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ABSTRACT 1 
 2 

Whether in music, language, baking, or memory, our experience of the world is 3 

fundamentally linked to time. However, it is unclear how temporal information is encoded, 4 

particularly in the range of milliseconds to seconds. Temporal processing at this scale is critical 5 

to prediction and survival, such as in a prey anticipating not only where a charging predator will 6 

go but also when the predator will arrive at that location. Several models of timing have been 7 

proposed that suggest that either time is encoded intrinsically in the dynamics of a network or 8 

that time is encoded by mechanisms that are explicitly dedicated to temporal processing. To 9 

determine how temporal information is encoded, we recorded neural activity in primary visual 10 

cortex (V1) as mice (male and female) performed a goal directed sensory discrimination task, in 11 

which patterns of subsecond stimuli differed only in their temporal profiles. We found that 12 

temporal information was encoded in the changing population vector of the network and that the 13 

space between these vectors was maximized in learned sessions. Our results suggest that 14 

temporal information in the subsecond range is encoded intrinsically and does not rely upon 15 

specialized timing mechanisms. 16 

  17 
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SIGNIFICANCE STATEMENT 18 
 19 

Our experience of the world is fundamentally linked to time, but it is unclear how 20 

temporal information is encoded, particularly in the range of milliseconds to seconds. Using a 21 

sensory discrimination task in which patterns of subsecond stimuli differed in their temporal 22 

profiles, we found that primary visual cortex encodes temporal information via the changing 23 

population vector of the network. As temporal processing via population encoding has been 24 

shown to rely on inhibitory activity in computational models, our results may provide insight 25 

into temporal processing deficits in disorders such as autism spectrum disorder in which there is 26 

inhibitory-excitatory imbalance. Furthermore, our results may underlie processing of higher-27 

order sensory stimuli, such as language, that are characterized by complex temporal sequences. 28 

  29 
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INTRODUCTION 30 
 31 

Our experience of the world is fundamentally linked to time. We rely upon its even 32 

structure and passage and are as a result, able to make predictions about the future. We anticipate 33 

winter following autumn, and we know that the sun will set and then rise again. When we are 34 

driving, we expect a red light to follow a yellow, and a green light to follow a red. The structure 35 

of these events is sequential, which is not inherently connected with time, but within each 36 

sequence there is a temporal dimension. For instance, we decide to press the brake or the gas 37 

pedal based on our estimation of the duration of the yellow light. And we would be quite 38 

concerned if one day the sun rose ten minutes after setting, or perhaps if night spontaneously 39 

stretched out for several years.  40 

Neuroscience has made great progress in elucidating how sensory and motor content are 41 

encoded, whether in the present, such as during stimulus discrimination, or in the past, such as in 42 

memory encoding. Time’s role in these encoding schemes has been largely overlooked however, 43 

which may simply be the result of its ubiquity. There is no sensory organ that measures time, 44 

though in each sensory modality time is present. This realization then begs the question of how 45 

time is encoded: might it be encoded intrinsically within each sensory modality, or is it encoded 46 

by higher order mechanisms specifically dedicated to it? 47 

Increasingly, evidence points to a variety of mechanisms, and these largely depend upon 48 

the scale of an interval. On the order of days, transcriptional feedback loops in the 49 

suprachiasmatic nucleus are responsible (Mauk & Buonomano, 2004). On the order of minutes, 50 

corticostriatal loops mediated by dopaminergic activity are the likely mechanism (Mauk & 51 

Buonomano, 2004). However, on the order of seconds and milliseconds, the mechanisms of 52 

temporal encoding remain unclear and widely debated. 53 
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The importance of timing at this scale is acutely linked to prediction and survival. A 54 

boxer anticipates at what moment to slip their opponent’s punch, and a prey watching a charging 55 

predator must predict not only where a predator will go, but also at what moment the predator 56 

arrives at that location. However, temporal encoding at this scale is not simply limited to interval 57 

timing (i.e. the duration of a stimulus, or the duration between two stimuli) like in these 58 

examples, but undergirds an array of simple to complex phenomena. Indeed, temporality is 59 

endemic to highly complex stimuli such as music, Morse code, and language, in which meaning 60 

is intrinsically derived from temporal structure. 61 

Several models of timing at this scale have been proposed that largely lie on a 62 

dedicacated to intrinsic axis (Fig. 1), but it remains to be determined which accounts best for 63 

temporal encoding of sensory stimuli. Here, we investigate how subsecond temporal information 64 

is encoded in V1 in a goal directed sensory discrimination task, in which temporal information 65 

exclusively differentiates stimuli. We previously showed that mice become experts at the task 66 

and that changes in V1 dynamics accompany expert performance in the learned session (Post et 67 

al., 2023). In this paper, we show the evolution of neural dynamics through learning and test 68 

whether dedicated or intrinsic mechanisms are employed in temporal encoding of sensory 69 

stimuli. We find that temporal information is encoded in the changing population vector, i.e. 70 

trajectory, of the network through high dimensional space. This finding evinces a prominent 71 

intrinsic model of timing, the state dependent network model. Additonally, we find that neural 72 

activity which may be representative of dedicated models of timing, namely ramping and 73 

oscillatory models, is no more representative of temporal information than non-specialized 74 

activity and is in fact an aspect of the changing population vector in state space. Our results add 75 

to a growing body of literature which suggests that temporal information is intrinsically encoded 76 

in the processing of sensory stimuli. 77 
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MATERIALS AND METHODS 78 
 79 
Experimental Animals 80 
 81 

All experiments followed the U.S. National Institutes of Health guidelines for animal 82 

research, under animal use protocols approved by the Chancellor's Animal Research Committee 83 

and Office for Animal Research Oversight at the University of California, Riverside (ARC 84 

#2022-0022). We used male and female FVB.129P2 WT mice (JAX line 004828).  All mice 85 

were housed in a vivarium with a 12/12 h light/dark cycle and experiments were performed 86 

during the light cycle. The FVB background was chosen because of its robust breeding. 4 males 87 

and 1 female were used. 88 

 89 
 90 
Go/No-go temporal pattern sensory discrimination (TPSD) task for head restrained mice 91 

 92 
Awake, head-restrained young adult mice (2-4 months) were allowed to run on an air-93 

suspended polystyrene ball while performing the task in our custom built rig (Fig. 2B). Prior to 94 

performing the task, the animals were subjected to handling, habituation, and pretrial phases. 95 

After recovery from headbar/cranial window surgery, mice were handled gently for 5 min every 96 

day, until they were comfortable with the experimenter and would willingly transfer from one 97 

hand to the other to eat sunflower seeds. This was followed by water deprivation (giving mice a 98 

rationed supply of water once per day) and habituation to the behavior rig. During habituation, 99 

mice were head-restrained and acclimated to the enclosed sound-proof chamber and allowed to 100 

run freely on the 8 cm polystyrene ball. Eventually, mice were introduced to the lickport that 101 

dispensed water (3-4 µL) and recorded licking (custom-built at the UCLA electronics shop), 102 

followed by the audio-visual stimuli. This was repeated for 10 min per session for 3 days. 103 

