by the NIH Office of Research
416 Infrastructure Programs (P40 OD010440). This project is supported by NIH grants
417 NS105638 and AG073994 (to D.Y.).

418

419 **Author Contributions**

420 J.W. and D.Y. conceived the study and interpreted all the data. J.W. performed all molecular,
421 genetic, imaging and proteomic experiments. E.S. carried out HPLC-MS and proteomic data
422 analysis. O.Y. performed RNAi experiments. J.W. and D.Y. wrote the manuscript with inputs
423 from all authors.

424

425 **Competing financial interests**

426 The authors declare no competing financial interests.

427

428

429

430

431

432

433

434

435 References

- 436 1. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., and Bohr, V.A. (2019). Ageing as a risk
437 factor for neurodegenerative disease. *Nature reviews. Neurology* **15**, 565-581. 10.1038/s41582-019-0244-7.
- 438 2. Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. *Nature* **539**, 180-186.
439 10.1038/nature20411.
- 440 3. Grady, C. (2012). The cognitive neuroscience of ageing. *Nature Reviews Neuroscience* **13**, 491-505.
441 10.1038/nrn3256.
- 442 4. Mattson, M.P., and Arumugam, T.V. (2018). Hallmarks of Brain Aging: Adaptive and Pathological Modification by
443 Metabolic States. *Cell metabolism* **27**, 1176-1199. 10.1016/j.cmet.2018.05.011.
- 444 5. Sherwood, C.C., Stimpson, C.D., Raghanti, M.A., Wildman, D.E., Uddin, M., Grossman, L.I., Goodman, M.,
445 Redmond, J.C., Bonar, C.J., Erwin, J.M., and Hof, P.R. (2006). Evolution of increased glia-neuron ratios in the
446 human frontal cortex. *Proceedings of the National Academy of Sciences* **103**, 13606-13611.
447 doi:10.1073/pnas.0605843103.
- 448 6. Linne, M.-L., Aćimović, J., Saudargiene, A., and Manninen, T. (2022). Neuron-Glia Interactions and Brain
449 Circuits. In *Computational Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks*, M.
450 Giugliano, M. Negrello, and D. Linaro, eds. (Springer International Publishing), pp. 87-103. 10.1007/978-3-030-
451 89439-9_4.
- 452 7. De Pittà, M., and Berry, H. (2019). A Neuron-Glia Perspective for Computational Neuroscience. In
453 *Computational Glioscience*, M. De Pittà, and H. Berry, eds. (Springer International Publishing), pp. 3-35.
454 10.1007/978-3-030-00817-8_1.
- 455 8. Fields, R.D., and Stevens-Graham, B. (2002). New Insights into Neuron-Glia Communication. *Science* (New York,
456 N.Y.) **298**, 556-562. doi:10.1126/science.298.5593.556.
- 457 9. Fields, R.D., Woo, D.H., and Basser, P.J. (2015). Glial Regulation of the Neuronal Connectome through Local and
458 Long-Distant Communication. *Neuron* **86**, 374-386. 10.1016/j.neuron.2015.01.014.
- 459 10. Stogsdill, J.A., and Eroglu, C. (2017). The interplay between neurons and glia in synapse development and
460 plasticity. *Current opinion in neurobiology* **42**, 1-8. 10.1016/j.conb.2016.09.016.
- 461 11. Martín, R., Bajo-Grañeras, R., Moratalla, R., Perea, G., and Araque, A. (2015). Circuit-specific signaling in
462 astrocyte-neuron networks in basal ganglia pathways. *Science* (New York, N.Y.) **349**, 730-734.
463 doi:10.1126/science.aaa7945.
- 464 12. Vicedomini, C., Guo, N., and Sahay, A. (2020). Communication, Cross Talk, and Signal Integration in the Adult
465 Hippocampal Neurogenic Niche. *Neuron* **105**, 220-235. 10.1016/j.neuron.2019.11.029.
- 466 13. Poitelon, Y., Bogni, S., Matafora, V., Della-Flora Nunes, G., Hurley, E., Ghidinelli, M., Katzenellenbogen, B.S.,
467 Taveggia, C., Silvestri, N., Bachi, A., et al. (2015). Spatial mapping of juxtagrine axo-glial interactions identifies
468 novel molecules in peripheral myelination. *Nature communications* **6**, 8303. 10.1038/ncomms9303.
- 469 14. Dziedzic, B., Prevot, V., Lomniczi, A., Jung, H., Cornea, A., and Ojeda, S.R. (2003). Neuron-to-glia signaling
470 mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the
471 neuroendocrine brain. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **23**,
472 915-926. 10.1523/jneurosci.23-03-00915.2003.
- 473 15. Kalluri, R., and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. *Science*
474 (New York, N.Y.) **367**. 10.1126/science.aae6977.
- 475 16. Liu, P., Shi, J., Sheng, D., Lu, W., Guo, J., Gao, L., Wang, X., Wu, S., Feng, Y., Dong, D., et al. (2023).
476 Mitopherogenesis, a form of mitochondria-specific endocytosis, regulates sperm mitochondrial quantity and
477 fertility. *Nature cell biology* **25**, 1625-1636. 10.1038/s41556-023-01264-z.
- 478 17. Raab-Traub, N., and Dittmer, D.P. (2017). Viral effects on the content and function of extracellular vesicles.

479 Nature Reviews Microbiology 15, 559-572. 10.1038/nrmicro.2017.60.

480 18. Abou Harb, M., Meckes, D.G., Jr., and Sun, L. (2023). Epstein-Barr virus LMP1 enhances levels of large
481 extracellular vesicle-associated PD-L1. J Virol 97, e0021923. 10.1128/jvi.00219-23.

482 19. Zhou, W., Fong, M.Y., Min, Y., Somlo, G., Liu, L., Palomares, M.R., Yu, Y., Chow, A., O'Connor, S.T., Chin, A.R., et al.
483 (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer cell 25,
484 501-515. 10.1016/j.ccr.2014.03.007.

485 20. Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening, D.W., and Simpson, R.J. (2018). Extracellular vesicles in
486 cancer — implications for future improvements in cancer care. Nature Reviews Clinical Oncology 15, 617-638.
487 10.1038/s41571-018-0036-9.

488 21. Kalluri, R., and McAndrews, K.M. (2023). The role of extracellular vesicles in cancer. Cell 186, 1610-1626.
489 10.1016/j.cell.2023.03.010.

490 22. Budnik, V., Ruiz-Cañada, C., and Wendler, F. (2016). Extracellular vesicles round off communication in the
491 nervous system. Nature Reviews Neuroscience 17, 160-172. 10.1038/nrn.2015.29.

492 23. Patel, M.R., and Weaver, A.M. (2021). Astrocyte-derived small extracellular vesicles promote synapse formation
493 via fibulin-2-mediated TGF-β signaling. Cell reports 34, 108829. 10.1016/j.celrep.2021.108829.

494 24. Song, L., Tian, X., and Schekman, R. (2021). Extracellular vesicles from neurons promote neural induction of
495 stem cells through cyclin D1. The Journal of cell biology 220. 10.1083/jcb.202101075.

496 25. Pastuzyn, E.D., Day, C.E., Kearns, R.B., Kyrke-Smith, M., Taibi, A.V., McCormick, J., Yoder, N., Belnap, D.M.,
497 Erlendsson, S., Morado, D.R., et al. (2018). The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag
498 Protein that Mediates Intercellular RNA Transfer. Cell 172, 275-288.e218. 10.1016/j.cell.2017.12.024.

499 26. Vilcaes, A.A., Chanaday, N.L., and Kavalali, E.T. (2021). Interneuronal exchange and functional integration of
500 synaptobrevin via extracellular vesicles. Neuron 109, 971-983.e975. 10.1016/j.neuron.2021.01.007.

501 27. Antonucci, F., Turola, E., Riganti, L., Caleo, M., Gabrielli, M., Perrotta, C., Novellino, L., Clementi, E., Giussani, P.,
502 Viani, P., et al. (2012). Microvesicles released from microglia stimulate synaptic activity via enhanced
503 sphingolipid metabolism. The EMBO journal 31, 1231-1240. 10.1038/emboj.2011.489.

504 28. Wang, S., Cesca, F., Loers, G., Schweizer, M., Buck, F., Benfenati, F., Schachner, M., and Kleene, R. (2011).
505 Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes
506 neurite outgrowth and neuronal survival when released via glia-derived exosomes. The Journal of
507 neuroscience : the official journal of the Society for Neuroscience 31, 7275-7290. 10.1523/jneurosci.6476-
508 10.2011.

509 29. Singhvi, A., and Shaham, S. (2019). Glia-Neuron Interactions in *Caenorhabditis elegans*. Annual review of
510 neuroscience 42, 149-168. 10.1146/annurev-neuro-070918-050314.

511 30. Oikonomou, G., and Shaham, S. (2011). The glia of *Caenorhabditis elegans*. Glia 59, 1253-1263.
512 10.1002/glia.21084.

513 31. Ward, S., Thomson, N., White, J.G., and Brenner, S. (1975). Electron microscopical reconstruction of the
514 anterior sensory anatomy of the nematode *Caenorhabditis elegans*.?2UU. The Journal of comparative
515 neurology 160, 313-337. 10.1002/cne.901600305.

516 32. Bacaj, T., Tevlin, M., Lu, Y., and Shaham, S. (2008). Glia are essential for sensory organ function in *C. elegans*.
517 Science (New York, N.Y.) 322, 744-747. 10.1126/science.1163074.

518 33. Bargmann, C.I., Hartwig, E., and Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction
519 in *C. elegans*. Cell 74, 515-527. 10.1016/0092-8674(93)80053-h.

520 34. Toth, M.L., Melentijevic, I., Shah, L., Bhatia, A., Lu, K., Talwar, A., Naji, H., Ibanez-Ventoso, C., Ghose, P., Jevince,
521 A., et al. (2012). Neurite sprouting and synapse deterioration in the aging *Caenorhabditis elegans* nervous
522 system. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 8778-8790.

523 10.1523/jneurosci.1494-11.2012.

524 35. Pan, C.-L., Peng, C.-Y., Chen, C.-H., and McIntire, S. (2011). Genetic analysis of age-dependent defects of the
525 <i>Caenorhabditis elegans</i> touch receptor neurons. *Proceedings of the National Academy of Sciences* **108**,
526 9274-9279. doi:10.1073/pnas.1011711108.

527 36. Wu, J., Wang, L., Ervin, J.F., Wang, S.-H.J., Soderblom, E., Ko, D., and Yan, D. (2022). GABA signaling triggered by
528 TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in <i>C. elegans</i>. *Science advances* **8**,
529 eadc9236. doi:10.1126/sciadv.adc9236.

530 37. E, L., Zhou, T., Koh, S., Chuang, M., Sharma, R., Pujol, N., Chisholm, A.D., Eroglu, C., Matsunami, H., and Yan, D.
531 (2018). An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and
532 Infection. *Neuron* **97**, 125-138.e125. 10.1016/j.neuron.2017.12.001.

533 38. Troemel, E.R., Kimmel, B.E., and Bargmann, C.I. (1997). Reprogramming chemotaxis responses: sensory
534 neurons define olfactory preferences in *C. elegans*. *Cell* **91**, 161-169. 10.1016/s0092-8674(00)80399-2.

535 39. Kaletsky, R., Lakhina, V., Arey, R., Williams, A., Landis, J., Ashraf, J., and Murphy, C.T. (2016). The *C. elegans* adult
536 neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. *Nature* **529**, 92-96.
537 10.1038/nature16483.

538 40. Lin, K., Hsin, H., Libina, N., and Kenyon, C. (2001). Regulation of the *Caenorhabditis elegans* longevity protein
539 DAF-16 by insulin/IGF-1 and germline signaling. *Nature genetics* **28**, 139-145. 10.1038/88850.

540 41. Bhattacharya, A., Aghayeva, U., Berghoff, E.G., and Hobert, O. (2019). Plasticity of the Electrical Connectome of
541 *C. elegans*. *Cell* **176**, 1174-1189.e1116. 10.1016/j.cell.2018.12.024.

542 42. Bhattacharya, A., Aghayeva, U., Berghoff, E.G., and Hobert, O. (2019). Plasticity of the Electrical Connectome of
543 *C. elegans*. *Cell* **176**, 1174-1189.e1116. 10.1016/j.cell.2018.12.024.

544 43. Zhang, L., Ward, J.D., Cheng, Z., and Dernburg, A.F. (2015). The auxin-inducible degradation (AID) system
545 enables versatile conditional protein depletion in *C. elegans*. *Development (Cambridge, England)* **142**, 4374-
546 4384. 10.1242/dev.129635.

547 44. Vanlandingham, P.A., and Ceresa, B.P. (2009). Rab7 regulates late endocytic trafficking downstream of
548 multivesicular body biogenesis and cargo sequestration. *The Journal of biological chemistry* **284**, 12110-12124.
549 10.1074/jbc.M809277200.

550 45. Verweij, F.J., van Eijndhoven, M.A., Hopmans, E.S., Vendrig, T., Wurdinger, T., Cahir-McFarland, E., Kieff, E.,
551 Geerts, D., van der Kant, R., Neefjes, J., et al. (2011). LMP1 association with CD63 in endosomes and secretion
552 via exosomes limits constitutive NF- κ B activation. *The EMBO journal* **30**, 2115-2129. 10.1038/emboj.2011.123.

553 46. Leeman, D.S., Hebestreit, K., Ruetz, T., Webb, A.E., McKay, A., Pollina, E.A., Dulken, B.W., Zhao, X., Yeo, R.W., Ho,
554 T.T., et al. (2018). Lysosome activation clears aggregates and enhances quiescent neural stem cell activation
555 during aging. *Science (New York, N.Y.)* **359**, 1277-1283. doi:10.1126/science.aag3048.

556 47. Sun, Y., Li, M., Zhao, D., Li, X., Yang, C., and Wang, X. (2020). Lysosome activity is modulated by multiple
557 longevity pathways and is important for lifespan extension in *C. elegans*. *eLife* **9**, e55745. 10.7554/eLife.55745.

