

Temporal information of subsecond sensory stimuli in primary visual cortex is encoded via high dimensional population vectors.

Abbreviated title: Temporal encoding through neural trajectories.

Authors: Sam Post¹, William Mol², Noorhan Rahmatullah², and Anubhuti Goel^{1,2,*}

Affiliations: ¹Neuroscience Graduate Program, UC Riverside, CA; ²Department of Psychology, UC Riverside, CA.

*Co-corresponding authors. Email: anubhuti.goel@ucr.edu

Key words: temporal encoding, sensory discrimination, calcium imaging, population vector, timing, high dimensional, layer 2/3, two-photon, visual cortex.

45 Pages; 12 Figures.

Word count

Discussion: 1386

Abstract: 192

Introduction: 644

ACKNOWLEDGEMENTS

We thank Bart Kats for help with using the Nautilus clusters for running the machine learners.

Competing interests

The authors declare no competing interests.

1 **ABSTRACT**
2

3 Whether in music, language, baking, or memory, our experience of the world is
4 fundamentally linked to time. However, it is unclear how temporal information is encoded,
5 particularly in the range of milliseconds to seconds. Temporal processing at this scale is critical
6 to prediction and survival, such as in a prey anticipating not only where a charging predator will
7 go but also *when* the predator will arrive at that location. Several models of timing have been
8 proposed that suggest that either time is encoded intrinsically in the dynamics of a network or
9 that time is encoded by mechanisms that are explicitly dedicated to temporal processing. To
10 determine how temporal information is encoded, we recorded neural activity in primary visual
11 cortex (V1) as mice (male and female) performed a goal directed sensory discrimination task, in
12 which patterns of subsecond stimuli differed only in their temporal profiles. We found that
13 temporal information was encoded in the changing population vector of the network and that the
14 space between these vectors was maximized in learned sessions. Our results suggest that
15 temporal information in the subsecond range is encoded intrinsically and does not rely upon
16 specialized timing mechanisms.

17

18 **SIGNIFICANCE STATEMENT**

19

20 Our experience of the world is fundamentally linked to time, but it is unclear how
21 temporal information is encoded, particularly in the range of milliseconds to seconds. Using a
22 sensory discrimination task in which patterns of subsecond stimuli differed in their temporal
23 profiles, we found that primary visual cortex encodes temporal information via the changing
24 population vector of the network. As temporal processing via population encoding has been
25 shown to rely on inhibitory activity in computational models, our results may provide insight
26 into temporal processing deficits in disorders such as autism spectrum disorder in which there is
27 inhibitory-excitatory imbalance. Furthermore, our results may underlie processing of higher-
28 order sensory stimuli, such as language, that are characterized by complex temporal sequences.

29

30 **INTRODUCTION**

31

32 Our experience of the world is fundamentally linked to time. We rely upon its even

33 structure and passage and are as a result, able to make predictions about the future. We anticipate

34 winter following autumn, and we know that the sun will set and then rise again. When we are

35 driving, we expect a red light to follow a yellow, and a green light to follow a red. The structure

36 of these events is sequential, which is not inherently connected with time, but within each

37 sequence there is a temporal dimension. For instance, we decide to press the brake or the gas

38 pedal based on our estimation of the duration of the yellow light. And we would be quite

39 concerned if one day the sun rose ten minutes after setting, or perhaps if night spontaneously

40 stretched out for several years.

41

42 Neuroscience has made great progress in elucidating how sensory and motor content are

43 encoded, whether in the present, such as during stimulus discrimination, or in the past, such as in

44 memory encoding. Time's role in these encoding schemes has been largely overlooked however,

45 which may simply be the result of its ubiquity. There is no sensory organ that measures time,

46 though in each sensory modality time is present. This realization then begs the question of how

47 time is encoded: might it be encoded intrinsically within each sensory modality, or is it encoded

48 by higher order mechanisms specifically dedicated to it?

49

50 Increasingly, evidence points to a variety of mechanisms, and these largely depend upon

51 the scale of an interval. On the order of days, transcriptional feedback loops in the

52 suprachiasmatic nucleus are responsible (Mauk & Buonomano, 2004). On the order of minutes,

53 corticostriatal loops mediated by dopaminergic activity are the likely mechanism (Mauk &

54 Buonomano, 2004). However, on the order of seconds and milliseconds, the mechanisms of

55 temporal encoding remain unclear and widely debated.

54 The importance of timing at this scale is acutely linked to prediction and survival. A
55 boxer anticipates at what moment to slip their opponent's punch, and a prey watching a charging
56 predator must predict not only where a predator will go, but also at what moment the predator
57 arrives at that location. However, temporal encoding at this scale is not simply limited to interval
58 timing (i.e. the duration of a stimulus, or the duration between two stimuli) like in these
59 examples, but undergirds an array of simple to complex phenomena. Indeed, temporality is
60 endemic to highly complex stimuli such as music, Morse code, and language, in which meaning
61 is intrinsically derived from temporal structure.

62 Several models of timing at this scale have been proposed that largely lie on a
63 dedicated to intrinsic axis (**Fig. 1**), but it remains to be determined which accounts best for
64 temporal encoding of sensory stimuli. Here, we investigate how subsecond temporal information
65 is encoded in V1 in a goal directed sensory discrimination task, in which temporal information
66 exclusively differentiates stimuli. We previously showed that mice become experts at the task
67 and that changes in V1 dynamics accompany expert performance in the learned session (Post et
68 al., 2023). In this paper, we show the evolution of neural dynamics through learning and test
69 whether dedicated or intrinsic mechanisms are employed in temporal encoding of sensory
70 stimuli. We find that temporal information is encoded in the changing population vector, i.e.
71 trajectory, of the network through high dimensional space. This finding evinces a prominent
72 intrinsic model of timing, the state dependent network model. Additionally, we find that neural
73 activity which may be representative of dedicated models of timing, namely ramping and
74 oscillatory models, is no more representative of temporal information than non-specialized
75 activity and is in fact an aspect of the changing population vector in state space. Our results add
76 to a growing body of literature which suggests that temporal information is intrinsically encoded
77 in the processing of sensory stimuli.

78 **MATERIALS AND METHODS**

79 **Experimental Animals**

82 All experiments followed the U.S. National Institutes of Health guidelines for animal
83 research, under animal use protocols approved by the Chancellor's Animal Research Committee
84 and Office for Animal Research Oversight at the University of California, Riverside (ARC
85 #2022-0022). We used male and female FVB.129P2 WT mice (JAX line 004828). All mice
86 were housed in a vivarium with a 12/12 h light/dark cycle and experiments were performed
87 during the light cycle. The FVB background was chosen because of its robust breeding. 4 males
88 and 1 female were used.

89
90
91 **Go/No-go temporal pattern sensory discrimination (TPSD) task for head restrained mice**
92

93 Awake, head-restrained young adult mice (2-4 months) were allowed to run on an air-
94 suspended polystyrene ball while performing the task in our custom built rig (**Fig. 2B**). Prior to
95 performing the task, the animals were subjected to handling, habituation, and pretrial phases.
96 After recovery from headbar/cranial window surgery, mice were handled gently for 5 min every
97 day, until they were comfortable with the experimenter and would willingly transfer from one
98 hand to the other to eat sunflower seeds. This was followed by water deprivation (giving mice a
99 rationed supply of water once per day) and habituation to the behavior rig. During habituation,
100 mice were head-restrained and acclimated to the enclosed sound-proof chamber and allowed to
101 run freely on the 8 cm polystyrene ball. Eventually, mice were introduced to the lickport that
102 dispensed water (3-4 μ L) and recorded licking (custom-built at the UCLA electronics shop),
103 followed by the audio-visual stimuli. This was repeated for 10 min per session for 3 days.
104 Starting water deprivation prior to pretrials motivated the mice to lick (Guo et al., 2014). After
105 habituation and ~15% weight loss, mice started the pretrial phase of the training. During

106 pretrials, mice were shown the Pref stimulus only with no punishment time associated with
107 incorrect responses. This was done in order to teach the mice the task structure and encourage
108 the mice to lick and to remain motivated. The first day consisted of 150 trials and subsequent
109 days of 250. The reward, as in the TPSD main task, was dispensed at 1.2 s and remained
110 available to the mice until 2 s, at which time it was sucked away by a vacuum. The mice were
111 required to learn to associate a water reward soon after the stimulus was presented and that there
112 was no water reward in the inter-trial interval (4 s period between trials). Initially during pre-
113 trials, the experimenter pipetted small drops of water onto to the lickport to coax the mice to lick.
114 Once the mice learned this and licked with 80% efficiency, they were advanced to the go/no-go
115 task.

116 The TPSD task is a go/no-go task composed of two sequences of synchronous
117 audio-visual stimuli (**Fig. 2A**). Visual stimuli are 90° drifting sinusoidal gratings and are
118 accompanied by a synchronous 5 kHz tone at 80 dB. Within each sequence, four stimuli are
119 presented that differ only in temporality. Our preferred sequence is composed of 4 stimuli of 200
120 ms; our nonpreferred sequence is composed of 4 stimuli of 900 ms. Each set of the sequences is
121 separated by a 200 ms period of silence accompanied by a grey screen. A water reward is
122 dispensed at 1.2 s and remains available until 2 s, at which time it is sucked away by a vacuum.
123 A custom built lickport (UCLA engineering) dispensed water, vacuumed it, and recorded licking
124 via breaks in an infrared (IR) beam. Breaks were recorded at 250 Hz. The window in which
125 mice's licking count toward a response is 1 to 2 s from stimulus onset in both conditions. A time
126 out period (6.5 to 8 s), in which the monitor shows a black screen and there is silence, is
127 instituted if the mouse incorrectly responds. The first session was composed of 250 trials, and
128 subsequent days of 350. Depending on the stimulus presented, the animal's behavioral response

129 was characterized as “Hit”, “Miss”, “Correct Rejection” (CR) or “False Alarm” (FA) (**Fig. 2A**).

130 An incorrect response resulted in the time-out period.

131 To expedite learning, we set the ratio of preferred to nonpreferred stimuli to 70:30 as we
132 found that mice are more prone to licking (providing a ‘yes’ response) than to inhibiting licking
133 (providing a ‘no’ response). We additionally instituted an individualized lick rate threshold to
134 encourage learning as we found that lick rates differed significantly from mouse to mouse.

135 Licking thresholds were calculated from lick rates for mice and shows no significant correlation
136 between licking thresholds and learning rates (Pearson’s r , $r = .4684$, $p = -.3012$). This indicates
137 that the individualized lick rate threshold was used as a learning aid to complete the task and did
138 not affect their learning rates or their reliance on the stimulus for task completion. To confirm
139 that mice learned rather than took advantage of the biased 70:30 preferred to nonpreferred trial
140 ratio, we tested mice for 2 additional sessions using a 60:40 ratio of preferred to nonpreferred.

141 We retain a greater number of preferred stimuli as the total time mice encounter preferred stimuli
142 is less than that of encountering nonpreferred stimuli within a 60:40 trial session (294 s vs 588 s
143 respectively). Following, mice performed a control task, during which visual and auditory
144 stimuli were not presented. Our data shows that mice did not retain learned performance,
145 indicating that they relied on the sensory stimuli for expert performance (see Post et al. (2023)).

146 Custom-written routines and Psychtoolbox in MATLAB were used to present the visual stimuli,
147 to trigger the lickport to dispense and retract water, and to acquire data.

148

149

150

151 **Cranial window surgery**

152

153 Craniotomies were performed at 6-8 weeks. Prior to surgery, mice were given

154 dexamethasone (0.2 mg/kg) and carprofen (5 mg/kg) intraperitoneally and subcutaneously

155 respectively. Mice were anesthetized with isoflurane (5% induction, 1.5-2% maintenance via
156 nose cone) and placed in a stereotaxic frame. Under sterile conditions, a 4.5 mm diameter
157 craniotomy was drilled over the right primary visual cortex (V1) and covered with a 5 mm glass
158 coverslip (**Fig. 2C**). Before securing the cranial window with a coverslip, we injected 60-100 nl
159 of pGP-AAV-syn-jGCaMP7f-WPRE. A custom U-shaped aluminum bar was attached to the
160 skull with dental cement to head restrain the animal during behavior and calcium imaging. For
161 two days following surgery, mice were given dexamethasone (0.2 mg/kg) daily.

162
163
164

165 **Viral constructs**

166 pGP-AAV-syn-jGCaMP7f-WPRE were purchased from Addgene and diluted to a
167 working titer of $2e^{13}$ with 1% filtered Fast Green FCF dye (Fisher Scientific).

168
169
170

171 **In-vivo two photon calcium imaging**

172
173 Calcium imaging was performed on a Scientifica 2-photon microscope equipped with a
174 Chameleon Ultra II Ti:sapphire laser (Coherent), resonant scanning mirrors (Cambridge
175 Technologies), a 20X objective (1.05 NA, Olympus), multialkali photmultiplier tubes (R3896,
176 Hamamatsu) and ScanImage software(Pologruto et al., 2003). Stimulus evoked responses of
177 L2/3 neurons in V1 were recorded at 15.2 Hz in 1 field of view. Each field of view (FOV)
178 consisted of a mean of 95.2 pyramidal cells (sd = 38.3). In each animal, imaging was performed
179 at 150-250 μ m.