Starting water deprivation prior to pretrials motivated the mice to lick (Guo et al., 2014).  After 104 

habituation and ~15% weight loss, mice started the pretrial phase of the training. During 105 
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 6
 

pretrials, mice were shown the Pref stimulus only with no punishment time associated with 106 

incorrect responses. This was done in order to teach the mice the task structure and encourage 107 

the mice to lick and to remain motivated. The first day consisted of 150 trials and subsequent 108 

days of 250. The reward, as in the TPSD main task, was dispensed at 1.2 s and remained 109 

available to the mice until 2 s, at which time it was sucked away by a vacuum. The mice were 110 

required to learn to associate a water reward soon after the stimulus was presented and that there 111 

was no water reward in the inter-trial interval (4 s period between trials). Initially during pre-112 

trials, the experimenter pipetted small drops of water onto to the lickport to coax the mice to lick. 113 

Once the mice learned this and licked with 80% efficiency, they were advanced to the go/no-go 114 

task.  115 

  The TPSD task is a go/no-go task composed of two sequences of synchronous 116 

audio-visual stimuli (Fig. 2A). Visual stimuli are 90° drifting sinusoidal gratings and are 117 

accompanied by a synchronous 5 kHz tone at 80 dB. Within each sequence, four stimuli are 118 

presented that differ only in temporality. Our preferred sequence is composed of 4 stimuli of 200 119 

ms; our nonpreferred sequence is composed of 4 stimuli of 900 ms. Each set of the sequences is 120 

separated by a 200 ms period of silence accompanied by a grey screen. A water reward is 121 

dispensed at 1.2 s and remains available until 2 s, at which time it is sucked away by a vacuum. 122 

A custom built lickport (UCLA engineering) dispensed water, vacuumed it, and recorded licking 123 

via breaks in an infrared (IR) beam. Breaks were recorded at 250 Hz. The window in which 124 

mice’s licking count toward a response is 1 to 2 s from stimulus onset in both conditions. A time 125 

out period (6.5 to 8 s), in which the monitor shows a black screen and there is silence, is 126 

instituted if the mouse incorrectly responds. The first session was composed of 250 trials, and 127 

subsequent days of 350. Depending on the stimulus presented, the animal’s behavioral response 128 
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was characterized as “Hit”, “Miss”, “Correct Rejection” (CR) or “False Alarm” (FA) (Fig. 2A).  129 

An incorrect response resulted in the time-out period.   130 

To expedite learning, we set the ratio of preferred to nonpreferred stimuli to 70:30 as we 131 

found that mice are more prone to licking (providing a ‘yes’ response) than to inhibiting licking 132 

(providing a ‘no’ response). We additionally instituted an individualized lick rate threshold to 133 

encourage learning as we found that lick rates differed significantly from mouse to mouse. 134 

Licking thresholds were calculated from lick rates for mice and shows no significant correlation 135 

between licking thresholds and learning rates (Pearson’s r, r = .4684, p = -.3012). This indicates 136 

that the individualized lick rate threshold was used as a learning aid to complete the task and did 137 

not affect their learning rates or their reliance on the stimulus for task completion. To confirm 138 

that mice learned rather than took advantage of the biased 70:30 preferred to nonpreferred trial 139 

ratio, we tested mice for 2 additional sessions using a 60:40 ratio of preferred to nonpreferred. 140 

We retain a greater number of preferred stimuli as the total time mice encounter preferred stimuli 141 

is less than that of encountering nonpreferred stimuli within a 60:40 trial session (294 s vs 588 s 142 

respectively). Following, mice performed a control task, during which visual and auditory 143 

stimuli were not presented. Our data shows that mice did not retain learned performance, 144 

indicating that they relied on the sensory stimuli for expert performance (see Post et al. (2023)).  145 

Custom-written routines and Psychtoolbox in MATLAB were used to present the visual stimuli, 146 

to trigger the lickport to dispense and retract water, and to acquire data.   147 

 148 
 149 
 150 
Cranial window surgery 151 

 152 
Craniotomies were performed at 6-8 weeks. Prior to surgery, mice were given 153 

dexamethasone (0.2 mg/kg) and carprofen (5 mg/kg) intraperitoneally and subcutaneously 154 
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respectively. Mice were anesthetized with isoflurane (5% induction, 1.5-2% maintenance via 155 

nose cone) and placed in a stereotaxic frame. Under sterile conditions, a 4.5 mm diameter 156 

craniotomy was drilled over the right primary visual cortex (V1) and covered with a 5 mm glass 157 

coverslip (Fig. 2C). Before securing the cranial window with a coverslip, we injected 60-100 nl 158 

of pGP-AAV-syn-jGCaMP7f-WPRE. A custom U-shaped aluminum bar was attached to the 159 

skull with dental cement to head restrain the animal during behavior and calcium imaging. For 160 

two days following surgery, mice were given dexamethasone (0.2 mg/kg) daily. 161 

 162 
 163 
 164 
Viral constructs  165 

pGP-AAV-syn-jGCaMP7f-WPRE were purchased from Addgene and diluted to a 166 

working titer of 2e13 with 1% filtered Fast Green FCF dye (Fisher Scientific).   167 

 168 
 169 
 170 
In-vivo two photon calcium imaging 171 

 172 
Calcium imaging was performed on a Scientifica 2-photon microscope equipped with a 173 

Chameleon Ultra II Ti:sapphire laser (Coherent), resonant scanning mirrors (Cambridge 174 

Technologies), a 20X objective (1.05 NA, Olympus), multialkali photmultiplier tubes (R3896, 175 

Hamamatsu) and ScanImage software(Pologruto et al., 2003). Stimulus evoked responses of 176 

L2/3 neurons in V1 were recorded at 15.2 Hz in 1 field of view. Each field of view (FOV) 177 

consisted of a mean of 95.2 pyramidal cells (sd = 38.3). In each animal, imaging was performed 178 

at 150-250 μm. 179 

 180 
 181 
 182 
Data analysis 183 
 184 
Data analysis for calcium imaging. 185 
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 186 
Calcium-imaging data were analyzed using suite2p (Pachitariu et al., 2017) and custom-187 

written MATLAB routines. All data was then processed using suite2p for image registration, 188 