558 48. Krause, G.J., Diaz, A., Jafari, M., Khawaja, R.R., Agullo-Pascual, E., Santiago-Fernández, O., Richards, A.L., Chen,
559 K.H., Dmitriev, P., Sun, Y., et al. (2022). Reduced endosomal microautophagy activity in aging associates with
560 enhanced exocyst-mediated protein secretion. *Aging cell* **21**, e13713. 10.1111/acel.13713.

561 49. Hetz, C., and Mollereau, B. (2014). Disturbance of endoplasmic reticulum proteostasis in neurodegenerative
562 diseases. *Nature reviews. Neuroscience* **15**, 233-249. 10.1038/nrn3689.

563 50. Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond.
564 *Nature Reviews Molecular Cell Biology* **13**, 89-102. 10.1038/nrm3270.

565 51. Metcalf, M.G., Higuchi-Sanabria, R., Garcia, G., Tsui, C.K., and Dillin, A. (2020). Beyond the cell factory:
566 Homeostatic regulation of and by the UPR(ER). *Science advances* **6**, eabb9614. 10.1126/sciadv.abb9614.

567 52. Taylor, R.C., and Dillin, A. (2013). XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435-1447. 10.1016/j.cell.2013.05.042.

568 53. Brunsing, R., Omori, S.A., Weber, F., Bicknell, A., Friend, L., Rickert, R., and Niwa, M. (2008). B- and T-cell development both involve activity of the unfolded protein response pathway. The Journal of biological chemistry 283, 17954-17961. 10.1074/jbc.M801395200.

569 54. Sepulveda, D., Rojas-Rivera, D., Rodríguez, D.A., Groenendyk, J., Köhler, A., Lebeaupin, C., Ito, S., Urra, H., Carreras-Sureda, A., Hazari, Y., et al. (2018). Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1 α . Molecular cell 69, 238-252.e237. 10.1016/j.molcel.2017.12.028.

570 55. Gupta, S., Deepti, A., Deegan, S., Lisbona, F., Hetz, C., and Samali, A. (2010). HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS biology 8, e1000410. 10.1371/journal.pbio.1000410.

571 56. Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., and Kaufman, R.J. (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893-903. 10.1016/s0092-8674(01)00612-2.

572 57. Razzauti, A., and Laurent, P. (2021). Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 10, e67670. 10.7554/eLife.67670.

573 58. Nikonorova, I.A., Wang, J., Cope, A.L., Tilton, P.E., Power, K.M., Walsh, J.D., Akella, J.S., Krauchunas, A.R., Shah, P., and Barr, M.M. (2022). Isolation, profiling, and tracking of extracellular vesicle cargo in *Caenorhabditis elegans*. Current biology : CB 32, 1924-1936.e1926. 10.1016/j.cub.2022.03.005.

574 59. Jeppesen, D.K., Fenix, A.M., Franklin, J.L., Higginbotham, J.N., Zhang, Q., Zimmerman, L.J., Liebler, D.C., Ping, J., Liu, Q., Evans, R., et al. (2019). Reassessment of Exosome Composition. Cell 177, 428-445.e418. 10.1016/j.cell.2019.02.029.

575 60. Beer, K.B., Rivas-Castillo, J., Kuhn, K., Fazeli, G., Karmann, B., Nance, J.F., Stigloher, C., and Wehman, A.M. (2018). Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proceedings of the National Academy of Sciences of the United States of America 115, E1127-e1136. 10.1073/pnas.1714085115.

576 61. Wehman, A.M., Poggioli, C., Schweinsberg, P., Grant, B.D., and Nance, J. (2011). The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Current biology : CB 21, 1951-1959. 10.1016/j.cub.2011.10.040.

577 62. Kinchen, J.M., Doukoumetzidis, K., Almendinger, J., Stergiou, L., Tosello-Trampont, A., Sifri, C.D., Hengartner, M.O., and Ravichandran, K.S. (2008). A pathway for phagosome maturation during engulfment of apoptotic cells. Nature cell biology 10, 556-566. 10.1038/ncb1718.

578 63. He, B., Yu, X., Margolis, M., Liu, X., Leng, X., Etzion, Y., Zheng, F., Lu, N., Quiocho, F.A., Danino, D., and Zhou, Z. (2010). Live-cell imaging in *Caenorhabditis elegans* reveals the distinct roles of dynamin self-assembly and guanosine triphosphate hydrolysis in the removal of apoptotic cells. Molecular biology of the cell 21, 610-629. 10.1091/mbc.e09-05-0440.

579 64. Izumikawa, T., Kitagawa, H., Mizuguchi, S., Nomura, K.H., Nomura, K., Tamura, J., Gengyo-Ando, K., Mitani, S., and Sugahara, K. (2004). Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. The Journal of biological chemistry 279, 53755-53761. 10.1074/jbc.M409615200.

580 65. Cohen, J.D., Sparacio, A.P., Belfi, A.C., Forman-Rubinsky, R., Hall, D.H., Maul-Newby, H., Frand, A.R., and Sundaram, M.V. (2020). A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in *Caenorhabditis elegans*. eLife 9. 10.7554/eLife.57874.

611 66. Mizuguchi, S., Uyama, T., Kitagawa, H., Nomura, K.H., Dejima, K., Gengyo-Ando, K., Mitani, S., Sugahara, K., and
612 Nomura, K. (2003). Chondroitin proteoglycans are involved in cell division of *Caenorhabditis elegans*. *Nature*
613 423, 443-448. 10.1038/nature01635.

614 67. Hwang, H.Y., Olson, S.K., Esko, J.D., and Horvitz, H.R. (2003). *Caenorhabditis elegans* early embryogenesis and
615 vulval morphogenesis require chondroitin biosynthesis. *Nature* 423, 439-443. 10.1038/nature01634.

616 68. Berendzen, K.M., Durieux, J., Shao, L.W., Tian, Y., Kim, H.E., Wolff, S., Liu, Y., and Dillin, A. (2016).
617 Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. *Cell* 166, 1553-1563.e1510.
618 10.1016/j.cell.2016.08.042.

619 69. Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-
620 mediated longevity. *Cell* 144, 79-91. 10.1016/j.cell.2010.12.016.

621 70. Frakes, A.E., Metcalf, M.G., Tronnes, S.U., Bar-Ziv, R., Durieux, J., Gildea, H.K., Kandahari, N., Monshietehadi, S.,
622 and Dillin, A. (2020). Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in *C.*
623 *elegans*. *Science (New York, N.Y.)* 367, 436-440. 10.1126/science.aaz6896.

624 71. Walter, P., and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation.
625 *Science (New York, N.Y.)* 334, 1081-1086. 10.1126/science.1209038.

626 72. Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., Lin, X., Watkins, S.M., Ivanov, A.R., and Hotamisligil, G.S.
627 (2011). Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in
628 obesity. *Nature* 473, 528-531. 10.1038/nature09968.

629 73. Hou, N.S., Gutschmidt, A., Choi, D.Y., Pather, K., Shi, X., Watts, J.L., Hoppe, T., and Taubert, S. (2014). Activation
630 of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis
631 in vivo. *Proceedings of the National Academy of Sciences of the United States of America* 111, E2271-2280.
632 10.1073/pnas.1318262111.

633 74. Ariyama, H., Kono, N., Matsuda, S., Inoue, T., and Arai, H. (2010). Decrease in membrane phospholipid
634 unsaturation induces unfolded protein response. *The Journal of biological chemistry* 285, 22027-22035.
635 10.1074/jbc.M110.126870.

636 75. Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., Kluger, Y., and Dynlacht, B.D.
637 (2007). XBP1 Controls Diverse Cell Type- and Condition-Specific Transcriptional Regulatory Networks. *Molecular*
638 *cell* 27, 53-66. <https://doi.org/10.1016/j.molcel.2007.06.011>.

639 76. Frakes, A.E., and Dillin, A. (2017). The UPR(ER): Sensor and Coordinator of Organismal Homeostasis. *Molecular*
640 *cell* 66, 761-771. 10.1016/j.molcel.2017.05.031.

641 77. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER
642 stress transducers in the unfolded-protein response. *Nature cell biology* 2, 326-332. 10.1038/35014014.

643 78. Hetz, C., Zhang, K., and Kaufman, R.J. (2020). Mechanisms, regulation and functions of the unfolded protein
644 response. *Nature Reviews Molecular Cell Biology* 21, 421-438. 10.1038/s41580-020-0250-z.

645 79. Berninsone, P.M. (2006). Carbohydrates and glycosylation. *WormBook : the online review of *C. elegans* biology*,
646 1-22. 10.1895/wormbook.1.125.1.

647 80. Brenner, S. (1974). The genetics of *Caenorhabditis elegans*. *Genetics* 77, 71-94.

648 81. Schwartz, M.L., Davis, M.W., Rich, M.S., and Jorgensen, E.M. (2021). High-efficiency CRISPR gene editing in *C.*
649 *elegans* using Cas9 integrated into the genome. *PLoS genetics* 17, e1009755. 10.1371/journal.pgen.1009755.

650 82. Fernandez-Abascal, J., Johnson, C.K., Graziano, B., Wang, L., Encalada, N., and Bianchi, L. (2022). A glial CIC Cl(-)
651 channel mediates nose touch responses in *C. elegans*. *Neuron* 110, 470-485.e477.
652 10.1016/j.neuron.2021.11.010.

653 83. Esposito, G., Di Schiavi, E., Bergamasco, C., and Bazzicalupo, P. (2007). Efficient and cell specific knock-down of
654 gene function in targeted *C. elegans* neurons. *Gene* 395, 170-176. 10.1016/j.gene.2007.03.002.

655 84. Bargmann, C.I., and Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis
656 to multiple chemicals in *C. elegans*. *Neuron* 7, 729-742. 10.1016/0896-6273(91)90276-6.

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678 **Figure 1. AMsh-channel and AMsh glia-embedded neurons age differently in individual**
679 **animals.**

680 **(A)** Schematic diagram of the amphid sensory organ of *C. elegans*. (1) AMsh-channel neurons;
681 (2) AMsh glia-embedded neurons.

682 **(B)** Results from chemotaxis experiments show that ASH/ADL, AWA and AWC neurons exhibit
683 age-dependent functional decline in response to octanol, 1% 2-methylpyrazine and 0.5%
684 benzaldehyde, respectively. D1, D6 and D9 represent the adult stage day 1, day 6, and day 9
685 animals. Data are shown as mean \pm SD.

686 **(C to F)** Function correlation analyses among ASH/ADL, AWA and AWC neurons. After the initial
687 chemotaxis assay testing, day 6 animals were divided into two groups ([Figures S1A and S1B](#)):
688 animals that respond to corresponding odorants were labeled as (+); and animals that did not
689 respond to corresponding odorants were labeled as (-). The results from chemotaxis assays for
690 different sensory neurons by using these two groups of animals were presented in **C to F**. Date
691 are shown as mean \pm SD. Student's *t*-test, *P < 0.05, ***P < 0.001.

692 **(G)** Schematic of Auxin-inducible DAF-16 degradation in target neurons⁴³. To exclusively
693 deplete DAF-16 in ASH/ADL neurons, we generated a transgene expressing atTIR1 (derive from
694 *Arabidopsis thaliana*) under an ASH/ADL-specific promoter, *Pgpa-11*, in *daf-16(ot853)* animals.
695 *daf-16(ot853) [daf-16::linker::mNeonGreen::3xFlag::AID]* is a knockin strain in which a degron-
696 tagged mNeonGreen is inserted at the C-terminus of *daf-16*. *daf-16(ot853)* without atTIR1
697 expression was used as a control. Adult animals grow on the NGM plates supplied with 5 μ M
698 auxin (indole-3 acetic acid, sigma). All DAF-16 depletion experiments were carried out using this
699 setting.

700 **(H to J)** Chemotaxis assays for ASH/ADL (**H**), AWA (**I**) and AWC (**J**) neurons using octanol, 1%
701 2-methylpyrazine, and 0.5% benzaldehyde, respectively, in day 1 (D1) and day 6 (D6) animals
702 with (DAF-16 (KD)) and without (Control) DAF-16 depletion in ASH/ADL neurons. Data are
703 shown as mean \pm SD. Student's *t*-test, ***P < 0.001.

704

705

706

707 **Figure 2. ASH/ADL neuronal aging activates the UPR^{ER} pathway in AMsh glia.**

708 **(A)** Schematic of proximity labeling in AMsh glia. (1) An confocal image shows the distribution of
709 HA-tagged TurbOLD in AMsh glia by immunostaining using anti-HA antibody. Scale bar: 20 μ m.
710 (2) A diagram shows the enrichment of biotinylated AMsh glial proteins from worm lysis.

711 **(B)** After proximity labeling, AMsh glial proteins extracted from day 6 control and ASH/ADL DAF-
712 16 depletion (DAF-16 (KD)) animals were subjected to HPLC-MS/MS analyses.

713 **(C)** The Volcano plot of AMsh glial proteomes show proteins with significant changes in DAF-16
714 (KD) animals when compared with the same age control animals (day 6). $\log_2\text{FC} > 0.6$ or $\log_2\text{FC}$
715 < -0.6 (FC, fold change) with $-\log_{10}(p\text{-value}) > 1.3$ is defined as significantly upregulated (pink
716 square) or downregulated (blue triangle), respectively. The proteins labeled on the plot are
717 selected examples that are known downstream targets of the IRE1-XBP1 pathway.

718 **(D)** Results from gene ontology analyses for proteins that are upregulated by DAF-16 (KD) in
719 ASH/ADL.

720 **(E)** Schematic diagram to illustrate the use of *xbp-1* splicing as a reporter for the activation of
721 the IRE1-XBP1 pathway. In this reporter (*xbp-1s* reporter), *xbp-1*(23bp-intron)::GFP was
722 expressed only in AMsh glia under a AMsh-specific promoter, *Pf53f4.13*. GFP was fused at the
723 C-terminal in frame with the spliced version of *xbp-1* mRNA (*xbp-1s*) only when the non-
724 canonical 23bp intron is removed by IRE-1.

