bioRxiv preprint doi: https://doi.org/10.1101/2024.01.05.574126; this version posted January 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Temporal information of subsecond sensory stimuli in primary visual cortex is encoded via

high dimensional population vectors.

Abbreviated title: Temporal encoding through neural trajectories.

Authors; Sam Post!, William Mol?, Noorhan Rahmatullah?, and Anubhuti Goel*%*

Affiliations: *Neuroscience Graduate Program, UC Riverside, CA; “Department of Psychology,
UC Riverside, CA.

* Co-corresponding authors. Email: anubhuti.goel @ucr.edu

Key words. temporal encoding, sensory discrimination, calcium imaging, population vector,

timing, high dimensional, layer 2/3, two-photon, visual cortex.

45 Pages; 12 Figures.

Word count

Discussion: 1386

Abstract; 192

Introduction: 644
ACKNOWLEDGEMENTS

We thank Bart Kats for help with using the Nautilus clusters for running the machine

learners.

Competing inter ests

The authors declare no competing interests.


https://doi.org/10.1101/2024.01.05.574126
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.05.574126; this version posted January 5, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

WN -

10

11

12

13

14

15

16

17

available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

Whether in music, language, baking, or memory, our experience of theworld is
fundamentally linked to time. However, it isunclear how temporal information is encoded,
particularly in the range of milliseconds to seconds. Temporal processing at this scaleiscritical
to prediction and survival, such asin a prey anticipating not only where a charging predator will
go but also when the predator will arrive at that location. Several models of timing have been
proposed that suggest that either timeis encoded intrinsically in the dynamics of a network or
that timeis encoded by mechanisms that are explicitly dedicated to temporal processing. To
determine how temporal information is encoded, we recorded neural activity in primary visual
cortex (V1) as mice (male and female) performed a goal directed sensory discrimination task, in
which patterns of subsecond stimuli differed only in their temporal profiles. We found that
temporal information was encoded in the changing population vector of the network and that the
space between these vectors was maximized in learned sessions. Our results suggest that
temporal information in the subsecond range is encoded intrinsically and does not rely upon

specialized timing mechanisms.
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SIGNIFICANCE STATEMENT

Our experience of the world is fundamentally linked to time, but it is unclear how
temporal information is encoded, particularly in the range of milliseconds to seconds. Using a
sensory discrimination task in which patterns of subsecond stimuli differed in their temporal
profiles, we found that primary visual cortex encodes temporal information via the changing
population vector of the network. As temporal processing via population encoding has been
shown to rely on inhibitory activity in computational models, our results may provide insight
into temporal processing deficits in disorders such as autism spectrum disorder in which thereis
inhibitory-excitatory imbalance. Furthermore, our results may underlie processing of higher-

order sensory stimuli, such as language, that are characterized by complex temporal sequences.
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INTRODUCTION

Our experience of the world is fundamentally linked to time. We rely upon its even
structure and passage and are as a result, able to make predictions about the future. We anticipate
winter following autumn, and we know that the sun will set and then rise again. When we are
driving, we expect ared light to follow ayellow, and a green light to follow ared. The structure
of these eventsis sequential, which is not inherently connected with time, but within each
sequence thereis atemporal dimension. For instance, we decide to press the brake or the gas
pedal based on our estimation of the duration of the yellow light. And we would be quite
concerned if one day the sun rose ten minutes after setting, or perhapsif night spontaneously
stretched out for several years.

Neuroscience has made great progress in elucidating how sensory and motor content are
encoded, whether in the present, such as during stimulus discrimination, or in the past, such asin
memory encoding. Time s role in these encoding schemes has been largely overlooked however,
which may simply be the result of itsubiquity. Thereis no sensory organ that measures time,
though in each sensory modality timeis present. This realization then begs the question of how
time is encoded: might it be encoded intrinsically within each sensory modality, or isit encoded
by higher order mechanisms specificaly dedicated to it?

Increasingly, evidence pointsto a variety of mechanisms, and these largely depend upon
the scale of an interval. On the order of days, transcriptional feedback loopsin the
suprachiasmatic nucleus are responsible (Mauk & Buonomano, 2004). On the order of minutes,
corticostriatal loops mediated by dopaminergic activity are the likely mechanism (Mauk &
Buonomano, 2004). However, on the order of seconds and milliseconds, the mechanisms of

temporal encoding remain unclear and widely debated.
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The importance of timing at this scaleis acutely linked to prediction and survival. A
boxer anticipates at what moment to dip their opponent’s punch, and a prey watching a charging
predator must predict not only where a predator will go, but also at what moment the predator
arrives at that location. However, temporal encoding at this scale is not ssmply limited to interval
timing (i.e. the duration of a stimulus, or the duration between two stimuli) like in these
examples, but undergirds an array of ssmple to complex phenomena. Indeed, temporality is
endemic to highly complex stimuli such as music, Morse code, and language, in which meaning
isintrinsically derived from temporal structure.

Several models of timing at this scale have been proposed that largely lieon a
dedicacated to intrinsic axis (Fig. 1), but it remains to be determined which accounts best for
temporal encoding of sensory stimuli. Here, we investigate how subsecond temporal information
isencoded in V1 in agoal directed sensory discrimination task, in which temporal information
exclusively differentiates stimuli. We previously showed that mice become experts at the task
and that changes in V1 dynamics accompany expert performance in the learned session (Post et
al., 2023). In this paper, we show the evolution of neural dynamics through learning and test
whether dedicated or intrinsic mechanisms are employed in temporal encoding of sensory
stimuli. We find that temporal information is encoded in the changing population vector, i.e.
trajectory, of the network through high dimensional space. This finding evinces a prominent
intrinsic model of timing, the state dependent network model. Additonally, we find that neural
activity which may be representative of dedicated models of timing, namely ramping and
oscillatory models, is no more representative of temporal information than non-specialized
activity and isin fact an aspect of the changing population vector in state space. Our results add
to agrowing body of literature which suggests that temporal information isintrinsically encoded

in the processing of sensory stimuli.
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78 MATERIALSAND METHODS

79

80 Experimental Animals

81

82 All experiments followed the U.S. National Institutes of Health guidelines for animal

83  research, under animal use protocols approved by the Chancellor's Animal Research Committee

84  and Office for Animal Research Oversight at the University of California, Riverside (ARC

85  #2022-0022). We used male and femae FVB.129P2 WT mice (JAX line 004828). All mice

86  werehoused in avivarium with a12/12 h light/dark cycle and experiments were performed

87  duringthelight cycle. The FVB background was chosen because of its robust breeding. 4 males

88 and 1 femalewere used.