ROI detection, cell labeling, and calcium signal extraction with neuropil correction. Once suite2p 189 

had performed a rigid and non-rigid registration and then detected regions-of-interest (ROIs) 190 

using a classifier, we manually selected cells using visual inspection of ROIs and fluorescence 191 

traces to ensure the cells were healthy. We then used the deconvolved spikes determined by 192 

suite2p in our subsequent analysis that used custom-written MATLAB scripts. 193 

 194 
 195 
Movement-related cell removal 196 

 197 
Because movement information has increasingly been found in sensory areas, it was 198 

important that we remove any artefacts of movement (Zagha et al., 2022), particularly licking-199 

related activity which would not index sensory processing. We thus identified any cells that were 200 

associated with lick movements and removed them from our neural data (Post et al., 2023). We 201 

additionally performed a locomotion analysis using video of the mice running. We correlated 202 

locomtion with neural activity over the trial periods and found no correlations (data not shown). 203 

 204 
 205 
Lick Decoding 206 

 207 
A support vector machine (SVM) was used to predict Pref or NP stimuli from licking 208 

data. A radial basis function was used as the kernel. The fitcsvm function in MATLAB was used. 209 

80% of data was used to train the SVM and 20% to test. Per time bin (.067 s), 1000 machines 210 

were generated per mouse which resulted in 1000 accuracy outputs per mouse. Data were then 211 

group averaged and plotted with 95% CI. Shuffled data for controls (not shown) was also tested 212 

and found to be at chance levels and is available upon request. 213 
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 214 
 215 
 216 
Network divergence of network state over trials periods 217 

 218 
To determine the degree of network divergence across time within each trial outcome, we 219 

computed how far apart network states were over time using bootstrapped Euclidean distances 220 

between network positions in which each neuron in a given population constituted a dimension, 221 

e.g. Fig 3B. These values were then normalized by dividing the Euclidean distance by the square 222 

root of the total number of dimensions. A random sample of 12 trials was selected and averaged. 223 

We decided to use 12 trials as a sample as this was the smallest value that allowed us to reliably 224 

generate normal distributions for the bootstrap across mice. 1000 means were computed for each 225 

time point per trial outcome per mouse per session. This resulted in each mouse having either a 226 

23x23x1000 in Hit trials (23 time steps due to our sampling rate of 15.2 Hz over 1.4 s) or a 227 

65x65x1000 matrix in CR and FA trials (65 time steps due to our sampling rate of 15.2 Hz over 228 

4.2 s). Matrices were then averaged along the third dimension within mice, then averaged across 229 

mice per trial outcome per session.  230 

 231 
 232 
Decoding of network state over trial periods 233 
 234 

To determine how similar or different the dynamics of the network was over the trial 235 

periods, we used a Multinomial Naive Bayes classifier to determine whether a given time bin’s 236 

dynamic was discriminable from another time bin’s, e.g. Fig. 3C. We used the fitcnb function in 237 

MATLAB. We used 80% of data for training and 20% for testing. We performed 1000 iterations 238 

for the entire trial period per mouse. This generated a 23x23x1000 matrix of accuracy values in 239 

the Pref conditions and a 65x65x1000 matrix in the NP conditions per mouse. Accuracy values 240 
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were then averaged to generate a 23x23 or 65x65 matrix. Shuffled data for controls (not shown) 241 

was also tested and found to be at chance levels and is available upon request. 242 

 243 

 244 
 245 
 246 
Network divergence between trial outcomes 247 
 248 

To determine the degree of network divergence across time within between trial 249 

outcomes, we computed how far apart network states were between trial outcomes over the trial 250 

periods using bootstrapped Euclidean distances between network positions in which each neuron 251 

in a given population constituted a dimension, e.g. Fig 4A. These values were then normalized 252 

by dividing the Euclidean distance by the square root of the total number of dimensions. A 253 

random sample of 12 trials was selected and averaged. We decided to use 12 trials as a sample as 254 

this was the smallest value that allowed us to reliably generate normal distributions for the 255 

bootstrap across mice. 1000 means were computed for each time point per trial outcome per 256 

mouse per session. This resulted in each mouse having either a 23x1000 in Hit trials or a 257 

65x1000 matrix in CR and FA trials. Matrices were then averaged as the grand mean within each 258 

session and plotted with 95% CI. 259 

 260 
 261 
 262 
Network Decoding and Feature Selection in Trial Outcome Prediction 263 

 264 
Multinomial Naive Bayes classifiers were used to predict trial outcome from neural data 265 

using the fitcnb function in MATLAB. If decoding occurred with a selected group of cells (e.g. 266 

Fig. 6B, network group), a forward feature selection algorithm was employed to identify a subset 267 

of the most informative cells using a 5-fold CV partition. These cells then composed the feature 268 

space. Feature selection was employed using the sequentialfs function in MATLAB. This was 269 
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performed 1000 times per cell group per time bin per mouse. If all cells in the network were 270 

used, no CV partition was employed, and 1000 decoders were generated per time bin per mouse, 271 

e.g. Fig. 4B. 80% of the data was used in training and 20% in testing. Averages were then 272 

computed using the group mean and plotted with 95% CI. Shuffled data for controls (not shown) 273 

was also tested and found to be at chance levels and is available upon request. 274 

 275 

 276 
 277 
 278 
Correlation of Network Divergence and Decoder 279 

 280 
Correlations between decoder accuracy and Euclidean distance in trial outcomes were 281 

computed by correlating the mean accuracy and mean Euclidean distance using the Pearson 282 

correlation coefficient.  283 

To calculate correlations of network divergence and decoding over trial periods, we used 284 

only the values above and below the diagonal, as the Euclidean distance measure yielded a value 285 

of 0 in distance between states of the same time. Additionally, because the Euclidean distance 286 

values were mirrored along the diagonal, we did not wish to bias the correlations by using 287 

Euclidean distance values twice. However, because the Naive Bayes classifier was trained to 288 

discriminate network states for every moment of network activity, there were slight differences 289 

in accuracy above and below the diagonal. We therefore collapsed each network divergence 290 

matrix and each decoder matrix into 2 arrays, one containing values above the diagonal and the 291 

other below, and then averaged the arrays. These arrays were then correlated. Matrices in the 292 

