

1 **TITLE**

2 Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade

3

4 **AUTHORS**

5 Jordan Powers^{1,2}, Xing Zhang¹, Andres V. Reyes³, Raul Zavaliev¹, Shou-Ling Xu³, and Xinnian

6 Dong^{1,2*}

7

8 **AFFILIATIONS**

9 ¹ *Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA*

10 ²*University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA*

11 ³*Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA*

12 *Correspondence: xdong@duke.edu

13

14

15 **SUMMARY**

16 For over 60 years, salicylic acid (SA) has been known as a plant immune signal required
17 for both basal and systemic acquired resistance (SAR). SA activates these immune responses by
18 reprogramming up to 20% of the transcriptome through the function of NPR1. However,
19 components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1-
20 signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose
21 chromatin associations are often indirect and transient. To overcome this challenge, we applied
22 TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as
23 well as new components of transcription-related complexes. Testing of new components showed
24 that chromatin remodeling and histone demethylation contribute to SA-induced resistance.
25 Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA
26 synthesis, except associated transcription factors (TFs), suggesting that common regulatory
27 modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like
28 NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon
29 SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA
30 TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70
31 then play a major role in inducing immune-output genes without interacting with NPR1 at the
32 chromatin. Moreover, a loss of NPR1 condensate formation decreases its chromatin-association
33 and transcriptional activity, indicating the importance of condensates in organizing the NPR1-
34 signaling hub and initiating the transcriptional cascade. This study demonstrates how
35 combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional
36 genetic methods to globally map signaling hubs and transcriptional cascades.

37

38 INTRODUCTION

39 In plants, a local infection can often lead to systemic acquired resistance (SAR) through
40 the accumulation of the phytohormone, salicylic acid (SA)¹, which, in *Arabidopsis*, could result in
41 changes in up to 20% of its transcriptome². This process is mediated by the downstream signal
42 component nonexpresser of PR genes 1 (NPR1); mutating *NPR1* leads to a drastic loss of this
43 transcriptional response and enhanced susceptibility to primary and secondary infection³. Since
44 the NPR1 protein lacks a DNA-binding domain, it is proposed to function as a transcriptional
45 cofactor for transcription factors (TFs) such as TGAs⁴⁻⁶ and WRKYs^{7,8}. However, our knowledge
46 on how NPR1 functions molecularly to orchestrate the transcriptome-wide changes in response to
47 SA is still limited by the insufficient sensitivity of current methodologies for investigating a
48 transcriptional cofactor like NPR1. Recent structural study of the NPR1 complex with TGA3 TF
49 showed that NPR1 serves its transcriptional coactivator role as a dimer by bridging two dimeric
50 TGA3 molecules⁹. The presence of (NPR1)₂-(TGA3)₂ intermediates in the cryo-EM samples
51 suggests that the NPR1 dimer may function as a platform to nucleate different TFs in an
52 enhanceosome. This raises the question, does NPR1 interact with different TFs concurrently in
53 response to SA to activate the myriad of output genes or, alternatively, initiate the reprogramming
54 through a transcriptional cascade? Besides TFs, NPR1 is likely to be associated with large
55 molecular complexes in response to SA because of the nuclear and cytoplasmic condensates
56 detected for the protein^{7,10}. While the cytoplasmic condensates (cSINCs) have been
57 characterized¹⁰, the function and contents of NPR1 nuclear condensates (nSINCs) remain to be
58 elucidated. Therefore, a comprehensive study of NPR1's proximal partners in the nucleus and a
59 stepwise dissection of NPR1 transcriptional targets are essential for elucidating the molecular
60 mechanisms by which this master immune regulator reprograms the transcriptome.

61

62 **RESULTS**

63 **Label-free quantitative analysis of NPR1-proxiome using TurboID led to identification of**
64 **new regulators of SA-induced resistance**

65 To address the question how the transcriptional reprogramming occurs after the SA-bound
66 NPR1 dimer bridges the TGA TF complexes⁹, we generated stable transgenic plants expressing
67 NPR1-3xHA fused with a promiscuous biotin ligase, TurboID^{11,12}. The activity of the resulting
68 NPR1-3xHA-TurboID (NPR1-TbID) was validated by its ability to restore, in the *npr1-2*
69 background, the induction of *PR1*, a known NPR1 target (Extended Data Fig. 1a). Based on the
70 *PR1* gene expression pattern, we treated the transgenic line with 1 mM SA for 4 h, when *PR1* is
71 showing the most rapid increase⁷, followed by sample collection and processing under either a
72 stringent or a harsh condition (see Methods). Using label-free quantification of the LC-MS/MS
73 data¹³, we identified 234 NPR1-proximal proteins ($FC_{LFQ} \geq 2$, p-value < 0.01 in either condition
74 or p-value < 0.1 in both conditions) enriched in the NPR1-TurboID sample compared to the control
75 (Fig. 1a, Extended Data Fig. 1b, Supplementary Data 1). For the first time, we were able to detect
76 almost all known, key NPR1 interactors identified through decades of genetic and molecular
77 studies, including NPR1-like protein 3 (NPR3) and 4 (NPR4)¹⁴, NIM1-interacting 1 (NIMIN1)¹⁵,
78 TGA5⁴⁻⁶, WRKY18⁸, histone acetyltransferase of the CBP family 1 (HAC1)¹⁶, and components of
79 Mediator¹⁷ (Fig. 1b), validating the superior sensitivity of the method. Critically, the identified
80 proximal proteins have minimal overlap with the components of SA-induced NPR1 condensates
81 in the cytoplasm, cSINCs¹⁰ (Fig. 1c), giving us confidence in the identification of the NPR1 nuclear
82 proxiome, which are possible components of the NPR1-enhanceosome.

Excitingly, this analysis also identified many new NPR1 proximal partners. Gene Ontology (GO) term analysis based on molecular function (MF) demonstrated that these partners are enriched with proteins involved in histone modifications, chromatin remodeling, transcriptional machinery, and splicing complexes (Fig. 1d, Extended Data Fig. 1c), suggesting roles of these nuclear functions in reprogramming the SA transcriptome. The multi-functional feature of the NPR1-proxiome is consistent with its central role as a signaling hub for conferring disease resistance against a broad-spectrum of pathogens and abiotic stresses^{10,18,19}. To begin to functionally validate the NPR1-proximal complexes, we focused on two groups of NPR1 partners: (1) the chromatin remodeling SWItch/Sucrose Non-Fermentable (SWI/SNF) proteins, with BRAHMA (BRM) as a representative, and (2) the histone modifying proteins, with the histone demethylase LSD1-like 3 (LDL3) as a representative. Although chromatin remodeling, nucleosome repositioning, and histone modifications have previously been shown to occur at SA-responsive genes and may play a role in their induction^{16,20}, the involvements of BRM and LDL3 have not been tested in SA-induced resistance. We found that knocking out the *BRM* and *LDL3* genes partially compromised SA-induced resistance to the bacterial pathogen *Pseudomonas syringae* pv *maculicola* ES4326 (*Psm* ES4326) (Fig. 1e, f), indicating that chromatin remodeling through BRM and histone demethylation through LDL3 are important regulatory steps involved in SA/NPR1-mediated transcriptional reprogramming. The moderate phenotypes of these mutants highlight the effectiveness of TurboID in identifying new signaling mechanisms involved in essential and robust cellular processes which are difficult to uncover using forward genetic approaches due to the moderate phenotypes of the viable mutants.

104 Interestingly, both of BRM and LDL3 proteins have been reported in proximity with the
105 condensate-forming protein, Guanylate-Binding Protein-Like 3 (GBPL3)²¹. Similar to GBPL3,

106 which has been shown to be involved in temperature-mediated SA synthesis and pathogen
107 response^{22,23}, NPR1 also forms nuclear condensates in response to SA induction⁷. From a more in-
108 depth comparison between the NPR1-proxiome and the GBPL3-proxiome, we discovered a large
109 overlap in transcriptional regulators, chromatin remodelers, and histone modifiers (Fig. 1g, shaded
110 in blue). However, most of the TFs appeared to be NPR1-specific partners (19/24). This led to an
111 exciting hypothesis that plants reprogram their transcriptome in response to a specific stimulus by
112 recruiting common transcriptional regulatory modules and machineries, but unique TFs, by a hub
113 protein, such as NPR1, which has the intrinsic property to form biomolecular condensates²⁴.

114

115 **QuantSeq shows WRKY54 and WRKY70 are positive regulators of SA/NPR1-mediated
116 transcriptional reprogramming.**

117 Among the TFs unique to NPR1 based on our TurboID data, TGA and WRKY TFs have
118 already been observed to interact with NPR1 in previous studies^{4-8,10} (Fig. 1b, g). However, while
119 TGA3 TF has been shown to bind DNA in complex with NPR1 in the cryo-EM structure⁹, the
120 transcriptional role of WRKY TFs in SA-mediated gene expression is less straightforward because
121 different WRKYs, with their own transcription induced by various stresses, have redundant and
122 distinct roles in regulating gene expression²⁵. In this study, we focused on WRKY70 and its closest
123 homolog WRKY54 (WRKY54/70), because they have been shown to associate with NPR1⁷. We
124 performed QuantSeq²⁶ in WT, *npr1-2*, and *wrky54 wrky70* (*wrky54/70*) double mutants 8 h after
125 SA induction and identified 2528 differentially expressed genes in response to SA
126 ($|\log_2\text{foldchange}| \geq 1$, adjusted p-value < 0.1), of which 1909 were induced and 1619 were
127 repressed (Extended Data Fig. 2a, Supplementary Data 2). Among the 1909 SA-induced genes,
128 1022 were NPR1-dependent and 782 were WRKY54/70-dependent (Extended Data Fig. 2b,

129 Supplementary Data 2), and the global transcriptome displayed a higher degree of correlation with
130 NPR1 than with WRKY54/70 (Extended Data Fig. 2c, d). GO analyses of NPR1- and/or WRKY-
131 dependent genes did not provide further resolution, with similar enrichments for defense response
132 and SA-related processes (Extended Data Fig. 3a-c). Interestingly, promoter examination of these
133 genes led to detection of the WRKY-binding “W-box” as the most enriched motif (Extended Data
134 Fig. 3d-f), instead of the *as-1* element for TGA TFs, even for those NPR1-dependent,
135 WRKY54/70-independent genes (Extended Data Fig. 3f), suggesting that WRKY TFs are the
136 major TFs responsible for the SA-mediated transcriptional output.

137

138 **Genome-wide greenCUT&RUN identified WRKY TF genes as a major group of NPR1
139 transcriptional targets**

140 The enrichment of the W-box in our QuantSeq data (Extended Data Fig. 3d-e) and in other
141 transcriptome profiling datasets at various time points after SA or SA analog treatment^{2,16,27,28}
142 (Extended Data Fig. 4a-c) raised the question about the role of TGA TFs in the SA signaling
143 cascade and the relationship between TGA and WRKY TFs with NPR1. To address these
144 questions, we performed Cleavage Under Target and Release Using Nuclease (CUT&RUN)
145 followed by next generation sequencing²⁹ 4 h after SA induction to identify direct transcriptional
146 targets of NPR1, utilizing an anti-GFP antibody on 35S:NPR1-GFP and 35S:GFP transgenic
147 plants. Unfortunately, the experiment failed to detect any differential peaks between NPR1-GFP
148 and GFP samples with minimal difference seen at either known NPR1 targets or globally
149 (Extended Data Fig. 5). This suggests that while CUT&RUN has significantly enhanced sensitivity
150 for identifying TFs that interact directly with chromatin³⁰ and histone modifications³¹, an even

151 more sensitive methodology is required for detecting targets of transcriptional cofactors, like
152 NPR1, whose proximity to DNA depends on its interaction with TFs.