89

90

91 Go/No-go temporal pattern sensory discrimination (TPSD) task for head restrained mice

gg Awake, head-restrained young adult mice (2-4 months) were allowed to run on an air-

94  suspended polystyrene ball while performing the task in our custom built rig (Fig. 2B). Prior to

95 performing the task, the animals were subjected to handling, habituation, and pretrial phases.

96  After recovery from headbar/cranial window surgery, mice were handled gently for 5 min every

97  day, until they were comfortable with the experimenter and would willingly transfer from one

98 hand to the other to eat sunflower seeds. This was followed by water deprivation (giving mice a

99 rationed supply of water once per day) and habituation to the behavior rig. During habituation,
100  mice were head-restrained and acclimated to the enclosed sound-proof chamber and allowed to
101  runfredly on the 8 cm polystyrene ball. Eventually, mice were introduced to the lickport that
102  dispensed water (3-4 uL) and recorded licking (custom-built at the UCLA electronics shop),
103 followed by the audio-visual stimuli. This was repeated for 10 min per session for 3 days.

104  Starting water deprivation prior to pretrials motivated the miceto lick (Guo et al., 2014). After

105 habituation and ~15% weight loss, mice started the pretrial phase of the training. During
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106  pretrials, mice were shown the Pref stimulus only with no punishment time associated with

107  incorrect responses. Thiswas done in order to teach the mice the task structure and encourage
108 themiceto lick and to remain motivated. Thefirst day consisted of 150 trials and subsequent
109 daysof 250. Thereward, asin the TPSD main task, was dispensed at 1.2 s and remained

110 availableto the miceuntil 2 s, at which time it was sucked away by a vacuum. The mice were
111  required to learn to associate a water reward soon after the stimulus was presented and that there
112 was no water reward in the inter-trial interval (4 s period between trials). Initially during pre-
113 trids, the experimenter pipetted small drops of water onto to the lickport to coax the miceto lick.
114 Oncethe mice learned this and licked with 80% efficiency, they were advanced to the go/no-go
115 task.

116 The TPSD task is a go/no-go task composed of two sequences of synchronous
117  audio-visual stimuli (Fig. 2A). Visual stimuli are 90° drifting sinusoidal gratings and are

118 accompanied by a synchronous 5 kHz tone at 80 dB. Within each sequence, four stimuli are

119 presented that differ only in temporality. Our preferred sequence is composed of 4 stimuli of 200
120  ms; our nonpreferred sequence is composed of 4 stimuli of 900 ms. Each set of the sequencesis
121  separated by a 200 ms period of silence accompanied by a grey screen. A water reward is

122  dispensed at 1.2 sand remains available until 2 s, at which timeiit is sucked away by a vacuum.
123 A custom built lickport (UCLA engineering) dispensed water, vacuumed it, and recorded licking
124 viabreaksin aninfrared (IR) beam. Breaks were recorded at 250 Hz. The window in which

125 mice'slicking count toward aresponseis 1 to 2 sfrom stimulus onset in both conditions. A time
126  out period (6.5 to 8 s), in which the monitor shows a black screen and thereis silence, is

127  indtituted if the mouse incorrectly responds. The first session was composed of 250 trials, and

128  subsequent days of 350. Depending on the stimulus presented, the animal’ s behavioral response
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129  was characterized as“Hit”, “Miss’, “Correct Rgection” (CR) or “False Alarm” (FA) (Fig. 2A).
130  Anincorrect response resulted in the time-out period.

131 To expedite learning, we set the ratio of preferred to nonpreferred stimuli to 70:30 aswe
132  found that mice are more proneto licking (providing a‘yes response) than to inhibiting licking
133  (providing a‘no’ response). We additionally instituted an individualized lick rate threshold to
134  encourage learning as we found that lick rates differed significantly from mouse to mouse.

135 Licking thresholds were calculated from lick rates for mice and shows no significant correlation
136  between licking thresholds and learning rates (Pearson’sr, r = .4684, p = -.3012). Thisindicates
137  that the individualized lick rate threshold was used as alearning aid to complete the task and did
138 not affect their learning rates or their reliance on the stimulus for task completion. To confirm
139 that micelearned rather than took advantage of the biased 70:30 preferred to nonpreferred trial
140 ratio, wetested mice for 2 additional sessions using a 60:40 ratio of preferred to nonpreferred.
141  Weretain agreater number of preferred stimuli as the total time mice encounter preferred stimuli
142  islessthan that of encountering nonpreferred stimuli within a60:40 trial session (294 svs588 s
143  respectively). Following, mice performed a control task, during which visual and auditory

144 stimuli were not presented. Our data shows that mice did not retain learned performance,

145 indicating that they relied on the sensory stimuli for expert performance (see Post et al. (2023)).
146  Custom-written routines and Psychtoolbox in MATLAB were used to present the visual stimuli,
147  totrigger the lickport to dispense and retract water, and to acquire data.

148

149

150

151 Cranial window surgery

152

153 Craniotomies were performed at 6-8 weeks. Prior to surgery, mice were given

154  dexamethasone (0.2 mg/kg) and carprofen (5 mg/kg) intraperitoneally and subcutaneously
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155  respectively. Mice were anesthetized with isoflurane (5% induction, 1.5-2% maintenance via
156 nose cone) and placed in a stereotaxic frame. Under sterile conditions, a 4.5 mm diameter

157  craniotomy was drilled over the right primary visual cortex (V1) and covered with a5 mm glass
158 coverdip (Fig. 2C). Before securing the cranial window with a coverdip, we injected 60-100 nl
159  of pGP-AAV-syn-jGCaMP7f-WPRE. A custom U-shaped aluminum bar was attached to the
160  skull with dental cement to head restrain the animal during behavior and calcium imaging. For

161 two days following surgery, mice were given dexamethasone (0.2 mg/kg) daily.

162

163

164

165 Viral constructs

166 pGP-AAV -syn-j GCaM P7f-WPRE were purchased from Addgene and diluted to a

167  working titer of 2e™ with 1% filtered Fast Green FCF dye (Fisher Scientific).

168

169

170

171  In-vivo two photon calcium imaging

172

173 Calcium imaging was performed on a Scientifica 2-photon microscope equipped with a

174  Chameleon Ultrall Ti:sapphire laser (Coherent), resonant scanning mirrors (Cambridge

175 Technologies), a 20X objective (1.05 NA, Olympus), multialkali photmultiplier tubes (R3896,
176  Hamamatsu) and Scanlmage software(Pologruto et al., 2003). Stimulus evoked responses of
177 L2/3 neuronsin V1 wererecorded at 15.2 Hz in 1 field of view. Each field of view (FOV)

178 consisted of amean of 95.2 pyramidal cells (sd = 38.3). In each animal, imaging was performed
179  at 150-250 um.