Pref trial period (e.g. Hit trials) were collapsed from 23x23 matrices to two arrays of 253 values 293 

and then averaged. Matrices in the NP trial period (e.g. CR trials) were collapsed from 65x65 294 

matrices to two arrays of 2080 values and then averaged. 295 
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Correlations between network divergence between trial outcomes and decoding of trial 296 

outcomes was computed using the grand mean of each curve. 297 

 298 
 299 
 300 
Single Unit Decoding 301 

 302 
Each unit was decoded using Multinomial Naive Bayes classifiers. 80% of data was used 303 

to train the classifier and 20% to test. Per cell per time bin (.067 s), 1000 machines were 304 

generated per mouse which resulted in 1000 accuracy outputs per cell per mouse. The fitcnb 305 

function in MATLAB was used. 306 

To plot accuracy curves over the trial period for a given number of cells (e.g. Fig. 6A), 307 

we selected the most accurate individual cell outputs per time bin per trial per mouse and then 308 

averaged them. For instance, at a given time bin in the 4 cell accuracy group, we would take the 309 

four cells for a given mouse that are most accurate within a trial and average the accuracies. This 310 

leads to 1000 accuracy values per mouse per time bin. These values were then group averaged 311 

and plotted with 95% CI. 312 

Shuffled data for controls (not shown) was also tested and found to be at chance levels 313 

and is available upon request. 314 

 315 

 316 
 317 
 318 
Oscillatory Cell Identification 319 

 320 
We averaged activity of each cell in Pref and NP trials separately within a session. We 321 

then performed a Fast Fourier Transform on the average activity and normalized the spectral 322 

density function. If a cell’s spectral density function had only one peak of power above 50%, we 323 
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considered it an oscillatory cell. Cells identified in this manner were included if they reached this 324 

criterion in either or both Pref or NP trials. 325 

 326 
 327 
Ramping Cell Identification 328 

 329 
We averaged activity of each cell in Pref and NP trials separately within a session. We 330 

then normalized activity and selected cells that had only one peak of activity above 50%. If a cell 331 

reached this criterion, it was considered a ramping cell. Cells identified in this manner were 332 

included if they reached this criterion in either or both Pref or NP trials. 333 

 334 

 335 
Machine Learning Pipeline 336 

 337 
All machine learning was performed using the Nautilus cluster, supported in part by 338 

National Science Foundation (NSF) awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-339 

1826967, OAC-2112167, CNS-2100237, CNS-2120019, the University of California Office of 340 

the President, and the University of California San Diego's California Institute for 341 

Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the 342 

100Gbps networks. 343 

 344 
 345 
 346 
 347 
Statistical analyses 348 

 349 
All time series data were plotted as the mean with 95% CI. Comparisons between the 350 

fraction of oscillatory and ramping cells across sessions were done using Kruskal-Wallis tests, 351 

following Lilliefors test of normality. 352 

 353 
 354 
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Exclusion of mice 355 
 356 
In the naive session, 2 mice were excluded from analyses of CR trials as there were few 357 

trials (10 and 5). In the middle session, 1 mouse was excluded from all analyses as the only 358 

imaging data collected was in naive and learned sessions; 1 other mouse was excluded from 359 

analyses of CR trials as there were few trials (8). In the learned session, 1 mouse was excluded 360 

from analyses of FA trials as there were few trials (6). 361 

 362 
 363 
Data availability 364 

 365 
All the analyzed data reported in this study is available from the corresponding author 366 

upon request. Additionally, control data for machine learners not shown here is available upon 367 

request.  368 
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RESULTS 380 
 381 
Changes in V1 neural dynamics accompany learning in the Temporal Pattern Sensory 382 

Discrimination Task (TPSD) 383 

We developed a go/no-go task wherein audio-visual patterns were presented to water 384 

deprived, awake-behaving mice, as previously described in Post et al. (2023). Stimuli were 385 

patterns of 4 synchronous audio-visual stimuli (Fig. 2A). The visual stimulus was 90o drifting 386 

gratings and the auditory was a 5 kHz tone at 80 dB. Preferred (Pref) and nonpreferred (NP) 387 

stimuli differed only in their durations, therefore making TPSD explicitly a temporal 388 

discrimination task. A water reward was delivered at 1.2 s from stimulus onset in the Pref 389 

condition. The licking window was 1 to 2 s from stimulus onset in both Pref and NP conditions. 390 

Mice were placed on a suspended polysterene ball to allow for free movement during the task to 391 

reduce stressors and increase performance (Fig. 2B) (Guo et al., 2014). 392 

We performed a cranial window surgery in mice in V1 and injected syn-jGCaMP7f (Fig. 393 

2C). Upon expression of GCaMP, we had mice perform the TPSD task while simultaneously 394 

recording neural activity in V1, L2/3 using 2-photon Ca2+ imaging (Fig. 2D). As detailed in Post 395 

et al. (2023), mice learned the task across sessions, as assessed through a licking decoder (Fig. 396 

2E), and exhibited changes in V1 dynamics concomitant with learned performance (Fig. 2F). In 397 

our previous paper we focused on comparing the neural dynamics between naïve and learned 398 

sessions. Here we include neural dynamics changes that occur in middle sessions to assess the 399 

role of multiple timing models through the learning process. Using this data, we perform an array 400 

of analyses to granularly assess the computational mechanisms of subsecond sensory temporal 401 

encoding with respect to prominent theoretical models. 402 

 403 
 404 
 405 
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Network divergence indexes learning and supports the state dependent network model 406 
 407 

A prominent model of timing, the state depedent network model (Fig. 1D), suggest that 408 

temporal information is encoded in the changing population vector of a network over a stimulus’ 409 

duration (Mauk & Buonomano, 2004). As sensory information intrinsically carries both spatial 410 

and and temporal features, a network’s state will evolve through time based upon its synaptic 411 

weights, short-term plasticity, and its intrinsic time constants (Buonomano, 2000; Buonomano & 412 

Maass, 2009). This leads to trajectories of the network that are dependent upon a stimulus’ 413 

spatial and temporal features. 414 

If temporal information is encoded within the changing population vector of a network as 415 

predicted, it follows that the degree of divergence of the population vector would correspond to 416 

the degree of behavioral performance in the TPSD task. Divergence would occur within a 417 

stimulus, to differentiate one moment in time from another, and between stimuli with different 418 

temporal properties. If there is little divergence over time, a stimulus’s temporal properties are 419 

not encoded, and if there is little divergence between Pref and NP stimuli, behavioral output 420 

would be the same in both conditions. Vice versa, if there is large divergence of the network over 421 

the stimulus period, the stimulus’s temporal properties are encoded, and if there is large 422 

divergence between Pref and NP stimuli, behavioral output would differ. 423 

To test this prediction, we calculated the Euclidean distance of the network as a measure 424 

of network divergence across trial periods (Fig. 3A,B). We found that there was an evolution of 425 

network divergence across learning in Hit, CR, and FA trials (Miss trials were not included as 426 

there were too few samples). In learned sessions, all three trial outcomes displayed increased 427 

network divergence from naive sessions. In learned session CR and FA trials, the greatest 428 

divergence was seen between the Pref stimulus period (0-1.4 s) and the remaining NP stimulus 429 

period, which suggests that mice attended only to the Pref stimulus period regardless of stimulus. 430 
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However, FA trials exhibited considerably less network divergence than CR trials did in the Pref 431 

stimulus period, which may explain why mice responded with a go response in FA trials and 432 

withheld in CR trials – that is, temporal information of the stimulus was not accurately encoded 433 

in FA trials. 434 

If network divergence was the computational mechanism of temporal encoding, we 435 

predicted that a neural decoder would accurately discriminate network activity over the trial 436 

period only when network divergence was high, and that discriminability of network activity 437 

would increase with learning. We employed a Naive Bayes classifier to discriminate network 438 

activity over trial periods in naive, middle, and learned sessions and found that discriminability 439 

of network activity increased with behavioral performance (Fig. 3C). The performance of the 440 

decoder was highly correlated with network divergence across sessions and trial outcomes (Fig. 441 