153 To further improve the sensitivity of the CUT&RUN methodology, which relies on
154 transient interactions of multiple proteins that ultimately lead to the cutting of target DNA
155 sequences by pA-MNase, we adopted an anti-GFP nanobody-based CUT&RUN approach,
156 ‘greenCUT&RUN’, where the GFP-specific nanobody is fused directly to the MNase³². In contrast
157 to the initial CUT&RUN data (Extended Data Fig. 5), the new method led to a clear separation of
158 the SA-treated NPR1-GFP samples from both the untreated NPR1-GFP and the GFP samples (Fig.
159 2a). Based on the three NPR1-GFP replicates, we were able to detect 385 reproducible NPR1-
160 GFP-specific peaks (Extended Data Fig. 6a, Supplementary Data 3). Furthermore, examining the
161 promoter of the known NPR1 target gene, *PR1*, an SA-dependent accumulation of NPR1-GFP
162 could be observed clearly (Fig. 2b). By averaging global alignment of the binding loci, we detected
163 a significant enrichment of NPR1-GFP at the promoters of its target genes upon SA treatment
164 compared to the untreated samples (Fig. 2c). Among these loci, 84.2% occurred upstream of the
165 transcriptional start site (TSS). Interestingly, the distances from TSS of these binding peaks varied
166 widely from gene to gene, ranging from immediately before the TSS to several thousand base pairs
167 (kb) upstream, with only 53% within 1 kb from TSS (Extended Data Fig. 6b). These results are
168 consistent with NPR1-enhanceosome’s function in bringing in distal binding sites through DNA
169 loop and in recruiting larger transcriptional machineries like the SWI/SNF complex and
170 Mediator^{33,34}(Fig. 1g).

171 Among the NPR1 peaks, we detected the TGA-binding *as-1* element, TGACG, as the most
172 significantly enriched motif (Fig. 2d). While there was an increased cutting frequency near the
173 motif, the motif itself was protected from the MNase, further supporting the notion that NPR1

174 binds to the DNA through TGA TFs (Fig. 2e). Additionally, we also detected enrichment of
175 Teosinte branched 1/Cycloidea/Proliferating cell factors (TCP) and Cycling Dof Factor (CDF)
176 binding motifs (Fig. 2d), which are two other TFs detected in our TurboID experiment (Fig. 1g).
177 As expected, the NPR1-target genes are largely related to defense response and hormone cross talk
178 between SA and another plant defense hormone, jasmonic acid (JA) (Fig. 2f). Surprisingly, the W-
179 box, the most enriched motif among SA-induced genes, was not enriched under NPR1 peaks.
180 Moreover, compared to the thousands of differentially expressed genes in response to SA, there
181 were only a few hundred NPR1-target genes. These data suggest that NPR1 reprograms the
182 transcriptome through multiple steps, instead of through parallel association with multiple TFs. In
183 support of this hypothesis, the GO terms of NPR1 transcriptional targets are largely enriched with
184 TFs and other DNA binding proteins (Fig. 2f). Analysis of the genes annotated as DNA binding
185 and/or cis-regulatory binding detected four major TF families: WRKYs, NACs, ERFs, and MYBs,
186 with WRKYs representing the largest family (Extended Data Fig. 7a). Of note, NPR1
187 preferentially targets group III WRKY TFs, including WRKY70 (Extended Data Fig. 7b, c),
188 suggesting their involvement in further propagating SA-induced gene expression.

189

190 **Genome-wide greenCUT&RUN established WRKY70 as a downstream TF in the SA-
191 induced transcriptional cascade**

192 To examine the role of group III WRKYs in SA/NPR1-mediated reprogramming of the
193 immune transcriptome, we performed a subsequent greenCUT&RUN analysis on a transgenic line
194 *35S:WRKY70-GFP*. We collected the samples 2 h after SA treatment to take into consideration of
195 the previous hypothesis that WRKY70 repression on the marker gene *PR1* is removed by NPR1
196 prior to its activation of TGA TF⁷. Similar to our NPR1 greenCUT&RUN experiment, we found

197 that WRKY70-GFP samples were well-correlated with one another, while distinguished from
198 those of the GFP samples. Surprisingly, they were also distinct from the NPR1-GFP
199 greenCUT&RUN data (Extended Data Fig. 8a). From this experiment, we detected 1477
200 reproducible WRKY70-GFP-specific peaks (Extended Data Fig. 8b, Supplementary Data 4). It
201 was evident that the WRKY70-GFP samples had a higher percentage of reproducible peaks (43.4%
202 - 61.3%) compared to those in the NPR1-GFP samples (32.3% - 36.3%) (Extended Data Figs. 6a
203 and 8b), consistent with WRKY70 being a TF. Examining all target genes showed that WRKY70,
204 like NPR1, was mainly detected at the promoters of its target genes with only 14.4% of WRKY70
205 >1 kb upstream of TSS compared to the 31.2% for NPR1 (Extended Data Figs. 6b and 8c). As
206 expected, a high enrichment of W-box was observed in these WRKY70-bound loci (Fig. 3b).
207 Interestingly, while defense-related biological processes were still the top enrichments in the
208 WRKY-target genes, they differ from those of NPR1-target genes in their molecular functions.
209 Where NPR1 targets TF genes, WRKY70 targets those involved in ADP-binding (mostly encoding
210 nucleotide-binding domain and leucine-rich repeat-containing immune receptors, NB-LRRs),
211 calmodulin-binding, and kinase activity (Fig. 3c), implying that WRKY70, whose transcription is
212 induced by NPR1-TGA² (Extended Data Fig. 7b), is involved in the downstream events in the
213 signaling cascade of NPR1-mediated transcriptional reprogramming.

214 Apart from these distinct transcriptional targets, there were a smaller number of shared
215 target genes between WRKY70 (116/1476) and NPR1 (116/346) (Fig. 3d), suggesting a possible
216 interplay between WRKY70 and NPR1 in regulating the transcription of these genes. Investigating
217 individual peaks, we saw WRKY70 and NPR1 indeed target the promoter of the same genes, but
218 at distinct loci from one another (Fig. 3e, f). Interestingly, *PR1* was not detected in our WRKY70-
219 GFP samples, despite the negative regulation WRKY70 has on the transcript³⁵. Interestingly, when

220 examining the peak patterns at all the shared target gene promoters, NPR1 samples showed one
221 distinct peak (Fig. 3g), typical of its targets (Fig. 3h), while WRKY70 samples displayed much
222 more varied and spreading peaks (Fig. 3g), which is atypical for the majority of the WRKY70
223 targets, where little spread is detected outside of the peak region (Fig. 3h). These data demonstrate
224 that NPR1 is unlikely to switch association between WRKY and TGA TFs at the chromatin level
225 as previously proposed⁷. Instead, NPR1 has been found to interact with WRKY70 in the
226 cytoplasmic SINCs to sequester and degrade it¹⁰. Nevertheless, the shared gene targets of NPR1
227 and WRKY70 with distinct loci suggest a possible regulatory dependence on both proteins.

228 The sequential NPR1- and WRKY70-greenCUT&RUN analyses elucidated an SA-
229 signaling cascade in which the SA-activated NPR1 induces the expression of *WRKY* TF genes
230 through association with TGA TFs. Consistently, by comparing our QuantSeq results with NPR1-
231 and WRKY70-greenCUT&RUN targets, we found that, while NPR1 had the expected strong
232 regulation of WRKY70-target genes ($r = 0.85$) (Fig. 3i), WRKY54 and WRKY70 also had a
233 moderate correlation with NPR1-targets ($r = 0.69$) (Fig. 3j), suggesting that, in addition to their
234 role as feedback repressors of SA synthesis², WRKY54 and WRKY70 are predominantly positive
235 TFs of SA-mediated gene transcription. This hypothesis is further supported by the compromised
236 SA-mediated resistance to *Psm* ES4326 observed in the *wrky54/70* double mutant compared to
237 WT (Fig. 3k).

238

239 **SA-induced condensate-formation of NPR1 promotes its binding to the chromatin and**
240 **transcriptional activity**

241 With the identification of NPR1 proximal partners and direct transcriptional targets in the
242 signaling cascade, we then tested our hypothesis that SA-induced condensate formation is critical

243 for NPR1 to organize the enhanceosome to initiate transcription. We first performed
244 greenCUT&RUN in the *npr1^{rdr3}*-GFP mutant (referred to as *rdr3*)¹⁰, which can still translocate
245 into the nucleus upon SA induction, but fails to form either nuclear or cytoplasmic condensates¹⁰.
246 We found that chromatin association of *rdr3* was still dependent on SA and occurred at the same
247 loci as the WT NPR1, but at a significantly lower level (Fig. 4a), despite the fact that the mutant
248 protein has a higher-than-WT nuclear distribution¹⁰. Interestingly, the reduced *rdr3* binding to the
249 TGA TF was only observed *in planta* (Fig. 4b), not in the yeast two-hybrid assay (Fig. 4c),
250 suggesting that the decreased *rdr3*-chromatin association is less likely due to its diminished binding
251 to TGA3 than the reduced stability of its complex with TGA3 due to inability to form the nuclear
252 condensates. Moreover, at the same transcript levels (Fig. 4d), *rdr3* had significantly compromised
253 activity in inducing the direct target genes, *PR1* (Fig. 4e), *WRKY18* (Fig. 4f), and *WRKY70* (Fig.
254 4g) compared to the WT NPR1 control, supporting our hypothesis that NPR1 orchestrates the
255 transcriptomic changes upon SA-induction by forming biomolecular condensates.

256

257 **DISCUSSION**

258 By combinatorial applications of label-free quantification of TurboID-based LC-MS/MS
259 data and the greenCUT&RUN technology, we have transcended, in a single study, decades of
260 molecular genetic studies to generate a comprehensive map of the NPR1-centered transcriptional
261 reprogramming machineries and the transcriptional cascade in response to SA induction (Fig. 4h).
262 The validation of the new NPR1 proximal partners (Fig. 1e, f) clearly demonstrates the
263 effectiveness of the methodology in studying signaling hubs formed by proteins, like NPR1, in
264 association with regulatory modules involved in common nuclear functions, such as chromatin
265 remodeling, histone modifications, Mediator, and RNA splicing. The robustness of these essential

266 cellular machineries makes it difficult to discern their contributions to specific biological processes
267 through genetic studies. Indeed, the NPR1-proxiome shows high similarity to the GBPL3-
268 proxiome²¹, with the major distinction mainly in their associated TFs (Fig. 1g). Since both the
269 GBPL3-proxiome required for inducing SA synthesis upon stress²² and the NPR1-proxiome
270 responsible for SA-mediated transcriptional reprogramming can form nuclear biomolecular
271 condensates⁷, it is tempting to hypothesize that in the nucleus, a similar set of transcriptional
272 regulatory modules are recruited to form supramolecular complexes/condensates by distinct
273 regulators, like NPR1, whose association with unique TFs provides the complexes/condensates
274 functional specificity (Figs. 1g and 4h). Furthermore, condensate formation facilitates NPR1's
275 association with the chromatin, as well as target gene induction (Fig. 4a, d-g), supporting the notion
276 that SA-induced nuclear NPR1-condensates, i.e., nSINCs, are transcriptionally active.