180

181

182

183 Dataanalysis

184
185 Data analysisfor calciumimaging.
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186
187 Calcium-imaging data were analyzed using suite2p (Pachitariu et al., 2017) and custom-

188  written MATLAB routines. All data was then processed using suite2p for image registration,

189 ROl detection, cell labeling, and calcium signal extraction with neuropil correction. Once suite2p
190 had performed arigid and non-rigid registration and then detected regions-of-interest (ROIS)

191 using aclassifier, we manually selected cells using visual inspection of ROIs and fluorescence
192  tracesto ensure the cells were healthy. We then used the deconvolved spikes determined by

193  suite2p in our subsequent analysis that used custom-written MATLAB scripts.

194

195

196  Movement-related cell removal

197

198 Because movement information has increasingly been found in sensory areas, it was

199 important that we remove any artefacts of movement (Zaghaet al., 2022), particularly licking-
200 related activity which would not index sensory processing. We thusidentified any cells that were
201  associated with lick movements and removed them from our neural data (Post et al., 2023). We
202  additionally performed alocomotion analysis using video of the mice running. We correlated

203  locomtion with neural activity over thetrial periods and found no correlations (data not shown).

204

205

206  Lick Decoding

207

208 A support vector machine (SVM) was used to predict Pref or NP stimuli from licking

209 data. A radia basis function was used as the kernel. The fitcsvm function in MATLAB was used.
210  80% of data was used to train the SVM and 20% to test. Per time bin (.067 s), 1000 machines
211  were generated per mouse which resulted in 1000 accuracy outputs per mouse. Data were then
212 group averaged and plotted with 95% CI. Shuffled data for controls (not shown) was also tested

213 and found to be at chance levels and is available upon request.
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214

215

216

217  Network divergence of network state over trials periods

ﬁg To determine the degree of network divergence across time within each trial outcome, we
220 computed how far apart network states were over time using bootstrapped Euclidean distances
221  between network positionsin which each neuron in a given population constituted a dimension,
222  eg. Fig 3B. These values were then normalized by dividing the Euclidean distance by the square
223  root of the total number of dimensions. A random sample of 12 trials was selected and averaged.
224  Wedecided to use 12 trials as a sample as this was the smallest value that allowed usto reliably
225  generate normal distributions for the bootstrap across mice. 1000 means were computed for each
226  time point per trial outcome per mouse per session. This resulted in each mouse having either a
227  23x23x1000 in Hit trials (23 time steps due to our sampling rate of 15.2 Hz over 1.4 s) or a

228  65x65x1000 matrix in CR and FA trials (65 time steps due to our sampling rate of 15.2 Hz over

229 4.2 s). Matrices were then averaged along the third dimension within mice, then averaged across

230 mice per trial outcome per session.

231

232

233  Decoding of network state over trial periods

234

235 To determine how similar or different the dynamics of the network was over thetrial

236  periods, we used aMultinomial Naive Bayes classifier to determine whether agiventimebin’'s
237  dynamic was discriminable from another timebin’s, e.g. Fig. 3C. We used the fitcnb function in
238 MATLAB. We used 80% of datafor training and 20% for testing. We performed 1000 iterations
239 for theentiretrial period per mouse. This generated a 23x23x1000 matrix of accuracy valuesin

240  the Pref conditions and a 65x65x1000 matrix in the NP conditions per mouse. Accuracy values

10
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241  werethen averaged to generate a 23x23 or 65x65 matrix. Shuffled data for controls (not shown)
242  was aso tested and found to be at chance levels and is available upon request.

243

244

245

246

247  Network divergence between trial outcomes

gig To determine the degree of network divergence across time within between trial

250 outcomes, we computed how far apart network states were between trial outcomes over thetrial
251  periods using bootstrapped Euclidean distances between network positions in which each neuron
252  inagiven population constituted adimension, e.g. Fig 4A. These values were then normalized
253 by dividing the Euclidean distance by the square root of the total number of dimensions. A

254  random sample of 12 trials was selected and averaged. We decided to use 12 trials as a sample as
255  thiswasthe smallest value that allowed usto reliably generate normal distributions for the

256  bootstrap across mice. 1000 means were computed for each time point per trial outcome per

257  mouse per session. This resulted in each mouse having either a 23x1000 in Hit trialsor a

258  65x1000 matrix in CR and FA trials. Matrices were then averaged as the grand mean within each
259  session and plotted with 95% CI.

260

261

262

263  Network Decoding and Feature Selection in Trial Outcome Prediction

ggg Multinomial Naive Bayes classifiers were used to predict trial outcome from neural data
266  using thefitcnb functionin MATLAB. If decoding occurred with a selected group of cells (e.g.
267  Fig. 6B, network group), aforward feature selection algorithm was employed to identify a subset
268  of the most informative cells using a5-fold CV partition. These cells then composed the feature

269  gpace. Feature selection was employed using the sequentialfs function in MATLAB. Thiswas

11
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performed 1000 times per cell group per time bin per mouse. If all cellsin the network were
used, no CV partition was employed, and 1000 decoders were generated per time bin per mouse,
e.g. Fig. 4B. 80% of the data was used in training and 20% in testing. Averages were then
computed using the group mean and plotted with 95% CI. Shuffled data for controls (not shown)

was al so tested and found to be at chance levels and is available upon request.

Correlation of Network Divergence and Decoder

Correlations between decoder accuracy and Euclidean distancein trial outcomes were
computed by correlating the mean accuracy and mean Euclidean distance using the Pearson
correlation coefficient.

To calculate correlations of network divergence and decoding over trial periods, we used
only the values above and below the diagonal, as the Euclidean distance measure yielded a value
of 0 in distance between states of the same time. Additionally, because the Euclidean distance
values were mirrored along the diagonal, we did not wish to bias the correlations by using
Euclidean distance values twice. However, because the Naive Bayes classifier was trained to
discriminate network states for every moment of network activity, there were slight differences
in accuracy above and below the diagonal. We therefore collapsed each network divergence
matrix and each decoder matrix into 2 arrays, one containing values above the diagonal and the
other below, and then averaged the arrays. These arrays were then correlated. Matricesin the
Pref trial period (e.g. Hit trials) were collapsed from 23x23 matrices to two arrays of 253 values
and then averaged. Matricesin the NP trial period (e.g. CR trials) were collapsed from 65x65

matrices to two arrays of 2080 values and then averaged.

12
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296 Correlations between network divergence between trial outcomes and decoding of trial
297  outcomes was computed using the grand mean of each curve.

298

299

300

301  Single Unit Decoding

302

303 Each unit was decoded using Multinomia Naive Bayes classifiers. 80% of data was used
304 totrainthe classifier and 20% to test. Per cell per time bin (.067 s), 1000 machines were

305 generated per mouse which resulted in 1000 accuracy outputs per cell per mouse. The fitcnb
306 functionin MATLAB was used.