180
181
182

183 **Data analysis**

184
185 *Data analysis for calcium imaging.*

186
187 Calcium-imaging data were analyzed using suite2p (Pachitariu et al., 2017) and custom-
188 written MATLAB routines. All data was then processed using suite2p for image registration,
189 ROI detection, cell labeling, and calcium signal extraction with neuropil correction. Once suite2p
190 had performed a rigid and non-rigid registration and then detected regions-of-interest (ROIs)
191 using a classifier, we manually selected cells using visual inspection of ROIs and fluorescence
192 traces to ensure the cells were healthy. We then used the deconvolved spikes determined by
193 suite2p in our subsequent analysis that used custom-written MATLAB scripts.

194
195
196 *Movement-related cell removal*
197
198 Because movement information has increasingly been found in sensory areas, it was
199 important that we remove any artefacts of movement (Zagha et al., 2022), particularly licking-
200 related activity which would not index sensory processing. We thus identified any cells that were
201 associated with lick movements and removed them from our neural data (Post et al., 2023). We
202 additionally performed a locomotion analysis using video of the mice running. We correlated
203 locomotion with neural activity over the trial periods and found no correlations (data not shown).

204
205
206 *Lick Decoding*
207
208 A support vector machine (SVM) was used to predict Pref or NP stimuli from licking
209 data. A radial basis function was used as the kernel. The *fitcsvm* function in MATLAB was used.
210 80% of data was used to train the SVM and 20% to test. Per time bin (.067 s), 1000 machines
211 were generated per mouse which resulted in 1000 accuracy outputs per mouse. Data were then
212 group averaged and plotted with 95% CI. Shuffled data for controls (not shown) was also tested
213 and found to be at chance levels and is available upon request.

214
215
216

217 *Network divergence of network state over trials periods*

218 To determine the degree of network divergence across time within each trial outcome, we
220 computed how far apart network states were over time using bootstrapped Euclidean distances
221 between network positions in which each neuron in a given population constituted a dimension,
222 e.g. **Fig 3B**. These values were then normalized by dividing the Euclidean distance by the square
223 root of the total number of dimensions. A random sample of 12 trials was selected and averaged.
224 We decided to use 12 trials as a sample as this was the smallest value that allowed us to reliably
225 generate normal distributions for the bootstrap across mice. 1000 means were computed for each
226 time point per trial outcome per mouse per session. This resulted in each mouse having either a
227 23x23x1000 in Hit trials (23 time steps due to our sampling rate of 15.2 Hz over 1.4 s) or a
228 65x65x1000 matrix in CR and FA trials (65 time steps due to our sampling rate of 15.2 Hz over
229 4.2 s). Matrices were then averaged along the third dimension within mice, then averaged across
230 mice per trial outcome per session.

231
232

233 *Decoding of network state over trial periods*

234 To determine how similar or different the dynamics of the network was over the trial
235 periods, we used a Multinomial Naive Bayes classifier to determine whether a given time bin's
236 dynamic was discriminable from another time bin's, e.g. **Fig. 3C**. We used the *fitcnb* function in
237 MATLAB. We used 80% of data for training and 20% for testing. We performed 1000 iterations
238 for the entire trial period per mouse. This generated a 23x23x1000 matrix of accuracy values in
239 the Pref conditions and a 65x65x1000 matrix in the NP conditions per mouse. Accuracy values
240

241 were then averaged to generate a 23x23 or 65x65 matrix. Shuffled data for controls (not shown)
242 was also tested and found to be at chance levels and is available upon request.

243

244
245
246

247 *Network divergence between trial outcomes*

248
249

To determine the degree of network divergence across time within between trial
250 outcomes, we computed how far apart network states were between trial outcomes over the trial
251 periods using bootstrapped Euclidean distances between network positions in which each neuron
252 in a given population constituted a dimension, e.g. **Fig 4A**. These values were then normalized
253 by dividing the Euclidean distance by the square root of the total number of dimensions. A
254 random sample of 12 trials was selected and averaged. We decided to use 12 trials as a sample as
255 this was the smallest value that allowed us to reliably generate normal distributions for the
256 bootstrap across mice. 1000 means were computed for each time point per trial outcome per
257 mouse per session. This resulted in each mouse having either a 23x1000 in Hit trials or a
258 65x1000 matrix in CR and FA trials. Matrices were then averaged as the grand mean within each
259 session and plotted with 95% CI.

260
261
262

263 *Network Decoding and Feature Selection in Trial Outcome Prediction*

264
265

Multinomial Naive Bayes classifiers were used to predict trial outcome from neural data
266 using the *fitcnb* function in MATLAB. If decoding occurred with a selected group of cells (e.g.
267 **Fig. 6B**, network group), a forward feature selection algorithm was employed to identify a subset
268 of the most informative cells using a 5-fold CV partition. These cells then composed the feature
269 space. Feature selection was employed using the *sequentialfs* function in MATLAB. This was

270 performed 1000 times per cell group per time bin per mouse. If all cells in the network were
271 used, no CV partition was employed, and 1000 decoders were generated per time bin per mouse,
272 e.g. **Fig. 4B**. 80% of the data was used in training and 20% in testing. Averages were then
273 computed using the group mean and plotted with 95% CI. Shuffled data for controls (not shown)
274 was also tested and found to be at chance levels and is available upon request.

275

276
277
278

279 *Correlation of Network Divergence and Decoder*

280 Correlations between decoder accuracy and Euclidean distance in trial outcomes were
281 computed by correlating the mean accuracy and mean Euclidean distance using the Pearson
282 correlation coefficient.

284 To calculate correlations of network divergence and decoding over trial periods, we used
285 only the values above and below the diagonal, as the Euclidean distance measure yielded a value
286 of 0 in distance between states of the same time. Additionally, because the Euclidean distance
287 values were mirrored along the diagonal, we did not wish to bias the correlations by using
288 Euclidean distance values twice. However, because the Naive Bayes classifier was trained to
289 discriminate network states for every moment of network activity, there were slight differences
290 in accuracy above and below the diagonal. We therefore collapsed each network divergence
291 matrix and each decoder matrix into 2 arrays, one containing values above the diagonal and the
292 other below, and then averaged the arrays. These arrays were then correlated. Matrices in the
293 Pref trial period (e.g. Hit trials) were collapsed from 23x23 matrices to two arrays of 253 values
294 and then averaged. Matrices in the NP trial period (e.g. CR trials) were collapsed from 65x65
295 matrices to two arrays of 2080 values and then averaged.

296 Correlations between network divergence between trial outcomes and decoding of trial
297 outcomes was computed using the grand mean of each curve.

298
299
300

301 *Single Unit Decoding*

302 Each unit was decoded using Multinomial Naive Bayes classifiers. 80% of data was used
303 to train the classifier and 20% to test. Per cell per time bin (.067 s), 1000 machines were
304 generated per mouse which resulted in 1000 accuracy outputs per cell per mouse. The *fitcnb*
305 function in MATLAB was used.

307 To plot accuracy curves over the trial period for a given number of cells (e.g. **Fig. 6A**),
308 we selected the most accurate individual cell outputs per time bin per trial per mouse and then
309 averaged them. For instance, at a given time bin in the 4 cell accuracy group, we would take the
310 four cells for a given mouse that are most accurate within a trial and average the accuracies. This
311 leads to 1000 accuracy values per mouse per time bin. These values were then group averaged
312 and plotted with 95% CI.

313 Shuffled data for controls (not shown) was also tested and found to be at chance levels
314 and is available upon request.

315

316
317
318
319 *Oscillatory Cell Identification*
320

321 We averaged activity of each cell in Pref and NP trials separately within a session. We
322 then performed a Fast Fourier Transform on the average activity and normalized the spectral
323 density function. If a cell's spectral density function had only one peak of power above 50%, we

324 considered it an oscillatory cell. Cells identified in this manner were included if they reached this
325 criterion in either or both Pref or NP trials.

326

327

328 *Ramping Cell Identification*

329

330 We averaged activity of each cell in Pref and NP trials separately within a session. We
331 then normalized activity and selected cells that had only one peak of activity above 50%. If a cell
332 reached this criterion, it was considered a ramping cell. Cells identified in this manner were
333 included if they reached this criterion in either or both Pref or NP trials.

334

335

336 *Machine Learning Pipeline*

337

338 All machine learning was performed using the Nautilus cluster, supported in part by
339 National Science Foundation (NSF) awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-
340 1826967, OAC-2112167, CNS-2100237, CNS-2120019, the University of California Office of
341 the President, and the University of California San Diego's California Institute for
342 Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the
343 100Gbps networks.

344

345

346

347

348 **Statistical analyses**

349

350 All time series data were plotted as the mean with 95% CI. Comparisons between the
351 fraction of oscillatory and ramping cells across sessions were done using Kruskal-Wallis tests,
352 following Lilliefors test of normality.

353

354

355 **Exclusion of mice**

356

357 In the naive session, 2 mice were excluded from analyses of CR trials as there were few
358 trials (10 and 5). In the middle session, 1 mouse was excluded from all analyses as the only
359 imaging data collected was in naive and learned sessions; 1 other mouse was excluded from
360 analyses of CR trials as there were few trials (8). In the learned session, 1 mouse was excluded
361 from analyses of FA trials as there were few trials (6).

362

363

364 **Data availability**

365

366 All the analyzed data reported in this study is available from the corresponding author
367 upon request. Additionally, control data for machine learners not shown here is available upon
368 request.

369

370

371 **Code availability**

372

373 All code used in this manuscript is available from the corresponding author upon request.

374

375

376 **Competing interests**

377

378

The authors declare no competing interests.

379

380 **RESULTS**

381

382 **Changes in V1 neural dynamics accompany learning in the Temporal Pattern Sensory**

383 **Discrimination Task (TPSD)**

384 We developed a go/no-go task wherein audio-visual patterns were presented to water
385 deprived, awake-behaving mice, as previously described in Post et al. (2023). Stimuli were
386 patterns of 4 synchronous audio-visual stimuli (**Fig. 2A**). The visual stimulus was 90° drifting
387 gratings and the auditory was a 5 kHz tone at 80 dB. Preferred (Pref) and nonpreferred (NP)
388 stimuli differed only in their durations, therefore making TPSD explicitly a temporal
389 discrimination task. A water reward was delivered at 1.2 s from stimulus onset in the Pref
390 condition. The licking window was 1 to 2 s from stimulus onset in both Pref and NP conditions.
391 Mice were placed on a suspended polystyrene ball to allow for free movement during the task to
392 reduce stressors and increase performance (**Fig. 2B**) (Guo et al., 2014).

393 We performed a cranial window surgery in mice in V1 and injected syn-jGCaMP7f (**Fig.**
394 **2C**). Upon expression of GCaMP, we had mice perform the TPSD task while simultaneously
395 recording neural activity in V1, L2/3 using 2-photon Ca²⁺ imaging (**Fig. 2D**). As detailed in Post
396 et al. (2023), mice learned the task across sessions, as assessed through a licking decoder (**Fig.**
397 **2E**), and exhibited changes in V1 dynamics concomitant with learned performance (**Fig. 2F**). In
398 our previous paper we focused on comparing the neural dynamics between naïve and learned
399 sessions. Here we include neural dynamics changes that occur in middle sessions to assess the
400 role of multiple timing models through the learning process. Using this data, we perform an array
401 of analyses to granularly assess the computational mechanisms of subsecond sensory temporal
402 encoding with respect to prominent theoretical models.

403

404

405

406 **Network divergence indexes learning and supports the state dependent network model**

407

408 A prominent model of timing, the state dependent network model (**Fig. 1D**), suggest that
409 temporal information is encoded in the changing population vector of a network over a stimulus'
410 duration (Mauk & Buonomano, 2004). As sensory information intrinsically carries both spatial
411 and and temporal features, a network's state will evolve through time based upon its synaptic
412 weights, short-term plasticity, and its intrinsic time constants (Buonomano, 2000; Buonomano &
413 Maass, 2009). This leads to trajectories of the network that are dependent upon a stimulus'
414 spatial and temporal features.

415 If temporal information is encoded within the changing population vector of a network as
416 predicted, it follows that the degree of divergence of the population vector would correspond to
417 the degree of behavioral performance in the TPSD task. Divergence would occur within a
418 stimulus, to differentiate one moment in time from another, and between stimuli with different
419 temporal properties. If there is little divergence over time, a stimulus's temporal properties are
420 not encoded, and if there is little divergence between Pref and NP stimuli, behavioral output
421 would be the same in both conditions. Vice versa, if there is large divergence of the network over
422 the stimulus period, the stimulus's temporal properties are encoded, and if there is large
423 divergence between Pref and NP stimuli, behavioral output would differ.

424 To test this prediction, we calculated the Euclidean distance of the network as a measure
425 of network divergence across trial periods (**Fig. 3A,B**). We found that there was an evolution of
426 network divergence across learning in Hit, CR, and FA trials (Miss trials were not included as
427 there were too few samples). In learned sessions, all three trial outcomes displayed increased
428 network divergence from naive sessions. In learned session CR and FA trials, the greatest
429 divergence was seen between the Pref stimulus period (0-1.4 s) and the remaining NP stimulus
430 period, which suggests that mice attended only to the Pref stimulus period regardless of stimulus.