277 More experiments are required to demonstrate that NPR1 condensate formation is required
278 for the recruitment of the transcriptional regulatory modules identified in the NPR1-proxiome (Fig.
279 1a, Extended Data Fig. 1b, Supplementary Data 1). In the survey of genome-wide association of
280 the key chromatin remodeling protein BRM using a stable *BRM:BRM-GFP* transgenic line³⁶, we
281 found that while the overall BRM-specific peaks stayed constant under both mock and SA-induced
282 conditions, indicating that SA has minimal impact on the general BRM binding to the chromatin
283 (Extended Data Fig. 9a, Supplementary Data 5), its association to the NPR1-targeted loci was
284 enhanced by SA treatment (Extended Data Fig. 9b), suggesting that BRM is recruited to NPR1-
285 target genes upon induction. However, the significant basal levels of BRM at these NPR1 loci
286 before SA induction indicate that members of this transcriptional machinery may already be
287 present at the target gene promoters. It would be exciting to explore which proteins of these
288 transcriptional modules are constitutively present at the promoters and which are recruited in

289 response to induction to initiate transcription. Consistent with NPR1 condensate formation being
290 a dynamic process, SA/NPR1-induced WRKYS as well as several known negative regulators of
291 SA-mediated gene expression, such as NPR3, NPR4, NIMINs, and TPLs, were found to be in the
292 NPR1-proxiome. However, we cannot rule out the possibility that the NPR1-proxiome consists of
293 multiple distinct NPR1-protein complexes. Future research will be required to understand the
294 dynamics of the NPR1 signaling hub.

295 Our success in using stepwise greenCUT&RUN to detect NPR1 direct targets and
296 elucidating the hierarchical relationship between TGA and WRKY TFs demonstrates the method's
297 great potential in dissecting transcriptional cascades by providing a higher resolution than other
298 transcriptomic methods tested in the study. As shown in our QuantSeq experiments with WT, *npr1*
299 and *wrky54/70* mutants, the initiation step of the SA signaling cascade by NPR1 through TGA TFs
300 was obscured because NPR1/TGA-targets were out-numbered by the subsequent WRKY-
301 mediated transcriptional targets in the statistical analyses. Moreover, transcriptomic studies of TF
302 gene families often rely on the usage of available TF knockdown lines or knockout mutants, which
303 either have weak phenotypes due to functional redundancy or pleiotropic defects when higher
304 order mutants are used. These limitations can now be overcome by the greenCUT&RUN method,
305 which is readily applicable for studying not only TFs, but also any protein with indirect chromatin
306 association.

307

308 **METHODS**

309

310 **Plant material and growth conditions**

311 All plants used in this study were grown on soil (ProMix B) under 12-h light/12-h dark
312 conditions. The *35S:YFP-YFP-TbID* line was generously gifted by Dr. Zhi-Yong Wang³⁷. The
313 *35S:NPRI-3xHA-TbID* and *35S:npr1^{rdr3}-GFP* constructs were made using Gateway cloning
314 (Thermo Fisher Scientific). *35S:NPRI-3xHA-TbID* was transformed into the *npr1-2* plants using
315 the floral dip method³⁸. The *brm-3* (SALK_088462) and *ldl3-2* (SALK_146733) mutants were
316 obtained from ABRC. The *35S:NPRI-GFP*, *35S:npr1^{rdr3}-GFP*, and *35S:WRKY70-GFP* transgenic
317 lines and the *wrky54 wrky70* double mutant were previously described^{2,10}. The *BRM:BRM-GFP*
318 line was a generous gift from Dr. Chenlong Li³⁶.

319

320 **RNA isolation and qPCR**

321 Total RNA was extracted from 3-week-old plants treated with 1 mM SA or H₂O using
322 Trizol³⁹ (Thermo Fisher Scientific). DNase-treated total RNA was then used for SuperScriptIII
323 Reverse Transcription (Thermo Fisher Scientific). The resulting cDNA samples were diluted
324 tenfold for qPCR reactions using SYBR Green Master Mix to detect transcript levels.

325

326 **Affinity purification of biotinylated proteins**

327 Affinity purification of biotinylated proteins was performed as previously described¹¹, with
328 minor modifications. Briefly, three replicates (4 g/sample) of 3-week-old plants treated first with
329 1 mM SA and, 1 h later, with 50 µM biotin for 3 h, were collected, flash frozen, and stored at -80
330 °C. Samples were ground to a fine powder, dissolved in 4 mL of the extraction buffer (50 mM

331 Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% Na-deoxycholate, 1 mM EGTA, 1
332 mM DTT, and the protease inhibitor cocktail), filtered, and sonicated. Sonicated samples were
333 centrifuged, and biotin was removed from the resulting protein solution using PD-10 desalting
334 columns (GE-Healthcare). The flow-through was collected and subjected to affinity purification
335 using the streptavidin bead (Thermo Fisher Scientific). The resulting samples on the streptavidin
336 beads were processed under two conditions: harsh and stringent. The harsh condition involved
337 washing the beads 2x with the extraction buffer, 1x with 1 M KCl, 1x with 100 mM Na₂CO₃, 1x
338 with 2 M Urea in 10 mM Tris-HCl pH 8, and 2x again with the extraction buffer. The stringent
339 condition involved washing the beads 7x with the extraction buffer. The processed beads from
340 both conditions were resuspended in 1 mL of the extraction buffer for further processing. Prior to
341 trypsin digestion, the beads underwent further washes. The bead samples corresponding to the
342 harsh conditions were followed by harsh washes consisting of 1x with cold 1 M KCl, 1x with 2 M
343 Urea in 10 mM Tris-HCl pH 8, 2x with cold 50 mM Tris-HCl pH 7.5, and 2x with the Urea wash
344 buffer (50 mM Tris-HCl pH 7.5, 1 M Urea). The bead samples corresponding to the stringent
345 conditions were followed by mild washes consisting of 7x with the PBS buffer. Both sample sets
346 were subjected to a 3 h incubation in 80 µl Trypsin buffer (50 mM Tris-HCl pH 7.5, 1 M Urea, 1
347 mM DTT, and 0.4 µg Trypsin) at 25 °C. The supernatants from the tryptic digest were transferred
348 to new tubes and the beads were washed 2x with 60 µl 1 M Urea in 50 mM Tris-HCl pH 7.5. The
349 combined 200 µL elutes were reduced (final concentration of 4 mM DTT), alkylated (final
350 concentration of 10 mM Iodoacetamide), and digested overnight with 0.5 µg Trypsin. Additional
351 0.5 µg of trypsin was added in the next morning followed by acidification 4 h later by adding
352 formic acid to a final concentration of ~ 1 % and desalting using OMIX C18 pipette tips
353 (A57003100).

354

355 **LC-MS/MS**

356 LC-MS/MS was carried out on a Q-Exactive HF hybrid quadrupole-Orbitrap mass
357 spectrometer (Thermo Fisher Scientific), equipped with an Easy LC 1200 UPLC liquid
358 chromatography system (Thermo Fisher Scientific). Peptides were first trapped using a trapping
359 column (Acclaim PepMap 100 C18 HPLC, 75 μ m particle size, 2 cm bed length), then separated
360 using analytical column AUR2-25075C18A, 25CM Aurora Series Emitter Column (25 cm x 75
361 μ m, 1.6 μ m C18) (IonOpticks). The flow rate was 300 nL/min, and a 120-min gradient was used.
362 Peptides were eluted by a gradient from 3 to 28% solvent B (80% acetonitrile, 0.1% formic acid)
363 over 100 min and from 28 to 44% solvent B over 20 min, followed by a 10 min wash at 90%
364 solvent B. Precursor scan was from mass-to-charge ratio (m/z) 375 to 1,600 and top 20 most
365 intense multiply charged precursors were selected for fragmentation. Peptides were fragmented
366 with higher-energy collision dissociation (HCD) with normalized collision energy (NCE) 27.

367

368 **Proteomic analysis**

369 Harsh and stringent sets of LC-MS/MS spectra were searched separately against the
370 Araport11 database (20220914 version containing 49,467 entries) using the MSFragger 3.2⁴⁰
371 software under default criteria to obtain maximum Label Free Quantification (LFQ) intensities.
372 The search results were analyzed separately in Perseus⁴¹ (version 1.6.15.0). The processing in
373 Perseus was as follows: MaxLFQ intensities were log2 transformed. Only proteins that had at least
374 two valid values in at least one group (NPR1-TbID or YFP-YFP-TbID) were kept. The remaining
375 missing MaxLFQ intensities were then imputed from a normal distribution that is downshifted by
376 1.8 and a width of 0.3 column wise. A two-sample t-test was conducted with a permutation-based

377 (n = 250) FDR = 0.01 and the S0 = 2. Significant NPR1 proximal partners were identified by the
378 following criteria: (1) a p-value < 0.1 in both processing conditions and a $\text{NPR1}_{\text{LFQ}}/\text{YFP}_{\text{LFQ}} \geq 2$ or
379 (2) a p-value < 0.01 in either processing condition and a $\text{NPR1}_{\text{LFQ}}/\text{YFP}_{\text{LFQ}} \geq 2$. GO Term Analysis
380 was performed using PANTHER⁴². Interaction network was performed using STRING⁴³. Plots
381 were generated with ggplot2⁴⁴, Cytoscape⁴⁵, and SRplot.

382

383 **SA-induced resistance against bacterial infection**

384 SA-induced resistance was measured as previously described⁴⁶. Briefly, *Pseudomonas*
385 *syringae* pv. *maculicola* ES4326 (*Psm* ES4326) was grown at 30 °C on plates containing the
386 King's B medium (KB) for 48 h before resuspended in 10 mM MgCl₂. 3-week-old plants were
387 pretreated with 1 mM SA or H₂O for 24 h prior to infection with *Psm* ES4326 at OD_{600 nm} = 0.001.
388 Leaf discs from 8 infected plants were collected 2 days (for *wrky54 wrky70*) or 3 days (for *brm-3*
389 and *ldl3-2*) post infection and individually ground in 0.5 mL of 10 mM MgCl₂, serially diluted,
390 and plated on the KB medium supplemented with 100 µg/mL of streptomycin. Colonies were
391 counted two days later.

392

393 **QuantSeq and data analysis**

394 Total RNA was extracted from 3-week-old leaves treated with 1 mM SA or H₂O for 8 h
395 using Split RNA Extraction Kit (Lexogen GmbH). RNA concentration was measured with Qubit
396 RNA BR assay (Thermo Fisher Scientific) and integrity was checked with Agilent 2100
397 Bioanalyzer. Approximately 400 ng of RNA was used for library construction using the QuantSeq
398 3' mRNA Seq Library Prep FWD Kit for Illumina (Lexogen GmbH)²⁶. All libraries were
399 sequenced at 100 bp single-end reads using the Illumina system NextSeq1000. Raw reads were

400 trimmed to 50 bp using Trim Galore⁴⁷ and mapped to the TAIR10 genome using the STAR
401 aligner⁴⁸ under the Lexogen recommended parameters. Differential expression between SA- and
402 H₂O-treated samples was detected using DESeq2⁴⁹ with an adjusted p-value < 0.1 and a fold-
403 change ≥ 2. GO Term Analysis was performed using PANTHER⁴² and *de novo* motif enrichment
404 was uncovered using HOMER⁵⁰ by analyzing promoters of differentially expressed genes from
405 1000 bp upstream to 200 bp downstream of the transcriptional start sites.