307 To plot accuracy curves over the trial period for a given number of cells (e.g. Fig. 6A),
308  we selected the most accurate individual cell outputs per time bin per trial per mouse and then
309 averaged them. For instance, at a given time bin in the 4 cell accuracy group, we would take the
310 four cellsfor agiven mouse that are most accurate within atrial and average the accuracies. This
311 leadsto 1000 accuracy values per mouse per time bin. These values were then group averaged
312  and plotted with 95% CI.

313 Shuffled data for controls (not shown) was also tested and found to be at chance levels
314 andisavailable upon request.

315

316

317

318

319 Oscillatory Cell Identification

320

321 We averaged activity of each cell in Pref and NP trials separately within a session. We

322  then performed a Fast Fourier Transform on the average activity and normalized the spectral

323  density function. If acell’s spectral density function had only one peak of power above 50%, we

13
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324  considered it an oscillatory cell. Cellsidentified in this manner were included if they reached this

325 criterion in either or both Pref or NP trials.

326

327

328 Ramping Cell Identification

329

330 We averaged activity of each cell in Pref and NP trials separately within a session. We

331 then normalized activity and selected cells that had only one peak of activity above 50%. If a cell
332  reached thiscriterion, it was considered a ramping cell. Céllsidentified in this manner were

333 included if they reached this criterion in either or both Pref or NP trials.

334

335

336  Machine Learning Pipeline

337

338 All machine learning was performed using the Nautilus cluster, supported in part by

339 National Science Foundation (NSF) awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-
340 1826967, OAC-2112167, CNS-2100237, CNS-2120019, the University of California Office of
341 thePresident, and the University of California San Diego's California Institute for

342  Telecommunications and Information Technology/Qualcomm Institute. Thanksto CENIC for the
343  100Gbps networks.

344

345

346

347

348 Statistical analyses

349

350 All time series data were plotted as the mean with 95% Cl. Comparisons between the
351 fraction of oscillatory and ramping cells across sessions were done using Kruskal-Wallis tests,

352  following Lilliefors test of normality.

353
354
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Exclusion of mice

In the naive session, 2 mice were excluded from analyses of CR trials asthere were few
trials (10 and 5). In the middle session, 1 mouse was excluded from all analyses as the only
imaging data collected was in naive and learned sessions; 1 other mouse was excluded from
analyses of CR trials asthere were few trials (8). In the learned session, 1 mouse was excluded

from analyses of FA trials asthere were few trials (6).

Data availability
All the analyzed data reported in this study is available from the corresponding author
upon request. Additionally, control data for machine learners not shown here is available upon

request.

Code availability

All code used in this manuscript is available from the corresponding author upon request.
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380 RESULTS

381

382 Changesin V1 neural dynamics accompany learning in the Temporal Pattern Sensory

383 Discrimination Task (TPSD)

384 We developed a go/no-go task wherein audio-visual patterns were presented to water
385  deprived, awake-behaving mice, as previously described in Post et al. (2023). Stimuli were

386  patterns of 4 synchronous audio-visua stimuli (Fig. 2A). The visual stimulus was 90° drifting
387  gratings and the auditory was a5 kHz tone at 80 dB. Preferred (Pref) and nonpreferred (NP)
388  stimuli differed only in their durations, therefore making TPSD explicitly atemporal

389  discrimination task. A water reward was delivered at 1.2 sfrom stimulus onset in the Pref

390 condition. The licking window was 1 to 2 s from stimulus onset in both Pref and NP conditions.
391 Micewere placed on a suspended polysterene ball to allow for free movement during the task to
392  reduce stressors and increase performance (Fig. 2B) (Guo et al., 2014).

393 We performed a cranial window surgery in micein V1 and injected syn-jGCaM P7f (Fig.
394  2C). Upon expression of GCaMP, we had mice perform the TPSD task while simultaneously
395  recording neural activity in V1, L2/3 using 2-photon Ca?* imaging (Fig. 2D). As detailed in Post
396 et a. (2023), micelearned the task across sessions, as assessed through a licking decoder (Fig.
397  2E), and exhibited changesin V1 dynamics concomitant with learned performance (Fig. 2F). In
398  our previous paper we focused on comparing the neural dynamics between naive and learned
399 sessions. Here weinclude neural dynamics changes that occur in middle sessionsto assess the
400 role of multiple timing models through the learning process. Using this data, we perform an array
401  of analysesto granularly assess the computational mechanisms of subsecond sensory temporal
402  encoding with respect to prominent theoretical models.

403

404
405
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406  Network divergenceindexeslearning and supportsthe state dependent networ k model

38; A prominent modd of timing, the state depedent network model (Fig. 1D), suggest that
409 temporal information is encoded in the changing population vector of a network over a stimulus
410  duration (Mauk & Buonomano, 2004). As sensory information intrinsically carries both spatial
411 and and temporal features, a network’s state will evolve through time based upon its synaptic
412  weights, short-term plasticity, and itsintrinsic time constants (Buonomano, 2000; Buonomano &
413 Maass, 2009). This leadsto trgjectories of the network that are dependent upon a stimulus

414  spatial and temporal features.

415 If temporal information is encoded within the changing population vector of a network as
416 predicted, it follows that the degree of divergence of the population vector would correspond to
417  thedegree of behavioral performancein the TPSD task. Divergence would occur within a

418  stimulus, to differentiate one moment in time from another, and between stimuli with different
419 temporal properties. If thereislittle divergence over time, a stimulus' s temporal properties are
420 not encoded, and if there islittle divergence between Pref and NP stimuli, behavioral output

421  would be the samein both conditions. Vice versg, if there is large divergence of the network over
422  the stimulus period, the stimulus’'s temporal properties are encoded, and if thereislarge

423  divergence between Pref and NP stimuli, behavioral output would differ.

424 To test this prediction, we calculated the Euclidean distance of the network as a measure
425  of network divergence across trial periods (Fig. 3A,B). We found that there was an evolution of
426  network divergence across learning in Hit, CR, and FA trials (Misstrials were not included as
427  there weretoo few samples). In learned sessions, al threetrial outcomes displayed increased
428  network divergence from naive sessions. In learned session CR and FA trials, the greatest

429  divergence was seen between the Pref stimulus period (0-1.4 s) and the remaining NP stimulus

430 period, which suggests that mice attended only to the Pref stimulus period regardless of stimulus.
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431 However, FA trials exhibited considerably less network divergence than CR trials did in the Pref
432  stimulus period, which may explain why mice responded with a go responsein FA trials and
433  withheld in CR trials—that is, temporal information of the stimulus was not accurately encoded
434 inFA trials.