431 However, FA trials exhibited considerably less network divergence than CR trials did in the Pref
432 stimulus period, which may explain why mice responded with a go response in FA trials and
433 withheld in CR trials – that is, temporal information of the stimulus was not accurately encoded
434 in FA trials.

435 If network divergence was the computational mechanism of temporal encoding, we
436 predicted that a neural decoder would accurately discriminate network activity over the trial
437 period only when network divergence was high, and that discriminability of network activity
438 would increase with learning. We employed a Naive Bayes classifier to discriminate network
439 activity over trial periods in naive, middle, and learned sessions and found that discriminability
440 of network activity increased with behavioral performance (**Fig. 3C**). The performance of the
441 decoder was highly correlated with network divergence across sessions and trial outcomes (**Fig.**
442 **3D**). Notably, the Naive Bayes decoder predicts outcomes through probabilistic learning, a
443 manner of classification distinct from the geometric solutions found through calculation of
444 Euclidean distance. Because each method solves these problems differently but arrives at highly
445 correlated solutions, it is exceedingly likely that state-space trajectories underlie temporal
446 encoding in V1.

447 We next tested the hypothesis that network divergence between stimuli would predict
448 trial outcome and that the degree of divergence would index behavioral performance.
449 Specifically, we predicted that Hit and CR trials and CR and FA trials would diverge with
450 learning, but that Hit and FA trials would not. Indeed, we found that across learning, Hit and CR
451 trials and CR and FA trials diverged, beginning in the middle sessions and increasing in learned
452 sessions (**Fig. 4A**). Hit and FA trials remained non-divergent throughout naive, middle, and
453 learned sessions (**Fig. 4A**).

454 We hypothesized as before that network divergence was correlated with decodability. We
455 used Naive Bayes classifiers to discriminate trial outcomes over the stimulus periods and found
456 that decodability increased with learning and that Hit and CR trials and CR and FA trials were
457 highly discriminable while Hit and FA trials remained at similarly low levels of discriminability
458 across sessions (**Fig. 4B**). We correlated network divergence with the classifiers' performance
459 and found that across sessions and trial outcomes there were high correlations, evincing again
460 that temporal encoding is achieved through high dimensional neural trajectories (**Fig. 4C**).

461
462
463
464 **Learning on the TPSD task is supported by encoding temporal information at the level of**
465 **the network rather than at the single unit level**

466
467 Although our results provide strong evidence that temporal information was encoded in
468 network trajectories, other mechanisms such as changes in single cell (single unit) activity could
469 account for temporal encoding. Two prominent models of timing, ramping and synfire models,
470 may rely on single unit activity to generate temporal information. Indeed, ramping activity has
471 been found in V1 in reward timing neurons and neurons encoding sensory expectations
472 (Chubykin et al., 2013; Gavornik & Bear, 2014b, 2014a; Monk et al., 2020; Shuler & Bear,
473 2006).

474 To test whether our mice relied on single cell activity to encode temporal information in
475 the TPSD task, we used a decoder to predict trial outcomes from neural activity in naive, middle,
476 and learned sessions for each cell and then sorted units by when in the trial period they were
477 most accurate, akin to spike sorted heatmaps (**Fig. 5**). We found that predictability was sparsely
478 tiled across Hit vs. CR, Hit vs. FA, and CR vs. FA trials in naive sessions. Accuracy became less
479 sparse around the water reward period in middle sessions in Hit vs. CR trials and CR vs. FA

480 trials, but not in Hit vs. FA trials. This profile was broadened in learned sessions in which
481 accuracy values were network wide in Hit vs. CR trials and CR vs. FA trials around the water
482 reward and prior to it. Hit vs. FA accuracy values remained sparse across the network in learned
483 sessions. These results suggest that learning recruits the entire network as opposed to encoding
484 time at the single unit level, such as in the manner of synfire chain or ramping models.

485 To compare whether temporal information was better encoded at the network or single
486 unit level, we compared the decoding accuracies of the single unit regime to decoding accuracies
487 of a network regime. To do this we, we first decoded network activity between trial outcomes in
488 which a given number of cells composed the feature space. We iteratively did this in groups of 1
489 to 80 cells by using a forward feature selection algorithm to find the most informative cells
490 within a network for a given point in time. We then iteratively took the most predictive cells for
491 a given time from the single unit decoding regime in **Fig. 5** and averaged their accuracy scores
492 (see Methods). We then compared network and single unit decodability.

493 We found that decoding Hit from CR trials (**Fig. 6A**) and CR from FA trials (**Fig. 6C**)
494 increased in accuracy across mice's learning in the network condition, but decreased in accuracy
495 across sessions in the single unit condition. Decoding Hit from FA trials (**Fig. 6B**) increased in
496 accuracy across sessions in the single unit condition and remained at similar accuracy in the
497 network condition. Because neural decoding accuracy was directly proportional to behavioral
498 performance through learning in the network condition and was inversely proportional to
499 learning in the single unit condition, we conclude that temporal information is encoded at the
500 network level as opposed to the single unit level.

501
502
503 **Oscillatory activity does not account for temporal encoding in TPSD task**
504

505 The first models of timing proposed that oscillatory activity was responsible for temporal
506 encoding. In these models, it was predicted that a pacemaker module, much like a metronome,
507 regularly outputs pulses to a downstream accumulator where they are then counted (Creelman,
508 1962; Gibbon, 1977; Gibbon et al., 1984). Subsequent models predict that a collection of
509 oscillators output to downstream targets, such as striatum, where aggregated oscillatory activity
510 is decoded (**Fig. 1A**) (Buhusi & Meck, 2005; Matell & Meck, 2004; van Rijn et al., 2014).
511 Although evidence of oscillators has not been found in V1, it is conceivable that they are present
512 and are responsible for temporal encoding and accurate discrimination of Pref and NP stimuli in
513 the TPSD task, particularly as our stimuli were periodic.

514 To test whether oscillatory models accounted for temporal encoding in V1, we first
515 identified any putative oscillatory cells in our recordings. We did not find a significant difference
516 in the fraction of oscillatory cells identified across sessions (**Fig. 7A**). Nevertheless, we
517 hypothesized that if oscillators were responsible for temporal encoding, oscillatory activity
518 would better predict correct responses, particularly in learned sessions, than non-oscillatory
519 activity would. To test this, we decoded Hit from CR trial outcomes in oscillatory (**Fig. 7B**) and
520 non-oscillatory cell populations in the learned session (**Fig. 7C**). Because there were few
521 oscillatory cells found, we used a feature selection algorithm to iteratively select groups of cells
522 that were most informative in both populations so as to avoid any bias in differences in
523 dimensionality. We found comparable levels of decodability in oscillatory and non-oscillatory
524 populations, suggesting that temporal information is not exclusively encoded by oscillatory
525 activity, but is in fact network wide.

526 We therefore hypothesized that oscillatory activity intrinsically emerged from network
527 activity and was an aspect of the network's state space trajectory. To determine whether this was
528 the case, we calculated the network divergence of the oscillatory population over the trial period

529 (Fig. 8A) and then decoded the oscillatory population activity over the trial period (Fig. 8B), and
530 then correlated these values (Fig. 8C). We additionally calculated network divergence of the
531 oscillatory population between trial outcomes (Fig. 9A) and then decoded neural activity
532 between trial outcomes (Fig. 9B) and then correlated these values (Fig. 9C). We indeed found
533 high correlations across sessions and trial outcomes, signifying that the oscillatory population
534 was in fact operating as a part of the network trajectory in high dimensional state space.

535
536
537

538 **Ramping activity does not account for temporal encoding in TPSD task**

539
540 As with oscillatory cells, we sought to test whether ramping activity could account for
541 temporal encoding in the TPSD task (Fig. 1B). Unlike oscillators, ramping activity has been
542 found in V1 previously (Chubykin et al., 2013; Monk et al., 2020; Namboodiri et al., 2015;
543 Shuler & Bear, 2006) so it may have been the case that ramping activity better accounted for
544 temporal learning than did network divergence.

545 We first identified any cells with ramping-like activity and found that across learning
546 there was not a significant difference in the fraction of ramping cells in a given population (Fig.
547 10A). To test whether ramping cells exhibited more informative temporal activity, we used a
548 decoder with a feature selection algorithm to discriminate Hit from CR trials in learned sessions
549 in ramping and non-ramping populations. We predicted that if temporal information was
550 encoded in ramping activity, decodability in the ramping population would be greater than in the
551 non-ramping population. We iteratively selected groups of cells from each population over the
552 trial period to avoid biases of greater dimensionality in the non-ramping population.

553 We found that ramping and non-ramping populations encoded temporal information
554 comparably (Fig. 10B-C). We therefore hypothesized that, as with oscillatory activity, ramping

555 activity intrinsically emerged from network activity and was an aspect of the network's state
556 space trajectory. To determine whether this was the case, we calculated the network divergence
557 of the ramping population over the trial period (**Fig. 11A**) and decoded the ramping population
558 activity over the trial period (**Fig. 11B**), and then correlated these values (**Fig. 11C**). We
559 additionally calculated network divergence of the ramping population between trial outcomes
560 (**Fig. 12A**) and then decoded neural activity between trial outcomes (**Fig. 12B**) and correlated
561 these values (**Fig. 12C**). We consistently found high correlations across sessions and trial
562 outcomes, signifying that the ramping population was likely was an aspect of the network
563 trajectory through high dimensional state space.

564

565

566

567

568

569

570

571

572 **DISCUSSION**

573

574 Though time as a dimension in stimulus encoding has been largely overlooked, it is an
575 integral component. The notes of a song, for instance, can be played in perfect sequence, but if
576 the temporal structure between them is aberrant and chaotic, the song loses its identity. Prey-
577 predator interactions perhaps best capture how critical temporal perception is: not only must a
578 prey or predator anticipate where its counterpart will be, but *when*. The lion is not successful if it
579 occupies the location of its prey from 200 ms ago, or 1 second from where the prey will be in the
580 future. The predator must occupy the same space at the same time as its prey, and this process
581 necessarily entails encoding stimuli from the present and the immediate past in order to
582 anticipate events of the future.

583 Several models of timing at this scale – milliseconds to seconds – have been proposed
584 that largely can be construed as either dedicated or intrinsic models. We sought to test which of
585 these models best captures neural activity in V1 in mice performing a temporal discrimination
586 task in which audiovisual stimuli differed only in their temporal information. We found
587 considerable evidence that temporal information in the millisecond range is encoded by high
588 dimensional neural trajectories. We examined neural data across sessions and found that in
589 learned sessions, the network’s activity was far more divergent than in naive sessions. Further,
590 between correct trial outcomes, we found that this divergence was maximized. This network
591 divergence was highly correlated with a number of decoding schemes we used, which suggests
592 that the decoders independently recognized and exploited network divergence as an informative

593 coding schema. Even among other proposed models of timing, namely oscillatory and ramping
594 models, we found that network divergence was highly correlated with decodability, implying that
595 these types of activity were in fact aspects of the network divergence of the entire network as
596 opposed to specialized, dedicated mechanisms of timing.

597 Although V1 has historically been understood as extracting low-level spatial features
598 from visual information, recent evidence has suggested it processes temporal information as
599 well. Shuler and Bear (2006) found evidence of reward timing in V1. Gavornik and Bear (2014b)
600 later found that V1 encodes sequences of stimuli in a temporally-defined, predictive manner.
601 Spatiotemporal prediction has also been found in V1 in mice performing foraging tasks in virtual
602 reality (Fiser et al., 2016; Yu et al., 2022). Nevertheless, these findings did not explicitly test
603 temporal processing in a sensory discrimination task, and an outstanding question was how
604 temporal information was computationally encoded in V1. We tested this and found compelling
605 evidence that temporal processing in V1 follows the state dependent network model in which
606 temporal encoding occurs through the evolution of a network's population vector in state space.
607 Notably, no one specialized group of cells contained greater temporal information than non-
608 specialized cells.

609 We found evidence of ramping activity, which accords with previous findings of reward
610 timing in V1. However, ramping activity associated with reward prediction is cholinergically
611 mediated, which may induce state changes in V1 but not changes in temporal processing of
612 stimuli per se (Chubykin et al., 2013; Shuler & Bear, 2006). Furthermore, we removed any cells
613 from our population that were associated with licking that may, as an artefact, have exhibited
614 ramping like activity. The remaining cells that exhibited ramping activity in our recordings likely
615 were recruited by the network as the trial period progressed in order to support the divergence of
616 network states. It has been found that orientation-selective cells in V1 can shift their tuning

617 curves through leaning, and as only ~40% of V1 cells are simple cells (Cossell et al., 2015;
618 Froudarakis et al., 2019; Kondo et al., 2016), the remaining population may have been
619 preferentially recruited to support learning and push the network to different attractor basins.