406

407 **greenCUT&RUN**

408 Six leaves from two plants were collected before and after treatment with 1 mM SA for 4
409 h and stored at -80 °C. Frozen samples were ground to a fine powder and dissolved in 15 mL of
410 the lysis buffer (20 mM Tris-HCl pH 7.5, 20% glycerol, 20 mM KCl, 2 mM EDTA, 2.5 mM
411 MgCl₂, 8.56% sucrose, and the protease inhibitor cocktail). Samples were filtered sequentially
412 through a 70-µm filter and a 40-µm filter before centrifuged at 1,500 x g at 4 °C for 10 min. The
413 pellet was resuspended in the nuclei isolation buffer (20 mM Tris-HCl pH 7.5, 20% glycerol, 2.5
414 mM MgCl₂, 0.2% Triton X-100, and the protease inhibitor cocktail) and centrifuged at 1,500 x g
415 at 4 °C for 10 min. The above resuspension and centrifugation steps were repeated 4x, until the
416 pellet was free of any green color. The pellet was resuspended in 1 mL of the greenCUT&RUN
417 wash buffer (20 mM HEPES-KOH pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, and the protease
418 inhibitor cocktail). Isolated nuclei were then bound to 40 µL of Concanavalin A beads resuspended
419 in 10 µL of binding buffer (20 mM HEPES-KOH pH 7.5, 10 mM KCl, 1 mM CaCl₂, 1 mM MnCl₂,
420 and the protease inhibitor cocktail) and rotated for 10 min at room temperature. The beads were
421 collected using a magnetic rack, the supernatant was then removed, the bound nuclei were then
422 resuspended in 1 mL of the EDTA buffer (20 mM HEPES-KOH pH 7.5, 150 mM NaCl, 0.5 mM

423 Spermidine, 2 mM EDTA, and the protease inhibitor cocktail), and rotated at room temperature
424 for 10 min. The beads were collected again and resuspended in 100 μ L of the greenCUT&RUN
425 wash buffer containing 10 μ g/mL of nanobody-MNase and rotated at 4 °C for 30 min. After
426 rotation, beads were collected and washed twice in the greenCUT&RUN wash buffer. Beads were
427 then put on ice, resuspended in 150 μ L of the calcium buffer (20 mM HEPES-KOH pH 7.5, 150
428 mM NaCl, 0.5 mM Spermidine, 3 mM CaCl₂, and the protease inhibitor cocktail) and incubated
429 on ice for 30 min. After incubation, 100 μ L of the 2X stop buffer (340 mM NaCl, 20 mM EDTA,
430 10 mM EGTA, 100 μ g/mL RNase A, and 50 μ g/mL Glycogen) was added to the beads and
431 incubated at 37 °C for 30 min. After incubation, beads were removed, and the supernatant was
432 collected for DNA isolation. 2 μ L of 10% SDS and 20 μ g of Proteinase K were added to the
433 collected supernatant and incubated at 50 °C for 1 h. Equal volume of Phenol:Chloroform:Isoamyl
434 Alcohol (25:24:1, v/v) was added to the samples followed by vortexing. The solution was
435 transferred to a phase lock tube and centrifuged for 5 min at 16,000 x g at room temperature. After
436 centrifugation, equal volume of chloroform was added, samples were inverted 10x, and centrifuged
437 for 5 min at 16,000 x g at room temperature. The top aqueous layer was then taken and moved into
438 new tubes containing 3 μ L of 2 mg/mL of glycogen. 2x volumes of 100% ethanol was added to
439 each sample to facilitate DNA precipitation overnight at -20 °C. After DNA precipitation, samples
440 were centrifuged for 10 min at 16,000 x g at 4 °C. The supernatant was removed, the pellet was
441 washed in 1 mL of 100% ethanol, and centrifuged for 5 min at 16,000 x g at 4 °C. The supernatant
442 was removed, and the pellet was air dried for 5 to 10 min. The pellet was resuspended in 50 μ L of
443 H₂O and used for library preparation.

444

445 **CUT&RUN**

446 The protocol for nuclei isolation for the CUT&RUN protocol was the same as for
447 greenCUT&RUN described above. After nuclei isolation, the previously reported CUT&RUN
448 protocol²⁹ was followed.

449

450 **Sequencing library construction for CUT&RUN and greenCUT&RUN**

451 CUT&RUN and greenCUT&RUN libraries were constructed using the KAPA HyperPrep
452 Kit (Roche Holding AG), with minor modifications. Briefly, end repair and A-tailing were
453 performed at 20 °C for 30 min followed by deactivation of the A-tailing enzyme at 58 °C for 1 h.
454 1/100 diluted Illumina TruSeq DNA UD Indexes were ligated on to A-tailed DNA at 20 °C for 30
455 min. Post-ligation cleanup was performed twice, first using 1x library volume of AMPure Beads,
456 next with 1.2x library volume of AMPure Beads, followed by a double-sided size selection to
457 remove larger DNA fragments and smaller adapter dimers, respectively, using 0.7X-1.2X library
458 volume of AMPure Beads following the manufacture's protocol (Roche Holding AG). Ligated
459 libraries were then amplified using PCR and cleaned up twice with 1.2x library volume of AMPure
460 Beads to generate final purified libraries. Library size and concentration were determined using
461 Agilent 2100 Bioanalyzer and Qubit (Thermo Fisher Scientific), respectively. The *35S:NPRI-GFP*,
462 *35S:npr1^{rdr3}-GFP*, *35S:WRKY70-GFP*, and *35S:GFP* (control) libraries were sequenced at
463 75 bp paired-end reads using the Illumina system NextSeq500. The *BRM:BRM-GFP* and *35S:GFP*
464 (control) libraries were sequenced at 100 bp paired-end reads using the Illumina system
465 NextSeq1000.

466

467 **CUT&RUN and greenCUT&RUN data analysis**

468 Raw reads were trimmed using Trim Galore⁴⁷ and aligned to the TAIR10 genome using
469 bowtie2⁵¹. Concordant read Sequence Alignment Map (SAM) files were converted to Binary
470 Alignment Map (BAM) files and PCR-duplicated reads were removed using SAMtools⁵².
471 Deduplicated BAM files were then used to call peaks using MACS2⁵³. Peaks called in all samples
472 were used for further analysis. Bigwig and bedgraph files of normalized Read Per Genomic
473 Content (RPGC) were generated using bamCoverage from deepTools 3.5.1⁵⁴. Bigwig files were
474 visualized in IGV⁵⁵. Normalized bigwig files and deepTools 3.5.1 were used for generating
475 Pearson correlation heatmaps and peak heatmaps. *De novo* motif prediction of reproducible peaks
476 was performed using HOMER⁵⁰. GO Term Analysis was performed using PANTHER⁴². Cut
477 frequency plot was generated using cut-frequency⁵⁶. Mean profile plots were generated using
478 custom code in R.

479

480 Yeast two-hybrid

481 AH109 and Y187 yeast strains were transformed with the TGAs/pGADT7 and
482 NPR1s/pGBK7 constructs, respectively. NPR1 and npr1^{rdr3} were used as the bait and TGA3 and
483 TGA5 were used as the prey. All protocols were carried out according to Clontech Yeast Protocols
484 Handbook.

485

486 Protein analysis and immunoprecipitation (IP)

487 Protein analysis and IP were performed as previously described⁵⁷. Briefly, recombinant
488 proteins were transiently overexpressed in *Nicotiana benthamiana* by coinjecting the
489 *Agrobacterium tumefaciens* strain GV3101 carrying the 35S:NPR1-GFP construct (OD_{600 nm} =
490 0.5) or 35S:npr1^{rdr3}-GFP construct (OD_{600 nm} = 0.5) with the *Agrobacterium tumefaciens* strain

491 GV3101 carrying the *35S:TGA3-HA* construct (OD_{600 nm} = 0.5) into the abaxial side of the leaf.
492 After 44 h, plants were sprayed with 1 mM SA for 4 h before 1 g of tissue was collected and flash
493 frozen. Frozen tissue was then ground and resuspended in 2.5 mL of the IP Buffer (10% glycerol,
494 25 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 10 mM DTT, the protease inhibitor
495 cocktail, and 0.2% NP-40). 40 μ L of α -GFP beads (Chromotek) were added to the lysate for
496 protein binding overnight at 4 °C, followed by 3x washes in the IP buffer. 50 μ L of 4x LDS Sample
497 Buffer (Thermo Fisher Scientific) was added to the beads and incubated at 70 °C for 20 min.
498 Samples were then run on a 4-12% Bis-Tris gel and transferred to a membrane for western blotting
499 using α -GFP (Clontech) and α -HA (Cell Signaling Technology) antibodies. Band intensity was
500 measured using the iBright Analysis Software (Thermo Fisher Scientific).

501

502 **Statistics and reproducibility**

503 In all statistical data, the center values are the mean, and the error bars all represent standard
504 error of the mean except in Figure 4 qPCR data (standard deviation). All experiments were
505 performed three or more times with similar results except Affinity Purification LC-MS/MS (once),
506 QuantSeq (once), and greenCUT&RUN (once).

507 **REFERENCES**

- 508 1. Durrant, W.E. & Dong, X. Systemic acquired resistance. *Annu Rev Phytopathol* **42**, 185-
509 209 (2004).
- 510 2. Wang, D., Amornsiripanitch, N. & Dong, X. A genomic approach to identify regulatory
511 nodes in the transcriptional network of systemic acquired resistance in plants. *PLoS Pathog*
512 **2**, e123 (2006).
- 513 3. Cao, H., Bowling, S.A., Gordon, A.S. & Dong, X. Characterization of an Arabidopsis
514 Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. *Plant Cell* **6**,
515 1583-1592 (1994).
- 516 4. Zhang, Y., Fan, W., Kinkema, M., Li, X. & Dong, X. Interaction of NPR1 with basic
517 leucine zipper protein transcription factors that bind sequences required for salicylic acid
518 induction of the PR-1 gene. *Proc Natl Acad Sci U S A* **96**, 6523-8 (1999).
- 519 5. Zhou, J.M. *et al.* NPR1 differentially interacts with members of the TGA/OBF family of
520 transcription factors that bind an element of the PR-1 gene required for induction by
521 salicylic acid. *Mol Plant Microbe Interact* **13**, 191-202 (2000).
- 522 6. Despres, C., DeLong, C., Glaze, S., Liu, E. & Fobert, P.R. The Arabidopsis NPR1/NIM1
523 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP
524 transcription factors. *Plant Cell* **12**, 279-90 (2000).
- 525 7. Saleh, A. *et al.* Posttranslational modifications of the master transcriptional regulator NPR1
526 enable dynamic but tight control of plant immune responses. *Cell Host Microbe* **18**, 169-
527 82 (2015).
- 528 8. Chen, J. *et al.* NPR1 promotes its own and target gene expression in plant defense by
529 recruiting CDK8. *Plant Physiol* **181**, 289-304 (2019).
- 530 9. Kumar, S. *et al.* Structural basis of NPR1 in activating plant immunity. *Nature* **605**, 561-
531 566 (2022).
- 532 10. Zavaliev, R., Mohan, R., Chen, T. & Dong, X. Formation of NPR1 condensates promotes
533 cell survival during the plant immune response. *Cell* **182**, 1093-1108 e18 (2020).
- 534 11. Mair, A., Xu, S.L., Branion, T.C., Ting, A.Y. & Bergmann, D.C. Proximity labeling of
535 protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by
536 TurboID. *Elife* **8**(2019).
- 537 12. Xu, S.L., Shrestha, R., Karunadasa, S.S. & Xie, P.Q. Proximity Labeling in Plants. *Annu*
538 *Rev Plant Biol* **74**, 285-312 (2023).
- 539 13. Zhu, W., Smith, J.W. & Huang, C.M. Mass spectrometry-based label-free quantitative
540 proteomics. *J Biomed Biotechnol* **2010**, 840518 (2010).
- 541 14. Fu, Z.Q. *et al.* NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants.
542 *Nature* **486**, 228-32 (2012).
- 543 15. Weigel, R.R., Pfitzner, U.M. & Gatz, C. Interaction of NIMIN1 with NPR1 modulates PR
544 gene expression in Arabidopsis. *Plant Cell* **17**, 1279-91 (2005).
- 545 16. Jin, H. *et al.* Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-
546 TGA histone acetyltransferase complex in Arabidopsis. *Nucleic Acids Res* **46**, 11712-
547 11725 (2018).
- 548 17. Zhang, X., Yao, J., Zhang, Y., Sun, Y. & Mou, Z. The Arabidopsis Mediator complex
549 subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene
550 expression in plant immune responses. *Plant J* **75**, 484-97 (2013).

551 18. Olate, E., Jimenez-Gomez, J.M., Holuigue, L. & Salinas, J. NPR1 mediates a novel
552 regulatory pathway in cold acclimation by interacting with HSFA1 factors. *Nat Plants* **4**,
553 811-823 (2018).