435 If network divergence was the computational mechanism of temporal encoding, we

436  predicted that a neural decoder would accurately discriminate network activity over thetrial
437  period only when network divergence was high, and that discriminability of network activity
438  would increase with learning. We employed a Naive Bayes classifier to discriminate network
439  activity over trial periodsin naive, middle, and learned sessions and found that discriminability
440  of network activity increased with behavioral performance (Fig. 3C). The performance of the
441  decoder was highly correlated with network divergence across sessions and trial outcomes (Fig.
442  3D). Notably, the Naive Bayes decoder predicts outcomes through probabilistic learning, a

443  manner of classification distinct from the geometric solutions found through calculation of

444  Euclidean distance. Because each method solves these problems differently but arrives at highly
445  correlated solutions, it is exceedingly likely that state-space trajectories underlie temporal

446  encodingin V1.

447 We next tested the hypothesis that network divergence between stimuli would predict
448  trial outcome and that the degree of divergence would index behavioral performance.

449  Specifically, we predicted that Hit and CR trials and CR and FA trials would diverge with

450 learning, but that Hit and FA trials would not. Indeed, we found that across learning, Hit and CR
451 trialsand CR and FA trials diverged, beginning in the middle sessions and increasing in learned
452  sessions (Fig. 4A). Hit and FA trials remained non-divergent throughout naive, middle, and

453  learned sessions (Fig. 4A).
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454 We hypothesized as before that network divergence was correlated with decodability. We
455  used Naive Bayes classifiers to discriminate trial outcomes over the stimulus periods and found
456  that decodability increased with learning and that Hit and CR trials and CR and FA trials were
457  highly discriminable while Hit and FA trials remained at similarly low levels of discriminability
458  across sessions (Fig. 4B). We correlated network divergence with the classifiers' performance
459  and found that across sessions and trial outcomes there were high correlations, evincing again
460 that temporal encoding isachieved through high dimensional neural tragjectories (Fig. 4C).

461

462

463

464 Learning on the TPSD task is supported by encoding temporal information at the level of

465 the network rather than at the single unit level

466
467 Although our results provide strong evidence that temporal information was encoded in

468  network trajectories, other mechanisms such as changesin single cell (single unit) activity could
469  account for temporal encoding. Two prominent models of timing, ramping and synfire models,
470 may rely on single unit activity to generate temporal information. Indeed, ramping activity has
471  beenfoundinV1inreward timing neurons and neurons encoding sensory expectations

472  (Chubykin et a., 2013; Gavornik & Bear, 2014b, 2014a; Monk et al., 2020; Shuler & Bear,

473 2006).

474 To test whether our mice relied on single cell activity to encode temporal information in
475  the TPSD task, we used a decoder to predict trial outcomes from neural activity in naive, middle,
476  and learned sessions for each cell and then sorted units by when in the trial period they were
477  most accurate, akin to spike sorted heatmaps (Fig. 5). We found that predictability was sparsely
478  tiled across Hit vs. CR, Hit vs. FA, and CR vs. FA trialsin naive sessions. Accuracy became less

479  sparse around the water reward period in middle sessionsin Hit vs. CR trials and CR vs. FA
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480 trials, but not in Hit vs. FA trials. This profile was broadened in learned sessions in which

481  accuracy values were network widein Hit vs. CR trialsand CR vs. FA trials around the water
482  reward and prior to it. Hit vs. FA accuracy values remained sparse across the network in learned
483  sessions. These results suggest that learning recruits the entire network as opposed to encoding
484  timeat the single unit level, such as in the manner of synfire chain or ramping models.

485 To compare whether temporal information was better encoded at the network or single
486  unit level, we compared the decoding accuracies of the single unit regime to decoding accuracies
487  of anetwork regime. To do thiswe, we first decoded network activity between trial outcomesin
488  which agiven number of cells composed the feature space. We iteratively did thisin groups of 1
489  to 80 cels by using aforward feature selection algorithm to find the most informative cells

490  within anetwork for agiven point in time. We then iteratively took the most predictive cells for
491 agiven time from the single unit decoding regimein Fig. 5 and averaged their accuracy scores
492  (see Methods). We then compared network and single unit decodability.

493 We found that decoding Hit from CR trials (Fig. 6A) and CR from FA trias (Fig. 6C)
494  increased in accuracy across mice's learning in the network condition, but decreased in accuracy
495  across sessionsin the single unit condition. Decoding Hit from FA trials (Fig. 6B) increased in
496  accuracy across sessionsin the single unit condition and remained at similar accuracy in the

497  network condition. Because neural decoding accuracy was directly proportional to behavioral
498  performance through learning in the network condition and was inversely proportional to

499 learning in the single unit condition, we conclude that temporal information is encoded at the
500 network level as opposed to the single unit level.

501

502

503 Oscillatory activity does not account for temporal encoding in TPSD task
504
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505 Thefirst models of timing proposed that oscillatory activity was responsible for temporal
506 encoding. In these models, it was predicted that a pacemaker module, much like a metronome,
507 regularly outputs pulses to a downstream accumulator where they are then counted (Creelman,
508 1962; Gibbon, 1977; Gibbon et al., 1984). Subsequent models predict that a collection of

509 oscillators output to downstream targets, such as striatum, where aggregated oscillatory activity
510 isdecoded (Fig. 1A) (Buhus & Meck, 2005; Matell & Meck, 2004; van Rijn et a., 2014).

511  Although evidence of oscillators has not been found in V1, it is concelvable that they are present
512 and areresponsible for temporal encoding and accurate discrimination of Pref and NP stimuli in
513 the TPSD task, particularly as our stimuli were periodic.

514 To test whether oscillatory models accounted for temporal encodingin V1, we first

515 identified any putative oscillatory cellsin our recordings. We did not find a significant difference
516 inthefraction of oscillatory cellsidentified across sessions (Fig. 7A). Nevertheless, we

517 hypothesized that if oscillators were responsible for temporal encoding, oscillatory activity

518 would better predict correct responses, particularly in learned sessions, than non-oscillatory

519 activity would. To test this, we decoded Hit from CR trial outcomes in oscillatory (Fig. 7B) and
520 non-oscillatory cell populationsin the learned session (Fig. 7C). Because there were few

521 oscillatory cells found, we used afeature selection algorithm to iteratively select groups of cells
522  that were most informative in both populations so asto avoid any biasin differencesin

523 dimensionality. We found comparable levels of decodability in oscillatory and non-oscillatory
524  populations, suggesting that temporal information is not exclusively encoded by oscillatory

525 activity, but isin fact network wide.