725 **(F and G)** Confocal images (**F**) and quantifications (**G**) show the expression of the *xbp-1s*
726 reporter in AMsh glia in control and DAF-16(KD) animals at the adult stage day 1 (D1) and day
727 6 (D6). These experiments were carried out in *daf-16(ot853)* animals with (DAF-16 (KD)) and
728 without (Control) atTIR1 expression in ASH/ADL neurons. The DAF-16::mNG were not
729 expressed in AMsh glia ([Figure S1F](#)). 'A' indicates the anterior of animals; 'P' indicates the
730 posterior of animals. Scale bar: 10 μ m. Data are shown as mean \pm SD. N> 30. One-way
731 ANOVA, *P < 0.05, ***P < 0.001.

732 **(H and I)** Results from testing AWA (**H**) and AWC (**I**) neuronal functions by chemotaxis assays
733 using 1% 2-methylpyrazine and 0.5% benzaldehyde, respectively. *Pf53f4.13* was used to
734 specifically express the constitutively activated XBP-1s in AMsh glia. Data are shown as mean \pm
735 SD. Student's *t*-test, ***P < 0.001.

736 **(J and K)** Results from testing AWA (**J**) and AWC (**K**) neuronal functions in control and DAF-

737 16(KD) animals with and without specifically RNAi knockdown of *ire-1* or *xbp-1* in AMsh glia in
738 day 1 and day 6 animals. Data are shown as mean \pm SD. One-way ANOVA, ***P < 0.001.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767 **Figure 3. Transmission of HSP-4 from neurons to glia activates the IRE1-XBP1**
768 **pathway in AMsh glia.**

769 **(A and B)** Confocal images (**A**) and quantifications (**B**) show HSP-4::mNG expressions in
770 AMsh glia in control, DAF-16(KD), and DAF-16(KD) with ASH/ADL neuronal *hsp-4*
771 knockdown animals. *gpa-11* promoter was used to drive cell-specific expression in
772 ASH/ADL. *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar:
773 10 μ m. N>30. Data are shown as mean \pm SD. One-way ANOVA, ***P < 0.001.

774 **(C and D)** Results from chemotaxis assays show AWA (**C**) and AWC (**D**) neuronal functions
775 in control and transgenes expressing *hsp-4* in ASH/ADL neurons or AMsh glia. *gpa-11*
776 promoter was used to drive cell-specific expression in ASH/ADL neurons. *f53f4.13* promoter
777 was used to drive cell-specific expression in AMsh glia. Data are shown as mean \pm SD.
778 One-way ANOVA, **P < 0.01, ***P < 0.001.

779 **(E and F)** Results from chemotaxis assays show AWA (**E**) and AWC (**F**) neuronal functions
780 in control, DAF-16(KD), and DAF-16(KD) with *hsp-4* knockdown in AMsh glia, ASH/ADL
781 neurons, or both. *gpa-11* promoter was used to drive cell-specific expression in ASH/ADL
782 neurons. *f53f4.13* promoter was used to drive cell-specific expression in AMsh glia. Data
783 are shown as mean \pm SD. One-way ANOVA, **P < 0.01, ***P < 0.001, ns, no significant
784 difference.

785 **(G)** Confocal images show the expression of HSP-4::mCherry or mCherry when they were
786 specifically expressed in AMsh-channel neurons. *gpa-3* promoter was used to drive cell-
787 specific expression in AMsh-channel neurons. *yadls48* [*Pf53f4.13::GFP*] was used as a
788 marker to label AMsh glia. The yellow arrows point to the cell bodies of AMsh-channel
789 neurons. Scale bar: 10 μ m.

790 **(H)** Confocal images from the *xbp-1s* reporter (*yadls256* [*Pf53f4.13::xbp-1s(23bp-*
791 *intron)::GFP*]) show the effects of expressing *hsp-4* in ASH/ADL neurons or AMsh glia. *gpa-*
792 *11* promoter was used to drive cell-specific expression in ASH/ADL neurons. *f53f4.13*
793 promoter was used to drive cell-specific expression in AMsh glia. *yadls222*
794 [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar: 10 μ m.

795 **(I)** Confocal images show the expression of the *xbp-1s* reporter in control and DAF-16(KD)
796 animals with or without knockdown of *hsp-4* in ASH/ADL. *gpa-11* promoter was used to

797 drive cell-specific expression in ASH/ADL neurons. *f53f4.13* promoter was used to drive
798 cell-specific expression in AMsh glia. *yadls222* [P*f53f4.13*::mCherry] was used as an AMsh
799 glia marker. Scale bar: 10 μ m.

800 **(J)** Quantification of XBP-1s::GFP fluorescence intensity in **H** and **I**. Data are shown as
801 mean \pm SD. N>30. One-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001.

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827 **Figure 4. Neuronal HSPs are transmitted to AMsh glia through extracellular vesicles.**

828 **(A)** Confocal images show that neuronal HSP-4::mCherry is co-localized with TSP-6::GFP, a
829 extracellular vesicle marker expressed in AMsh-channel neurons, in AMsh glia. *gpa-3* promoter
830 was used to drive cell-specific expression in AMsh-channel neurons. The red arrows point to the
831 co-localized HSP-4::mCherry and TSP-6::GFP puncta. The white asterisks indicate the diffused
832 HSP-4::mCherry. In the upper panel, scale bar, 10 μ m. In the zoom in region, scale bar, 5 μ m.

833 **(B and C)** Confocal images **(B)** and quantifications **(C)** show the signal from neuronal expressed
834 TSP-6::GFP in AMsh glia in control and DAF-16(KD) animals. TSP-6::GFP expression was
835 driven by the AMsh-channel neurons specific promoter *gpa-3* (*yadls226* [*Pgpa-3::tsp-6::GFP*]).
836 *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar: 10 μ m. N>30. Data
837 are shown as mean \pm SD. Student's *t*-test, ***P < 0.001.

838 **(D)** Schematic diagram shows that the release and uptake of extracellular vesicles (EV) are
839 regulated by TAT-5 and DYN-1, respectively.

840 **(E and F)** Confocal images **(E)** and quantifications **(F)** of *yadls226* [*Pgpa-3::tsp-6::GFP*] signals
841 in control, knockdown of *tat-5* in ASH/ADL, and expression of the dominant-negative DYN-
842 1(G40E+K46A) in AMsh glia. *gpa-3* promoter was used to drive cell-specific expression in
843 AMsh-channel neurons. *gpa-11* promoter was used to drive cell-specific expression in ASH/ADL
844 neurons. *f53f4.13* promoter was used to drive cell-specific expression in AMsh glia. *yadls222*
845 [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar: 10 μ m. N>30. Data are
846 shown as mean \pm SD. One-way ANOVA, ***P < 0.001.

847 **(G and H)** Results from chemotaxis assays show AWA **(G)** and AWC **(H)** neuronal functions in
848 control, ASH/ADL *tat-5* knockdown, and ASH/ADL *tat-5&hsp-4* knockdown animals. *gpa-11*
849 promoter was used to drive cell-specific expression in ASH/ADL neurons. Data are shown as
850 mean \pm SD. One-way ANOVA ***P < 0.001.

851 **(I and J)** Results from chemotaxis assays show AWA **(I)** and AWC **(J)** neuronal functions in
852 control and DAF-16(KD) animals with or without expressing the dominant-negative DYN-
853 1(G40E+K46A) in AMsh glia. Data are shown as mean \pm SD. One-way ANOVA, **P < 0.01, ***P
854 < 0.001.

855 **(K and L)** Confocal images **(K)** and quantifications **(L)** show HSP-4::mNG expression in AMsh
856 glia in control and DAF-16(KD) animals with and without expression of the dominant-negative

857 DYN-1(G40E+K46A) in AMsh glia. *gpa-11* promoter was used to drive cell-specific expression in
858 ASH/ADL neurons. *f53f4.13* promoter was used to drive cell-specific expression in AMsh glia.
859 *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar:10 μ m. N>30. Data
860 are shown as mean \pm SD. One-way ANOVA, ***P < 0.001.

861 **(M)** Confocal images show the expression of the *xbp-1s* reporter, *yadls256* [*Pf53f4.13::xbp-*
862 *1s*(23bp-intron)::GFP], in animals with or without *tat-5* knockdown in ASH/ADL neurons and in
863 animals with knockdown of *tat-5* and *hsp-4* simultaneously in ASH/ADL neurons. *gpa-11*
864 promoter was used to drive cell-specific expression in ASH/ADL neurons. *f53f4.13* promoter was
865 used to drive cell-specific expression in AMsh glia. *yadls222* [*Pf53f4.13::mCherry*] was used as
866 an AMsh glia marker. Scale bar: 10 μ m.

867 **(N)** Confocal images show the expression of the *xbp-1s* reporter, *yadls256* [*Pf53f4.13::xbp-*
868 *1s*(23bp-intron)::GFP], in DAF-16(KD) animals with and without expression of the dominant-
869 negative DYN-1(G40E+K46A) in AMsh glia. *gpa-11* promoter was used to drive cell-specific
870 expression in ASH/ADL neurons. *f53f4.13* promoter was used to drive cell-specific expression in
871 AMsh glia. *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar: 10 μ m.

872 **(O)** Quantifications of XBP-1s::GFP fluorescence intensity in **M** and **N**. N>30. Data are
873 shown as mean \pm SD. One-way ANOVA, ***P < 0.001.

874

875

876

877

878

879

880

881

882

883

884

885

886

887 **Figure 5. Expression of chondroitin in AMsh glia protects AWA/AWC neurons from aging-
888 associated functional decline.**

889 **(A)** A strategy for testing the function of DAF-16 depletion-upregulated genes in AWA/AWC
890 functions. The genes of interest were overexpressed in AMsh glia to test their effects on
891 AWA/AWC neuronal functions of day 1 and day 6 animals.
892 **(B and C)** Results from chemotaxis assays show AWA **(B)** and AWC **(C)** neuronal functions in
893 control and transgenes expressing *mig-22* or *sqv-5* in AMsh glia. *f53f4.13* promoter was used to
894 drive cell-specific expression in AMsh glia. Data are shown as mean \pm SD. One-way ANOVA,
895 ***P < 0.001.
896 **(D and E)** Confocal images **(D)** and quantifications **(E)** show the expression of MIG-22::GFP in
897 AMsh glia in control and DAF-16(KD) animals with or without *xbp-1* RNAi knockdown in AMsh
898 glia. *yadls272* [*Pmig-22::mig-22::GFP*] is a translational reporter for *mig-22*. *yadls222*
899 [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar, 10 μ m. N>30. Data are
900 shown as mean \pm SD. One-way ANOVA, ***P < 0.001, ns, no significant difference.
901 **(F and G)** Confocal images **(F)** and quantifications **(G)** show the expression of SQV-5::GFP
902 expression in AMsh glia in control and DAF-16(KD) animals with or without *xbp-1* RNAi
903 knockdown in AMsh glia. *yadCK287* [*Psqv-5::sqv-5::GFP*] is a knockin reporter for *sqv-5*
904 expression. *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar: 10 μ m.
905 N>30. Data are shown as mean \pm SD. One-way ANOVA, ***P < 0.001.
906 **(H to J)** Confocal images **(H)** and quantifications show the expression of MIG-22::GFP **(I)** and
907 SQV-5::GFP **(J)** in animals with or without expressing constitutively activated *xbp-1s* in AMsh
908 glia. *f53f4.13* promoter was used to express the constitutively activated *xbp-1s* in AMsh glia.
909 *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia marker. Scale bar: 10 μ m. N>30. Data
910 are shown as mean \pm SD. Student's *t*-test, ***P < 0.001.
911 **(K and L)** Results from chemotaxis assays show AWA **(K)** and AWC **(L)** neuronal functions in
912 control and DAF-16(KD) animals with or without specifically knockdown of *mig-22* or *sqv-5* in
913 AMsh glia. Data are shown as mean \pm SD. One-way ANOVA, ***P < 0.001.

914

915

916

917 **Methods**

918

919 **Lead Contact**

920 Further information and requests for resources should be directed to and will be fulfilled by
921 the lead contact, Dong Yan (dong.yan@duke.edu).

922

923 **Materials Availability**

924 *C. elegans* strains and plasmids generated in this study are available from the lead contact
925 without restriction.

926

927 ***C. elegans* Strains and Maintenance**

928 *C. elegans* were maintained on nematode growth media (NGM) with *E. coli* OP50 at 20°C,
929 as previously described⁸⁰. Bristol N2 was used as the wild-type strain in this study. For the
930 TurboID proximity labeling experiments, worms were fed on biotin auxotrophic *E. coli*
931 (MG1655 bioB: kan) to eliminate excessive biotin to reduce the background for the AMsh
932 glial proteome. Transgenic strains were produced by injecting plasmids DNA mixes into the
933 hermaphrodite gonad. *Punc-122::GFP*, *Punc-122::RFP*, *Ptx-3::GFP* or *Ptx-3::RFP* served
934 as co-injection markers to facilitate the selection of transgenic animals. Integrated
935 transgenic strains were generated using UV/Trioxsalen treatment. The CRISPR/Cas-9
936 knockin strain *yadCK287* [*Psqv-5::sqv-5::GFP*] was created using a previously established
937 method⁸¹. All strains used in this study are listed in [Table S1](#).

938

939 **Aging related experiments**

940 To synchronize developmental stages for aging-related experiments in *C. elegans*, worm
941 eggs were isolated by treating adult worms with bleach buffer (4 ml of bleach 4%, 1.5 ml 5
942 M NaOH, 4 ml dH₂O) and then synchronized at the L1 stage overnight in the absence of
943 food. These synchronized L1 larvae were raised on NGM seeded with OP50 at 20 °C until
944 L4 larvae stage. L4 stage worms were shifted to NGM plates containing OP50
945 supplemented with 100 µg ml⁻¹ 5-Fluoro-2'-deoxyuridine (FUdR) to inhibit progeny
946 development.

947

948 **Constructs cloning for expression and RNAi**

949 All constructs used in this study are described in [Table S2](#). The plasmids prepared for
950 microinjection were constructed using the Gateway Cloning technology. DNA fragments from
951 genes or their associated promoters were amplified via polymerase chain reaction (PCR). These
952 fragments were subsequently inserted into the pCR8 entry vector (Invitrogen) or destination
953 vector through Gibson ligation. The expression plasmids were generated through the LR
954 reaction (Invitrogen) by using entry vector and destination vector. For *sqv-5* CRISPR/Cas-9
955 knockin, the single-guide RNA (sgRNA) was designed following the sequence characterized by
956 G/A(N)19NGG, which was placed into the pU6::G/A(N)19_sgRNA plasmid by overlap extension
957 PCR.