620 We also found evidence of oscillatory activity, although in learned sessions, there were
621 only a handful of oscillatory cells. This was surprising as our stimuli were periodic. One may
622 suspect that activity in orientation selective cells tuned to our gratings would activate in a
623 periodic fashion, and indeed, average activity of the network supports this hypothesis (Post et al.,
624 2023). However, at the single unit level, this was not found to be the case. Instead, our results
625 suggest that temporal information was encoded through the evolution of population activity in
626 both oscillatory and non-oscillatory populations. Our results do not rule out the possibility of a
627 centralized oscillator however. It may be the case that V1 is reading out the activity of an
628 upstream oscillator as high dimensional trajectories. This would require the oscillator to receive
629 visual information from non-cortical areas and then project temporal information to V1 to be
630 reintegrated with spatial information. Biologically, this seems an unlikely mechanism however.

631 It has been shown that organotypic cortical slices are capable of “learning” a duration,
632 which suggests that intrinsic mechanisms can support subsecond temporal encoding (Goel &
633 Buonomano, 2016). In the slices, polysynaptic activity increased in a temporally dependent
634 manner, and inhibition was suppressed at the learned duration. This suggests that a complex
635 interplay of recurrent excitation and feedforward inhibition can generate population activity that
636 evolves over a trained period to represent elapsed time. In fact, it has been proposed that the
637 differing dynamics of temporal encoding in cortex and striatum are attributable to their
638 connectivity motifs – recurrent excitation in cortex leads to high dimensional trajectories, and
639 recurrent inhibition in striatum leads to sparse, winner-take-all sequentiality (Bakhurin et al.,

640 2017). This may be why we did not find evidence for sparse temporal encoding in V1 as
641 predicted by the synfire chain model.

642 Indeed, inhibition has been found to be critical in encoding temporal information in a
643 recurrent neural network model (Zhou et al., 2022). However, inhibitory activity is considerably
644 diverse, with GABAergic cells differing in firing profiles, baseline excitability, morphologies,
645 and preferences in where to synapse. In the cortex, parvalbumin (PV), somatostatin (SST), and
646 vasointestinal peptide (VIP) cells are the primary inhibitory interneuron subtypes (Cardin, 2018;
647 Kullander & Topolnik, 2021), and their functional diversity can broaden the encoding space of a
648 network. In a model of a cortical microcircuit, adjusting the synaptic weights of PV and SST
649 inhibitory interneurons onto Pyramidal (Pyr) cells generated an array of Pyr firing profiles in a
650 temporally defined manner, which was attributed to differing short-term plasticity profiles of
651 each cell type (Seay et al., 2020). Experimentally, SST activity has been found in motor cortex to
652 structure sequential activity in a learned motor task (Adler et al., 2019). Similar to Goel and
653 Buonomano (2016), it was found that inhibitory activity viz. SST cells was suppressed through
654 learning and then returned to baseline following learning to structure network activity. Because
655 SST cells in L2/3 of cortex synapse preferentially with Pyr dendrites in L1 (Urban-Ciecko &
656 Barth, 2016; Wu et al., 2023), SST cells through fine, dendritic computation may orchestrate
657 ensembles of Pyr activity in a temporally defined manner which leads to emergent network
658 trajectories over time.

659 Population vector encoding is exploited as a computational strategy across the brain,
660 possibly due to the increased informational space available. However, in behaviors typically
661 associated with population encoding such as olfaction (Canto-Bustos et al., 2022; Oswald &
662 Urban, 2012), motor output (Georgopoulos et al., 1986; Georgopoulos & Carpenter, 2015), and
663 memory (Grewe et al., 2017; Lee et al., 2023), temporality is implicit, and it is unclear if a

664 network can induce coherent population codes in a time dependent manner as the state dependent
665 network model proposes. In memory in particular, temporality is integral, and it remains to be
666 determined if the simultaneous activation of an ensemble or if sequential activation of a set of
667 ensembles encodes the content of a memory and its duration. Our results suggest that temporal
668 information can emerge through the sequential activation of ensembles, such that the network
669 state diverges across time. Notably, this network state divergence emerges through learning and
670 reliably indexes trial outcome throughout sessions.

671 Our findings add to a growing body of literature that supports the state dependent
672 network model of timing and finds that temporal information can be encoded intrinsically and
673 mediated by a circuit's local parameters. Our results provide further evidence that temporal
674 information is encoded by the brain in lower order areas and suggest that time is an integral
675 component of sensory processing.

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

699
700
701
702

703 **REFERENCES**

704

705 Adler, A., Zhao, R., Shin, M. E., Yasuda, R., & Gan, W.-B. (2019). Somatostatin-Expressing
706 Interneurons Enable and Maintain Learning-Dependent Sequential Activation of
707 Pyramidal Neurons. *Neuron*, 102(1), 202-216.e7.
708 <https://doi.org/10.1016/j.neuron.2019.01.036>
709 Bakhurin, K. I., Goudar, V., Shobe, J. L., Claar, L. D., Buonomano, D. V., & Masmanidis, S. C.
710 (2017). Differential Encoding of Time by Prefrontal and Striatal Network Dynamics.
711 *Journal of Neuroscience*, 37(4), 854–870. <https://doi.org/10.1523/JNEUROSCI.1789-16.2016>
712
713 Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms
714 of interval timing. *Nature Reviews Neuroscience*, 6(10), Article 10.
715 <https://doi.org/10.1038/nrn1764>
716 Buonomano, D. V. (2000). Decoding Temporal Information: A Model Based on Short-Term
717 Synaptic Plasticity. *Journal of Neuroscience*, 20(3), 1129–1141.
718 <https://doi.org/10.1523/JNEUROSCI.20-03-01129.2000>
719 Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal
720 processing in cortical networks. *Nature Reviews Neuroscience*, 10(2), 113–125.
721 <https://doi.org/10.1038/nrn2558>
722 Canto-Bustos, M., Friason, F. K., Bassi, C., & Oswald, A.-M. M. (2022). Disinhibitory Circuitry
723 Gates Associative Synaptic Plasticity in Olfactory Cortex. *Journal of Neuroscience*,
724 42(14), 2942–2950. <https://doi.org/10.1523/JNEUROSCI.1369-21.2021>

725 Cardin, J. A. (2018). Inhibitory Interneurons Regulate Temporal Precision and Correlations in
726 Cortical Circuits. *Trends in Neurosciences*, 41(10), 689–700.
727 <https://doi.org/10.1016/j.tins.2018.07.015>

728 Chubykin, A. A., Roach, E. B., Bear, M. F., & Shuler, M. G. H. (2013). A Cholinergic
729 Mechanism for Reward Timing within Primary Visual Cortex. *Neuron*, 77(4), 723–735.
730 <https://doi.org/10.1016/j.neuron.2012.12.039>

731 Cossell, L., Iacaruso, M. F., Muir, D. R., Houlton, R., Sader, E. N., Ko, H., Hofer, S. B., &
732 Mrsic-Flogel, T. D. (2015). Functional organization of excitatory synaptic strength in
733 primary visual cortex. *Nature*, 518(7539), Article 7539.
734 <https://doi.org/10.1038/nature14182>

735 Creelman, C. D. (1962). Human Discrimination of Auditory Duration. *The Journal of the
736 Acoustical Society of America*, 34(5), 582–593. <https://doi.org/10.1121/1.1918172>

737 de Lafuente, V., Jazayeri, M., Merchant, H., Gracía-Garibay, O., Cadena-Valencia, J., &
738 Malagón, A. M. (2022). Keeping time and rhythm by replaying a sensory-motor engram.
739 *bioRxiv*, 2022–01.

740 Fiser, A., Mahringer, D., Oyibo, H. K., Petersen, A. V., Leinweber, M., & Keller, G. B. (2016).
741 Experience-dependent spatial expectations in mouse visual cortex. *Nature Neuroscience*,
742 19(12), Article 12. <https://doi.org/10.1038/nn.4385>

743 Froudarakis, E., Fahey, P. G., Reimer, J., Smirnakis, S. M., Tehovnik, E. J., & Tolias, A. S.
744 (2019). The Visual Cortex in Context. *Annual Review of Vision Science*, 5(1), 317–339.
745 <https://doi.org/10.1146/annurev-vision-091517-034407>

746 Gavornik, J. P., & Bear, M. F. (2014a). Higher brain functions served by the lowly rodent
747 primary visual cortex. *Learning & Memory*, 21(10), 527–533.
748 <https://doi.org/10.1101/lm.034355.114>

749 Gavornik, J. P., & Bear, M. F. (2014b). Learned spatiotemporal sequence recognition and
750 prediction in primary visual cortex. *Nature Neuroscience*, 17(5), 732–737.
751 <https://doi.org/10.1038/nn.3683>

752 Georgopoulos, A. P., & Carpenter, A. F. (2015). Coding of movements in the motor cortex.
753 *Current Opinion in Neurobiology*, 33, 34–39. <https://doi.org/10.1016/j.conb.2015.01.012>

754 Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal Population Coding of
755 Movement Direction. *Science*, 233(4771), 1416–1419.
756 <https://doi.org/10.1126/science.3749885>

757 Gibbon, J. (1977). Scalar expectancy theory and Weber's law in animal timing. *Psychological
758 Review*, 84(3), 279–325. <https://doi.org/10.1037/0033-295X.84.3.279>

759 Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. *Annals of the New
760 York Academy of Sciences*, 423, 52–77. [6632.1984.tb23417.x](https://doi.org/10.1111/j.1749-
761 6632.1984.tb23417.x)

762 Goel, A., & Buonomano, D. V. (2016). Temporal Interval Learning in Cortical Cultures Is
763 Encoded in Intrinsic Network Dynamics. *Neuron*, 91(2), 320–327. PubMed.
764 <https://doi.org/10.1016/j.neuron.2016.05.042>

765 Grewe, B. F., Gründemann, J., Kitch, L. J., Lecoq, J. A., Parker, J. G., Marshall, J. D., Larkin,
766 M. C., Jercog, P. E., Grenier, F., Li, J. Z., Lüthi, A., & Schnitzer, M. J. (2017). Neural
767 ensemble dynamics underlying a long-term associative memory. *Nature*, 543(7647),
768 Article 7647. <https://doi.org/10.1038/nature21682>

769 Guo, Z. V., Hires, S. A., Li, N., O'Connor, D. H., Komiyama, T., Ophir, E., Huber, D., Bonardi,
770 C., Morandell, K., Gutnisky, D., Peron, S., Xu, N., Cox, J., & Svoboda, K. (2014).
771 Procedures for Behavioral Experiments in Head-Fixed Mice. *PLOS ONE*, 9(2), e88678.
772 <https://doi.org/10.1371/journal.pone.0088678>

773 Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time
774 in neural network states. *Neuron*, 53(3), 427–438.
775 <https://doi.org/10.1016/j.neuron.2007.01.006>

776 Kondo, S., Yoshida, T., & Ohki, K. (2016). Mixed functional microarchitectures for orientation
777 selectivity in the mouse primary visual cortex. *Nature Communications*, 7(1), Article 1.
778 <https://doi.org/10.1038/ncomms13210>

779 Kullander, K., & Topolnik, L. (2021). Cortical disinhibitory circuits: Cell types, connectivity and
780 function. *Trends in Neurosciences*, 44(8), 643–657.
781 <https://doi.org/10.1016/j.tins.2021.04.009>

782 Lee, J.-H., Kim, W. B., Park, E. H., & Cho, J.-H. (2023). Neocortical synaptic engrams for
783 remote contextual memories. *Nature Neuroscience*, 26(2), Article 2.
784 <https://doi.org/10.1038/s41593-022-01223-1>

785 Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence
786 detection of oscillatory processes. *Cognitive Brain Research*, 21(2), 139–170.
787 <https://doi.org/10.1016/j.cogbrainres.2004.06.012>

788 Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. *Annual
789 Review of Neuroscience*, 27, 307–340.
790 <https://doi.org/10.1146/annurev.neuro.27.070203.144247>

791 Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M., & Fitch, W. T. (2015). Finding the beat: A
792 neural perspective across humans and non-human primates. *Philosophical Transactions
793 of the Royal Society B: Biological Sciences*, 370(1664), 20140093.
794 <https://doi.org/10.1098/rstb.2014.0093>

795 Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural Basis of the Perception and
796 Estimation of Time. *Annual Review of Neuroscience*, 36(1), 313–336.
797 <https://doi.org/10.1146/annurev-neuro-062012-170349>

798 Monk, K. J., Allard, S., & Hussain Shuler, M. G. (2020). Reward Timing and Its Expression by
799 Inhibitory Interneurons in the Mouse Primary Visual Cortex. *Cerebral Cortex*, 30(8),
800 4662–4676. <https://doi.org/10.1093/cercor/bhaa068>

801 Namboodiri, V. M. K., Huertas, M. A., Monk, K. J., Shouval, H. Z., & Hussain Shuler, M. G.
802 (2015). Visually Cued Action Timing in the Primary Visual Cortex. *Neuron*, 86(1), 319–
803 330. <https://doi.org/10.1016/j.neuron.2015.02.043>