3D). Notably, the Naive Bayes decoder predicts outcomes through probabilistic learning, a 442 

manner of classification distinct from the geometric solutions found through calculation of 443 

Euclidean distance. Because each method solves these problems differently but arrives at highly 444 

correlated solutions, it is exceedingly likely that state-space trajectories underlie temporal 445 

encoding in V1. 446 

We next tested the hypothesis that network divergence between stimuli would predict 447 

trial outcome and that the degree of divergence would index behavioral performance. 448 

Specifically, we predicted that Hit and CR trials and CR and FA trials would diverge with 449 

learning, but that Hit and FA trials would not. Indeed, we found that across learning, Hit and CR 450 

trials and CR and FA trials diverged, beginning in the middle sessions and increasing in learned 451 

sessions (Fig. 4A). Hit and FA trials remained non-divergent throughout naive, middle, and 452 

learned sessions (Fig. 4A).  453 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.05.574126doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574126
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19
 

We hypothesized as before that network divergence was correlated with decodability. We 454 

used Naive Bayes classifiers to discriminate trial outcomes over the stimulus periods and found 455 

that decodability increased with learning and that Hit and CR trials and CR and FA trials were 456 

highly discriminable while Hit and FA trials remained at similarly low levels of discriminability 457 

across sessions (Fig. 4B). We correlated network divergence with the classifiers’ performance 458 

and found that across sessions and trial outcomes there were high correlations, evincing again 459 

that temporal encoding is achieved through high dimensional neural trajectories (Fig. 4C). 460 

 461 
 462 
 463 
Learning on the TPSD task is supported by encoding temporal information at the level of 464 

the network rather than at the single unit level 465 

 466 
Although our results provide strong evidence that temporal information was encoded in 467 

network trajectories, other mechanisms such as changes in single cell (single unit) activity could 468 

account for temporal encoding. Two prominent models of timing, ramping and synfire models, 469 

may rely on single unit activity to generate temporal information. Indeed, ramping activity has 470 

been found in V1 in reward timing neurons and neurons encoding sensory expectations 471 

(Chubykin et al., 2013; Gavornik & Bear, 2014b, 2014a; Monk et al., 2020; Shuler & Bear, 472 

2006).  473 

To test whether our mice relied on single cell activity to encode temporal information in 474 

the TPSD task, we used a decoder to predict trial outcomes from neural activity in naive, middle, 475 

and learned sessions for each cell and then sorted units by when in the trial period they were 476 

most accurate, akin to spike sorted heatmaps (Fig. 5). We found that predictability was sparsely 477 

tiled across Hit vs. CR, Hit vs. FA, and CR vs. FA trials in naive sessions. Accuracy became less 478 

sparse around the water reward period in middle sessions in Hit vs. CR trials and CR vs. FA 479 
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trials, but not in Hit vs. FA trials. This profile was broadened in learned sessions in which 480 

accuracy values were network wide in Hit vs. CR trials and CR vs. FA trials around the water 481 

reward and prior to it. Hit vs. FA accuracy values remained sparse across the network in learned 482 

sessions. These results suggest that learning recruits the entire network as opposed to encoding 483 

time at the single unit level, such as in the manner of synfire chain or ramping models. 484 

To compare whether temporal information was better encoded at the network or single 485 

unit level, we compared the decoding accuracies of the single unit regime to decoding accuracies 486 

of a network regime. To do this we, we first decoded network activity between trial outcomes in 487 

which a given number of cells composed the feature space. We iteratively did this in groups of 1 488 

to 80 cells by using a forward feature selection algorithm to find the most informative cells 489 

within a network for a given point in time. We then iteratively took the most predictive cells for 490 

a given time from the single unit decoding regime in Fig. 5 and averaged their accuracy scores 491 

(see Methods). We then compared network and single unit decodability. 492 

We found that decoding Hit from CR trials (Fig. 6A) and CR from FA trials (Fig. 6C) 493 

increased in accuracy across mice’s learning in the network condition, but decreased in accuracy 494 

across sessions in the single unit condition. Decoding Hit from FA trials (Fig. 6B) increased in 495 

accuracy across sessions in the single unit condition and remained at similar accuracy in the 496 

network condition. Because neural decoding accuracy was directly proportional to behavioral 497 

performance through learning in the network condition and was inversely proportional to 498 

learning in the single unit condition, we conclude that temporal information is encoded at the 499 

network level as opposed to the single unit level. 500 

 501 
 502 
Oscillatory activity does not account for temporal encoding in TPSD task 503 
 504 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.05.574126doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574126
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21
 

The first models of timing proposed that oscillatory activity was responsible for temporal 505 

encoding. In these models, it was predicted that a pacemaker module, much like a metronome, 506 

regularly outputs pulses to a downstream accumulator where they are then counted (Creelman, 507 

1962; Gibbon, 1977; Gibbon et al., 1984). Subsequent models predict that a collection of 508 

oscillators output to downstream targets, such as striatum, where aggregated oscillatory activity 509 

is decoded (Fig. 1A) (Buhusi & Meck, 2005; Matell & Meck, 2004; van Rijn et al., 2014). 510 

Although evidence of oscillators has not been found in V1, it is conceivable that they are present 511 

and are responsible for temporal encoding and accurate discrimination of Pref and NP stimuli in 512 

the TPSD task, particularly as our stimuli were periodic. 513 

To test whether oscillatory models accounted for temporal encoding in V1, we first 514 

identified any putative oscillatory cells in our recordings. We did not find a significant difference 515 

in the fraction of oscillatory cells identified across sessions (Fig. 7A). Nevertheless, we 516 

hypothesized that if oscillators were responsible for temporal encoding, oscillatory activity 517 

would better predict correct responses, particularly in learned sessions, than non-oscillatory 518 

activity would. To test this, we decoded Hit from CR trial outcomes in oscillatory (Fig. 7B) and 519 

non-oscillatory cell populations in the learned session (Fig. 7C). Because there were few 520 

oscillatory cells found, we used a feature selection algorithm to iteratively select groups of cells 521 

that were most informative in both populations so as to avoid any bias in differences in 522 

dimensionality. We found comparable levels of decodability in oscillatory and non-oscillatory 523 

populations, suggesting that temporal information is not exclusively encoded by oscillatory 524 

activity, but is in fact network wide. 525 

We therefore hypothesized that oscillatory activity intrinsically emerged from network 526 

activity and was an aspect of the network’s state space trajectory. To determine whether this was 527 

the case, we calculated the network divergence of the oscillatory population over the trial period 528 
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(Fig. 8A) and then decoded the oscillatory population activity over the trial period (Fig. 8B), and 529 

then correlated these values (Fig. 8C).We additionally calculated network divergence of the 530 

oscillatory population between trial outcomes (Fig. 9A) and then decoded neural activity 531 

between trial outcomes (Fig. 9B) and then correlated these values (Fig. 9C). We indeed found 532 

high correlations across sessions and trial outcomes, signifying that the oscillatory population 533 

was in fact operating as a part of the network trajectory in high dimensional state space. 534 