526 We therefore hypothesized that oscillatory activity intrinsically emerged from network
527  activity and was an aspect of the network’ s state space trajectory. To determine whether thiswas

528 the case, we calculated the network divergence of the oscillatory population over the trial period

21


https://doi.org/10.1101/2024.01.05.574126
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.05.574126; this version posted January 5, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

529
530
531
532
533
534
535
536
537
538
539
540
941
542
543
544
945
546
547
548
549
550
551
552
553

554

available under aCC-BY-NC-ND 4.0 International license.

(Fig. 8A) and then decoded the oscillatory population activity over thetrial period (Fig. 8B), and
then correlated these values (Fig. 8C).We additionally calculated network divergence of the
oscillatory population between trial outcomes (Fig. 9A) and then decoded neural activity
between trial outcomes (Fig. 9B) and then correlated these values (Fig. 9C). We indeed found
high correlations across sessions and trial outcomes, signifying that the oscillatory population

was in fact operating as a part of the network tragjectory in high dimensional state space.

Ramping activity does not account for temporal encoding in TPSD task

As with oscillatory cells, we sought to test whether ramping activity could account for
temporal encoding in the TPSD task (Fig. 1B). Unlike oscillators, ramping activity has been
found in V1 previously (Chubykin et al., 2013; Monk et al., 2020; Namboodiri €t al., 2015;
Shuler & Bear, 2006) so it may have been the case that ramping activity better accounted for
temporal learning than did network divergence.

Wefirst identified any cells with ramping-like activity and found that across learning
there was not a significant difference in the fraction of ramping cellsin a given population (Fig.
10A). To test whether ramping cells exhibited more informative temporal activity, we used a
decoder with afeature selection algorithm to discriminate Hit from CR trialsin learned sessions
in ramping and non-ramping populations. We predicted that if temporal information was
encoded in ramping activity, decodability in the ramping population would be greater than in the
non-ramping population. We iteratively selected groups of cells from each population over the
trial period to avoid biases of greater dimensionality in the non-ramping population.

We found that ramping and non-ramping populations encoded temporal information

comparably (Fig. 10B-C). We therefore hypothesized that, as with oscillatory activity, ramping
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555  activity intrinsically emerged from network activity and was an aspect of the network’s state
556  gpacetragjectory. To determine whether this was the case, we calculated the network divergence
557  of the ramping population over thetrial period (Fig. 11A) and decoded the ramping popul ation
558 activity over thetria period (Fig. 11B), and then correlated these values (Fig. 11C). We

559  additionally calculated network divergence of the ramping population between trial outcomes
560 (Fig. 12A) and then decoded neural activity between trial outcomes (Fig. 12B) and correlated
561 thesevalues (Fig. 12C). We consistently found high correlations across sessions and trial

562  outcomes, signifying that the ramping population was likely was an aspect of the network

563 tragectory through high dimensional state space.

564
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565

566

567

568

569

570

571

572 DISCUSSION

573

574 Though time as a dimension in stimulus encoding has been largely overlooked, it isan

575 integral component. The notes of a song, for instance, can be played in perfect sequence, but if
576 thetemporal structure between them is aberrant and chaotic, the song loses its identity. Prey-
577  predator interactions perhaps best capture how critical temporal perception is: not only must a
578 prey or predator anticipate where its counterpart will be, but when. Thelion is not successful if it
579  occupiesthelocation of its prey from 200 ms ago, or 1 second from where the prey will bein the
580 future. The predator must occupy the same space at the same time as its prey, and this process
581 necessarily entails encoding stimuli from the present and the immediate past in order to

582  anticipate events of the future.

583 Several models of timing at this scale — milliseconds to seconds — have been proposed
584 that largely can be construed as either dedicated or intrinsic models. We sought to test which of
585 these models best captures neural activity in V1 in mice performing atemporal discrimination
586 task in which audiovisual stimuli differed only in their temporal information. We found

587  considerable evidence that temporal information in the millisecond range is encoded by high
588 dimensional neural trajectories. We examined neural data across sessions and found that in

589 learned sessions, the network’ s activity was far more divergent than in naive sessions. Further,
590 between correct trial outcomes, we found that this divergence was maximized. This network

591 divergence was highly correlated with a number of decoding schemes we used, which suggests

592  that the decoders independently recognized and exploited network divergence as an informative
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593  coding schema. Even among other proposed models of timing, namely oscillatory and ramping
594  models, we found that network divergence was highly correlated with decodability, implying that
595  thesetypes of activity were in fact aspects of the network divergence of the entire network as
506  opposed to specialized, dedicated mechanisms of timing.

597 Although V1 has historically been understood as extracting low-level spatial features
598 from visual information, recent evidence has suggested it processes temporal information as

599  waéll. Shuler and Bear (2006) found evidence of reward timing in V1. Gavornik and Bear (2014b)
600 later found that V1 encodes sequences of stimuli in atemporally-defined, predictive manner.

601  Spatiotemporal prediction has also been found in V1 in mice performing foraging tasksin virtual
602 reality (Fiser et al., 2016; Yu et al., 2022). Nevertheless, these findings did not explicitly test

603 temporal processing in a sensory discrimination task, and an outstanding question was how

604 temporal information was computationally encoded in V1. We tested this and found compelling
605 evidence that temporal processing in V1 follows the state dependent network model in which
606 temporal encoding occurs through the evolution of a network’s population vector in state space.
607  Notably, no one specialized group of cells contained greater temporal information than non-

608  specialized cdlls.

609 We found evidence of ramping activity, which accords with previous findings of reward
610 timingin V1. However, ramping activity associated with reward prediction is cholinergically
611 mediated, which may induce state changesin V1 but not changes in temporal processing of

612  stimuli per se (Chubykin et al., 2013; Shuler & Bear, 2006). Furthermore, we removed any cells
613  from our population that were associated with licking that may, as an artefact, have exhibited
614 ramping like activity. The remaining cells that exhibited ramping activity in our recordings likely
615 wererecruited by the network as thetrial period progressed in order to support the divergence of

616 network states. It has been found that orientation-selective cellsin V1 can shift their tuning
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617  curvesthrough leaning, and as only ~40% of V1 cells are ssimple cells (Cossdll et al., 2015;

618 Froudarakiset a., 2019; Kondo et al., 2016), the remaining population may have been

619 preferentialy recruited to support learning and push the network to different attractor basins.
620 We also found evidence of oscillatory activity, although in learned sessions, there were
621 only ahandful of oscillatory cells. Thiswas surprising as our stimuli were periodic. One may
622  suspect that activity in orientation selective cells tuned to our gratings would activatein a