958 RNAi knockdown specific to AMsh glia, AMsh channel-neurons, and ASH/ADL neurons was
959 performed as previously described^{82,83}. For each gene RNAi construct, a 500-1000 bp cDNA
960 fragment was amplified by the polymerase chain reaction (PCR). The purified DNA fragment
961 was then inserted on entry vector pCR8 (Invitrogen). The orientation (sense and antisense) of
962 these DNA fragments in the pCR8 vector was identified through sequencing. Subsequently, they
963 were assembled under various promoters using the LR reaction (Invitrogen) to produce the
964 specific RNAi constructs for each gene. To generate transgenic animals with the target gene
965 silenced in designated cells, the sense and antisense RNAi constructs were mixed with co-
966 injection marker and injected into the gonad of animals.

967

968 **TurboID Proximity labeling in Amsh glia**

969 To acquire the proteome in AMsh glia, we utilized a method previously developed in our lab³⁶.
970 We generated *yadls95* [Pf53f4.13::3×HA::TurboID] to exclusively express free TurboID in Amsh
971 glia of *C. elegans*. For biotin labeling experiments, worms were raised on biotin auxotrophic *E.*
972 *coli* (MG1655) as food to reduce background biotin levels. Synchronized L1 larval were grown
973 on NGM until L4 stage at 20°C. Subsequently, L4 stage animals were transferred on the NGM
974 plates supplemented with FUdR (5-Fluoro-2'-deoxyuridine, 100µg mL⁻¹) and maintained at 20°C.
975 On day 6, 100µM exogenous biotin was added to the FUdR plate and the worms were treated
976 for 8 hours at 25°C. Afterward, these day 6 animals were harvested and washed 3 times with
977 M9 buffer on ice. Finally, worm pellet was resuspended in NP40 lysis buffer for sonication and

978 the lysates were centrifuged at 10000×g at 4°C to remove the debris and lipids. The clarified
979 lysates were used for enrichment by streptavidin-coated beads and for western blot analysis.

980 To enrich biotinylated proteins from AMsh glia, we first prepared 50 µL of streptavidin-coated
981 magnetic beads by washing them twice with NP40 lysis buffer. These beads were then
982 incubated with the clarified lysates, rotating overnight at 4°C. Next, the beads were washed
983 twice with 1 mL of NP40 lysis buffer, once with 1 mL of 1 M KCl, once with 1 mL of 0.1 M
984 Na₂CO₃, once with 1 mL of 2 M urea in 10 mM Tris-HCl (pH 8.0) and twice with 1 mL NP40 lysis
985 buffer. Subsequently, these beads were suspended in 100 µL elution buffer (2% SDS, 25 mM
986 Tris-HCl, 50 mM NaCl, 2 mM biotin, 20 mM DTT). Finally, biotinylated proteins from AMsh glia
987 were eluted in the buffer by boiling the beads at 80°C for 10 min. The eluates were subjected to
988 western blotting and HPLC-MS/MS quantitative proteomic analysis.

989

990 **Western blot analysis**

991 Worm lysates were prepared by sonication, followed by centrifugation at 10000×g at 4°C to
992 eliminate the debris. The clarified protein samples mixed with an equivalent volume of protein
993 sample buffer and subsequently denatured at 95°C for 10 min. The denatured protein samples
994 were subjected to electrophoresis using a 4-20% SDS-PAGE gel (Bio-Rad) in running buffer
995 and subsequently transferred onto polyvinylidene difluoride (PVDF) membranes in transferring
996 buffer. Primary antibodies used in this study were rabbit anti-HA antibody (Sigma, H6908) and
997 rabbit anti-Actin antibody (Sigma, A2066) at 1:1000 dilution. The secondary antibody was goat
998 anti-rabbit IgG at 1:5000 dilution (GE Healthcare). Biotinylated proteins were blotted using HRP-
999 conjugated Streptavidin at 1:1000 dilution (Thermo, N100). Images were acquired using a
1000 chemiluminescence imaging system (Syngene).

1001

1002 **LC-MS/MS analysis**

1003 Quantitative LC/MS/MS was performed on 3 µL using an MClass UPLC system (Waters Corp)
1004 coupled to a Thermo Orbitrap Fusion Lumos high resolution accurate mass tandem mass
1005 spectrometer (Thermo) equipped with a FAIMSPro device via a nanoelectrospray ionization
1006 source. Briefly, the sample was first trapped on a Symmetry C18 20 mm × 180 µm trapping

1007 column (5 μ l/min at 99.9/0.1 v/v water/acetonitrile), after which the analytical separation was
1008 performed using a 1.8 μ m Acquity HSS T3 C18 75 μ m \times 250 mm column (Waters Corp.) with a
1009 90-min linear gradient of 5 to 30% acetonitrile with 0.1% formic acid at a flow rate of 400
1010 nanoliters/minute (nL/min) with a column temperature of 55C. Data collection on the Fusion
1011 Lumos mass spectrometer was performed for three difference compensation voltages (-40v, -
1012 60v, -80v). Within each CV, a data-dependent acquisition (DDA) mode of acquisition with a
1013 r=120,000 (@ m/z 200) full MS scan from m/z 375 – 1500 with a target AGC value of 4e5 ions
1014 was performed. MS/MS scans were acquired in the ion trap in Rapid mode with a target AGC
1015 value of 1e4 and max fill time of 35 ms. The total cycle time for each CV was 0.66s, with total
1016 cycle times of 2 sec between like full MS scans. A 20s dynamic exclusion was employed to
1017 increase depth of coverage. The total analysis cycle time for each injection was approximately 2
1018 hours.

1019

1020 **Quantitative MS/MS Data Analysis**

1021 Following UPLC-MS/MS analyses, data were imported into Proteome Discoverer 3.0 (Thermo
1022 Scientific Inc.). In addition to quantitative signal extraction, the MS/MS data was searched
1023 against the SwissProt C. elegans database (downloaded in Aug 2022) and a common
1024 contaminant/spiked protein database (bovine albumin, bovine casein, yeast ADH, human
1025 keratin, etc.), and an equal number of reversed-sequence “decoys” for false discovery rate
1026 determination. Sequest with Infernys enabled (v 3.0, Thermo PD) was utilized to produce
1027 fragment ion spectra and to perform the database searches. Database search parameters
1028 included fixed modification on Cys (carbamidomethyl) and variable modification on Met
1029 (oxidation). Search tolerances were 2ppm precursor and 0.8Da product ion with full trypsin
1030 enzyme rules. Peptide Validator and Protein FDR Validator nodes in Proteome Discoverer were
1031 used to annotate the data at a maximum 1% protein false discovery rate based on q-value
1032 calculations. Note that peptide homology was addressed by only using unique peptides for
1033 quantitation. Protein homology was addressed by grouping proteins that had the same set of
1034 peptides to account for their identification. A master protein within a group was assigned based
1035 on % coverage. Prior to normalization, a filter was applied such that a peptide was removed if it

1036 was not measured in at least 50% of the samples in a single group. After that filter, samples
1037 were total intensity normalized (total intensity of all peptides for a sample are summed then
1038 normalized across all samples). Next, the following imputation strategy is applied to missing
1039 values. If less than half of the values are missing in a biological group, values are imputed with
1040 an intensity derived from a normal distribution of all values defined by measured values within
1041 the same intensity range (20 bins). If greater than half values are missing for a peptide in a
1042 group and a peptide intensity is $> 5e6$, then it was concluded that peptide was misaligned and
1043 its measured intensity is set to 0. Peptide intensities were then subjected to a trimmed-mean
1044 normalization in which the top and bottom 10 percent of the signals were excluded, and the
1045 average of the remaining values was used to normalize across all samples. Lastly, all peptides
1046 belonging to the same protein were then summed into a single intensity. These protein level
1047 intensities are what were used for the remained of the analysis (Table S3).

1048

1049 **Chemotaxis assay for sensory neurons**

1050 Chemotaxis assay for AWA, AWC and ASH/ADL were performed as previously described^{33,38,84}.
1051 We labeled the chemotaxis plates (2% agar, 5mM KPO₄, 1 mM CaCl₂, 1 mM MgSO₄) as shown
1052 in [Figures S1A and S1B](#). We added 2 μ L of 0.5 M sodium azide to both odorant spots and
1053 control spots on all chemotaxis plates. Once the sodium azide was absorbed into the agar,
1054 worms were rinsed off NGM plates using M9 buffer and transferred to 1.5 mL centrifuge tube.
1055 Leave the tubes on the bench for 1 min to let the worms settle at the bottom of the tube and
1056 remove the supernatant M9 buffer. Next, worms were washed twice with 1 mL M9 buffer, once
1057 with chemotaxis assay buffer (5mM KPO₄, 1 mM CaCl₂, 1 mM MgSO₄). When worms are ready,
1058 80-100 worms suspended in the chemotaxis assay buffer were dropped at the center spot of
1059 chemotaxis plates. Subsequently, we added 1.5 μ L of ethanol to the control spot and 1.5 μ L of
1060 designated experimental chemical (1% 2-methylpyrazine, 0.5% benzaldehyde, or 100% octanol)
1061 to the odorant spot. The excess liquid from the worm drop were removed using filter paper.
1062 Animals will move on the surface of the chemotaxis plates to respond to the odorant. The
1063 chemotaxis index was calculated as follows:

1064

1065
$$\text{Chemotaxis index} = \frac{(\# \text{ of worms at odorant spot}) - (\# \text{ of worms at control spot})}{\text{Total } \# \text{ of worms on the chemotaxis plate}}$$

1066

1067 **Auxin-inducible degradation of DAF-16**

1068 The Auxin-inducible degradation (AID) system was employed to degrading DAF-16 in specific
1069 neurons as described previously^{42,43}. *daf-16(ot853)* [*daf-16::linker::mNeonGreen::3xFlag::AID*]
1070 was a strain in which a degron-tagged mNeonGreen was inserted at the C-terminus of
1071 endogenous *daf-16*. To exclusively deplete DAF-16 in the ASH/ADL neurons, we generate a
1072 transgenic line that expresses *atTIR1* (derive from *Arabidopsis thaliana*) by promoter *gpa-11* in
1073 *daf-16(ot853)* animals. *daf-16(ot853)* without *atTIR1* expression was used as control.
1074 Transgenic animals were fed on the NGM plates supplemented with 5 μM auxin (indole-3 acetic
1075 acid, sigma) during aging.

1076

1077 **Visualization and quantification of fluorescence**

1078 Worms were picked and mounted on a 4% agarose pad and treated with 5 mM levamisole. The
1079 fluorescence was visualized using a ZEISS fluorescence microscope and ZEISS LSM700
1080 confocal microscope. The fluorescence intensity was quantified by using the Fiji (ImageJ).

1081

1082 **Statistical analysis**

1083 Data are presented as the means ± SD unless specifically indicated. Statistical analyses
1084 included student's *t*-test, One-way ANOVA and Two-way ANOVA. All figures were
1085 generated using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA) and Adobe
1086 Illustrator.

1087

1088 **Data availability**

1089 The authors declare that all data supporting the findings of this study are available within the
1090 article and its Supplementary materials.

1091

1092

1093

1094 **Supplemental information**

1095

1096 **Figure S1. Chemotaxis assays for AWA, AWC and ASH/ADL neurons and DAF-16::mNG**
1097 **imaging.**

1098 **(A and B)** Schematic of chemotaxis assays for AWA, AWC **(A)** and ASH/ADL **(B)** neurons in
1099 day 6 animals in response to 1% 2-methypyrazine, 0.5% benzaldehyde and octanol,
1100 respectively. **(A)** In AWA/AWC chemotaxis assays, day 6 animals that responded to odorants
1101 (2-methypyrazine or benzaldehyde) and migrated into region 'A' were grouped as AWA(+) or
1102 AWC(+). Animals that didn't respond to odorants and migrated into 'C' and 'D' regions were
1103 grouped as AWA(-) or AWC(-). **(B)** In ASH/ADL chemotaxis assays, day 6 animals that avoided
1104 octanol and migrated into 'E' and 'F' regions were grouped as ASH/ADL(+). Animals that didn't
1105 respond to octanol and migrated into 'A', 'B' and 'C' regions were grouped as ASH/ADL(-).

1106 **(C and D)** Function correlation analyses between AWA/AWC and ASH/ADL neurons. Data are
1107 shown as mean \pm SD. Student's *t*-test, ns, no significant difference.

1108 **(E)** Confocal images show the expression of DAF-16::mNG in ASH and ADL neurons in *daf-16(ot853)* animals. *Pgpa-11::mCherry* was used as ASH/ADL marker. Scale bar: 10 μ m.

1109 **(F)** Confocal images show no expression of DAF-16::mNG in AMSh glia in day 1 and day 6 *daf-16(ot853)* animals. *yadls222 [Pf53f4.13::mCherry]* was used as AMsh glia marker. Scale bar:
1110 10 μ m.

1113

1114 **Figure S2. Aging-associated features in AMsh glia is regulated by ASH/ADL aging.**

1115 **(A)** Abnormal vacuoles were observed in AMsh glia during aging. *yadls48 [Pf53f4.13::GFP]* was
1116 used to imaging the morphology of AMsh glia. Scale bar: 10 μ m.

1117 **(B)** Quantifications of percentage of animals with abnormal vacuoles in AMsh glia during aging.

1118 **(C)** Confocal images of abnormal vacuoles in AMsh glia with early-endosome marker
1119 mCherry::RAB-5, late-endosome marker mCherry::RAB-7, and lysosome marker LMP-1::GFP.
1120 Scale bar: 10 μ m.

1121 **(D to F)** Correlation analyses between the functions of ASH/ADL **(D)**, AWA **(E)**, and AWC **(F)**
1122 neurons with AMsh glial aging by using day 6 animals. Data are shown as mean \pm SD. Student's
1123 *t*-test, ** P<0.01, *** P<0.001.