554 19. Seo, S.Y., Wi, S.J. & Park, K.Y. Functional switching of NPR1 between chloroplast and
555 nucleus for adaptive response to salt stress. *Sci Rep* **10**, 4339 (2020).

556 20. Singh, M. *et al.* Global nucleosome positioning regulates salicylic acid mediated
557 transcription in *Arabidopsis thaliana*. *BMC Plant Biol* **15**, 13 (2015).

558 21. Tang, Y., Ho, M.I., Kang, B.H. & Gu, Y. GBPL3 localizes to the nuclear pore complex
559 and functionally connects the nuclear basket with the nucleoskeleton in plants. *PLoS Biol*
560 **20**, e3001831 (2022).

561 22. Kim, J.H. *et al.* Increasing the resilience of plant immunity to a warming climate. *Nature*
562 **607**, 339-344 (2022).

563 23. Huang, S., Zhu, S., Kumar, P. & MacMicking, J.D. A phase-separated nuclear GBPL
564 circuit controls immunity in plants. *Nature* **594**, 424-429 (2021).

565 24. Mann, R. & Notani, D. Transcription factor condensates and signaling driven transcription.
566 *Nucleus* **14**, 2205758 (2023).

567 25. Kalde, M., Barth, M., Somssich, I.E. & Lippok, B. Members of the *Arabidopsis* WRKY
568 group III transcription factors are part of different plant defense signaling pathways. *Mol*
569 *Plant Microbe Interact* **16**, 295-305 (2003).

570 26. Moll, P., Ante, M., Seitz, A. & Reda, T. QuantSeq 3' mRNA sequencing for RNA
571 quantification. *Nature Methods* **11**, i-iii (2014).

572 27. Ding, Y. *et al.* Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in
573 transcriptional regulation of plant immunity. *Cell* **173**, 1454-1467 e15 (2018).

574 28. Maleck, K. *et al.* The transcriptome of *Arabidopsis thaliana* during systemic acquired
575 resistance. *Nat Genet* **26**, 403-10 (2000).

576 29. Skene, P.J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution
577 mapping of DNA binding sites. *Elife* **6**(2017).

578 30. Meers, M.P., Janssens, D.H. & Henikoff, S. Pioneer factor-nucleosome binding events
579 during differentiation are motif encoded. *Mol Cell* **75**, 562-575 e5 (2019).

580 31. Zheng, X.Y. & Gehring, M. Low-input chromatin profiling in *Arabidopsis* endosperm
581 using CUT&RUN. *Plant Reprod* **32**, 63-75 (2019).

582 32. Koidl, S. & Timmers, H.T.M. greenCUT&RUN: efficient genomic profiling of GFP-
583 tagged transcription factors and chromatin regulators. *Curr Protoc* **1**, e266 (2021).

584 33. Bazett-Jones, D.P., Cote, J., Landel, C.C., Peterson, C.L. & Workman, J.L. The SWI/SNF
585 complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-
586 histone contacts within these domains. *Mol Cell Biol* **19**, 1470-8 (1999).

587 34. Kagey, M.H. *et al.* Mediator and cohesin connect gene expression and chromatin
588 architecture. *Nature* **467**, 430-5 (2010).

589 35. Li, J., Zhong, R. & Palva, E.T. WRKY70 and its homolog WRKY54 negatively modulate
590 the cell wall-associated defenses to necrotrophic pathogens in *Arabidopsis*. *PLoS One* **12**,
591 e0183731 (2017).

592 36. Li, C. *et al.* Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-
593 remodeling ATPase BRM in *Arabidopsis*. *Nat Genet* **48**, 687-93 (2016).

594 37. Kim, T.W. *et al.* Mapping the signaling network of BIN2 kinase using TurboID-mediated
595 biotin labeling and phosphoproteomics. *Plant Cell* **35**, 975-993 (2023).

596 38. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated
597 transformation of *Arabidopsis thaliana*. *Plant J* **16**, 735-43 (1998).

598 39. Rio, D.C., Ares, M., Jr., Hannon, G.J. & Nilsen, T.W. Purification of RNA using TRIzol
599 (TRI reagent). *Cold Spring Harb Protoc* **2010**, pdb prot5439 (2010).

600 40. Kong, A.T., Leprevost, F.V., Avtonomov, D.M., Mellacheruvu, D. & Nesvizhskii, A.I.
601 MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based
602 proteomics. *Nat Methods* **14**, 513-520 (2017).

603 41. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
604 (prote)omics data. *Nat Methods* **13**, 731-40 (2016).

605 42. Mi, H., Muruganujan, A., Casagrande, J.T. & Thomas, P.D. Large-scale gene function
606 analysis with the PANTHER classification system. *Nat Protoc* **8**, 1551-66 (2013).

607 43. Szklarczyk, D. *et al.* STRING v11: protein-protein association networks with increased
608 coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic
609 Acids Res* **47**, D607-D613 (2019).

610 44. Wickham, H. *ggplot2: elegant graphics for data analysis*, (Springer-Verlag New York,
611 2016).

612 45. Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
613 biomolecular interaction networks. *Genome Res* **13**, 2498-504 (2003).

614 46. Liu, X., Sun, Y., Korner, C.J., Du, X., Vollmer, M.E. & Pajerowska-Mukhtar, K.M.
615 Bacterial leaf infiltration assay for fine characterization of plant defense responses using
616 the *Arabidopsis thaliana*-*Pseudomonas syringae* pathosystem. *J Vis Exp* (2015).

617 47. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
618 *2011* **17**, 3 (2011).

619 48. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
620 (2013).

621 49. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
622 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

623 50. Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime
624 cis-regulatory elements required for macrophage and B cell identities. *Mol Cell* **38**, 576-89
625 (2010).

626 51. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
627 **9**, 357-9 (2012).

628 52. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-
629 9 (2009).

630 53. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137 (2008).

631 54. Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A. & Manke, T. deepTools: a flexible
632 platform for exploring deep-sequencing data. *Nucleic Acids Res* **42**, W187-91 (2014).

633 55. Robinson, J.T. *et al.* Integrative genomics viewer. *Nat Biotechnol* **29**, 24-6 (2011).

634 56. Nizamuddin, S. *et al.* Integrating quantitative proteomics with accurate genome profiling
635 of transcription factors by greenCUT&RUN. *Nucleic Acids Res* **49**, e49 (2021).

636 57. Du, Y. *et al.* Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus
637 infection and plant innate immunity. *PLoS Pathog* **9**, e1003659 (2013).

638 58. Perez-Riverol, Y. *et al.* The PRIDE database resources in 2022: a hub for mass
639 spectrometry-based proteomics evidences. *Nucleic Acids Res* **50**, D543-D552 (2022).

640

641 **ACKNOWLEDGEMENTS**

642 We thank Dr. Marc Timmers for providing the GFP nanobody-fused MNase enzyme and the
643 recombinant plasmid encoding the fusion protein; Dr. Zhi-Yong Wang for the gift of the YFP-
644 YFP-TurboID line; Dr. Chenlong Li for sharing the *BRM:BRM-GFP* line; and members of the
645 Dong laboratory for helpful discussion of the project. We thank the Duke University School of
646 Medicine for the use of the Sequencing and Genomic Technologies Shared Resource for providing
647 NGS services. This work was supported by grants from the National Institutes of Health (NIH)
648 1R35GM118036 and the Howard Hughes Medical Institute to X.D; NIH 5T32GM007754-40 to
649 J.P., NIH R01GM135706 to S.-L.X. and its diversity supplement to support A.V.R, as well as the
650 Carnegie endowment to the Carnegie mass spectrometry facility.

651

652 **AUTHOR CONTRIBUTIONS**

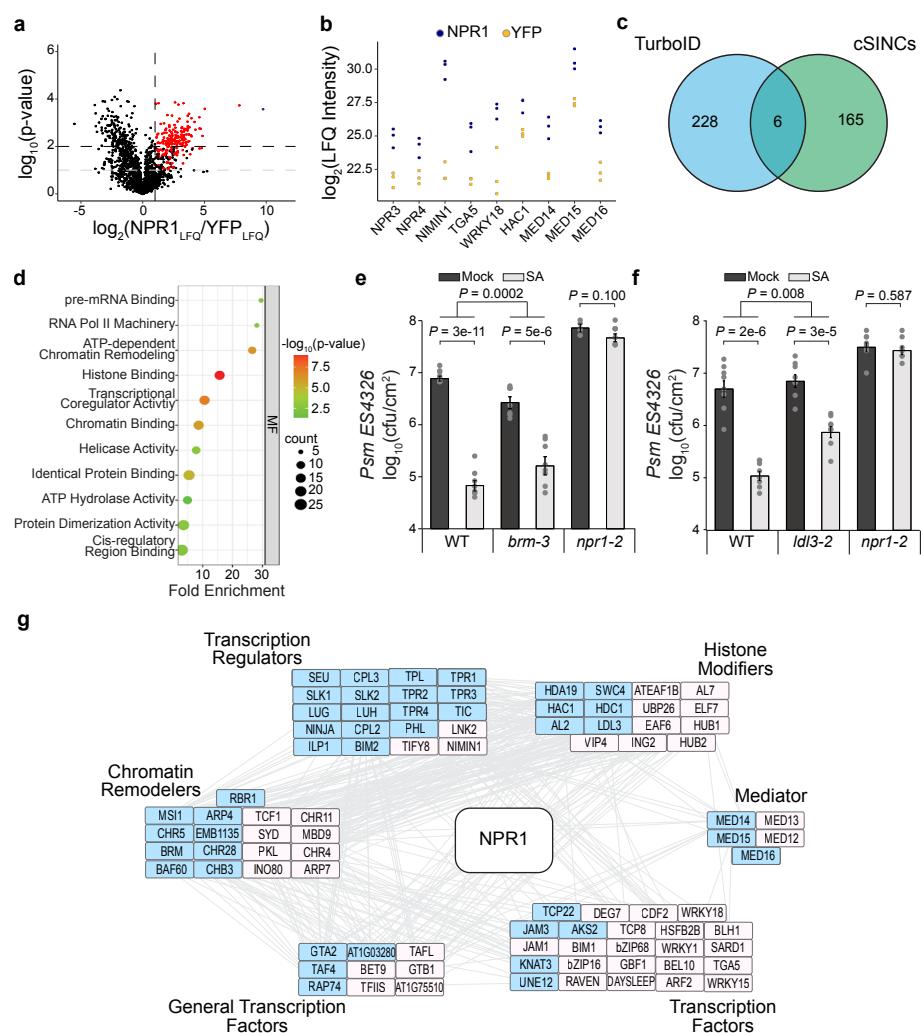
653 X.D. conceived and supervised this project. J.P. carried out all the TurboID, CUT&RUN,
654 greenCUT&RUN, QuantSeq, and molecular genetic experiments and performed the associated
655 computational analyses. X.Z. generated the NPR1-3xHA-TurboID construct. A.R. and S.X.
656 performed the LC-MS/MS of the TurboID samples. R.Z. carried out the marker gene expression
657 analysis. J.P. and X.D. wrote the manuscript with input from all coauthors.

658

659 **COMPETING INTEREST DECLARATION**

660 X.D. is a founder of Upstream Biotechnology Inc. and a member of its scientific advisory board,
661 as well as a scientific advisory board member of Inari Agriculture Inc. and Aferna Bio.