623  periodic fashion, and indeed, average activity of the network supports this hypothesis (Post et al.,
624  2023). However, at the single unit level, thiswas not found to be the case. Instead, our results
625  suggest that temporal information was encoded through the evolution of population activity in
626  both oscillatory and non-oscillatory populations. Our results do not rule out the possibility of a
627  centralized oscillator however. 1t may be the case that V1 is reading out the activity of an

628  upstream oscillator as high dimensional trgjectories. Thiswould require the oscillator to receive
629 visual information from non-cortical areas and then project temporal information to V1 to be
630 reintegrated with spatial information. Biologically, this seems an unlikely mechanism however.
631 It has been shown that organotypic cortical slices are capable of “learning” a duration,
632  which suggests that intrinsic mechanisms can support subsecond temporal encoding (Goel &
633  Buonomano, 2016). In the dlices, polysynaptic activity increased in atemporally dependent

634  manner, and inhibition was suppressed at the learned duration. This suggests that a complex
635 interplay of recurrent excitation and feedforward inhibition can generate population activity that
636 evolvesover atrained period to represent elapsed time. In fact, it has been proposed that the
637 differing dynamics of temporal encoding in cortex and striatum are attributable to their

638  connectivity motifs— recurrent excitation in cortex leads to high dimensional trgjectories, and

639 recurrent inhibition in striatum leads to sparse, winner-take-all sequentiality (Bakhurin et al.,
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640 2017). This may be why we did not find evidence for sparse temporal encoding in V1 as

641 predicted by the synfire chain model.

642 Indeed, inhibition has been found to be critical in encoding temporal information in a
643  recurrent neural network model (Zhou et al., 2022). However, inhibitory activity is considerably
644 diverse, with GABAergic cels differing in firing profiles, baseline excitability, morphologies,
645 and preferencesin where to synapse. In the cortex, parvalbumin (PV), somatostatin (SST), and
646 vasointestinal peptide (VIP) cells are the primary inhibitory interneuron subtypes (Cardin, 2018;
647 Kullander & Topolnik, 2021), and their functional diversity can broaden the encoding space of a
648 network. In amode of acortical microcircuit, adjusting the synaptic weights of PV and SST
649 inhibitory interneurons onto Pyramidal (Pyr) cells generated an array of Pyr firing profilesina
650 temporally defined manner, which was attributed to differing short-term plasticity profiles of
651 eachcell type (Seay et a., 2020). Experimentally, SST activity has been found in motor cortex to
652  structure sequential activity in alearned motor task (Adler et a., 2019). Smilar to Goel and
653 Buonomano (2016), it was found that inhibitory activity viz. SST cells was suppressed through
654 learning and then returned to baseline following learning to structure network activity. Because
655 SST celsin L2/3 of cortex synapse preferentialy with Pyr dendritesin L1 (Urban-Ciecko &
656 Barth, 2016; Wu et al., 2023), SST cdlls through fine, dendritic computation may orchestrate
657 ensembles of Pyr activity in atemporally defined manner which leads to emergent network

658 trgectoriesover time.

659 Population vector encoding is exploited as a computational strategy across the brain,
660 possibly dueto the increased informational space available. However, in behaviors typically
661  associated with population encoding such as olfaction (Canto-Bustos et al., 2022; Oswald &
662  Urban, 2012), motor output (Georgopoulos et al., 1986; Georgopoulos & Carpenter, 2015), and

663 memory (Greweet al., 2017; Lee et a., 2023), temporality isimplicit, and it isunclear if a
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network can induce coherent population codes in a time depedent manner as the state dependent
network model proposes. In memory in particular, temporality isintegral, and it remains to be
determined if the Ssmultaneous activation of an ensemble or if sequential activation of a set of
ensembles encodes the content of a memory and its duration. Our results suggest that temporal
information can emerge through the sequential activation of ensembles, such that the network
state diverges across time. Notably, this network state divergence emerges through learning and
reliably indexestrial outcome throughout sessions.

Our findings add to a growing body of literature that supports the state dependent
network model of timing and finds that temporal information can be encoded intrinsically and
mediated by acircuit’s local parameters. Our results provide further evidence that temporal
information is encoded by the brain in lower order areas and suggest that timeis an integral

component of sensory processing.
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845 LEGENDS

846

847 FIGURE 1: Axisof dedicated to intrinsic models of timing models. A. Oscillatory models:

848 intrinsic oscillators project to a downstream readout unit or units. Early models proposed that a
849  pacemaker, much like a metronome, output periodic pulses which were then counted by a

850 downstream accumulator (Creelman, 1962; Gibbon, 1977); recent oscillatory models propose
851 that anetwork of cortical oscillators with differing periodicities project to striatal medium spiny
852 neuronsthat act as coincidence detectors and decode the oscillatory output (Buhus & Meck,

853  2005; Matell & Meck, 2004; Merchant et al., 2013, 2015; van Rijn et al., 2014). B. Ramping
854 models: temporal information is encoded by the firing rate of a given neuron and were motivated
855 by work in decision making in non-human primates (de Lafuente et al., 2022). Ramping activity
856  hasbeen found in sensory areas like primary visual cortex (V1) (Chubykin et al., 2013; Monk et
857 d., 2020; Shuler & Bear, 2006). C. Synfire chain models: activity is sparsely tiled over a

858  population. D. State dependent network models: temporal information is encoded in the changing
859  population vector, i.e. trajectory, of a network through high dimensional state space. A simple 3
860 unit network illustrates how the state of the network changesin 3 dimensional space over time.
861 Experimental and computational evidence increasingly points to the state dependent model asthe
862  candidate mechanism of temporal encoding on the order of milliseconds to seconds

863  (Buonomano, 2000; God & Buonomano, 2016; Karmarkar & Buonomano, 2007; Post et al.,

864  2023; Seay et a., 2020; Zhou €t al., 2022).

865

866

867 FIGURE 2: Micelearn Temporal Pattern Sensory Discrimination (TPSD) paradigm and

868 exhibit changesin V1 activity acrosslearning. A. Schematic of TPSD. Mice must discriminate
869  subsecond audio-visua patterns based upon their temporal information. B. A bootstrapped

870  support vector machine using licking profiles was used to predict Pref or NP stimuli over thetrial
871 period to validate learning. Only in the learned session is there sustained difference in licking
872  patterns between conditions prior to the water reward at 1.2 s (blue dotted vertical line). Control
873  sessions are those in which the monitor and speakers are turned off to ensure that mice were not
874  “cheating.” C. Spike sorted heatmapsin Hit, CR, and FA trials over sessions show changesin

875  activity dynamicsin V1 which suggest circuit restructuring leading to improved performance.
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FIGURE 3: Network divergence and decodability of network state acrossthetrial period
increases over learning. A. Example of calculation of Euclidean distance. The top panel shows a
two neuron system in which the network state changes between t; and t,. The distance between
the network states (D) can be calculated using the Pythagorean theorem, i.e. Euclidean distance
in two dimensions. The bottom panel shows the calculation in a3 dimensional, i.e. 3 neuron
system. The equation can be generalized to n dimensions (see Methods). B. Network divergence
across sessionsin Hit, CR, and FA trials. Network divergence was calculated as the bootstrapped
Euclidean distance between the positions of the network at different pointsin time (see
Methods). C. Naive Bayes classifier decoding of network state between different pointsin time
across sessionsin Hit, CR, and FA trials. D. Correlations of network divergencein A. and
network state decoding in B. across sessions in Hit, CR, and FA trials. Pearson’s correlation

coefficient was used to calculate correlations.