1124 **(G)** Quantifications of the ratio of abnormal vacuoles in AMsh glia during aging in animals with
1125 (DAF-16 (KD)) or without (Control) DAF-16 depletion in ASH/ADL neurons. Data are shown as
1126 mean \pm SD. Two-way ANOVA, *** P<0.001.

1127

1128 **Figure S3. Enrichment of biotinylated proteins from AMsh glia after proximity labeling.**

1129 **(A)** Enrichment of AMsh glial proteins by streptavidin magnetic beads. Wild-type (*N2*) and
1130 *yadls83* [*Prgef-1(neuronal)::3xHA::Turbold*] animals were used as negative and positive control
1131 for proximity labeling experiments, respectively. *yadls95* [*Pf53f4.13::3xHA::Turbold*] animals
1132 express free Turbold exclusively in AMsh glia. All strains were treated with or without 100 μ M
1133 exogenous biotin and cultured at 25°C for 8 hours before sample collection. 50 μ L streptavidin-
1134 coated beads were then used for enrichment of biotinylated proteins. The protein samples were
1135 analyzed by western blotting.

1136 **(B)** Immunoblotting of enriched biotinylated AMsh glial proteins with streptavidin-HRP in
1137 transgene *yadls95* [*Pf53f4.13::3xHA::Turbold*] with or without DAF-16 depletion in ASH/ADL.

1138

1139 **Figure S4. HSP-4::mCherry is transmitted from ASH/ADL neurons to AMsh glia.**

1140 **(A)** Confocal images show that ASH/ADL-expressed HSP-4::mCherry but not mCherry were
1141 found in AMsh glia. HSP-4::mCherry or mCherry were specifically expressed in ASH/ADL
1142 neurons by the *gpa-11* promoter. *yadls48* [*Pf53f4.13::GFP*] was used as AMsh glia marker.
1143 Scale bar: 10 μ m.

1144 **(B)** Confocal images show the expression of HSP-3::mCherry or mCherry when they were
1145 specifically expressed in AMsh-channel neurons. *gpa-3* promoter was used to drive cell-specific
1146 expression in AMsh-channel neurons. *yadls48* [*Pf53f4.13::GFP*] was used as a marker to label
1147 AMsh glia. Scale bar: 10 μ m.

1148 **(C and D)** Confocal images **(C)** and quantifications **(D)** of XBP-1s::GFP intensity in control and
1149 transgenes expressing *hsp-3* in ASH/ADL neurons or AMsh glia. *gpa-11* promoter was used to
1150 drive cell-specific expression in ASH/ADL neurons. *f53f4.13* promoter was used to drive cell-
1151 specific expression in AMsh glia. *yadls222* [*Pf53f4.13::mCherry*] was used as an AMsh glia
1152 marker. Scale bar: 10 μ m. N>30. Data are shown as mean \pm SD. One-way ANOVA, ns, no
1153 significant difference.

1154 **(E and F)** Results from chemotaxis assays show AWA (**E**) and AWC (**F**) neuronal functions in
1155 control and transgenes expressing *hsp-3* in ASH/ADL neurons or AMsh glia. *gpa-11* promoter
1156 was used to drive cell-specific expression in ASH/ADL neurons. *f53f4.13* promoter was used to
1157 drive cell-specific expression in AMsh glia. Data are shown as mean \pm SD. One-way ANOVA,
1158 ns, no significant difference, **P < 0.01, ***P < 0.001.

1159 **(G and H)** Confocal images (**G**) and quantifications (**H**) of *utx39* [*hsp-4::mNG::3xFlag*] show that
1160 HSP-4::mNG expression in AMsh glia is increased in animals expressing constitutively activated
1161 *xbp-1s* in AMsh glia. Scale bar: 10 μ m. Data are shown as mean \pm SD. Student's *t*-test, ***
1162 P<0.001.

1163

1164 **Figure S5. Extracellular vesicles originated from AMsh-channel neurons are transmitted**
1165 **to AMsh glia.**

1166 **(A)** Confocal images showed that TSP-6::GFP but not GFP expressed in AMsh-channel neurons
1167 by the *gpa-3* promoter translocated into AMsh glia. The GFP and mCherry intensities along the
1168 yellow lines indicated in the figures were quantified and shown in the graphs on the right side.
1169 *yadls222* [*Pf53f4.13::mCherry*] was used as AMsh glia marker. Scale bar: 10 μ m.

1170 **(B)** Confocal images showed that TSP-6::GFP but not GFP expressed in amphid sensory
1171 neurons by the *arl-13* promoter translocated into AMsh glia. The GFP and mCherry intensities
1172 along the yellow lines indicated in the figures were quantified and shown in the graphs on the
1173 right side. *yadls222* [*Pf53f4.13::mCherry*] was used as AMsh glia marker. Scale bar: 10 μ m.

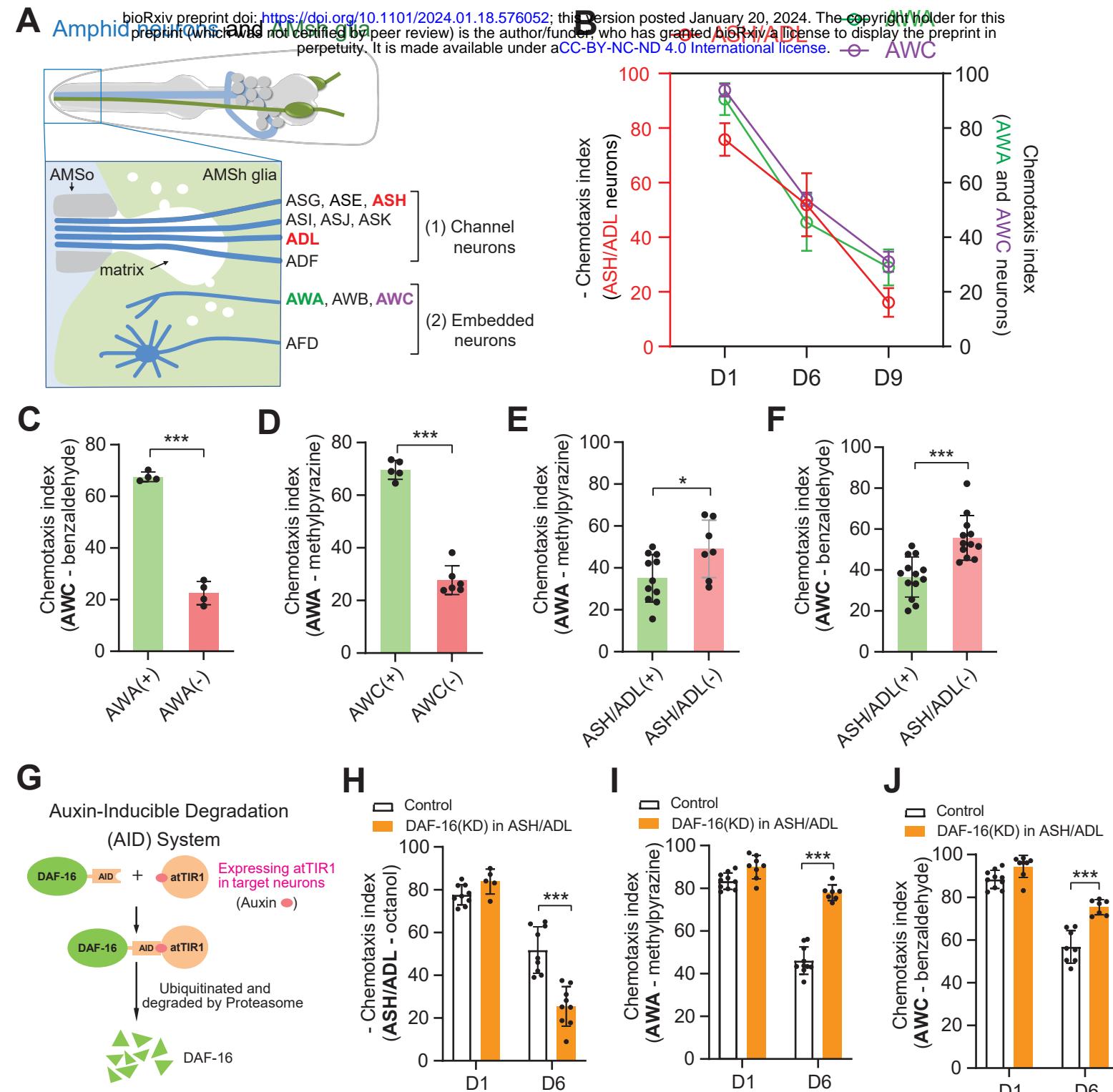
1174

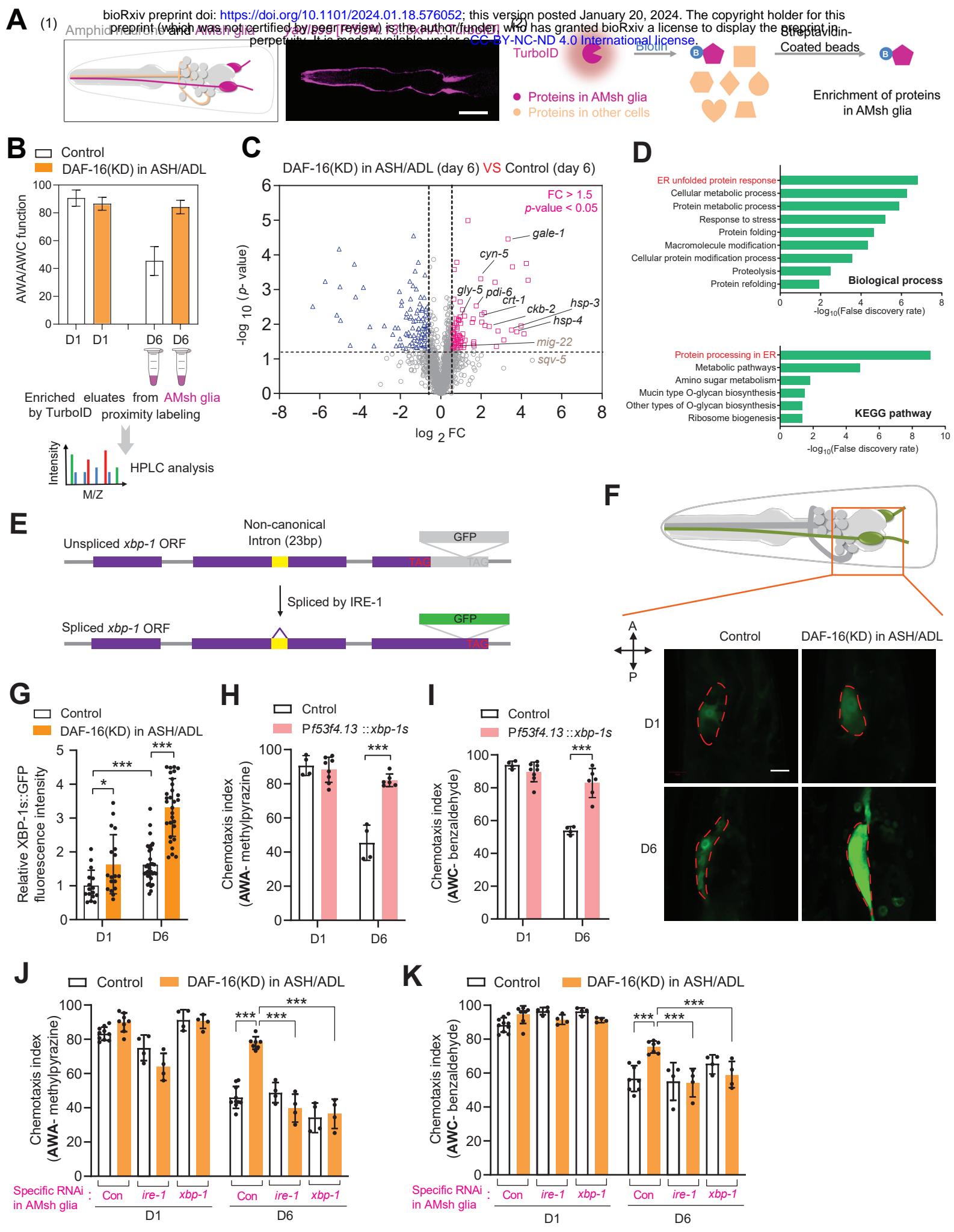
1175 **Figure S6. Glia sense neuronal aging through HSP-4 as a transmission signal.**

1176 A model for the neuron-glia-neuron regulatory mechanism during aging, in which neuronal HSPs
1177 are transmitted to AMsh glia via EVs and activate the IRE1-XBP-1 pathway in AMsh glia to
1178 protect AMsh glia embedded neurons from aging.