 535 
 536 
 537 
Ramping activity does not account for temporal encoding in TPSD task 538 
 539 

As with oscillatory cells, we sought to test whether ramping activity could account for 540 

temporal encoding in the TPSD task (Fig. 1B). Unlike oscillators, ramping activity has been 541 

found in V1 previously (Chubykin et al., 2013; Monk et al., 2020; Namboodiri et al., 2015; 542 

Shuler & Bear, 2006) so it may have been the case that ramping activity better accounted for 543 

temporal learning than did network divergence. 544 

We first identified any cells with ramping-like activity and found that across learning 545 

there was not a significant difference in the fraction of ramping cells in a given population (Fig. 546 

10A). To test whether ramping cells exhibited more informative temporal activity, we used a 547 

decoder with a feature selection algorithm to discriminate Hit from CR trials in learned sessions 548 

in ramping and non-ramping populations. We predicted that if temporal information was 549 

encoded in ramping activity, decodability in the ramping population would be greater than in the 550 

non-ramping population. We iteratively selected groups of cells from each population over the 551 

trial period to avoid biases of greater dimensionality in the non-ramping population.  552 

We found that ramping and non-ramping populations encoded temporal information 553 

comparably (Fig. 10B-C). We therefore hypothesized that, as with oscillatory activity, ramping 554 
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activity intrinsically emerged from network activity and was an aspect of the network’s state 555 

space trajectory. To determine whether this was the case, we calculated the network divergence 556 

of the ramping population over the trial period (Fig. 11A) and decoded the ramping population 557 

activity over the trial period (Fig. 11B), and then correlated these values (Fig. 11C). We 558 

additionally calculated network divergence of the ramping population between trial outcomes 559 

(Fig. 12A) and then decoded neural activity between trial outcomes (Fig. 12B) and correlated 560 

these values (Fig. 12C). We consistently found high correlations across sessions and trial 561 

outcomes, signifying that the ramping population was likely was an aspect of the network 562 

trajectory through high dimensional state space. 563 

  564 
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 565 

 566 
 567 
 568 
 569 
 570 
 571 
DISCUSSION 572 
 573 

Though time as a dimension in stimulus encoding has been largely overlooked, it is an 574 

integral component. The notes of a song, for instance, can be played in perfect sequence, but if 575 

the temporal structure between them is aberrant and chaotic, the song loses its identity. Prey-576 

predator interactions perhaps best capture how critical temporal perception is: not only must a 577 

prey or predator anticipate where its counterpart will be, but when. The lion is not successful if it 578 

occupies the location of its prey from 200 ms ago, or 1 second from where the prey will be in the 579 

future. The predator must occupy the same space at the same time as its prey, and this process 580 

necessarily entails encoding stimuli from the present and the immediate past in order to 581 

anticipate events of the future. 582 

Several models of timing at this scale – milliseconds to seconds – have been proposed 583 

that largely can be construed as either dedicated or intrinsic models. We sought to test which of 584 

these models best captures neural activity in V1 in mice performing a temporal discrimination 585 

task in which audiovisual stimuli differed only in their temporal information. We found 586 

considerable evidence that temporal information in the millisecond range is encoded by high 587 

dimensional neural trajectories. We examined neural data across sessions and found that in 588 

learned sessions, the network’s activity was far more divergent than in naive sessions. Further, 589 

between correct trial outcomes, we found that this divergence was maximized. This network 590 

divergence was highly correlated with a number of decoding schemes we used, which suggests 591 

that the decoders independently recognized and exploited network divergence as an informative 592 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.05.574126doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574126
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25
 

coding schema. Even among other proposed models of timing, namely oscillatory and ramping 593 

models, we found that network divergence was highly correlated with decodability, implying that 594 

these types of activity were in fact aspects of the network divergence of the entire network as 595 

opposed to specialized, dedicated mechanisms of timing. 596 

Although V1 has historically been understood as extracting low-level spatial features 597 

from visual information, recent evidence has suggested it processes temporal information as 598 

well. Shuler and Bear (2006) found evidence of reward timing in V1. Gavornik and Bear (2014b) 599 

later found that V1 encodes sequences of stimuli in a temporally-defined, predictive manner. 600 

Spatiotemporal prediction has also been found in V1 in mice performing foraging tasks in virtual 601 

reality (Fiser et al., 2016; Yu et al., 2022). Nevertheless, these findings did not explicitly test 602 

temporal processing in a sensory discrimination task, and an outstanding question was how 603 

temporal information was computationally encoded in V1. We tested this and found compelling 604 

evidence that temporal processing in V1 follows the state dependent network model in which 605 

temporal encoding occurs through the evolution of a network’s population vector in state space. 606 

Notably, no one specialized group of cells contained greater temporal information than non-607 

specialized cells. 608 

We found evidence of ramping activity, which accords with previous findings of reward 609 

timing in V1. However, ramping activity associated with reward prediction is cholinergically 610 

mediated, which may induce state changes in V1 but not changes in temporal processing of 611 

stimuli per se (Chubykin et al., 2013; Shuler & Bear, 2006). Furthermore, we removed any cells 612 

from our population that were associated with licking that may, as an artefact, have exhibited 613 

ramping like activity. The remaining cells that exhibited ramping activity in our recordings likely 614 

were recruited by the network as the trial period progressed in order to support the divergence of 615 

network states. It has been found that orientation-selective cells in V1 can shift their tuning 616 
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curves through leaning, and as only ~40% of V1 cells are simple cells (Cossell et al., 2015; 617 

Froudarakis et al., 2019; Kondo et al., 2016), the remaining population may have been 618 

preferentially recruited to support learning and push the network to different attractor basins. 619 

We also found evidence of oscillatory activity, although in learned sessions, there were 620 

only a handful of oscillatory cells. This was surprising as our stimuli were periodic. One may 621 

suspect that activity in orientation selective cells tuned to our gratings would activate in a 622 

periodic fashion, and indeed, average activity of the network supports this hypothesis (Post et al., 623 