662


663 **MATERIALS & CORRESPONDENCE**

664 * Correspondence and material requests should be addressed to: xdong@duke.edu

665

666

FIGURES AND FIGURE LEGENDS

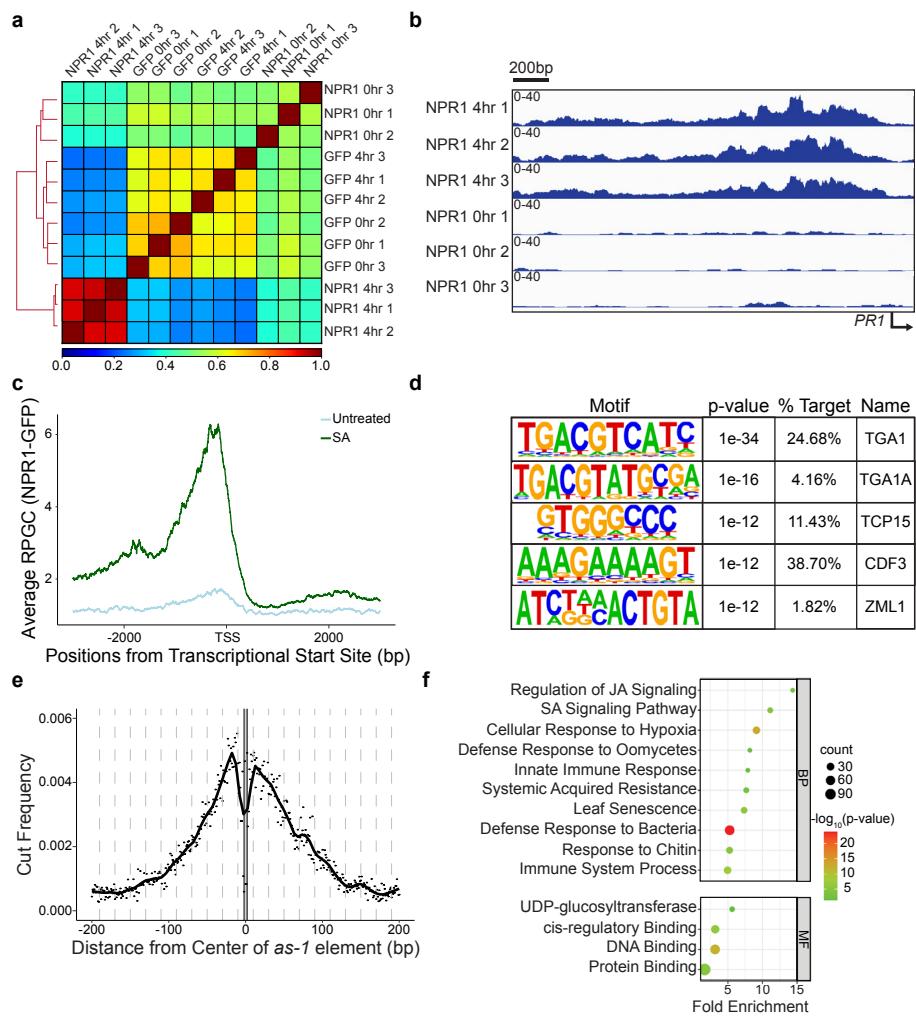
667

668 **Fig. 1 | NPR1-proxiome contains transcriptional machineries and chromatin remodelers**

669 **shared by GBPL3-proxiome. a**, Volcano plot of NPR1 proximal proteins 4 h after SA treatment

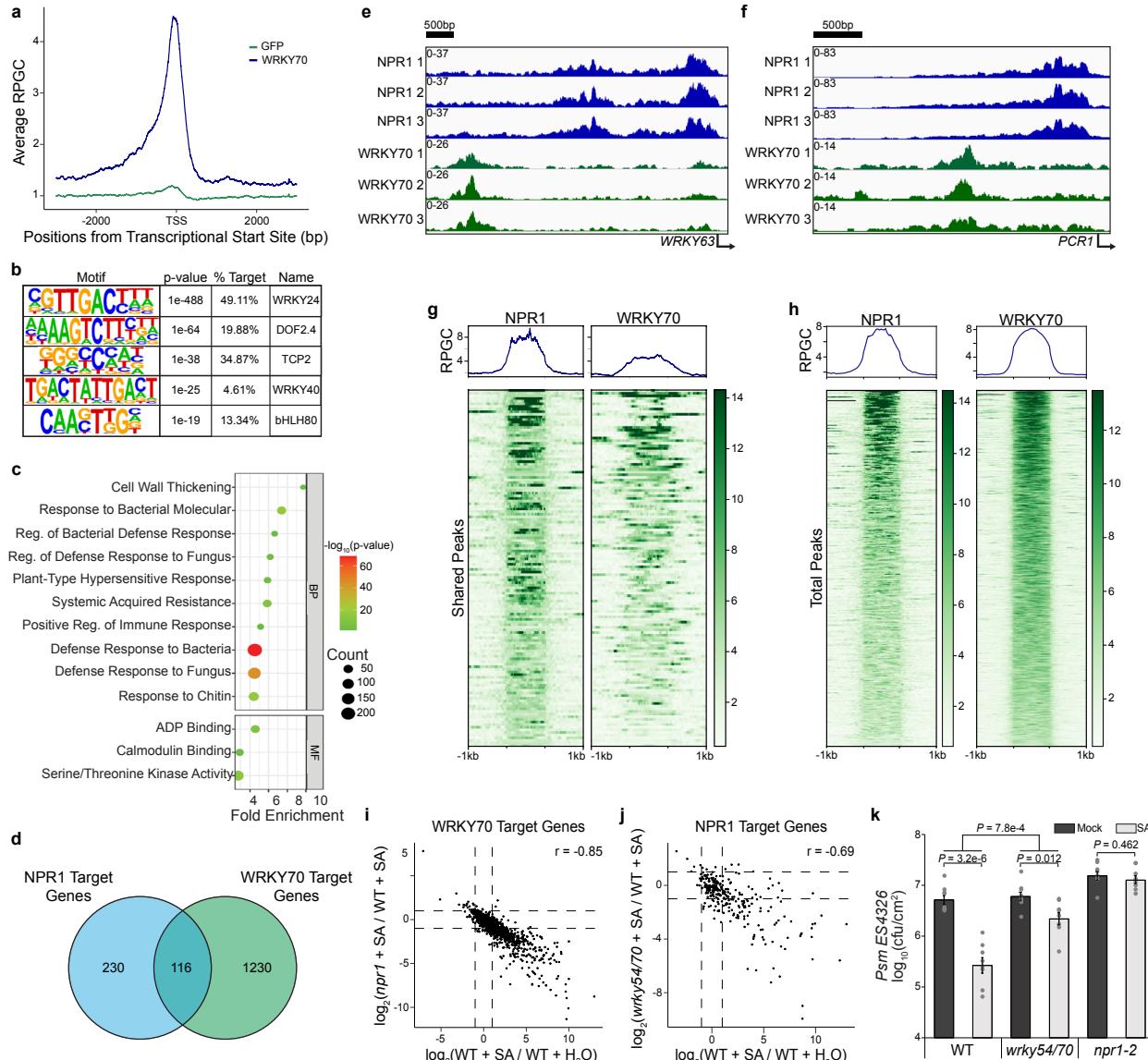
670 detected through TurboID biotin affinity purification followed by Label Free Quantification (LFQ)

671 Mass Spectrometry processed under stringent conditions (see Methods). Red points represent


672 proteins that have a $\text{NPR1}_{\text{LFQ}}/\text{YFP}_{\text{LFQ}} \geq 2$ and $p\text{-value} < 0.1$ in both stringent and harsh washing

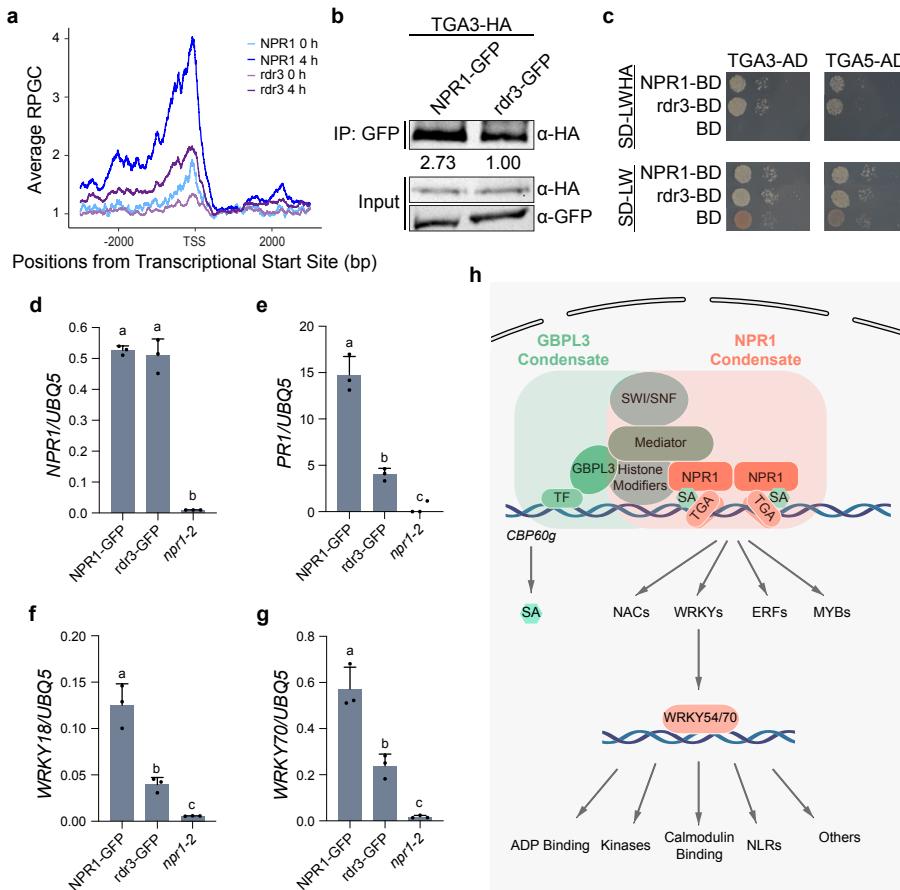
673 conditions (see Methods) or $p\text{-value} < 0.01$ in at least one washing condition. The single blue point

674 represents NPR1. **b**, $\log_2(\text{Maximum LFQ Intensity})$ of known NPR1 interactors in NPR1-TbID


675 (NPR1) vs. YFP-YFP-TbID (YFP) samples. **c**, Venn diagram comparing NPR1 proximal proteins

676 identified in the current TurboID experiment with those identified in the cytoplasmic SA-induced
677 NPR1 condensates (cSINCs)¹⁰. **d**, Enriched molecular functions (MF) of the 234 NPR1 proximal
678 proteins. **e, f**, WT, *npr1-2*, *brm-3* (**e**), and *ldl3-2* (**f**) treated with H₂O (mock) or 1 mM SA for 24
679 h prior to inoculation with *Psm* ES4326 at OD_{600 nm} = 0.001. Bacterial colony-forming units (cfu)
680 were measured 3 days post inoculation (n = 8; error bars represent SEM; two-sided t-test and two-
681 way ANOVA were used for comparisons within and between genotypes, respectively). **g**, STRING
682 network analysis⁴³ of NPR1 proximal proteins relating to chromatin remodeling and transcriptional
683 regulation. Blue shade, proteins shared with GBPL3-proxiome²¹.