1179

1180


1181


1182

1183 **Table S1. List of strains used in this study**

1184 **Table S2. List of plasmids used in this study**

1185 **Table S3. Normalized data from LC-MS/MS**

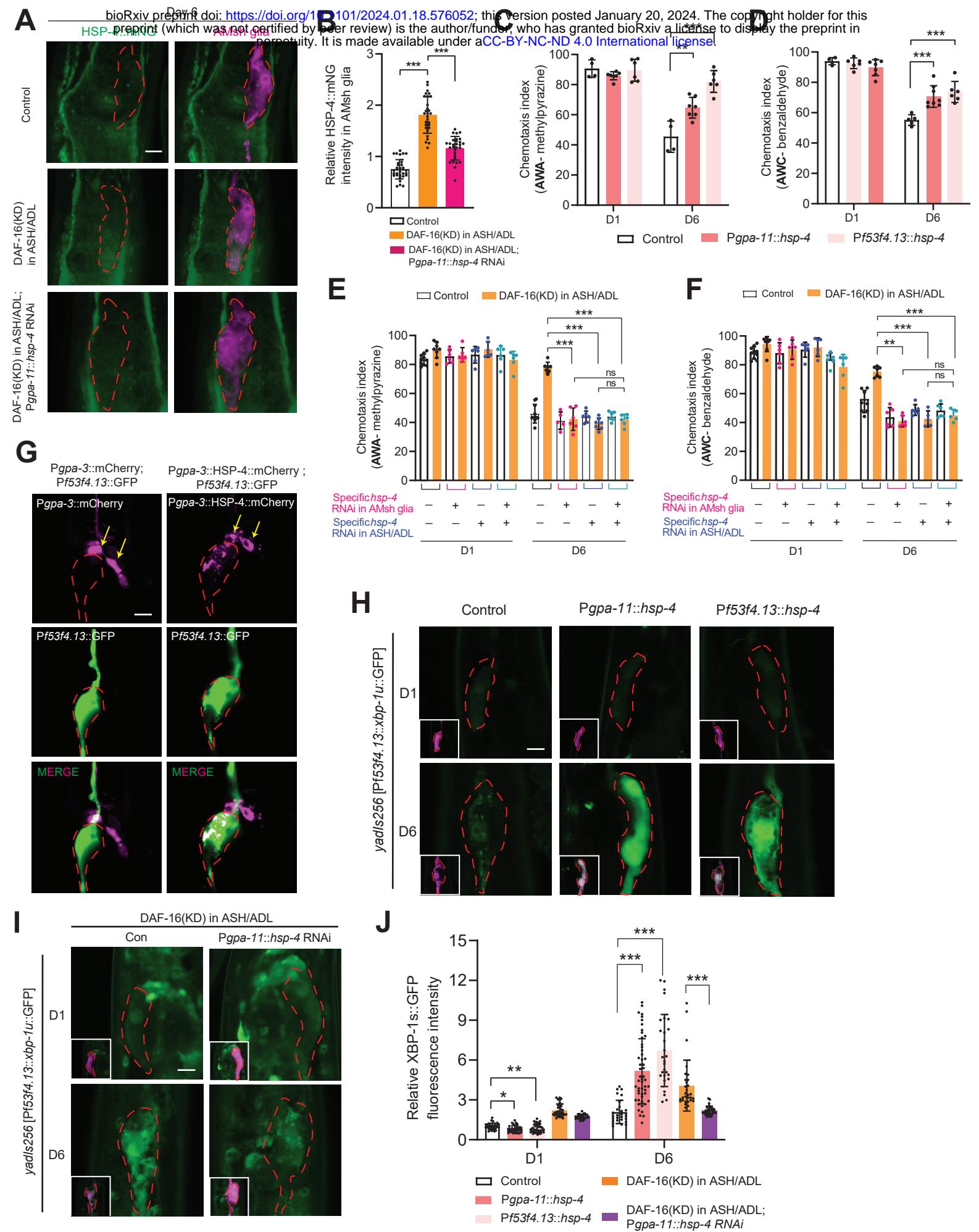
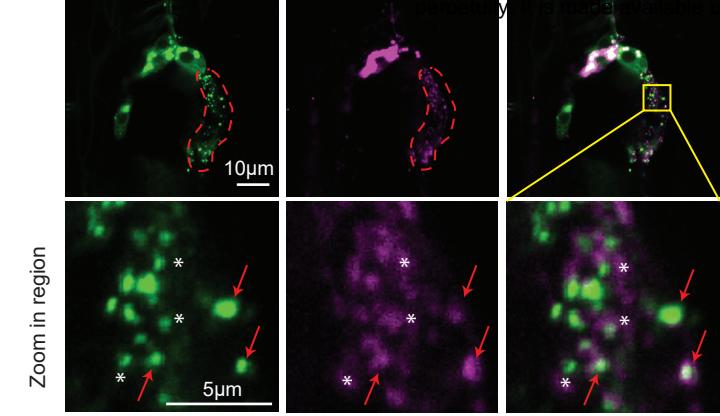
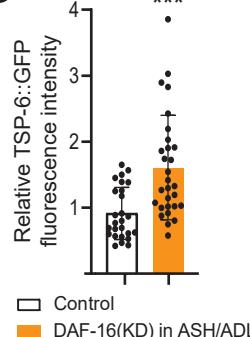
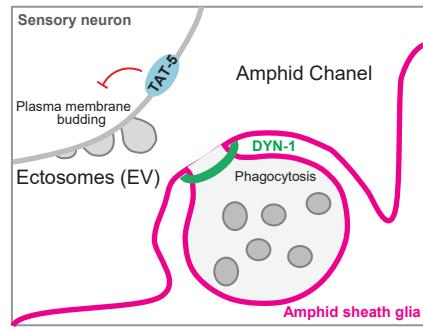
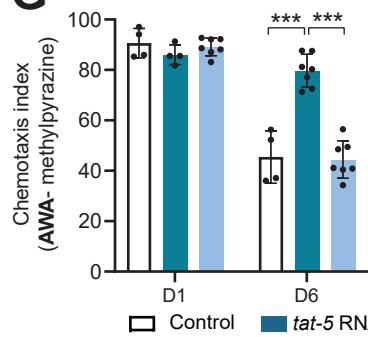
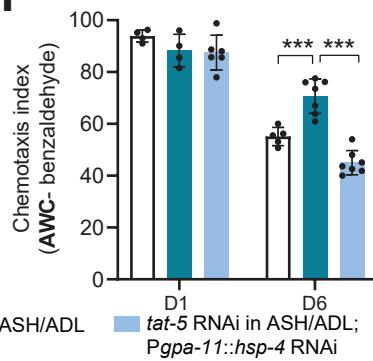




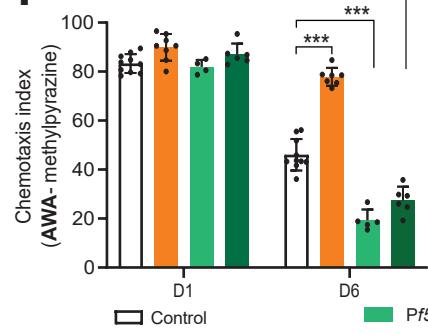
Figure 3

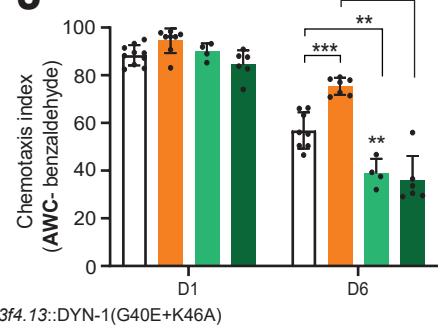


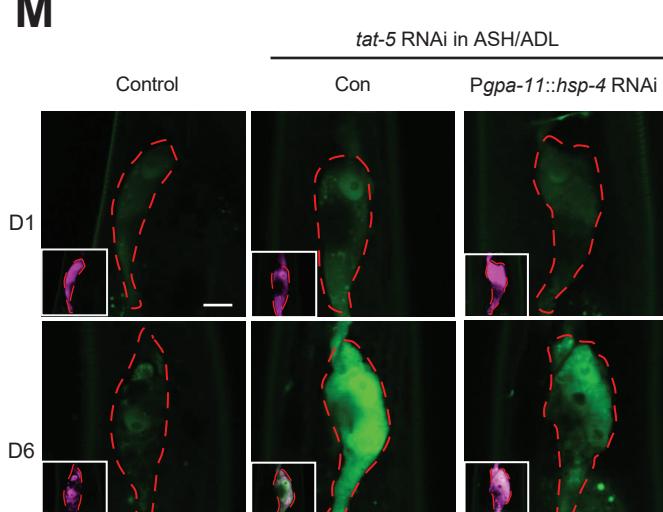
Zoom in region

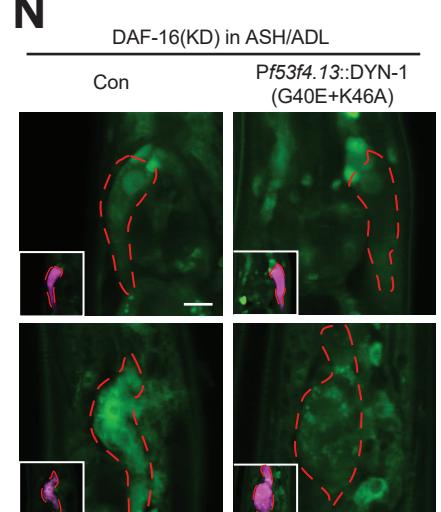

C

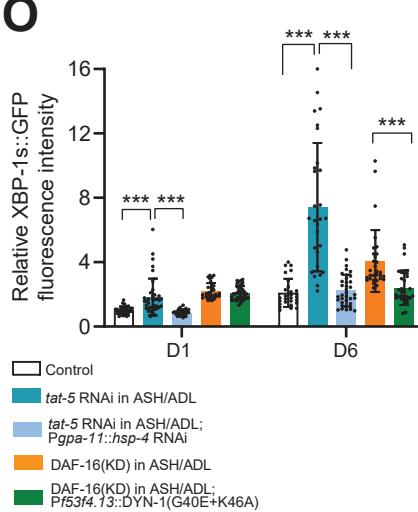

D


G


H

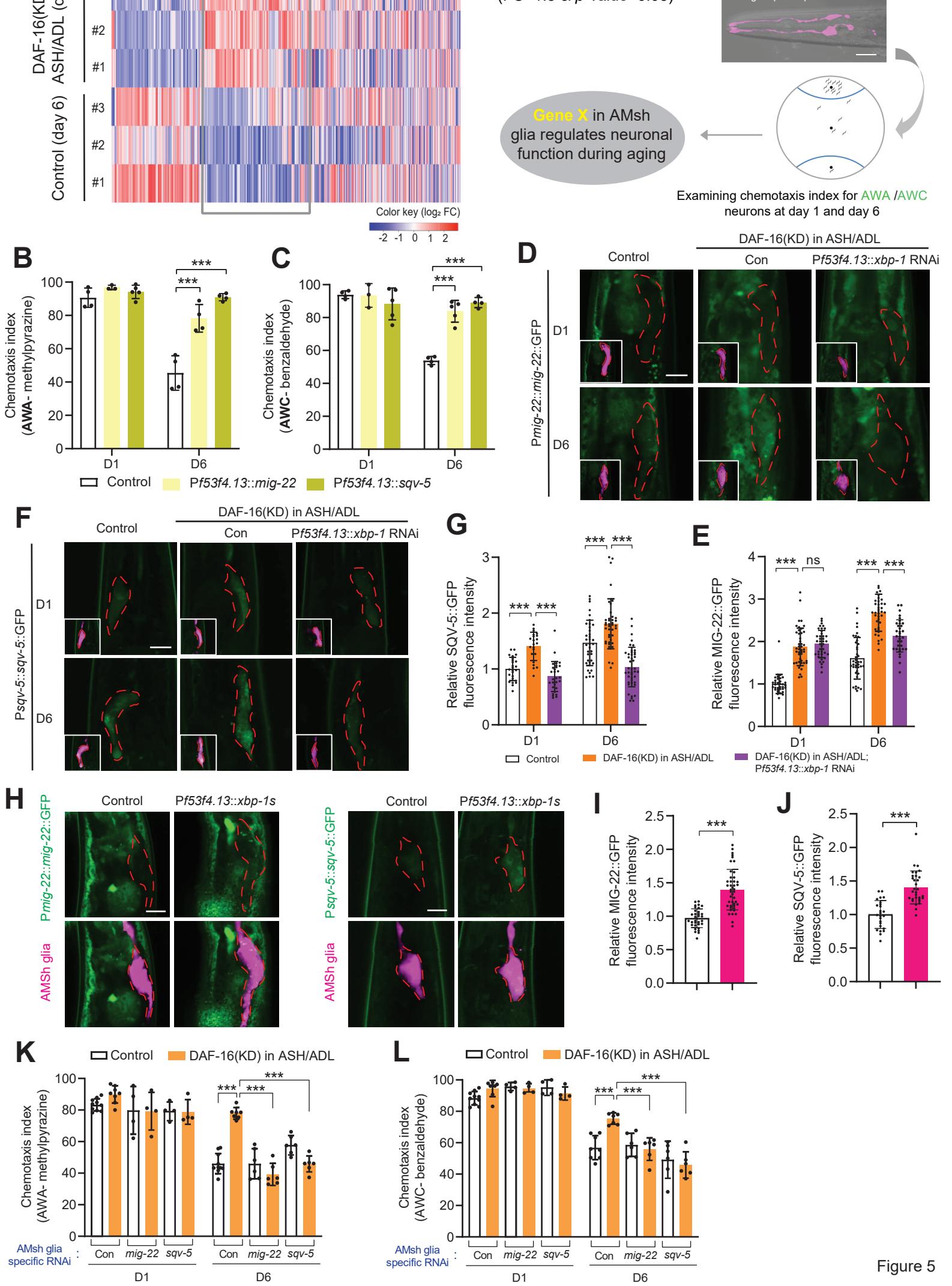
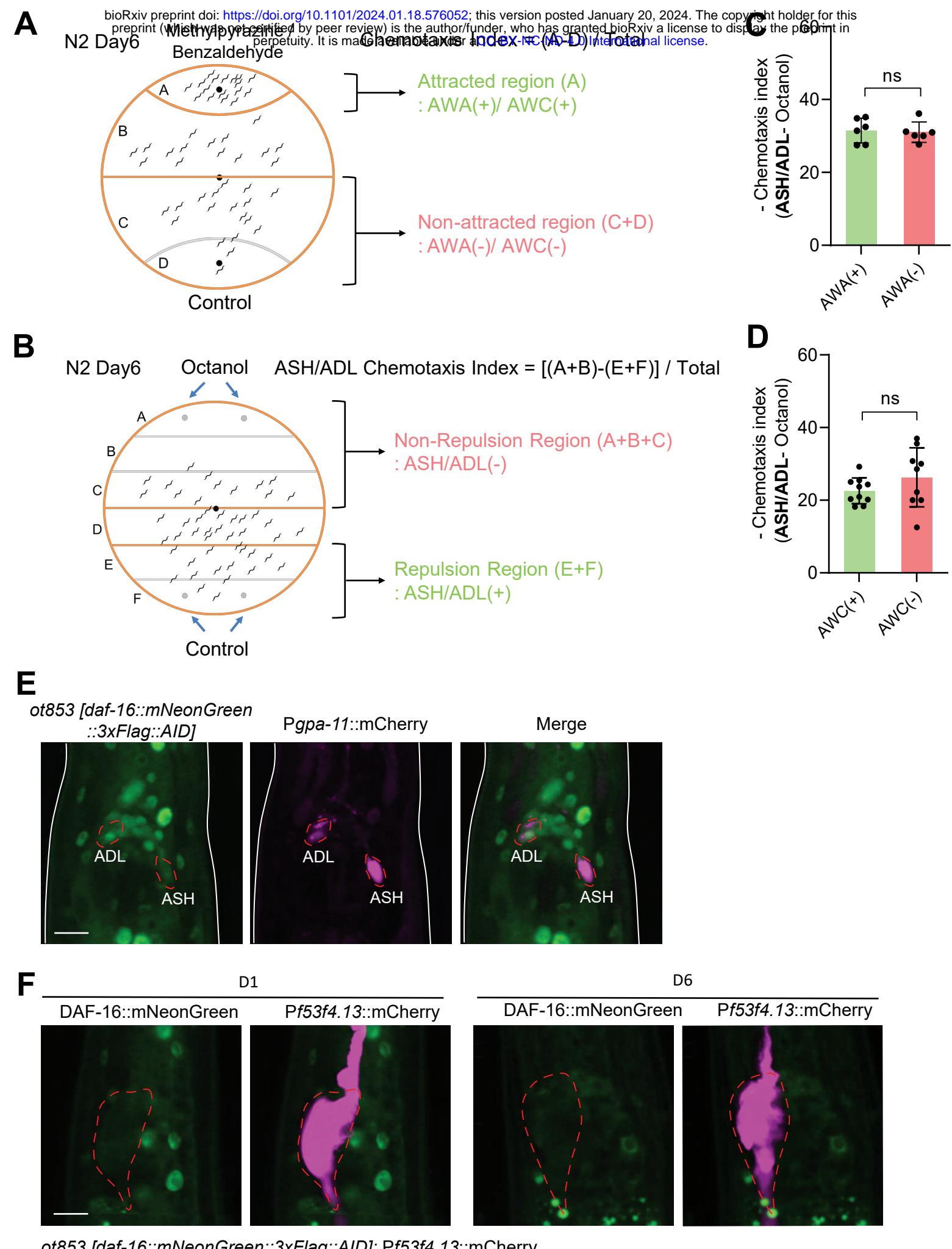
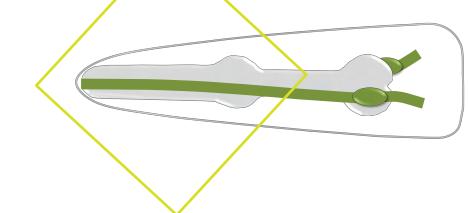