2023). However, at the single unit level, this was not found to be the case. Instead, our results 624 

suggest that temporal information was encoded through the evolution of population activity in 625 

both oscillatory and non-oscillatory populations. Our results do not rule out the possibility of a 626 

centralized oscillator however. It may be the case that V1 is reading out the activity of an 627 

upstream oscillator as high dimensional trajectories. This would require the oscillator to receive 628 

visual information from non-cortical areas and then project temporal information to V1 to be 629 

reintegrated with spatial information. Biologically, this seems an unlikely mechanism however. 630 

It has been shown that organotypic cortical slices are capable of “learning” a duration, 631 

which suggests that intrinsic mechanisms can support subsecond temporal encoding (Goel & 632 

Buonomano, 2016). In the slices, polysynaptic activity increased in a temporally dependent 633 

manner, and inhibition was suppressed at the learned duration. This suggests that a complex 634 

interplay of recurrent excitation and feedforward inhibition can generate population activity that 635 

evolves over a trained period to represent elapsed time. In fact, it has been proposed that the 636 

differing dynamics of temporal encoding in cortex and striatum are attributable to their 637 

connectivity motifs – recurrent excitation in cortex leads to high dimensional trajectories, and 638 

recurrent inhibition in striatum leads to sparse, winner-take-all sequentiality (Bakhurin et al., 639 
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2017). This may be why we did not find evidence for sparse temporal encoding in V1 as 640 

predicted by the synfire chain model. 641 

Indeed, inhibition has been found to be critical in encoding temporal information in a 642 

recurrent neural network model (Zhou et al., 2022). However, inhibitory activity is considerably 643 

diverse, with GABAergic cells differing in firing profiles, baseline excitability, morphologies, 644 

and preferences in where to synapse. In the cortex, parvalbumin (PV), somatostatin (SST), and 645 

vasointestinal peptide (VIP) cells are the primary inhibitory interneuron subtypes (Cardin, 2018; 646 

Kullander & Topolnik, 2021), and their functional diversity can broaden the encoding space of a 647 

network. In a model of a cortical microcircuit, adjusting the synaptic weights of PV and SST 648 

inhibitory interneurons onto Pyramidal (Pyr) cells generated an array of Pyr firing profiles in a 649 

temporally defined manner, which was attributed to differing short-term plasticity profiles of 650 

each cell type (Seay et al., 2020). Experimentally, SST activity has been found in motor cortex to 651 

structure sequential activity in a learned motor task (Adler et al., 2019). Similar to Goel and 652 

Buonomano (2016), it was found that inhibitory activity viz. SST cells was suppressed through 653 

learning and then returned to baseline following learning to structure network activity. Because 654 

SST cells in L2/3 of cortex synapse preferentially with Pyr dendrites in L1 (Urban-Ciecko & 655 

Barth, 2016; Wu et al., 2023), SST cells through fine, dendritic computation may orchestrate 656 

ensembles of Pyr activity in a temporally defined manner which leads to emergent network 657 

trajectories over time. 658 

Population vector encoding is exploited as a computational strategy across the brain, 659 

possibly due to the increased informational space available. However, in behaviors typically 660 

associated with population encoding such as olfaction (Canto-Bustos et al., 2022; Oswald & 661 

Urban, 2012), motor output (Georgopoulos et al., 1986; Georgopoulos & Carpenter, 2015), and 662 

memory (Grewe et al., 2017; Lee et al., 2023), temporality is implicit, and it is unclear if a 663 
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network can induce coherent population codes in a time depedent manner as the state dependent 664 

network model proposes. In memory in particular, temporality is integral, and it remains to be 665 

determined if the simultaneous activation of an ensemble or if sequential activation of a set of 666 

ensembles encodes the content of a memory and its duration. Our results suggest that temporal 667 

information can emerge through the sequential activation of ensembles, such that the network 668 

state diverges across time. Notably, this network state divergence emerges through learning and 669 

reliably indexes trial outcome throughout sessions. 670 

Our findings add to a growing body of literature that supports the state dependent 671 

network model of timing and finds that temporal information can be encoded intrinsically and 672 

mediated by a circuit’s local parameters. Our results provide further evidence that temporal 673 

information is encoded by the brain in lower order areas and suggest that time is an integral 674 

component of sensory processing. 675 
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LEGENDS 845 

 846 

FIGURE 1: Axis of dedicated to intrinsic models of timing models. A. Oscillatory models: 847 

intrinsic oscillators project to a downstream readout unit or units. Early models proposed that a 848 

pacemaker, much like a metronome, output periodic pulses which were then counted by a 849 

downstream accumulator (Creelman, 1962; Gibbon, 1977); recent oscillatory models propose 850 

that a network of cortical oscillators with differing periodicities project to striatal medium spiny 851 

neurons that act as coincidence detectors and decode the oscillatory output (Buhusi & Meck, 852 

2005; Matell & Meck, 2004; Merchant et al., 2013, 2015; van Rijn et al., 2014). B. Ramping 853 

models: temporal information is encoded by the firing rate of a given neuron and were motivated 854 

by work in decision making in non-human primates (de Lafuente et al., 2022). Ramping activity 855 

has been found in sensory areas like primary visual cortex (V1) (Chubykin et al., 2013; Monk et 856 

al., 2020; Shuler & Bear, 2006). C. Synfire chain models: activity is sparsely tiled over a 857 

population. D. State dependent network models: temporal information is encoded in the changing 858 

population vector, i.e. trajectory, of a network through high dimensional state space. A simple 3 859 

unit network illustrates how the state of the network changes in 3 dimensional space over time. 860 

Experimental and computational evidence increasingly points to the state dependent model as the 861 

candidate mechanism of temporal encoding on the order of milliseconds to seconds 862 

(Buonomano, 2000; Goel & Buonomano, 2016; Karmarkar & Buonomano, 2007; Post et al., 863 

2023; Seay et al., 2020; Zhou et al., 2022). 864 

 865 

 866 

FIGURE 2: Mice learn Temporal Pattern Sensory Discrimination (TPSD) paradigm and 867 

exhibit changes in V1 activity across learning. A. Schematic of TPSD. Mice must discriminate 868 

subsecond audio-visual patterns based upon their temporal information. B. A bootstrapped 869 

support vector machine using licking profiles was used to predict Pref or NP stimuli over the trial 870 

period to validate learning. Only in the learned session is there sustained difference in licking 871 

patterns between conditions prior to the water reward at 1.2 s (blue dotted vertical line). Control 872 

sessions are those in which the monitor and speakers are turned off to ensure that mice were not 873 

“cheating.” C. Spike sorted heatmaps in Hit, CR, and FA trials over sessions show changes in 874 

activity dynamics in V1 which suggest circuit restructuring leading to improved performance. 875 
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FIGURE 3: Network divergence and decodability of network state across the trial period 876 

increases over learning. A. Example of calculation of Euclidean distance. The top panel shows a 877 

two neuron system in which the network state changes between t1 and t2. The distance between 878 

the network states (D) can be calculated using the Pythagorean theorem, i.e. Euclidean distance 879 

in two dimensions. The bottom panel shows the calculation in a 3 dimensional, i.e. 3 neuron 880 

system. The equation can be generalized to n dimensions (see Methods). B. Network divergence 881 

across sessions in Hit, CR, and FA trials. Network divergence was calculated as the bootstrapped 882 