804 Oswald, A.-M. M., & Urban, N. N. (2012). Interactions between Behaviorally Relevant Rhythms
805 and Synaptic Plasticity Alter Coding in the Piriform Cortex. *Journal of Neuroscience*,
806 32(18), 6092–6104. <https://doi.org/10.1523/JNEUROSCI.6285-11.2012>

807 Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L. F., Dalgleish, H., Carandini,
808 M., & Harris, K. D. (2017). *Suite2p: Beyond 10,000 neurons with standard two-photon
809 microscopy* (p. 061507). bioRxiv. <https://doi.org/10.1101/061507>

810 Pologruto, T. A., Sabatini, B. L., & Svoboda, K. (2003). ScanImage: Flexible software for
811 operating laser scanning microscopes. *BioMedical Engineering OnLine*, 2(1), 13.
812 <https://doi.org/10.1186/1475-925X-2-13>

813 Post, S., Mol, W., Abu-Wishah, O., Ali, S., Rahmatullah, N., & Goel, A. (2023). Multimodal
814 Temporal Pattern Discrimination Is Encoded in Visual Cortical Dynamics. *eNeuro*, 10(7).
815 <https://doi.org/10.1523/ENEURO.0047-23.2023>

816 Seay, M. J., Natan, R. G., Geffen, M. N., & Buonomano, D. V. (2020). Differential Short-Term
817 Plasticity of PV and SST Neurons Accounts for Adaptation and Facilitation of Cortical

818 Neurons to Auditory Tones. *Journal of Neuroscience*, 40(48), 9224–9235.
819 <https://doi.org/10.1523/JNEUROSCI.0686-20.2020>
820 Shuler, M. G., & Bear, M. F. (2006). Reward Timing in the Primary Visual Cortex. *Science*,
821 311(5767), 1606–1609. <https://doi.org/10.1126/science.1123513>
822 Urban-Ciecko, J., & Barth, A. L. (2016). Somatostatin-expressing neurons in cortical networks.
823 *Nature Reviews Neuroscience*, 17(7), Article 7. <https://doi.org/10.1038/nrn.2016.53>
824 van Rijn, H., Gu, B.-M., & Meck, W. H. (2014). Dedicated Clock/Timing-Circuit Theories of
825 Time Perception and Timed Performance. In H. Merchant & V. de Lafuente (Eds.),
826 *Neurobiology of Interval Timing* (pp. 75–99). Springer. https://doi.org/10.1007/978-1-4939-1782-2_5
827
828 Wu, S. J., Sevier, E., Dwivedi, D., Saldi, G.-A., Hairston, A., Yu, S., Abbott, L., Choi, D. H.,
829 Sherer, M., Qiu, Y., Shinde, A., Lenahan, M., Rizzo, D., Xu, Q., Barrera, I., Kumar, V.,
830 Marrero, G., Prönneke, A., Huang, S., ... Fishell, G. (2023). Cortical somatostatin
831 interneuron subtypes form cell-type-specific circuits. *Neuron*.
832 <https://doi.org/10.1016/j.neuron.2023.05.032>
833 Yu, Q., Bi, Z., Jiang, S., Yan, B., Chen, H., Wang, Y., Miao, Y., Li, K., Wei, Z., Xie, Y., Tan,
834 X., Liu, X., Fu, H., Cui, L., Xing, L., Weng, S., Wang, X., Yuan, Y., Zhou, C., ... Zhang,
835 J. (2022). Visual cortex encodes timing information in humans and mice. *Neuron*,
836 110(24), 4194–4211.e10. <https://doi.org/10.1016/j.neuron.2022.09.008>
837 Zagha, E., Erlich, J. C., Lee, S., Lur, G., O'Connor, D. H., Steinmetz, N. A., Stringer, C., &
838 Yang, H. (2022). The Importance of Accounting for Movement When Relating Neuronal
839 Activity to Sensory and Cognitive Processes. *Journal of Neuroscience*, 42(8), 1375–
840 1382. <https://doi.org/10.1523/JNEUROSCI.1919-21.2021>

841 Zhou, S., Masmanidis, S. C., & Buonomano, D. V. (2022). Encoding time in neural dynamic
842 regimes with distinct computational tradeoffs. *PLOS Computational Biology*, 18(3),
843 e1009271. <https://doi.org/10.1371/journal.pcbi.1009271>

844

845 **LEGENDS**

846

847 **FIGURE 1: Axis of dedicated to intrinsic models of timing models.** **A.** Oscillatory models:
848 intrinsic oscillators project to a downstream readout unit or units. Early models proposed that a
849 pacemaker, much like a metronome, output periodic pulses which were then counted by a
850 downstream accumulator (Creelman, 1962; Gibbon, 1977); recent oscillatory models propose
851 that a network of cortical oscillators with differing periodicities project to striatal medium spiny
852 neurons that act as coincidence detectors and decode the oscillatory output (Buhusi & Meck,
853 2005; Matell & Meck, 2004; Merchant et al., 2013, 2015; van Rijn et al., 2014). **B.** Ramping
854 models: temporal information is encoded by the firing rate of a given neuron and were motivated
855 by work in decision making in non-human primates (de Lafuente et al., 2022). Ramping activity
856 has been found in sensory areas like primary visual cortex (V1) (Chubykin et al., 2013; Monk et
857 al., 2020; Shuler & Bear, 2006). **C.** Synfire chain models: activity is sparsely tiled over a
858 population. **D.** State dependent network models: temporal information is encoded in the changing
859 population vector, i.e. trajectory, of a network through high dimensional state space. A simple 3
860 unit network illustrates how the state of the network changes in 3 dimensional space over time.
861 Experimental and computational evidence increasingly points to the state dependent model as the
862 candidate mechanism of temporal encoding on the order of milliseconds to seconds
863 (Buonomano, 2000; Goel & Buonomano, 2016; Karmarkar & Buonomano, 2007; Post et al.,
864 2023; Seay et al., 2020; Zhou et al., 2022).

865

866

867 **FIGURE 2: Mice learn Temporal Pattern Sensory Discrimination (TPSD) paradigm and**
868 **exhibit changes in V1 activity across learning.** **A.** Schematic of TPSD. Mice must discriminate
869 subsecond audio-visual patterns based upon their temporal information. **B.** A bootstrapped
870 support vector machine using licking profiles was used to predict Pref or NP stimuli over the trial
871 period to validate learning. Only in the learned session is there sustained difference in licking
872 patterns between conditions prior to the water reward at 1.2 s (blue dotted vertical line). Control
873 sessions are those in which the monitor and speakers are turned off to ensure that mice were not
874 “cheating.” **C.** Spike sorted heatmaps in Hit, CR, and FA trials over sessions show changes in
875 activity dynamics in V1 which suggest circuit restructuring leading to improved performance.

876 **FIGURE 3: Network divergence and decodability of network state across the trial period**
877 **increases over learning.** **A.** Example of calculation of Euclidean distance. The top panel shows a
878 two neuron system in which the network state changes between t_1 and t_2 . The distance between
879 the network states (D) can be calculated using the Pythagorean theorem, i.e. Euclidean distance
880 in two dimensions. The bottom panel shows the calculation in a 3 dimensional, i.e. 3 neuron
881 system. The equation can be generalized to n dimensions (see Methods). **B.** Network divergence was calculated as the bootstrapped
882 Euclidean distance between the positions of the network at different points in time (see
883 Methods). **C.** Naive Bayes classifier decoding of network state between different points in time
884 across sessions in Hit, CR, and FA trials. Network divergence was calculated as the bootstrapped
885 Euclidean distance between the positions of the network at different points in time (see
886 Methods). **D.** Correlations of network divergence in A. and
887 network state decoding in B. across sessions in Hit, CR, and FA trials. Pearson's correlation
coefficient was used to calculate correlations.

888
889 **FIGURE 4: Network divergence and decodability of trial outcomes increases over learning.** **A.**
890 Network divergence between trial outcomes in naive, middle, and learned sessions. Network
891 divergence was calculated as the bootstrapped Euclidean distance between trial outcomes at a
892 given time (see Methods). Curves are plotted with 95% CI. **B.** Naive Bayes classifier decoding of
893 trial outcomes over the trial period using neural data. Curves are plotted with 95% CI. **C.**
894 Correlations of network divergence between trial outcomes in A. and trial outcome decoding in
895 B. across sessions. Pearson's correlation coefficient was used to calculate correlations.

896
897
898 **FIGURE 5 :Single unit decoding between trial outcomes.** **A.** Each cell was used to discriminate
899 Hit from CR trials across sessions. Cells are then sorted over the trial period by the point at
900 which they were most accurate, akin to spike sorted heatmaps. Naive sessions are the first row,
901 middle sessions the middle row, and learned sessions the bottom row. Bootstrapped Naive Bayes
902 classifiers were used for decoding. **B.** As in A., but Hit vs. FA. **C.** As in A., but CR vs FA.

903
904 **FIGURE 6: Temporal information is encoded at the population level, not the single unit level.**
905 **A.** Decoding Hit from CR trials using neural data as single units from **Fig. 5A** (left column) or as
906 a network of increasing numbers of cells (right column). Naive sessions are the first row, middle

907 sessions are the middle row, and learned sessions are the bottom row. **B.** As in A., but decoding
908 Hit from FA trials. **C.** As in A., but decoding CR from FA trials. See Methods for details
909 regarding cell selection procedures. All curves are plotted with 95% CI.
910

911 **FIGURE 7 : Oscillatory and non-oscillatory activity encode temporal information equally**
912 **well.** **A.** Fractions of oscillatory cells did not significantly change across learning (Kruskal-
913 Wallis, $H(13) = 2.79, p = .25$). **B.** Naive Bayes classifier decoding of oscillatory cells in Hit vs.
914 CR trials in the learned session. A feature selection algorithm was used to iteratively select the
915 most informative cells in the population (see Methods). The total network decodability is also
916 shown in the dashed black line. Curves are plotted with 95% CI. **C.** Naive Bayes classifier
917 decoding of non-oscillatory cells in Hit vs. CR trials in the learned session. A feature selection
918 algorithm was used to iteratively select the most informative cells in the population. The total
919 network decodability is also shown in the dashed black line. Curves are plotted with 95% CI.
920

921 **FIGURE 8 : Evolution of oscillatory activity through the trial period is an aspect of network**
922 **divergence.** **A.** Network divergence across sessions in Hit, CR, and FA trials in oscillatory
923 populations. Network divergence was calculated as the bootstrapped Euclidean distance between
924 the positions of the network at different points in time (see Methods). **B.** Naive Bayes classifier
925 decoding of network state between different points in time across sessions in Hit, CR, and FA
926 trials in oscillatory populations. **C.** Correlations of network divergence across the trial period
927 from **Fig. 8A** and network state decoding from **Fig. 8B** across sessions in Hit, CR, and FA trials
928 in oscillatory populations. Pearson's correlation coefficient was used to calculate correlations.
929

930
931 **FIGURE 9 : Oscillatory activity differs between trial outcomes according to degree of network**
932 **divergence.** **A.** Network divergence between trial outcomes in naive, middle, and learned
933 sessions in oscillatory populations. Network divergence was calculated as the bootstrapped
934 Euclidean distance between trial outcomes at a given time (see Methods). **B.** Naive Bayes
935 classifier decoding of trial outcomes over the trial period using neural data in oscillatory
936 populations. Curves are plotted with 95% CI. **C.** Correlations of network divergence between

937 trial outcomes from **Fig. 9A** and trial outcome decoding and **Fig. 9B** across sessions in
938 oscillatory populations. Pearson's correlation coefficient was used to calculate correlations.

939

940 **FIGURE 10 : Ramping and non-ramping activity encode temporal information equally well.**

941 **A.** Fractions of ramping cells did not significantly change across learning (Kruskal-Wallis, $H(13)$
942 $= .5, p = .78$). **B.** Naive Bayes classifier decoding of ramping cells in Hit vs. CR trials in the
943 learned session. A feature selection algorithm was used to iteratively select the most informative
944 cells in the population (see Methods). The total network decodability is also shown in the dashed
945 black line. Curves are plotted with 95% CI. **C.** Naive Bayes classifier decoding of non-ramping
946 cells in Hit vs. CR trials in the learned session. A feature selection algorithm was used to
947 iteratively select the most informative cells in the population. The total network decodability is
948 also shown in the dashed black line. Curves are plotted with 95% CI.

949

950 **FIGURE 11 : Evolution of ramping activity through the trial period is an aspect of network**
951 **divergence.** **A.** Network divergence across sessions in Hit, CR, and FA trials in ramping
952 populations. Network divergence was calculated as the bootstrapped Euclidean distance between
953 the positions of the network at different points in time (see Methods). **B.** Naive Bayes classifier
954 decoding of network state between different points in time across sessions in Hit, CR, and FA
955 trials in ramping populations. **C.** Correlations of network divergence across the trial period from
956 **Fig. 11A** and network state decoding from **Fig. 11B** across sessions in Hit, CR, and FA trials in
957 ramping populations. Pearson's correlation coefficient was used to calculate correlations.