I

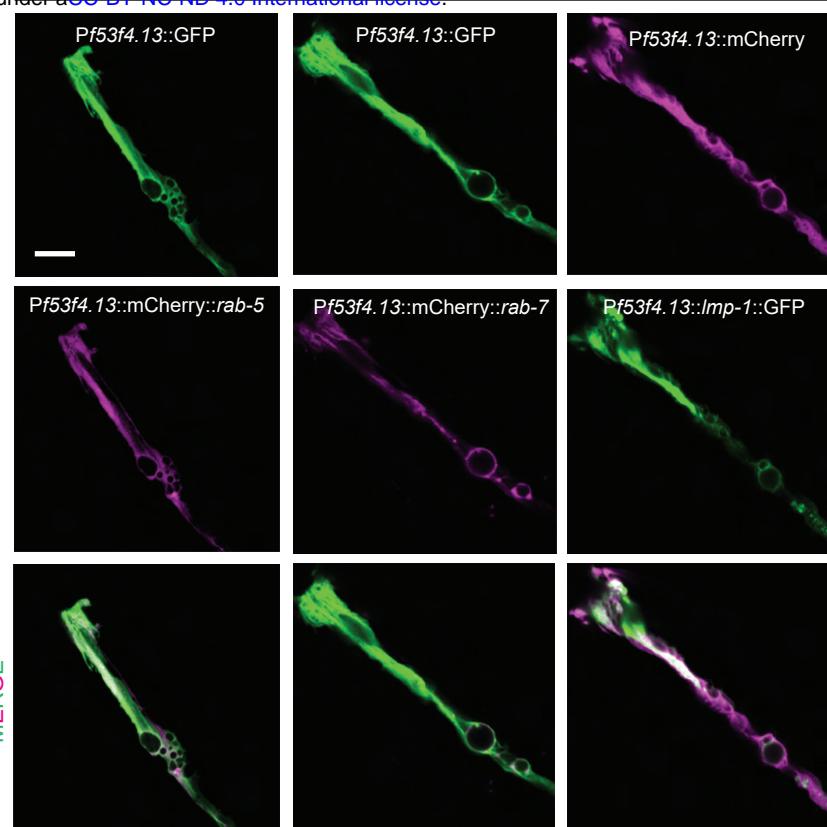

J

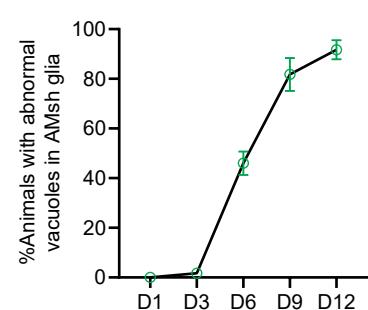

M

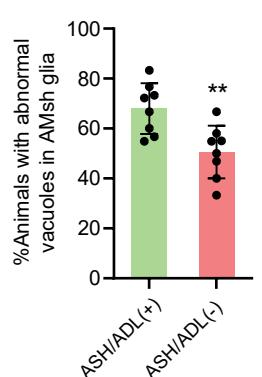
N

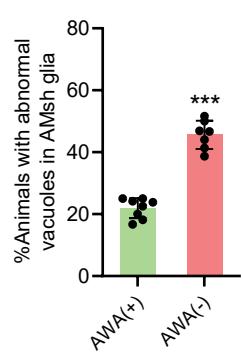
O

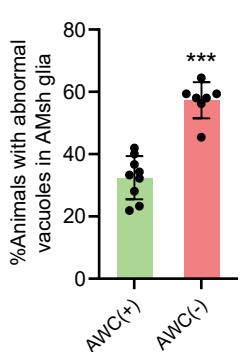




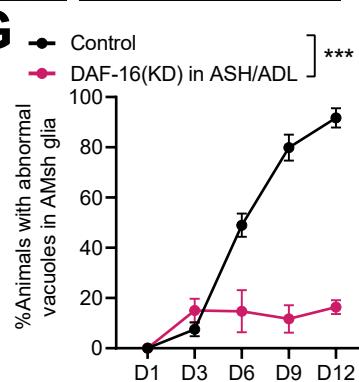

Figure 5

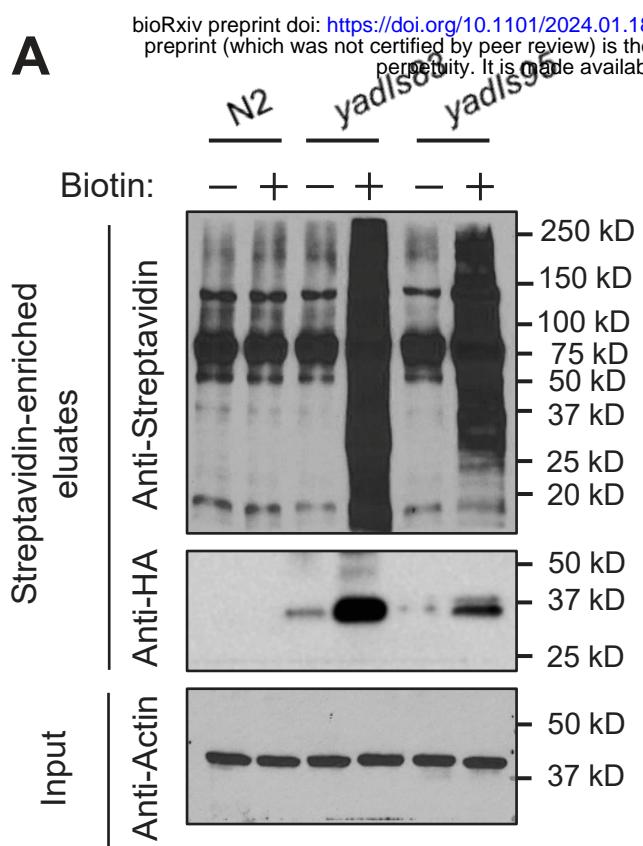

A

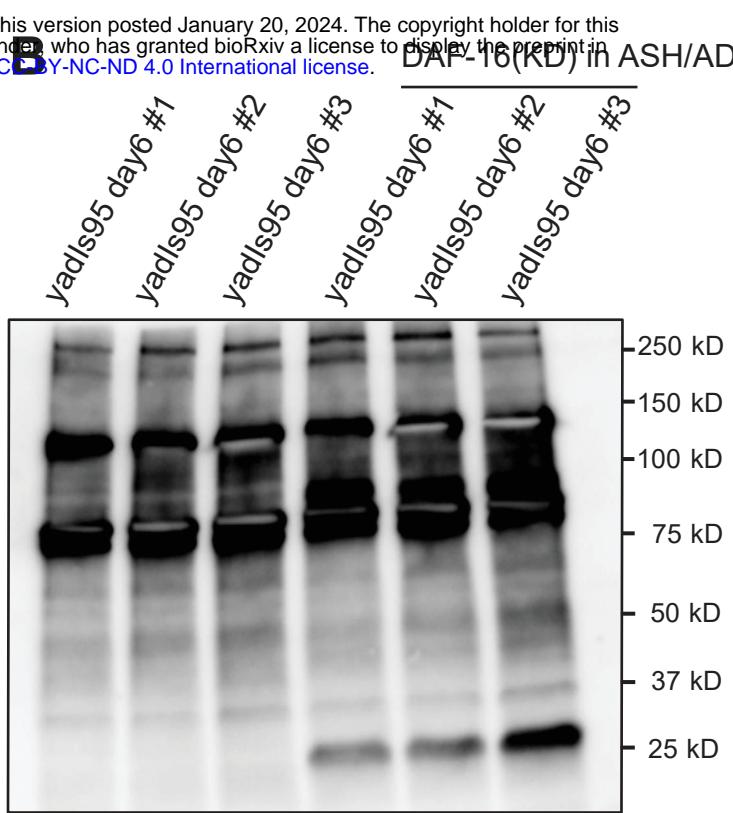

C

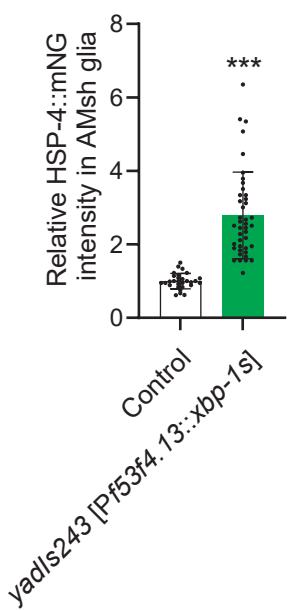
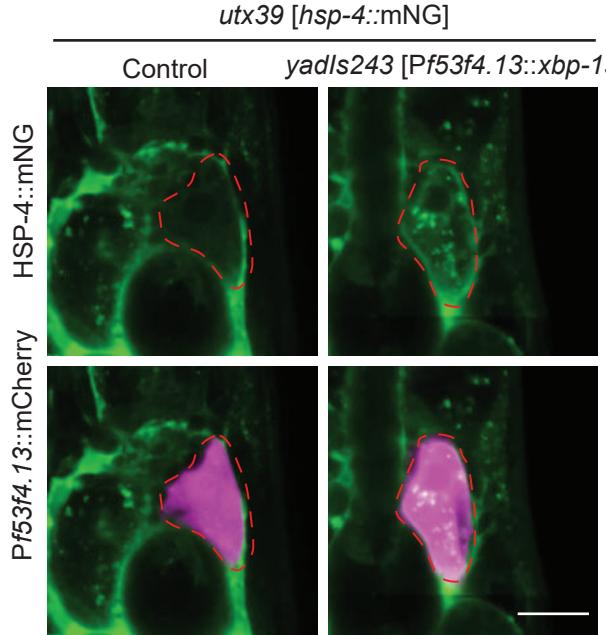
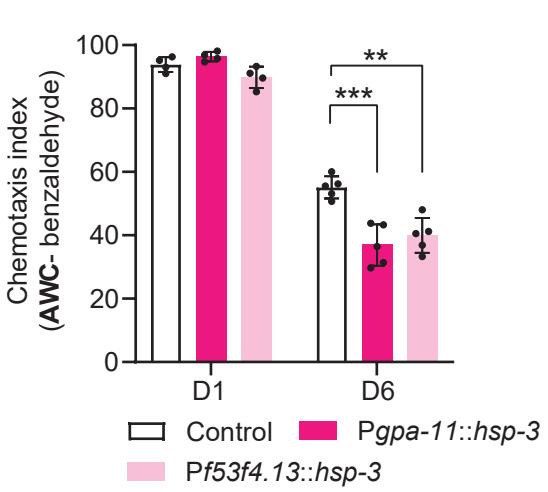
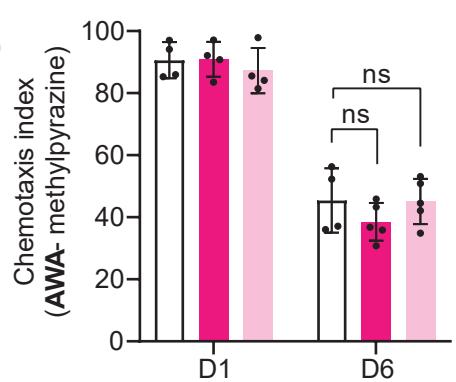
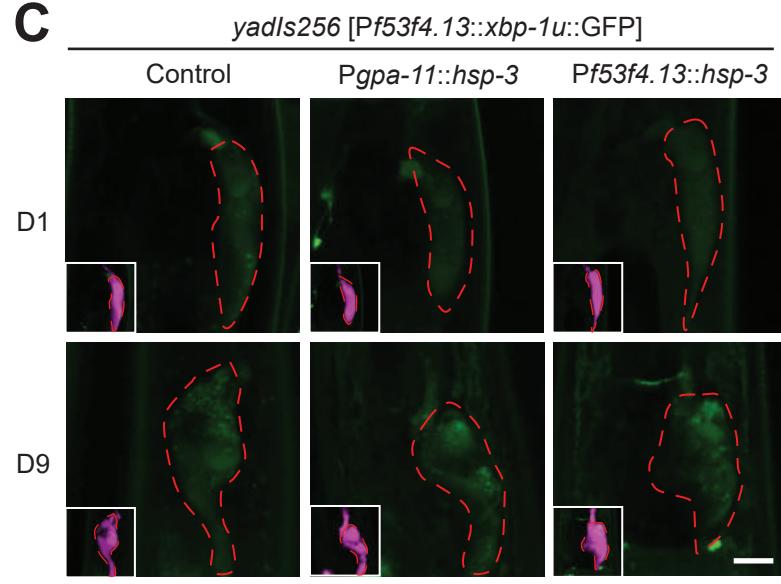
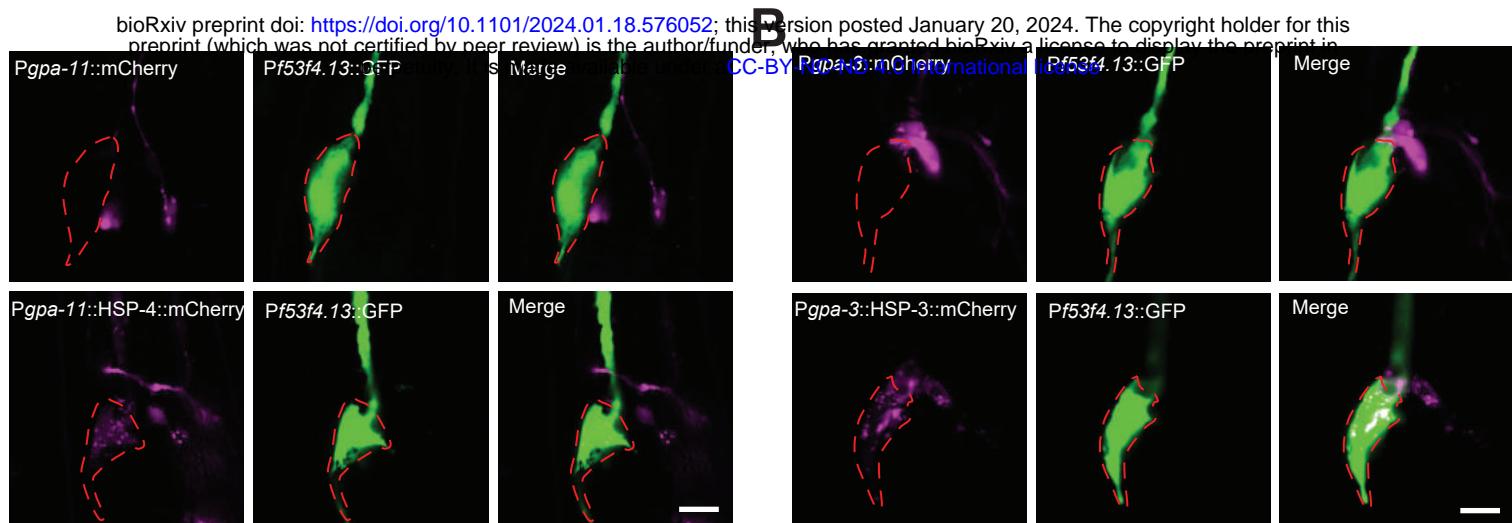