Euclidean distance between the positions of the network at different points in time (see 883 

Methods). C. Naive Bayes classifier decoding of network state between different points in time 884 

across sessions in Hit, CR, and FA trials. D. Correlations of network divergence in A. and 885 

network state decoding in B. across sessions in Hit, CR, and FA trials. Pearson’s correlation 886 

coefficient was used to calculate correlations. 887 

 888 

FIGURE 4: Network divergence and decodability of trial outcomes increases over learning. A. 889 

Network divergence between trial outcomes in naive, middle, and learned sessions. Network 890 

divergence was calculated as the bootstrapped Euclidean distance between trial outcomes at a 891 

given time (see Methods). Curves are plotted with 95% CI. B. Naive Bayes classifier decoding of 892 

trial outcomes over the trial period using neural data. Curves are plotted with 95% CI. C. 893 

Correlations of network divergence between trial outcomes in A. and trial outcome decoding in 894 

B. across sessions. Pearson’s correlation coefficient was used to calculate correlations. 895 

  896 

 897 

FIGURE 5 :Single unit decoding between trial outcomes. A. Each cell was used to discriminate 898 

Hit from CR trials across sessions. Cells are then sorted over the trial period by the point at 899 

which they were most accurate, akin to spike sorted heatmaps. Naive sessions are the first row, 900 

middle sessions the middle row, and learned sessions the bottom row. Bootstrapped Naive Bayes 901 

classifiers were used for decoding. B. As in A., but Hit vs. FA. C. As in A., but CR vs FA. 902 

 903 

FIGURE 6: Temporal information is encoded at the population level, not the single unit level. 904 

A. Decoding Hit from CR trials using neural data as single units from Fig. 5A (left column) or as 905 

a network of increasing numbers of cells (right column). Naive sessions are the first row, middle 906 
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sessions are the middle row, and learned sessions are the bottom row. B. As in A., but decoding 907 

Hit from FA trials. C. As in A., but decoding CR from FA trials. See Methods for details 908 

regarding cell selection procedures. All curves are plotted with 95% CI. 909 

 910 

FIGURE 7 : Oscillatory and non-oscillatory activity encode temporal information equally 911 

well. A. Fractions of oscillatory cells did not significantly change across learning (Kruskal-912 

Wallis, H(13) = 2.79, p = .25). B. Naive Bayes classifier decoding of oscillatory cells in Hit vs. 913 

CR trials in the learned session. A feature selection algorithm was used to iteratively select the 914 

most informative cells in the population (see Methods). The total network decodability is also 915 

shown in the dashed black line. Curves are plotted with 95% CI. C. Naive Bayes classifier 916 

decoding of non-oscillatory cells in Hit vs. CR trials in the learned session. A feature selection 917 

algorithm was used to iteratively select the most informative cells in the population. The total 918 

network decodability is also shown in the dashed black line. Curves are plotted with 95% CI.  919 

 920 

FIGURE 8 : Evolution of oscillatory activity through the trial period  is an aspect of network 921 

divergence. A. Network divergence across sessions in Hit, CR, and FA trials in oscillatory 922 

populations. Network divergence was calculated as the bootstrapped Euclidean distance between 923 

the positions of the network at different points in time (see Methods). B. Naive Bayes classifier 924 

decoding of network state between different points in time across sessions in Hit, CR, and FA 925 

trials in oscillatory populations. C. Correlations of network divergence across the trial period 926 

from Fig. 8A and network state decoding from Fig. 8B across sessions in Hit, CR, and FA trials 927 

in oscillatory populations. Pearson’s correlation coefficient was used to calculate correlations. 928 

 929 

 930 

FIGURE 9 : Oscillatory activity differs between trial outcomes according to degree of network 931 

divergence. A. Network divergence between trial outcomes in naive, middle, and learned 932 

sessions in oscillatory populations. Network divergence was calculated as the bootstrapped 933 

Euclidean distance between trial outcomes at a given time (see Methods). B. Naive Bayes 934 

classifier decoding of trial outcomes over the trial period using neural data in oscillatory 935 

populations. Curves are plotted with 95% CI. C. Correlations of network divergence between 936 
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trial outcomes from Fig. 9A  and trial outcome decoding and Fig. 9B across sessions in 937 

oscillatory populations. Pearson’s correlation coefficient was used to calculate correlations.  938 

 939 

FIGURE 10 : Ramping and non-ramping activity encode temporal information equally well. 940 

A. Fractions of ramping cells did not significantly change across learning (Kruskal-Wallis, H(13) 941 

= .5, p = .78). B. Naive Bayes classifier decoding of ramping cells in Hit vs. CR trials in the 942 

learned session. A feature selection algorithm was used to iteratively select the most informative 943 

cells in the population (see Methods). The total network decodability is also shown in the dashed 944 

black line. Curves are plotted with 95% CI. C. Naive Bayes classifier decoding of non-ramping 945 

cells in Hit vs. CR trials in the learned session. A feature selection algorithm was used to 946 

iteratively select the most informative cells in the population. The total network decodability is 947 

also shown in the dashed black line. Curves are plotted with 95% CI.  948 

 949 

FIGURE 11 : Evolution of ramping activity through the trial period  is an aspect of network 950 

divergence. A. Network divergence across sessions in Hit, CR, and FA trials in ramping 951 

populations. Network divergence was calculated as the bootstrapped Euclidean distance between 952 

the positions of the network at different points in time (see Methods). B. Naive Bayes classifier 953 

decoding of network state between different points in time across sessions in Hit, CR, and FA 954 

trials in ramping populations. C. Correlations of network divergence across the trial period from 955 

Fig. 11A and network state decoding from Fig. 11B across sessions in Hit, CR, and FA trials in 956 

ramping populations. Pearson’s correlation coefficient was used to calculate correlations. 957 

 958 

 959 

FIGURE 12 : Ramping activity differs between trial outcomes according to degree of network 960 

divergence. A. Network divergence between trial outcomes in naive, middle, and learned 961 

sessions in ramping populations. Network divergence was calculated as the bootstrapped 962 

Euclidean distance between trial outcomes at a given time (see Methods). B. Naive Bayes 963 

classifier decoding of trial outcomes over the trial period using neural data in ramping 964 

populations. Curves are plotted with 95% CI. C. Correlations of network divergence between 965 

trial outcomes from Fig. 12A and trial outcome decoding from Fig. 12B across sessions in 966 

ramping populations. Pearson’s correlation coefficient was used to calculate correlations.  967 
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