958

959

960 **FIGURE 12 : Ramping activity differs between trial outcomes according to degree of network**
961 **divergence.** **A.** Network divergence between trial outcomes in naive, middle, and learned
962 sessions in ramping populations. Network divergence was calculated as the bootstrapped
963 Euclidean distance between trial outcomes at a given time (see Methods). **B.** Naive Bayes
964 classifier decoding of trial outcomes over the trial period using neural data in ramping
965 populations. Curves are plotted with 95% CI. **C.** Correlations of network divergence between
966 trial outcomes from **Fig. 12A** and trial outcome decoding from **Fig. 12B** across sessions in
967 ramping populations. Pearson's correlation coefficient was used to calculate correlations.

968

969

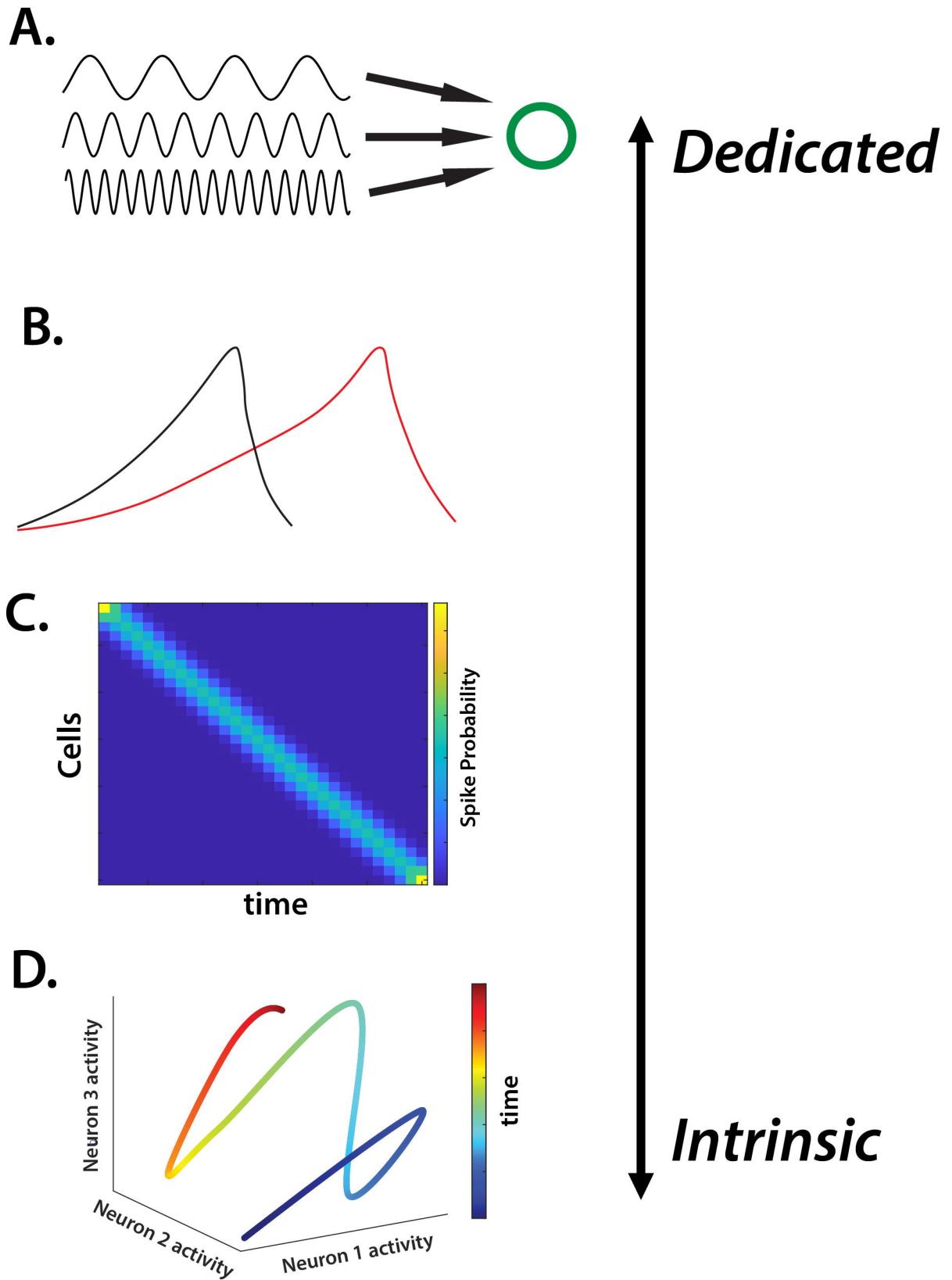


FIGURE 1



FIGURE 2

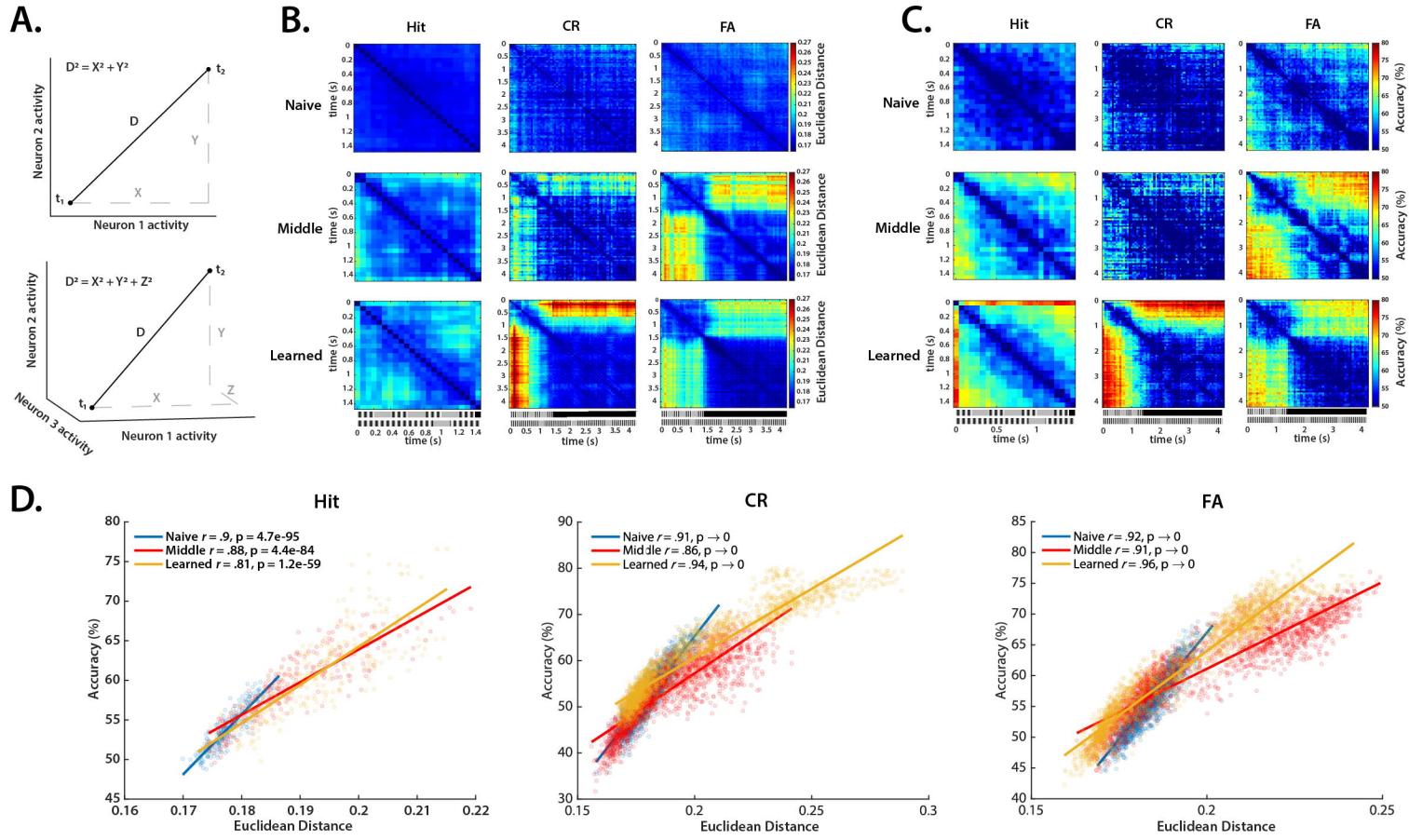
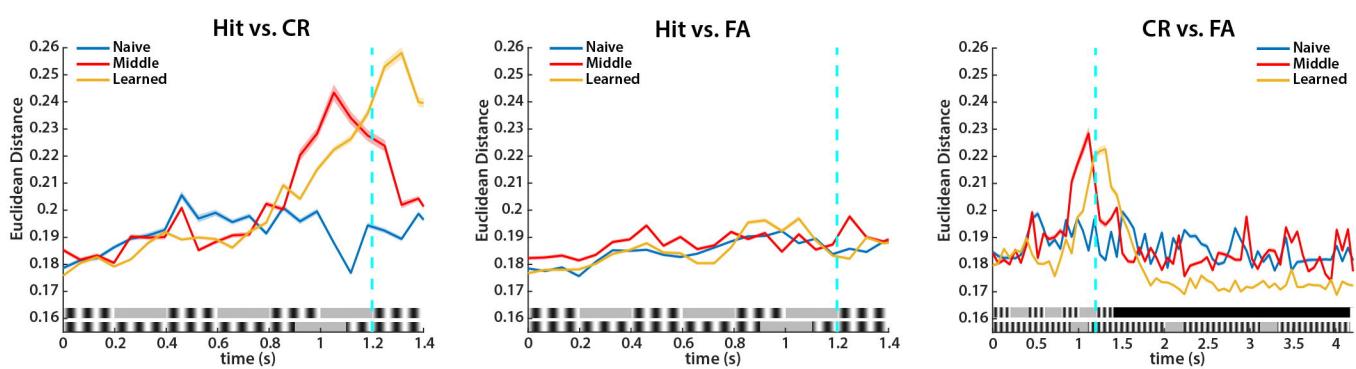
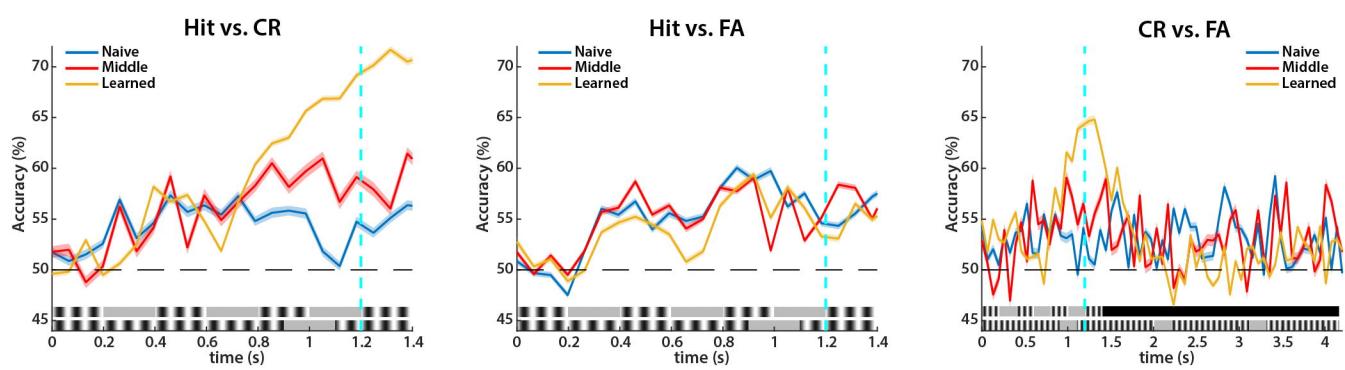


FIGURE 3

A.



B.



C.