FIGURE 4: Network divergence and decodability of trial outcomesincreasesover learning. A.
Network divergence between trial outcomesin naive, middle, and learned sessions. Network
divergence was calculated as the bootstrapped Euclidean distance between trial outcomes at a
given time (see Methods). Curves are plotted with 95% CI. B. Naive Bayes classifier decoding of
trial outcomes over the trial period using neural data. Curves are plotted with 95% CI. C.
Correlations of network divergence between trial outcomesin A. and trial outcome decoding in

B. across sessions. Pearson’s correlation coefficient was used to calcul ate correlations.

FIGURE 5 :Single unit decoding between trial outcomes. A. Each cell was used to discriminate
Hit from CR trials across sessions. Cells are then sorted over thetrial period by the point at
which they were most accurate, akin to spike sorted heatmaps. Naive sessions are the first row,
middle sessions the middle row, and learned sessions the bottom row. Bootstrapped Naive Bayes
classifiers were used for decoding. B. Asin A., but Hit vs. FA. C. Asin A., but CR vs FA.

FIGURE 6: Temporal information is encoded at the population level, not the single unit level.

A. Decoding Hit from CR trials using neural data as single unitsfrom Fig. 5A (left column) or as

anetwork of increasing numbers of cells (right column). Naive sessions are the first row, middle
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907  sessions arethe middle row, and learned sessions are the bottom row. B. Asin A., but decoding
908 Hit from FA trials. C. Asin A., but decoding CR from FA trials. See Methods for details

909 regarding cell selection procedures. All curves are plotted with 95% CI.

910

911 FIGURE 7: Oscillatory and non-oscillatory activity encode temporal information equally
912 well. A. Fractions of oscillatory cells did not significantly change across learning (Kruskal-

913 Wallis, H(13) = 2.79, p = .25). B. Naive Bayes classifier decoding of oscillatory cellsin Hit vs.
914 CRtrialsinthelearned session. A feature selection algorithm was used to iteratively select the
915 most informative cellsin the population (see Methods). The total network decodability is aso
916 shown in the dashed black line. Curves are plotted with 95% CI. C. Naive Bayes classifier

917  decoding of non-oscillatory cellsin Hit vs. CR trialsin the learned session. A feature selection
918  algorithm was used to iteratively select the most informative cells in the population. The total
919 network decodability is also shown in the dashed black line. Curves are plotted with 95% CI.
920

921 FIGURE 8: Evolution of oscillatory activity through thetrial period isan aspect of network
922  divergence. A. Network divergence across sessionsin Hit, CR, and FA trialsin oscillatory

923  populations. Network divergence was calculated as the bootstrapped Euclidean distance between
924  the positions of the network at different pointsin time (see Methods). B. Naive Bayes classifier
925  decoding of network state between different pointsin time across sessions in Hit, CR, and FA
926 trialsin oscillatory populations. C. Correlations of network divergence across the trial period
927  from Fig. 8A and network state decoding from Fig. 8B across sessionsin Hit, CR, and FA trials
928 in oscillatory populations. Pearson’s correlation coefficient was used to calculate correlations.
929

930

931 FIGURE 9: Oscillatory activity differs between trial outcomes according to degree of network
932  divergence. A. Network divergence between trial outcomesin naive, middle, and learned

933 sessionsin oscillatory populations. Network divergence was calculated as the bootstrapped

934  Euclidean distance between trial outcomes at a given time (see Methods). B. Naive Bayes

935 classifier decoding of trial outcomes over thetrial period using neural datain oscillatory

936  populations. Curves are plotted with 95% CI. C. Correlations of network divergence between
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937 trial outcomes from Fig. 9A and trial outcome decoding and Fig. 9B across sessionsin

938 oscillatory populations. Pearson’s correlation coefficient was used to calculate correlations.

939

940 FIGURE 10 : Ramping and non-ramping activity encode temporal information equally well.
941  A. Fractions of ramping cells did not significantly change across learning (Kruskal-Wallis, H(13)
942 =.5,p=.78). B. Naive Bayes classifier decoding of ramping cellsin Hit vs. CR trialsin the

943 learned session. A feature selection algorithm was used to iteratively select the most informative
944  cdlsin the population (see Methods). The total network decodability is also shown in the dashed
945  Dblack line. Curves are plotted with 95% CI. C. Naive Bayes classifier decoding of non-ramping
946 celsin Hit vs. CR trialsin the learned session. A feature selection algorithm was used to

947  iteratively select the most informative cellsin the population. Thetotal network decodability is
948  also shown in the dashed black line. Curves are plotted with 95% CI.

949

950 FIGURE 11: Evolution of ramping activity through the trial period isan aspect of network
951 divergence. A. Network divergence across sessionsin Hit, CR, and FA trialsin ramping

952  populations. Network divergence was calculated as the bootstrapped Euclidean distance between
953 thepositions of the network at different pointsin time (see Methods). B. Naive Bayes classifier
954  decoding of network state between different pointsin time across sessions in Hit, CR, and FA
955 trialsin ramping populations. C. Correlations of network divergence across the trial period from
956 Fig. 11A and network state decoding from Fig. 11B across sessionsin Hit, CR, and FA trialsin
957  ramping populations. Pearson’s correlation coefficient was used to calculate correlations.

958

959

960 FIGURE 12 : Ramping activity differs between trial outcomes according to degree of network
961 divergence. A. Network divergence between trial outcomes in naive, middle, and learned

962  sessionsin ramping populations. Network divergence was calculated as the bootstrapped

963  Euclidean distance between trial outcomes at a given time (see Methods). B. Naive Bayes

964 classifier decoding of trial outcomes over thetrial period using neural datain ramping

965 populations. Curves are plotted with 95% CI. C. Correlations of network divergence between
966 trial outcomesfrom Fig. 12A and trial outcome decoding from Fig. 12B across sessions in

967 ramping populations. Pearson’s correlation coefficient was used to calculate correlations.
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