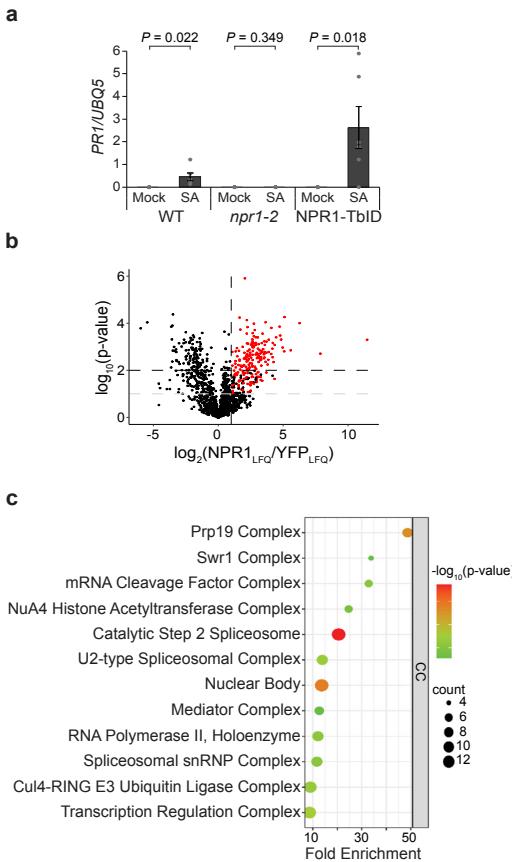
684


685 **Fig. 2 |** **NPR1 directly targets TF genes through association with TGA TFs.** **a**, Pearson's
 686 correlation of the greenCUT&RUN data from plants expressing NPR1-GFP (NPR1) and GFP with
 687 and without 1 mM SA treatment for 4 h. **b**, Integrative Genomics Viewer (IGV) of the *PR1*
 688 promoter showing normalized NPR1-GFP binding before and after SA treatment. **c**, Mean profile
 689 of Reads Per Genomic Content (RPGC) of NPR1-GFP reads before and after SA treatment at
 690 NPR1-target genes. TSS, transcriptional start site. **d**, Motifs enriched under NPR1-GFP peaks. **e**,
 691 Cut frequency of all *as-1* element (TGACG) by the GFP nanobody-MNase in the overall NPR1-
 692 GFP peaks 4 h after 1 mM SA treatment. **f**, The enriched biological processes (BP) and molecular
 693 functions (MF) of NPR1-target genes.

694

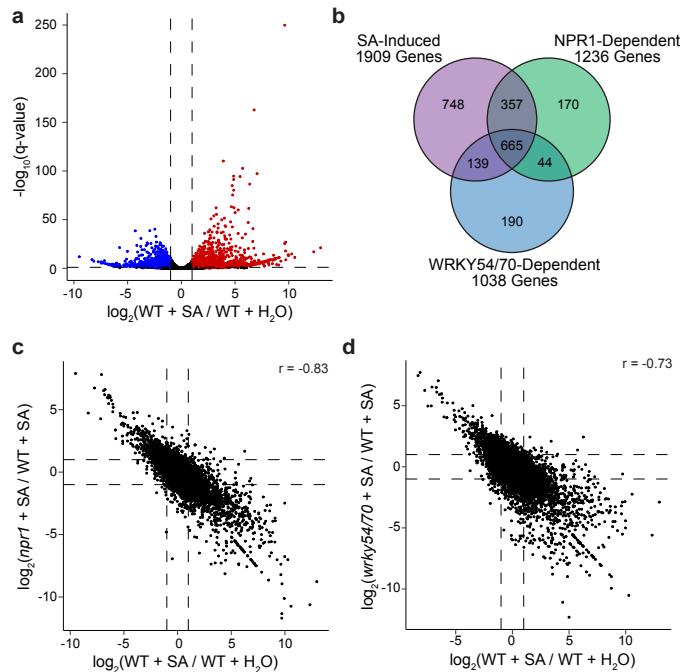
695 **Fig. 3 | WRKY54/70 are major TFs downstream of NPR1-TGA that positively regulate SA-
696 mediated gene expression. a, Mean profile of Reads Per Genomic Content (RPGC) of WRKY70-
697 GFP (WRKY70) and GFP reads of WRKY70-target genes. TSS, transcriptional start site. b, Motifs
698 enriched under WRKY70-GFP peaks. c, Enriched biological processes (BP) and molecular
699 functions (MF) of WRKY70-target genes. d, Venn diagram illustrating the overlap between
700 NPR1- and WRKY70-target genes. e, f, Integrative Genomics Viewer (IGV) of normalized NPR1
701 and WRKY70 binding at the promoters of their shared target genes *WRKY63* (e) and *PCR1* (f). g,**

702 RPGC of NPR1-GFP and WRKY70-GFP at 116 shared target genes 1 kb upstream and
703 downstream of NPR1 peaks. **h**, RPGC of all NPR1-GFP and WRKY70-GFP target genes centered
704 on their respective peaks. **i**, Correlation between SA-induced transcription and NPR1-dependency
705 in WRKY70-target genes. r , Pearson correlation coefficient. **j**, Correlation between SA-induced
706 transcription and WRKY54/70-dependency in NPR1-target genes. **k**, Bacterial colony-forming
707 units (cfu) in WT, *wrky54/70*, and *npr1-2*. Plants were treated with H₂O (mock) or 1 mM SA for
708 24 h before inoculated with *Psm* ES4326 at OD_{600 nm} = 0.001. CFUs were measured 2 days post
709 inoculation (n = 8; error bars represent SEM; two-sided t-test and two-way ANOVA were used for
710 comparison within and between genotypes, respectively).

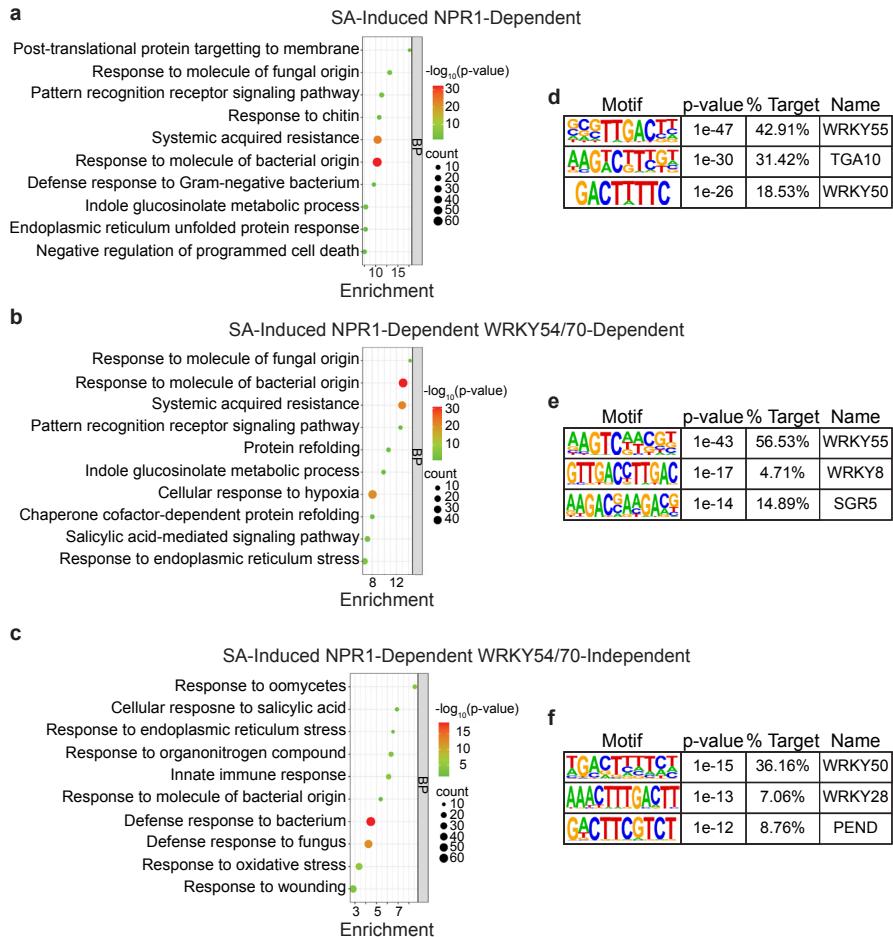

711

712 **Fig. 4 | Biomolecular condensate formation stabilizes NPR1 association with TGA TF and**
 713 **enhances its transcriptional activity.** **a**, Mean profile of Reads Per Genomic Content (RPGC) of
 714 NPR1-GFP (NPR1) and npr1^{rdr3}-GFP (rdr3) 4 h after 1 mM SA treatment at NPR1-target genes.
 715 TSS, transcriptional start site. **b**, co-immunoprecipitation (co-IP) between TGA3 and NPR1 or
 716 rdr3 transiently overexpressed in *N. benthamiana*. Value under IP blot represents band intensities
 717 normalized to TGA3 input. **c**, Interaction between TGA3/TGA5 fused to the activator domain
 718 (AD) and NPR1/rdr3 fused to the DNA-binding domain (BD) in the yeast two-hybrid assay. Yeast
 719 strains were mated for 24 h, normalized to OD_{600 nm} = 1.0, serial diluted, plated on the indicated
 720 Synthetic Defined (SD) media without leucine and tryptophan (LWHA) or without leucine,
 721 tryptophan, histidine, and adenine (LW), and incubated at 30 °C. Photos were taken 2 days
 722 after plating. **d-g**, Transcript levels of *NPR1/rdr3* (**d**) and target genes *PR1* (**e**), *WRKY18* (**f**), and
WRKY70 (**g**) normalized to UBQ5.

723 *WRKY70* (g) in *35S:NPR1-GFP/npr1-2*, *35S:npr1^{rdr3}-GFP/npr1-2*, and *npr1-2* plants measured
724 using qPCR 8 h after SA induction (n = 3, error bars represent standard deviation). **h**, Working
725 model of the SA/NPR1 signaling hub and transcriptional cascade. Overlapped rectangles show
726 that NPR1- and GBPL3-condensates share general transcriptional regulatory machineries (e.g.,
727 Mediator, SWI/SNF, and histone modifiers), but target different genes through association with
728 unique TFs. An increase in SA level triggers the transcriptional cascade by first activating NPR1
729 to induce TGA-mediated expression of WRKY, MYB, NAC and ERF TFs which in turn activate
730 the subsequent gene expression.