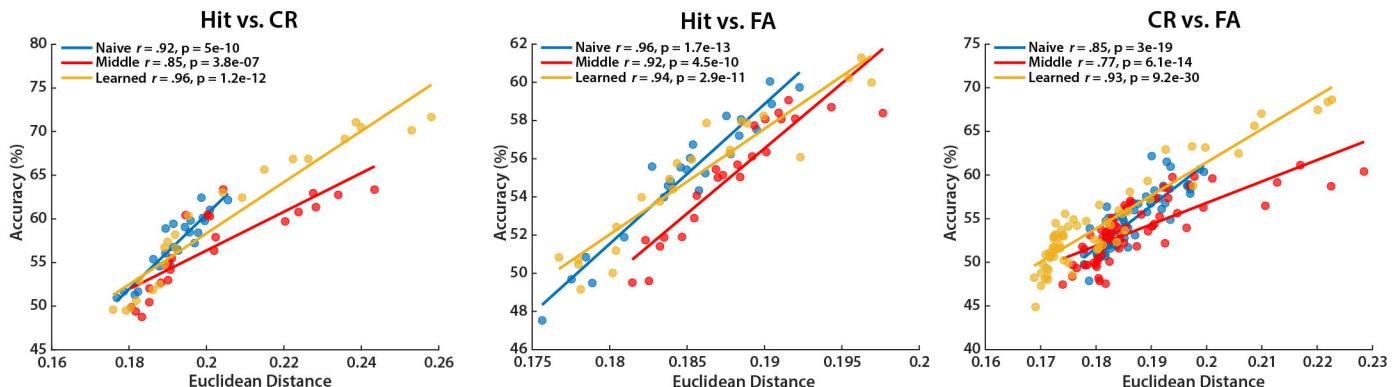


FIGURE 4

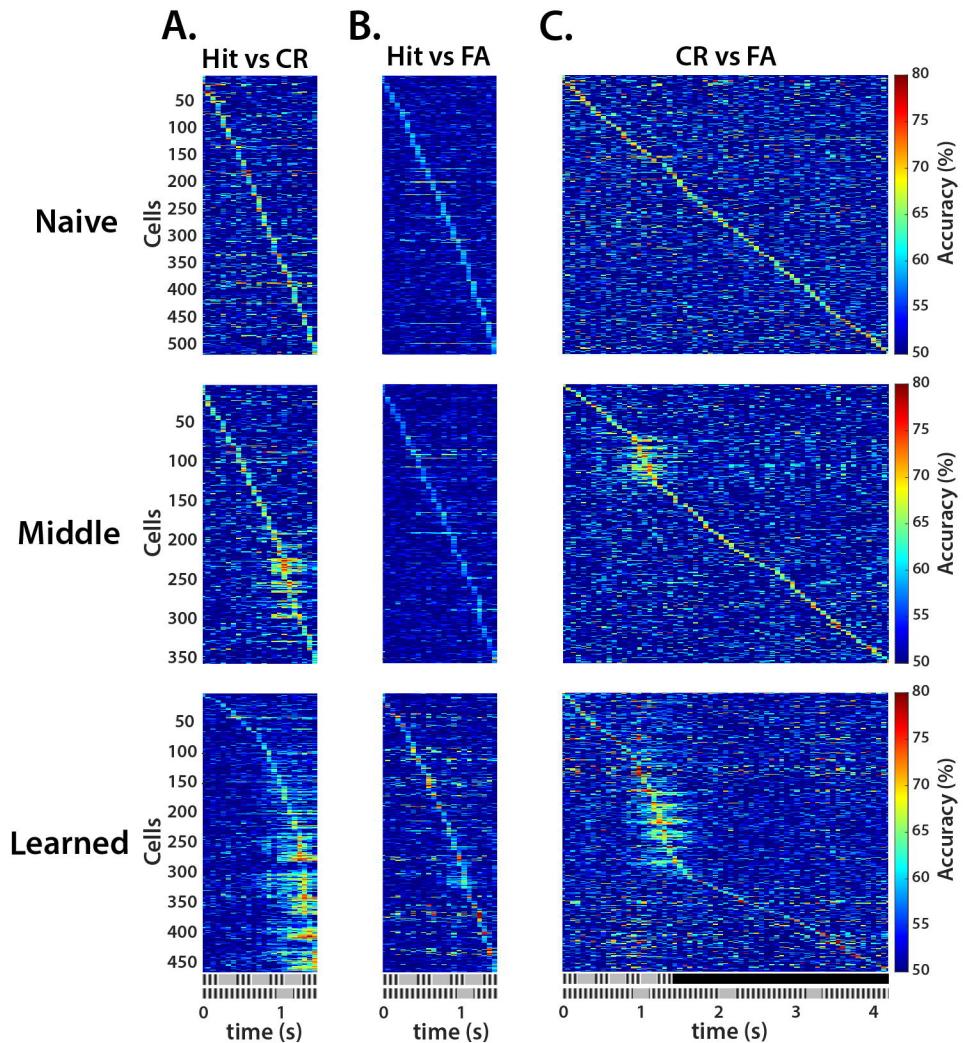


FIGURE 5

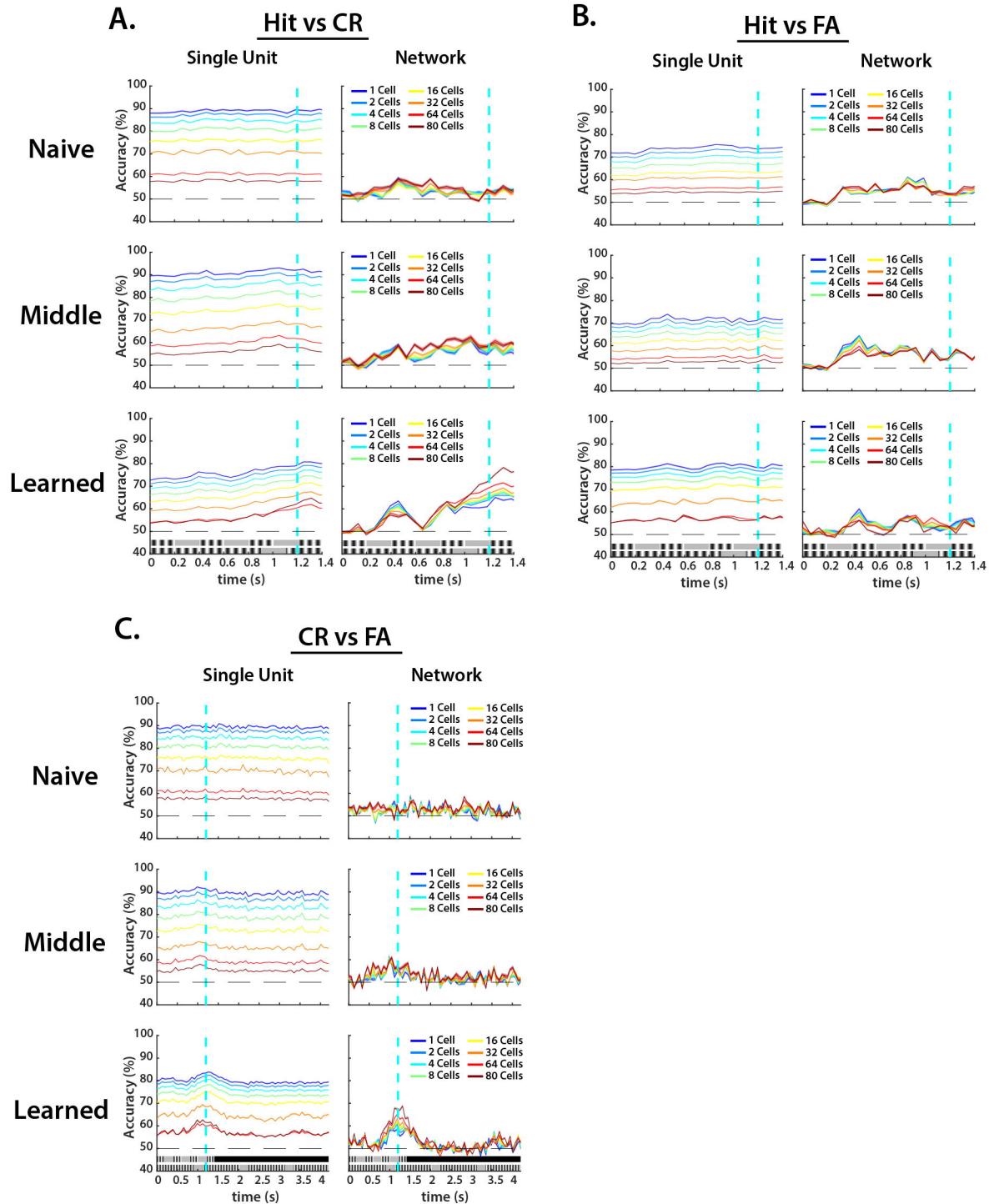


FIGURE 6

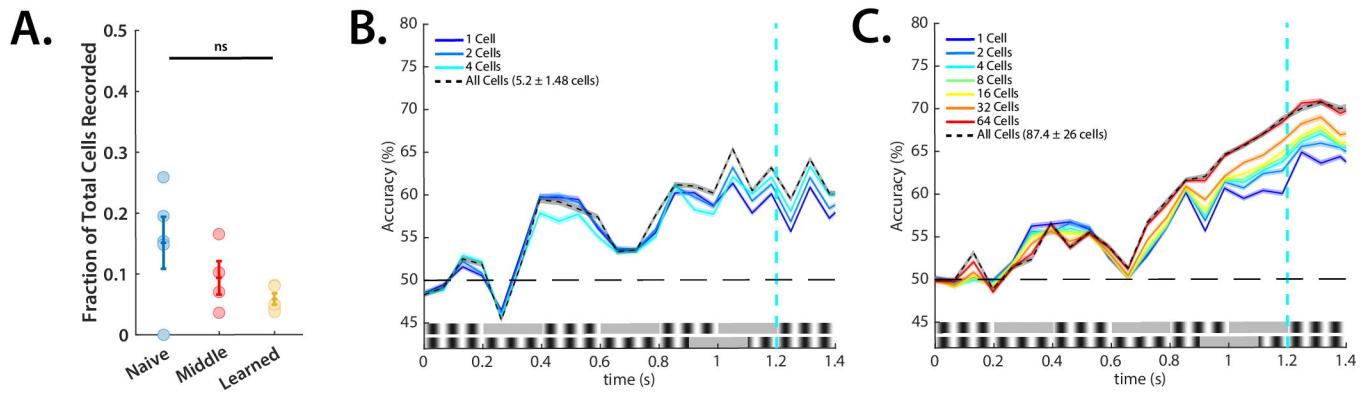


FIGURE 7

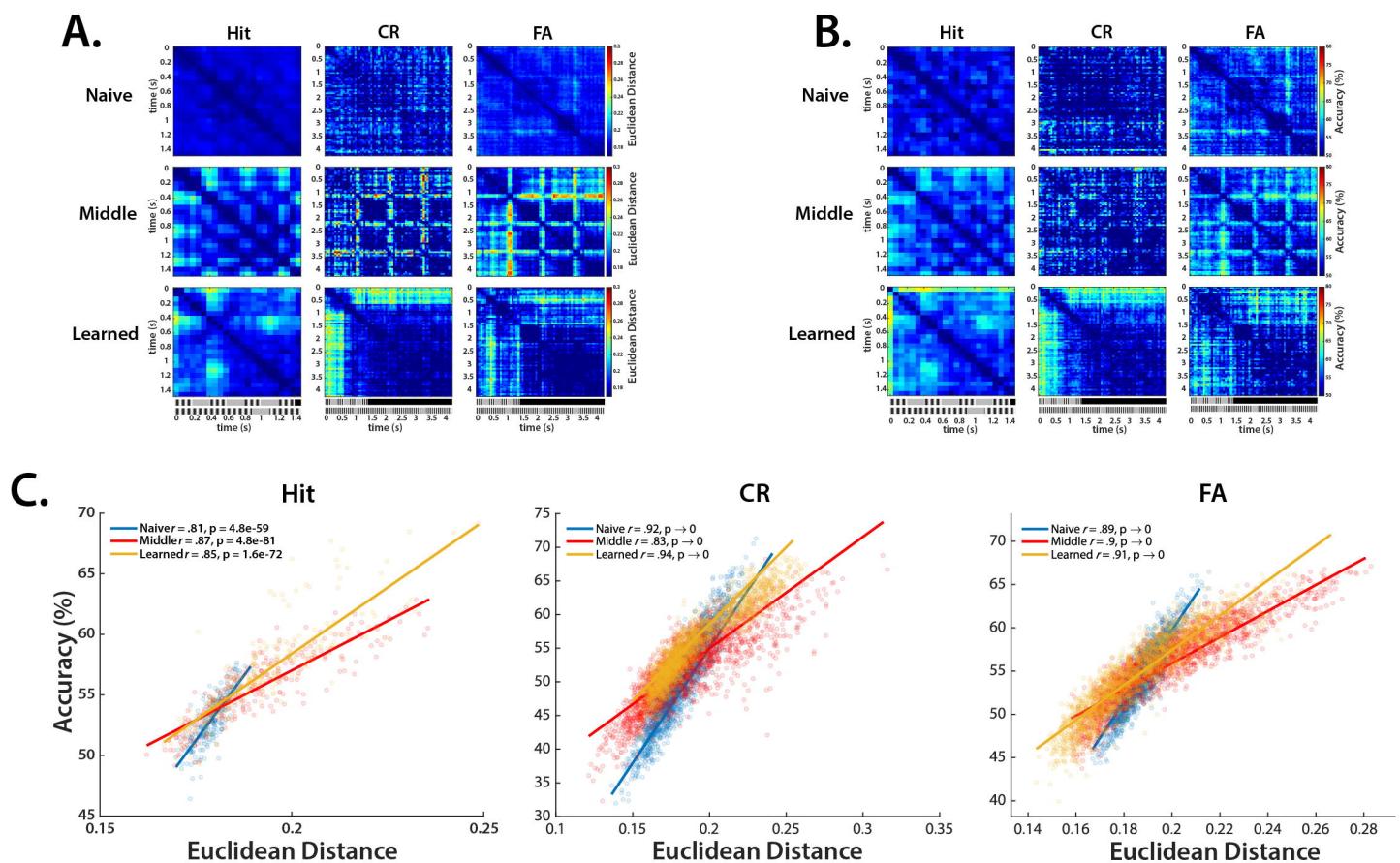