B


D

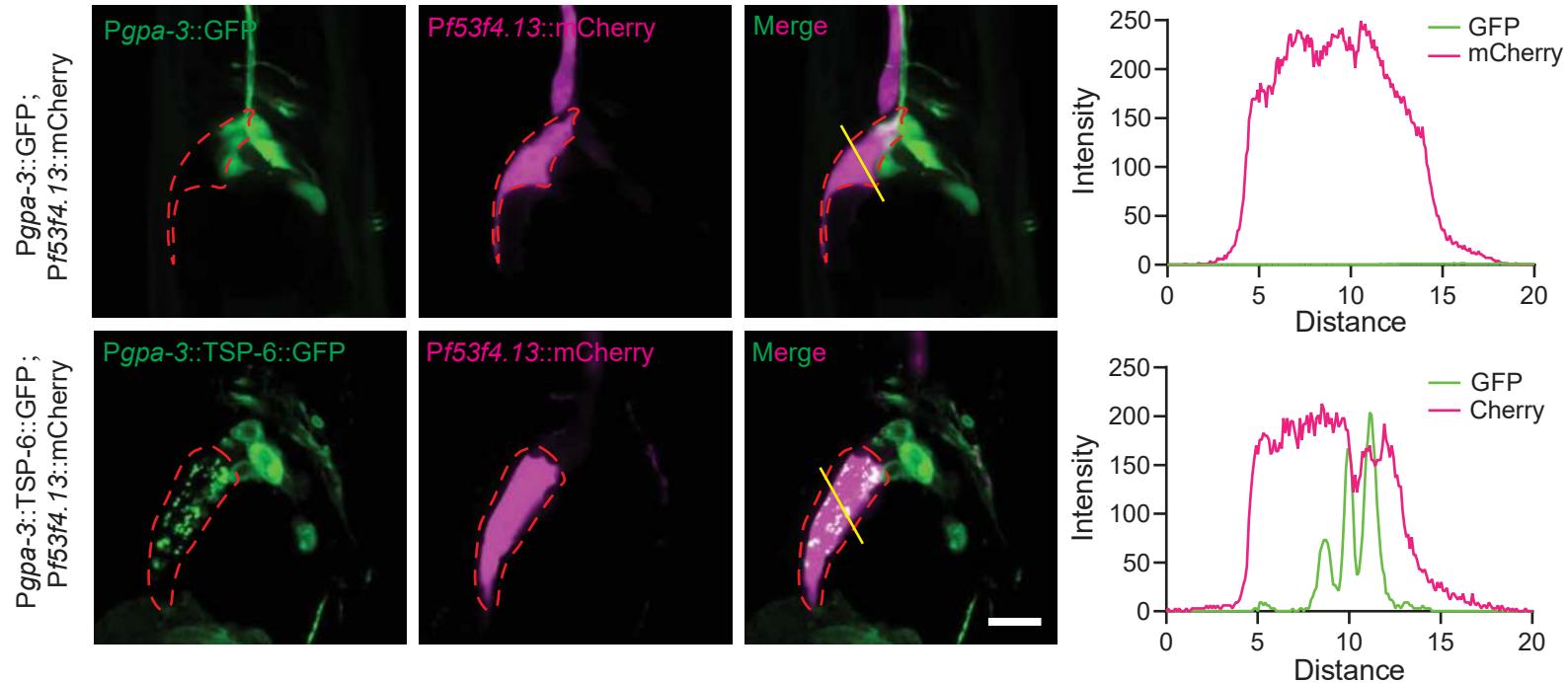

E


F

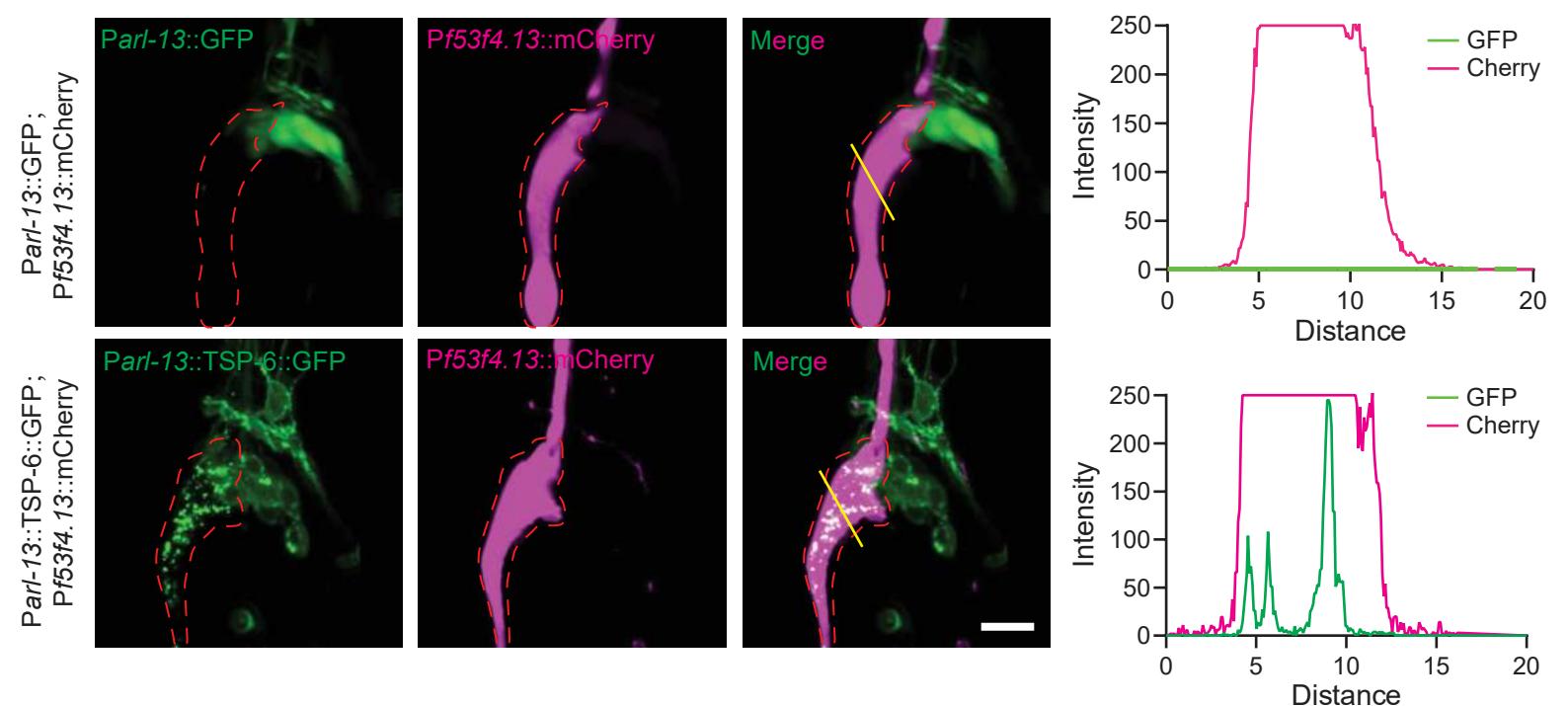

G

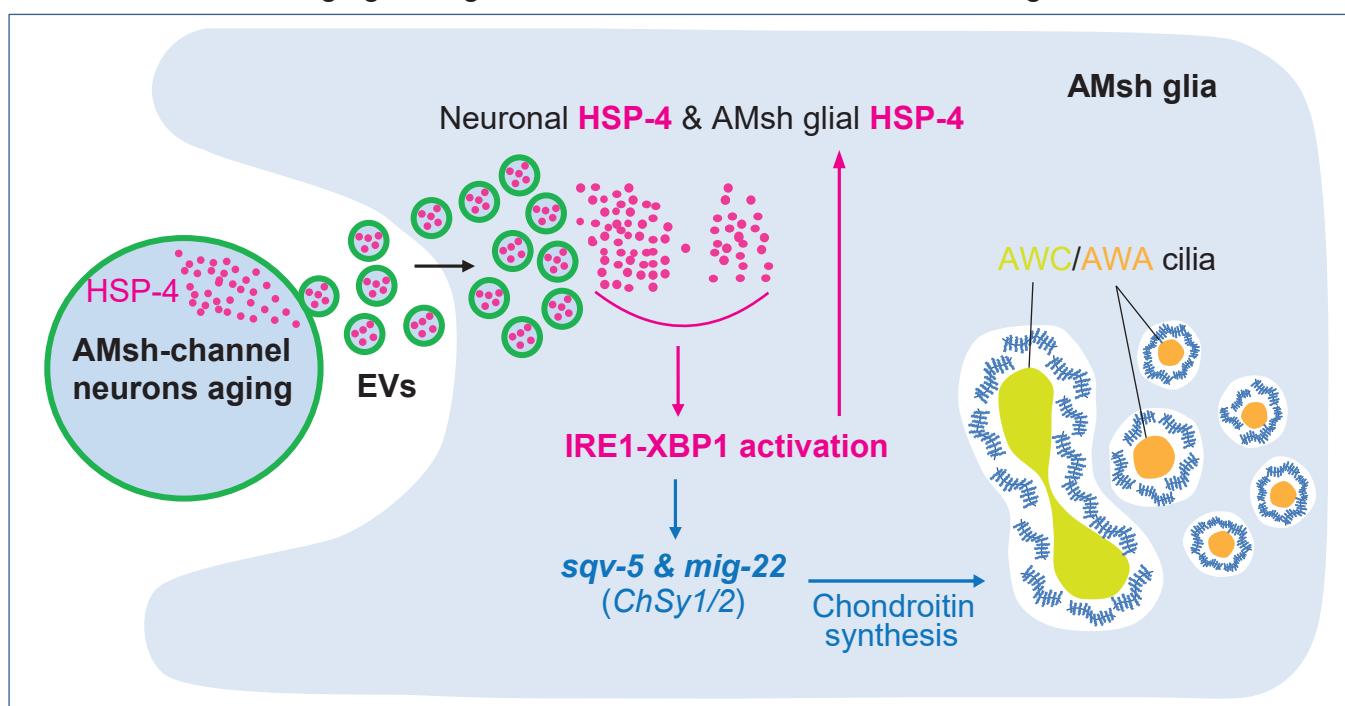







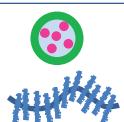
A



B




A


B

Glia sense neuronal aging through neuronal HSP-4-based transmission signal

The cross section of AMsh sensory organ in *C. elegans*

TSP-6 marked EVs loading with HSP-4 (●)

Chondroitin glycosaminoglycans