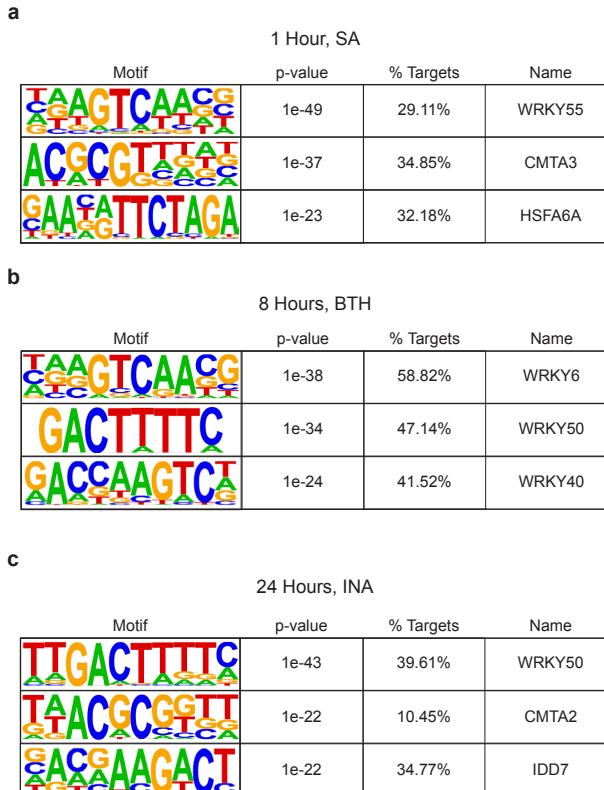

731

Extended Data Figures and Figure Legends

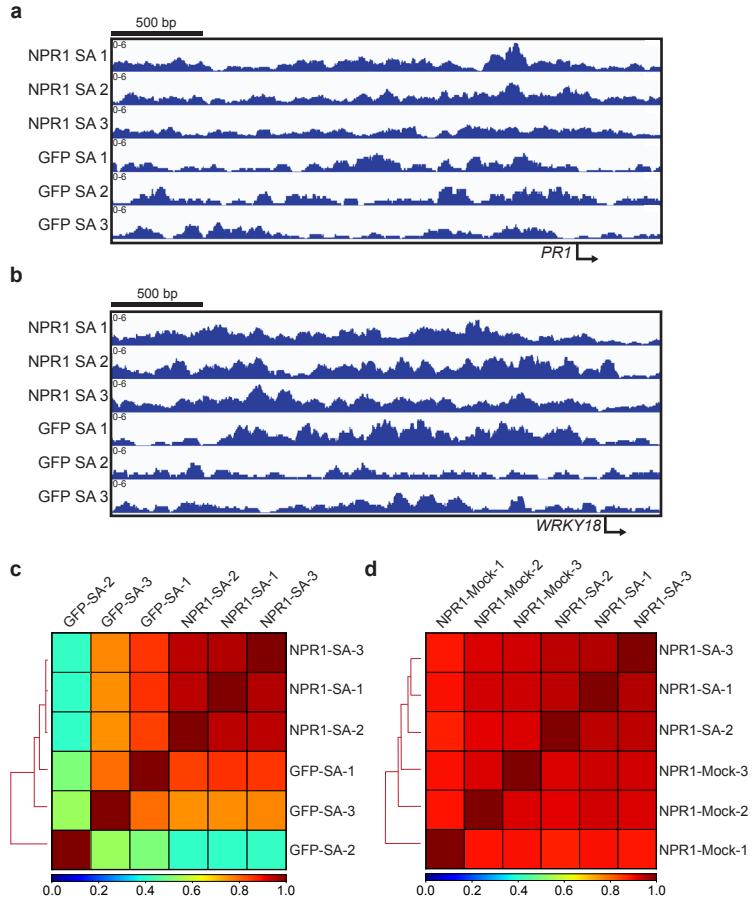

732

733 **Extended Data Fig. 1 | *NPR1-TbID* is biologically active and interacts with splicing and**
734 **transcriptional machineries in the nucleus upon SA induction. a, *PR1* expression in WT, *npr1-***
735 ***2*, and 35S:*NPR1-TbID/npr1-2* (*NPR1-TbID*) complementation plants treated with H₂O (mock) or**
736 **1 mM SA for 24 h. (n = 6; error bars represent SEM, two-sided t-test was used to compare mock**
737 **and 1 mM SA-treated samples). b, *NPR1* proximal proteins 4 h after treatment with 1 mM SA**
738 **detected through TurboID biotin affinity purification followed by Label Free Quantification (LFQ)**
739 **Mass Spectrometry processed under harsh conditions (see Methods). Red points represent proteins**
740 **that have a $NPR1_{LFQ}/YFP_{LFQ} \geq 2$ and $p\text{-value} < 0.1$ in both stringent and harsh washing conditions**
741 **(see Methods) or $p\text{-value} < 0.01$ in at least one washing condition. c, The enriched cellular**
742 **components (CC) of the 234 *NPR1* proximal proteins.**

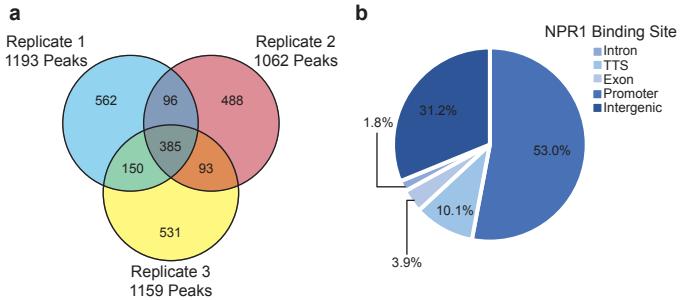
743


744 **Extended Data Fig. 2 | SA-mediated transcriptional changes are partially dependent on**
745 **NPR1 and/or WRKY54/70.** **a**, Volcano plot of SA-mediated transcriptional changes detected by
746 QuantSeq. Colored points represent transcripts with $(WT + SA) / (WT + H_2O) \geq 2$ (red) or < -2
747 (blue) and an adjusted p-value (q-value) < 0.1 . **b**, Venn diagram showing partial dependency of
748 SA-mediated gene expression on NPR1 and/or WRKY54/70. **c, d**, Relationship between NPR1 (**c**)
749 or WRKY70 (**d**) with SA-mediated transcriptional reprogramming. r, Pearson correlation
750 coefficient.

751


752 **Extended Data Fig. 3 | NPR1- and/or WRKY54/70-dependent genes are enriched in defense-**
 753 **related biological processes. a-c**, Enriched biological processes (BP) in SA-induced NPR1-
 754 dependent genes (a), SA-induced NPR1-dependent WRKY54/70-independent genes (b), and SA-
 755 induced NPR1- and WRKY54/70-dependent genes (c). **d-f**, Motifs enriched from 1 kb upstream
 756 to 200 bp downstream of transcriptional start sites of the genes defined in **a-c**, respectively.

757


758

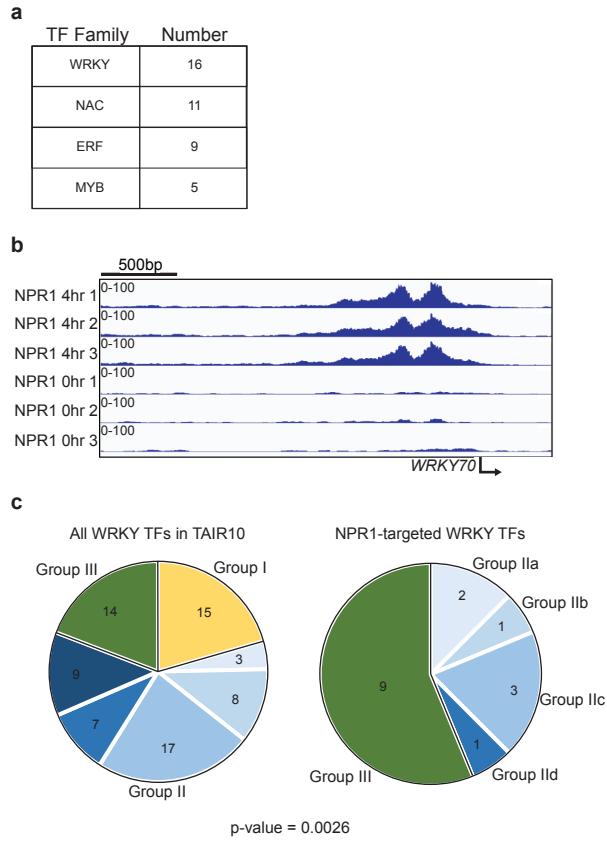
759 **Extended Data Fig. 4 | Motif enrichment of SA-, INA-, and BTH-induced genes from**
760 **previously performed RNA-seq and microarray studies. a,** Enriched motifs of SA-induced
761 genes 1 h after treatment determined by RNA-seq²⁷. **b,** Enriched motifs of the synthetic analog of
762 SA, benzothiadiazole (BTH)-induced genes 8 h after treatment determined by microarray². **c,**
763 Enriched motifs of the synthetic analog of SA, 2,6-dichloroisonicotinic acid (INA)-induced genes
764 24 h after treatment determined by RNA-seq¹⁶.

765

766 **Extended Data Fig. 5 | CUT&RUN failed to detect NPR1 binding to the chromatin in**
767 **response to SA. a, b, Integrative Genomics Viewer (IGV) of normalized NPR1-GFP (NPR1) and**
768 **GFP reads at the promoters of known NPR1-target genes *PR1* (a) and *WRKY18* (b) 4 h after 1 mM**
769 **SA treatment. Numbers represent 3 biological replicates for each genotype. c, d, Pearson's**
770 **correlation between NPR1 and GFP treated with SA (c), between NPR1-GFP treated with H₂O**
771 **(mock) and SA (d).**

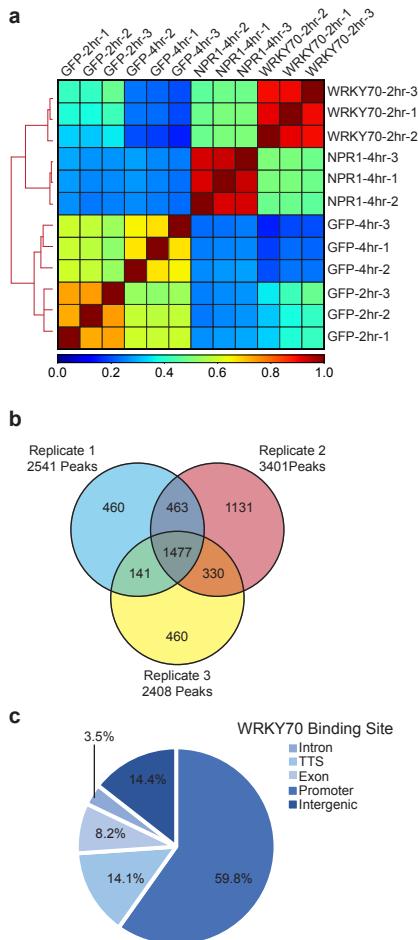
772

773 **Extended Data Fig. 6 | greenCUT&RUN detection of NPR1-GFP-binding at gene promoters**

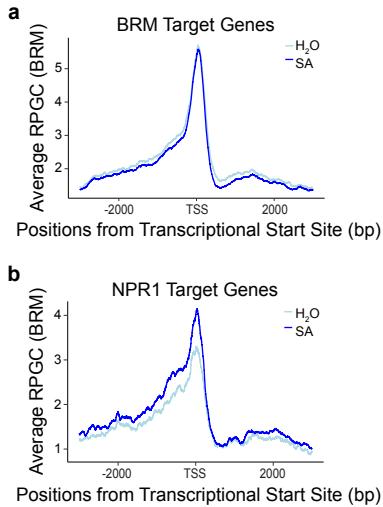

774 **upon SA induction. a,** Venn diagram illustrating the reproducibility of greenCUT&RUN peaks

775 among the three NPR1-GFP replicates 4 h after 1 mM SA treatment using GFP as the control. **b,**

776 Pie chart illustrating the locations of NPR1-GFP peaks in its target genes defined as promoters (1


777 kb upstream to 1 bp upstream), intergenic (> 1 kb upstream), exon, intron, and transcriptional

778 termination site (TTS).


779

780 **Extended Data Fig. 7 | NPR1 predominantly targets Group III WRKY TFs. a,** The most
781 abundant TF families targeted by NPR1. **b,** Integrative Genomics Viewer (IGV) of normalized
782 NPR1 reads with and without SA at the *WRKY70* promoter. Data from three biological replicates
783 were used. **c,** Pie charts of all *Arabidopsis* WRKY TF genes based on The Arabidopsis Information
784 Resource 10 (TAIR10) compared to *WRKY* genes directly targeted by NPR1 (statistical
785 significance determined by chi-square test).

786

787 **Extended Data Fig. 8 | greenCUT&RUN detection of WRKY70-GFP-binding at gene**
788 **promoters upon SA induction. a**, Pearson correlation between WRKY70-GFP, NPR1-GFP, and
789 GFP greenCUT&RUN data. **b**, Venn diagram illustrating the reproducibility of greenCUT&RUN
790 peaks among the three WRKY70-GFP replicates. **c**, Pie chart illustrating the locations of
791 WRKY70-GFP peaks in its target genes defined as promoters (1 kb upstream to 1 bp upstream),
792 intergenic (> 1 kb upstream), exon, intron, and transcriptional termination site (TTS).

793

794 **Extended Data Fig. 9 | greenCUT&RUN of BRM-GFP with and without SA treatment.**

795 **a, b,** Mean profile of Reads Per Genomic Content (RPGC) of BRM-GFP reads 4 h after treatment
796 with H₂O or 1 mM SA at BRM-target genes (a) and NPR1-target genes (b). TSS, transcriptional
797 start site.