FIGURE 8

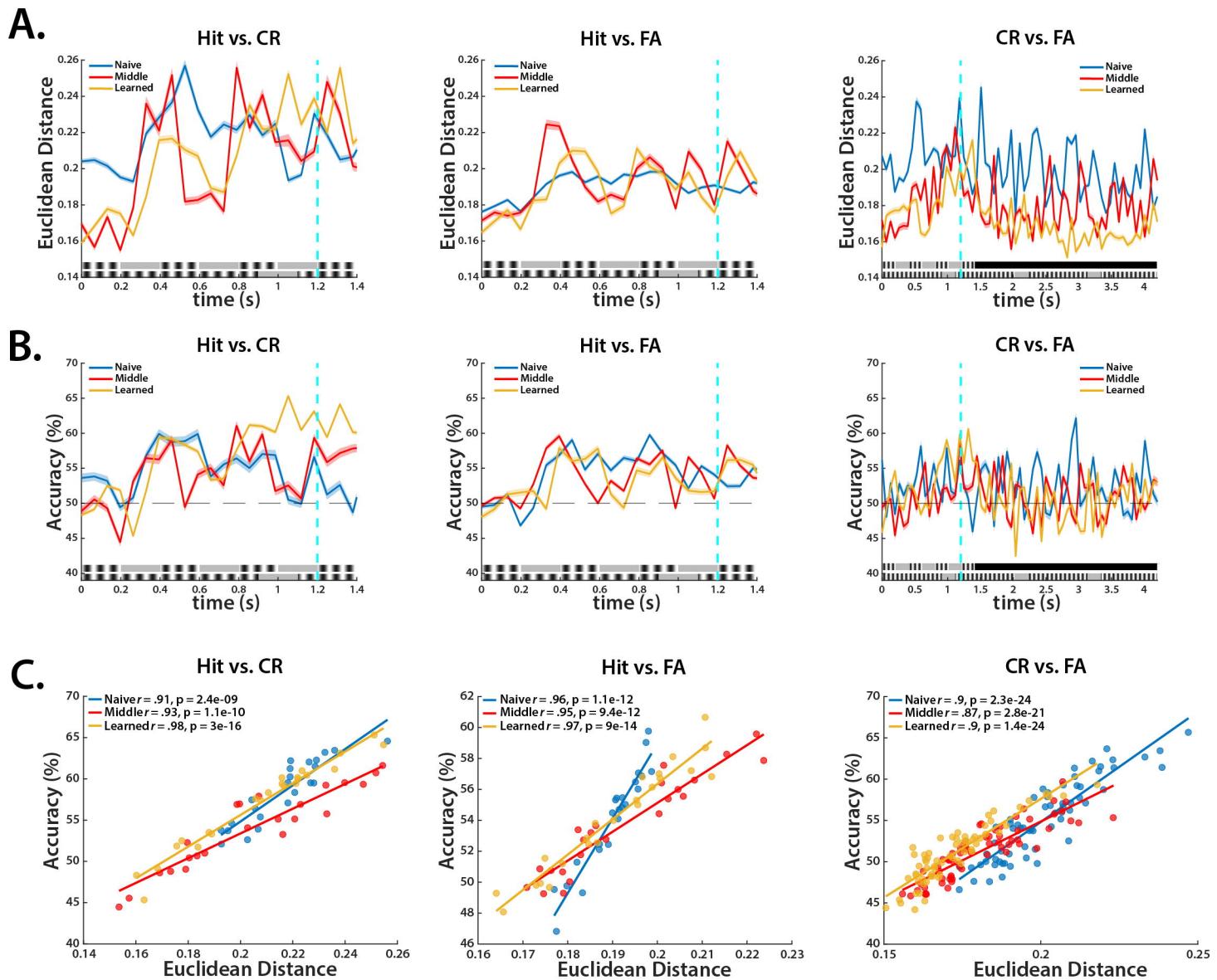


FIGURE 9

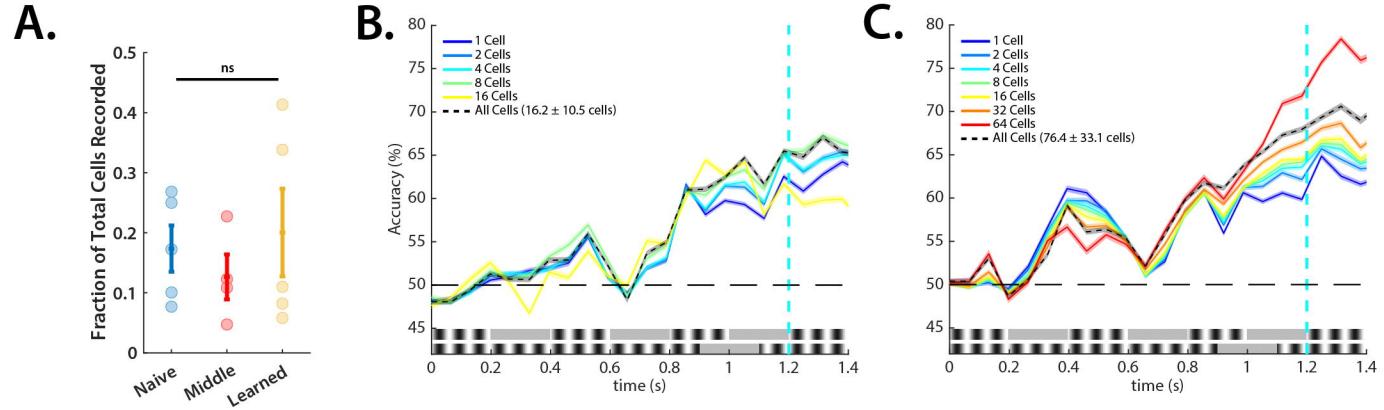


FIGURE 10

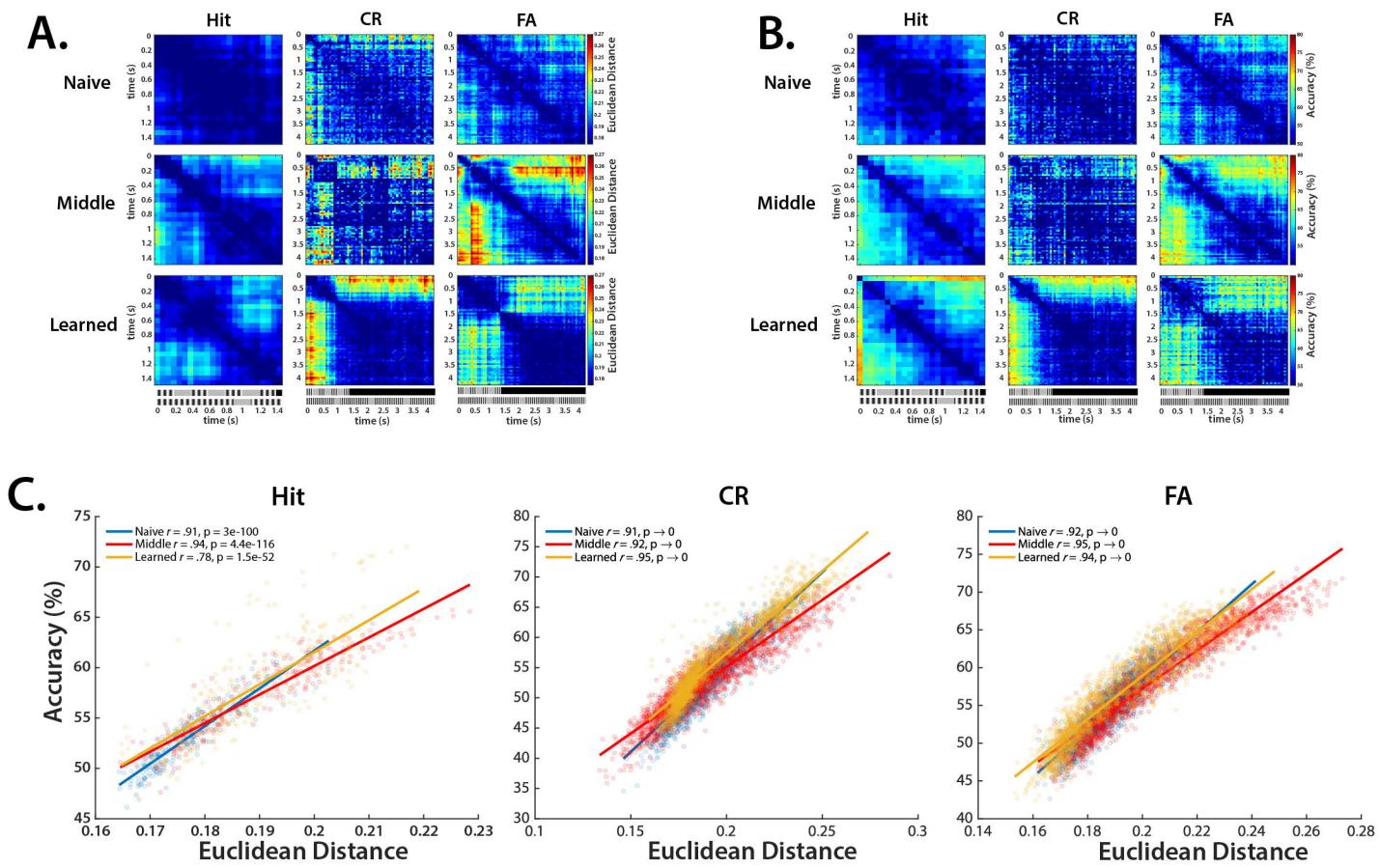


FIGURE 11

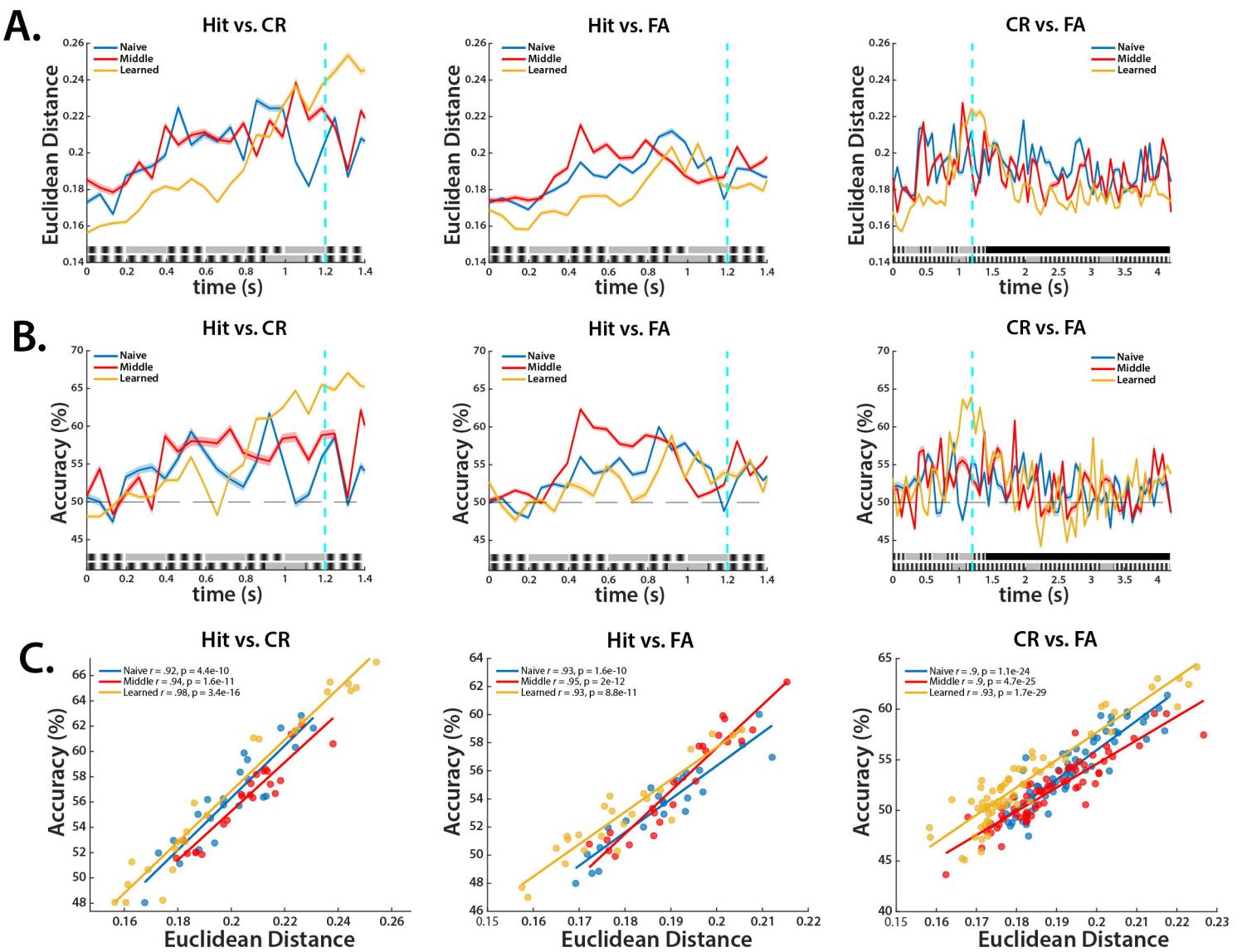


FIGURE 12